1
|
Wang F, Gao Z, Chen B, Jiang Z, Renner DM, Li J, Tolufashe G, Du Y, Guo JT, Chang J. Modes of action of a small molecule antiviral compound targeting yellow fever virus NS4B protein. Proc Natl Acad Sci U S A 2025; 122:e2505498122. [PMID: 40378003 DOI: 10.1073/pnas.2505498122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/18/2025] Open
Abstract
Yellow fever virus (YFV) replicates its RNA genome in membranous vesicles derived from the invagination of endoplasmic reticulum membranes, designated as replication organelles (ROs). Nonstructural protein 4B (NS4B) of flaviviruses play essential roles in the biogenesis of ROs and evasion of innate immune responses. We report herein that the binding of an antiviral agent, acetic acid benzodiazepine (BDAA), to YFV NS4B not only rapidly inhibits YFV RNA synthesis, but also induces the activation of cytoplasmic double-stranded RNA (dsRNA)-sensing pathways to accelerate the apoptosis of infected cells. Genetic analyses revealed that all the three cytoplasmic dsRNA-sensing pathways contribute to YFV induction of apoptosis, whereas only retinoic acid-inducible gene I-like receptors and RNase L pathways are required for BDAA acceleration of infected cell death. Our findings support the notion that BDAA binding of NS4B impairs the integrity of ROs, leading to the inhibition of viral RNA synthesis and exposure of viral RNA replication intermediates for the activation of dsRNA sensors and acceleration of infected cell apoptosis. The unprecedented modes of action support the ongoing development of a potent BDAA derivative as a therapeutic agent of yellow fever that continues threatening the lives of millions of people.
Collapse
Affiliation(s)
- Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | - Zhao Gao
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | - Bo Chen
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | | | | | - Jiaqi Li
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | | | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | | |
Collapse
|
2
|
Deshaies JE, Triassi V, Lacombe A, Gagné M, Ling K, Ghosh A, Labrecque M, Rigo F, Jafar-Nejad P, Tétreault M, Vande Velde C. The differential impact of HNRNPA1 isoforms on gene expression and their relevance to dsRNA-mediated innate immune response. Sci Rep 2025; 15:15306. [PMID: 40312500 PMCID: PMC12046027 DOI: 10.1038/s41598-025-99031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) is a highly abundant RNA binding protein alternatively spliced in two main isoforms named, hnRNP A1 and hnRNP A1B. While being ubiquitously expressed, both isoforms have different cellular localizations and are differentially expressed in tissues during development and aging. To improve our understanding of the cellular function of each isoform, we performed RNA sequencing in cells exclusively expressing hnRNP A1 or hnRNP A1B. As expected, some genes were commonly regulated, however > 300 genes were differentially regulated by the two isoforms. Functional annotation indicated an enrichment for genes implicated in cellular defense, especially for innate immunity and dsRNA response. Here, we demonstrate that in basal conditions, hnRNP A1, but not hnRNP A1B, represses interferon stimulated genes including the family of dsRNA sensors oligoadenylate synthases (OASs). Thus, the dsRNA-mediated interferon antiviral response can be potentiated by the loss of hnRNP A1-mediated repression.
Collapse
Affiliation(s)
| | - Valérie Triassi
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Andréanne Lacombe
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Myriam Gagné
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Karen Ling
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Asmita Ghosh
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Marjorie Labrecque
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Frank Rigo
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Paymaan Jafar-Nejad
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Martine Tétreault
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Christine Vande Velde
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada.
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Neurosciences, Université de Montréal CRCHUM-Tour Viger, 900, rue Saint-Denis, R09.474, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
3
|
Drazkowska K, Cieslicka J, Kitowicz M, Pastucha A, Markiewicz L, Szymanek W, Goryca K, Kowalczyk T, Cysewski D, Bausch AR, Sikorski PJ. Effective recognition of double-stranded RNA does not require activation of cellular inflammation. SCIENCE ADVANCES 2025; 11:eads6498. [PMID: 40203104 PMCID: PMC11980852 DOI: 10.1126/sciadv.ads6498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Excess double-stranded RNA (dsRNA) is present in the cytoplasm of human cells, usually following viral infections. Recognition of dsRNAs activates innate immune pathways, leading to cellular inflammation and inhibition of cell growth. Here, we show that an effective dsRNA response may occur without the onset of inflammation. Pro-inflammatory [RLR (retinoic acid-inducible gene I-like receptor)-dependent pathway] and cell growth inhibitory mechanisms [oligoadenylate synthetase (OAS)/ribonuclease L (RNase L)- and dsRNA-activated protein kinase (PKR)-dependent pathways] can act independently. We found that the 5' ends of dsRNA direct the onset of cellular inflammation, whereas the RNA duplex activates the OAS/RNase L and PKR pathways. Unexpectedly, three of the most common human RNA epitranscriptomic marks-i.e., N6-methyladenosine, 5-methylcytosine, and pseudouridine-had almost no influence on the immunogenicity of dsRNA; however, the presence of N6-methyladenosine inhibited the OAS/RNase L pathway. Our observations demonstrate how precisely innate immunity is fine tuned in cells to take appropriate countermeasures when a specific threat arises.
Collapse
Affiliation(s)
- Karolina Drazkowska
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Julia Cieslicka
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Michal Kitowicz
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Anna Pastucha
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | | | - Wiktoria Szymanek
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Andreas R. Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | - Pawel J. Sikorski
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Huai W, Yang K, Xing C, Song K, Lyu H, Williams NS, Wu J, Yan N. OAS cross-activates RNase L intercellularly through cell-to-cell transfer of 2-5A to spread innate immunity. Immunity 2025; 58:797-810.e6. [PMID: 40010341 PMCID: PMC11981853 DOI: 10.1016/j.immuni.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
The 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway is a classical antiviral innate immune pathway. Upon sensing dsRNA, OAS produces 2',5'-oligoadenylate (2-5A) as a second messenger to activate RNase L. Whether 2-5A can be transported to extend the reach of innate immune signaling has not been established. Here, we showed that 2-5A was transferred from cell to cell through connexin (CX43/CX45) gap junctions. 2-5A was also transferred through importers and exporters, allowing OAS to remotely activate RNase L and protect neighboring cells from viral infection. We identified ABCC10 as a 2-5A exporter. Loss of ABCC10 had no effect on 2-5A production but reduced 2-5A export and protection of neighboring cells. Furthermore, OAShi tumors such as MC38 naturally produced 2-5A in vivo, which was secreted via ABCC10 to activate host-not tumor-RNase L-mediated antitumor response. Therefore, 2-5A is an immunotransmitter that mediates short-range communication between cells in infection and cancer.
Collapse
Affiliation(s)
- Wanwan Huai
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kun Yang
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kun Song
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heng Lyu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianjun Wu
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Manjunath L, Santiago G, Ortega P, Sanchez A, Oh S, Garcia A, Li J, Duong D, Bournique E, Bouin A, Semler BL, Setiaputra D, Buisson R. Cooperative role of PACT and ADAR1 in preventing aberrant PKR activation by self-derived double-stranded RNA. Nat Commun 2025; 16:3246. [PMID: 40185749 PMCID: PMC11971382 DOI: 10.1038/s41467-025-58412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Double-stranded RNAs (dsRNAs) produced during viral infections are recognized by the innate immune sensor protein kinase R (PKR), triggering a host translation shutoff that inhibits viral replication and propagation. Given the harmful effects of uncontrolled PKR activation, cells must tightly regulate PKR to ensure that its activation occurs only in response to viral infections, not endogenous dsRNAs. Here, we use CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that exploits translation levels as a readout and identifies PACT as a key inhibitor of PKR during viral infection. We find that PACT-deficient cells hyperactivate PKR in response to different RNA viruses, raising the question of why cells need to limit PKR activity. Our results demonstrate that PACT cooperates with ADAR1 to suppress PKR activation from self-dsRNAs in uninfected cells. The simultaneous deletion of PACT and ADAR1 results in synthetic lethality, which can be fully rescued in PKR-deficient cells. We propose that both PACT and ADAR1 act as essential barriers against PKR, creating a threshold of tolerable levels to endogenous dsRNA in cells without activating PKR-mediated translation shutdown and cell death.
Collapse
Affiliation(s)
- Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Alexander Garcia
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Dana Duong
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Alexis Bouin
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Bert L Semler
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Dheva Setiaputra
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA.
- Center for Virus Research, University of California Irvine, Irvine, California, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
6
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2025; 89:e0001623. [PMID: 39699237 PMCID: PMC11948496 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A. Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Dai L, Mei B, Zhu M, Zhou H, Shao Y, Peng L. Heterogeneity of OAS family expression in tuberculosis and the impact of different sample selection: a comprehensive analysis. Diagn Microbiol Infect Dis 2025; 111:116692. [PMID: 39864306 DOI: 10.1016/j.diagmicrobio.2025.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
The 2'-5' oligoadenylate synthetase (OAS)family, comprising OAS1, OAS2, OAS3, and OASL, has been shown to participate in the host immune response against Mycobacterium tuberculosis (Mtb). However, their expression profiles in tuberculosis (TB) remain inconsistent. In two TB-related datasets, the OAS family exhibits contrasting expression trends. To further investigate, we examined the expression of the OAS family in whole blood, peripheral blood mononuclear cells (PBMC), and pleural fluid mononuclear cells (PFMC) as study samples, focusing on pulmonary tuberculosis (PTB) and tuberculous pleuritis (TPE). The results revealed differing expression patterns of the OAS family in the two diseases. In PFMC samples from TPE patients, the OAS family showed overall upregulation. Additionally, matched samples from nine TPE patients indicated overlapping expression of the OAS family in both PBMC and PFMC samples.
Collapse
Affiliation(s)
- Lingshan Dai
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Bin Mei
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Mingzhi Zhu
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Hongjuan Zhou
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Yanqin Shao
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Lijun Peng
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
8
|
Donaldson MK, Zanders LA, Jose J. Functional Roles and Host Interactions of Orthoflavivirus Non-Structural Proteins During Replication. Pathogens 2025; 14:184. [PMID: 40005559 PMCID: PMC11858440 DOI: 10.3390/pathogens14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Orthoflavivirus, a genus encompassing arthropod-borne, positive-sense, single-stranded RNA viruses in the Flaviviridae family, represents clinically relevant viruses that pose significant threats to human and animal health worldwide. With warming climates and persistent urbanization, arthropod vectors and the viruses they transmit continue to widen their geographic distribution, expanding endemic zones. Flaviviruses such as dengue virus, Zika virus, West Nile virus, and tick-borne encephalitis virus cause debilitating and fatal infections globally. In 2024, the World Health Organization and the Pan American Health Organization declared the current dengue situation a Multi-Country Grade 3 Outbreak, the highest level. FDA-approved treatment options for diseases caused by flaviviruses are limited or non-existent, and vaccines are suboptimal for many flaviviruses. Understanding the molecular characteristics of the flavivirus life cycle, virus-host interactions, and resulting pathogenesis in various cells and model systems is critical for developing effective therapeutic intervention strategies. This review will focus on the virus-host interactions of mosquito- and tick-borne flaviviruses from the virus replication and assembly perspective, emphasizing the interplay between viral non-structural proteins and host pathways that are hijacked for their advantage. Highlighting interaction pathways, including innate immunity, intracellular movement, and membrane modification, emphasizes the need for rigorous and targeted antiviral research and development against these re-emerging viruses.
Collapse
Affiliation(s)
- Meghan K. Donaldson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Levi A. Zanders
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Hathcock SF, Mamana J, Keyzer TE, Vollmuth N, Shokri MR, Mauser HD, Correll RN, Lam DW, Kim BJ, Sin J. Transcriptomic analysis of coxsackievirus B3 infection in induced pluripotent stem cell-derived brain-like endothelial cells. J Virol 2025; 99:e0182424. [PMID: 39670741 PMCID: PMC11784093 DOI: 10.1128/jvi.01824-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 12/14/2024] Open
Abstract
Viral aseptic meningitis is a neuroinflammatory condition that occurs when viruses gain access to the central nervous system (CNS) and induce inflammation. The blood-brain barrier (BBB) is comprised of brain endothelial cells (BECs) that stringently regulate the passage of molecules, toxins, and pathogens from the circulation into the CNS. Through their unique properties, such as complex tight junctions, reduced rates of endocytosis, expression of efflux transporters, and restricted expression of leukocyte adhesion molecules, the BBB is often able to limit pathogen entry into the brain; however, certain neurotropic pathogens, such as coxsackievirus B3 (CVB3) are able to infect the CNS. We have previously demonstrated that CVB3 can infect and disrupt induced pluripotent stem cell-derived brain-like endothelial cells (iBECs), but the host response to this infection remains unknown. Here, we investigate global host transcriptional changes during CVB3 infection of iBECs using RNA sequencing. We validated our data set by exploring pathways altered by CVB3 using quantitative real-time PCR (qPCR) and enzyme-linked immunosorbent assay of upregulated cytokines and interferon signaling molecules. IMPORTANCE Coxsackievirus B3 (CVB3) is a leading cause of viral aseptic meningitis that can produce severe disease in susceptible individuals. To gain access to the central nervous system, CVB3 must cross central nervous system barriers, such as the blood-brain barrier. Previously, we have shown that CVB3 infects a human stem cell-derived brain-like endothelial cell model. Here, we report the global transcriptome of stem cell-derived brain-like endothelial cells to CVB3 infection and provide proof-of-concept validation of the dataset using molecular biology techniques. These data could inform novel mechanisms of CVB3-mediated blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Sarah F. Hathcock
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Julia Mamana
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Taryn E. Keyzer
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Nadine Vollmuth
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Mohammad-Reza Shokri
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Henry D. Mauser
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Robert N. Correll
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Center for Convergent Biosciences and Medicine, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Daryl W. Lam
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Brandon J. Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Center for Convergent Biosciences and Medicine, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Jon Sin
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
10
|
Khaskia E, Benhamou RI. Leveraging RIBOTAC technology: Fluorescent RNase L probes for live-cell imaging and function analysis. Heliyon 2025; 11:e41295. [PMID: 39831163 PMCID: PMC11741899 DOI: 10.1016/j.heliyon.2024.e41295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
RNA-targeting small molecules, particularly RIBOnuclease TArgeting Chimeras (RIBOTACs), represent a powerful and promising therapeutic approach by selectively degrading RNAs through ribonuclease (RNase) recruitment. Despite their potential, the development of effective RNase recruitment tools is still in its early stages and remains a critical area of research. Ribonuclease L (RNase L) is a key ribonuclease targeted by RIBOTACs, yet the tools available for studying RNase L are limited. In this study, we introduce novel fluorescent ribonuclease binders that enhance the visualization and investigation of RNase L activity. Our findings provide new insights into RNase L dynamics and RNA degradation pathways, paving the way for more effective RNA-targeted degradation strategies. Furthermore, we explore the versatility of these conjugates for real-time tracking of RNase L localization, intracellular trafficking, and mechanistic studies. These fluorescent probes also enable high-throughput fluorescence-based assays to identify small molecules that bind and recruit RNase L, advancing RNA-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Elias Khaskia
- The Institute for Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael I. Benhamou
- The Institute for Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Vukić D, Cherian A, Keskitalo S, Bong YT, Marônek M, Yadav L, Keegan LP, Varjosalo M, O'Connell MA. Distinct interactomes of ADAR1 nuclear and cytoplasmic protein isoforms and their responses to interferon induction. Nucleic Acids Res 2024; 52:14184-14204. [PMID: 39673305 DOI: 10.1093/nar/gkae1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024] Open
Abstract
The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is essential for correct functioning of innate immune responses. The ADAR1p110 isoform is mainly nuclear and ADAR1p150, which is interferon (IFN) inducible, is predominately cytoplasmic. Using three different methods - co-immunoprecipitation (co-IP) of endogenous ADAR1, Strep-tag co-IP and BioID with individual ADAR1 isoforms - a comprehensive interactome was generated during both homeostasis and the IFN response. Both known and novel interactors as well as editing regulators were identified. Nuclear proteins were detected as stable interactors with both ADAR1 isoforms. In contrast, BioID identified distinct protein networks for each ADAR1 isoform, with nuclear components observed with ADAR1p110 and components of cytoplasmic cellular condensates with ADAR1p150. RNase A digestion distinguished between distal and proximal interactors, as did a double-stranded RNA (dsRNA)-binding mutant of ADAR1 which demonstrated the importance of dsRNA binding for ADAR1 interactions. IFN treatment did not affect the core ADAR1 interactomes but resulted in novel interactions, the majority of which are proximal interactions retained after RNase A treatment. Short treatment with high molecular weight poly(I:C) during the IFN response resulted in dsRNA-binding-dependent changes in the proximal protein network of ADAR1p110 and association of the ADAR1p150 proximal protein network with some components of antiviral stress granules.
Collapse
Affiliation(s)
- Dragana Vukić
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
- NationalCentre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czechia
| | - Anna Cherian
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
- NationalCentre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czechia
| | - Salla Keskitalo
- Institute of Biotechnology, HelsinkiInstitute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Yih Tyng Bong
- Institute of Biotechnology, HelsinkiInstitute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Martin Marônek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
| | - Leena Yadav
- Institute of Biotechnology, HelsinkiInstitute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Liam P Keegan
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
| | - Markku Varjosalo
- Institute of Biotechnology, HelsinkiInstitute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
| |
Collapse
|
12
|
Vind AC, Zhong FL, Bekker-Jensen S. Death by ribosome. Trends Cell Biol 2024:S0962-8924(24)00230-7. [PMID: 39665883 DOI: 10.1016/j.tcb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Next to their essential role as protein production factories, ribosomes serve as molecular sensors of cell stress. Stalled and collided ribosomes trigger specific stress signaling, including the ribotoxic stress response (RSR). The RSR is initiated by the mitogen-activated protein (MAP)-3 kinase ZAKα in response to a plethora of translational aberrations, leading to activation of the stress-activated MAP kinases p38 and jun N-terminal kinase (JNK). Recent insights have highlighted an important role for the RSR pathway in triggering programmed cell death processes, including apoptosis and pyroptosis, in a broad range of physiologically relevant conditions. In this review, we summarize recent work on known links between programmed and accidental ribosome toxicity, RSR signaling, and cell death.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore; Skin Research Institute of Singapore (SRIS), A*STAR, Singapore #17-01 Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Simon Bekker-Jensen
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
13
|
Dowell W, Dearborn J, Languon S, Miller Z, Kirch T, Paige S, Garvin O, Kjendal L, Harby E, Zuchowski AB, Clark E, Lescieur-Garcia C, Vix J, Schumer A, Mistri SK, Snoke DB, Doiron AL, Freeman K, Toth MJ, Poynter ME, Boyson JE, Majumdar D. Distinct Inflammatory Programs Underlie the Intramuscular Lipid Nanoparticle Response. ACS NANO 2024; 18:33058-33072. [PMID: 39563529 DOI: 10.1021/acsnano.4c08490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Developments in mRNA/lipid nanoparticle (LNP) technology have advanced the fields of vaccinology and gene therapy, raising questions about immunogenicity. While some mRNA/LNPs generate an adjuvant-like environment in muscle tissue, other mRNA/LNPs are distinct in their capacity for multiple rounds of therapeutic delivery. We evaluate the adjuvancy of components of mRNA/LNPs by phenotyping cellular infiltrate at injection sites, tracking uptake by immune cells, and assessing the inflammatory state. Delivery of 9 common, but chemically distinct, LNPs to muscle revealed two classes of inflammatory gene expression programs: inflammatory (Class A) and noninflammatory (Class B). We find that intramuscular injection with Class A, but not Class B, empty LNPs (eLNPs) induce robust neutrophil infiltration into muscle within 2 h and a diverse myeloid population within 24 h. Single-cell RNA sequencing revealed SM-102-mediated expression of inflammatory chemokines by myeloid infiltrates within muscle 1 day after injection. Surprisingly, we found direct transfection of muscle infiltrating myeloid cells and splenocytes 24 h after intramuscular mRNA/LNP administration. Transfected myeloid cells within the muscle exhibit an activated phenotype 24 h after injection. Similarly, directly transfected splenic lymphocytes and dendritic cells (DCs) are differentially activated by Class A or Class B containing mRNA/LNP. Within the splenic DC compartment, type II conventional DCs (cDC2s) are directly transfected and activated by Class A mRNA/LNP. Together, we show that mRNA and LNPs work synergistically to provide the necessary innate immune stimuli required for effective vaccination. Importantly, this work provides a design framework for vaccines and therapeutics alike.
Collapse
Affiliation(s)
- William Dowell
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Jacob Dearborn
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Sylvester Languon
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Zachary Miller
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Tylar Kirch
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Stephen Paige
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Olivia Garvin
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Lily Kjendal
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Ethan Harby
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Adam B Zuchowski
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Emily Clark
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Carlos Lescieur-Garcia
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jesse Vix
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amy Schumer
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Somen K Mistri
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Deena B Snoke
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Kalev Freeman
- Department of Emergency Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Michael J Toth
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jonathan E Boyson
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Devdoot Majumdar
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
14
|
Manjunath L, Santiago G, Ortega P, Sanchez A, Oh S, Garcia A, Bournique E, Bouin A, Semler BL, Setiaputra D, Buisson R. Cooperative Role of PACT and ADAR1 in Preventing Aberrant PKR Activation by Self-Derived Double-Stranded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625712. [PMID: 39651230 PMCID: PMC11623655 DOI: 10.1101/2024.11.27.625712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Double-stranded RNAs (dsRNAs) produced during viral infections are recognized by the innate immune sensor protein kinase R (PKR), triggering a host translation shutoff that inhibits viral replication and propagation. Given the harmful effects of uncontrolled PKR activation, cells must tightly regulate PKR to ensure that its activation occurs only in response to viral infections, not endogenous dsRNAs. Here, we use CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that exploits translation levels as a readout and identifies PACT as a key inhibitor of PKR during viral infection. We find that cells deficient for PACT hyperactivate PKR in response to several different RNA viruses, raising the question of why cells need to limit PKR activity. Our results demonstrate that PACT cooperates with ADAR1 to suppress PKR activation from self-dsRNAs in uninfected cells. The simultaneous deletion of PACT and ADAR1 results in synthetic lethality, which can be fully rescued in PKR-deficient cells. We propose that both PACT and ADAR1 act as essential barriers against PKR, creating a threshold of tolerable levels to endogenous dsRNA in cells without activating PKR-mediated translation shutdown and cell death.
Collapse
|
15
|
Oh S, Santiago G, Manjunath L, Li J, Bouin A, Semler BL, Buisson R. A CRISPR-Cas9 knockout screening identifies IRF2 as a key driver of OAS3/RNase L-mediated RNA decay during viral infection. Proc Natl Acad Sci U S A 2024; 121:e2412725121. [PMID: 39475651 PMCID: PMC11551408 DOI: 10.1073/pnas.2412725121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
OAS-RNase L is a double-stranded RNA-induced antiviral pathway triggered in response to diverse viral infections. Upon activation, OAS-RNase L suppresses virus replication by promoting the decay of host and viral RNAs and inducing translational shutdown. However, whether OASs and RNase L are the only factors involved in this pathway remains unclear. Here, we develop CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that uses translation levels as a readout and identifies IRF2 as a key regulator of OAS3. Mechanistically, we demonstrate that IRF2 promotes basal expression of OAS3 in unstressed cells, allowing a rapid activation of RNase L following viral infection. Furthermore, IRF2 works in concert with the interferon response through STAT2 to further enhance OAS3 expression. We propose that IRF2-induced RNase L is critical in enabling cells to mount a rapid antiviral response immediately after viral infection, serving as the initial line of defense. This rapid response provides host cells the necessary time to activate additional antiviral signaling pathways, forming secondary defense waves.
Collapse
Affiliation(s)
- Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Alexis Bouin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| |
Collapse
|
16
|
Gong Y, Yong D, Liu G, Xu J, Ding J, Jia W. A Novel Self-Amplifying mRNA with Decreased Cytotoxicity and Enhanced Protein Expression by Macrodomain Mutations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402936. [PMID: 39313862 DOI: 10.1002/advs.202402936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/13/2024] [Indexed: 09/25/2024]
Abstract
The efficacy and safety of self-amplifying mRNA (saRNA) have been demonstrated in COVID-19 vaccine applications. Unlike conventional non-replicating mRNA (nrmRNA), saRNA offers a key advantage: its self-replication mechanism fosters efficient expression of the encoded protein, leading to substantial dose savings during administration. Consequently, there is a growing interest in further optimizing the expression efficiency of saRNA. In this study, in vitro adaptive passaging of saRNA is conducted under exogenous interferon pressure, which revealed several mutations in the nonstructural protein (NSP). Notably, two stable mutations, Q48P and I113F, situated in the NSP3 macrodomain (MD), attenuated its mono adenosine diphosphate ribose (MAR) hydrolysis activity and exhibited decreased replication but increased payload expression compared to wild-type saRNA (wt saRNA). Transcriptome sequencing analysis unveils diminished activation of the double-stranded RNA (dsRNA) sensor and, consequently, a significantly reduced innate immune response compared to wt saRNA. Furthermore, the mutant saRNA demonstrated less translation inhibition and cell apoptosis than wt saRNA, culminating in higher protein expression both in vitro and in vivo. These findings underscore the potential of reducing saRNA replication-dependent dsRNA-induced innate immune responses through genetic modification as a valuable strategy for optimizing saRNA, enhancing payload translation efficiency, and mitigating saRNA cytotoxicity.
Collapse
Affiliation(s)
- Yue Gong
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Danni Yong
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Gensheng Liu
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Jiang Xu
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Jun Ding
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
- Virogin Biotech Canada Ltd, Vancouver, BC, V6V 3A4, Canada
| | - William Jia
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
- Virogin Biotech Canada Ltd, Vancouver, BC, V6V 3A4, Canada
| |
Collapse
|
17
|
Chen Z, Lin B, Yao X, Fang Y, Liu J, Song K, Tuolihong L, Zuo Z, He Q, Huang X, Liu Z, Huang Q, Xu Q, Liu Z, Guo X. OAS3 Deubiquitination Due to E3 Ligase TRIM21 Downregulation Promotes Epithelial Cell Apoptosis and Drives Sepsis-induced Acute Lung Injury. Int J Biol Sci 2024; 20:5594-5607. [PMID: 39494334 PMCID: PMC11528449 DOI: 10.7150/ijbs.96089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Patients with sepsis-induced acute lung injury (SALI) show a high mortality rate, and there is no effective treatment in the clinic for SALI but only symptomatic treatment as an option. Therefore, searching for effective targets is critical for the management of SALI. Ubiquitination is an essential post-translational protein modification involved in most pathophysiological processes. However, the relationship between ubiquitination and SALI remains largely unclear. In this study, we examined the ubiquitination modification changes in SALI, identified oligoadenylate synthetase 3 (OAS3) as a key candidate accounting for SALI from integrative multi-omics analysis and confirmed its role in promoting SALI and cell apoptosis in an animal model of cecal ligation and puncture-treated mice and a cellular model of LPS-treated MLE12 cells. Mechanistically, downregulation of E3 ligase TRIM21 mediates the reduction of OAS3 K48-linked polyubiquitination at the K1079 site in lung epithelial cells of a septic model, which leads to the increase of OAS3 protein level in a proteasomal-dependent manner. The upregulated OAS3 promotes epithelial cell apoptosis through its downstream effector molecule, RNase L. In summary, these findings unveil a previously unappreciated role of OAS3 ubiquitination in SALI and offer a promising perspective for further understanding the development of sepsis and potential therapeutic target for the treatment of SALI.
Collapse
Affiliation(s)
- Zhenfeng Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Medical Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangdong Branch Center, National Clinical Research Center for Geriatric Diseases (Chinese PLA General Hospital), Guangzhou, 510515, China
| | - Bingqi Lin
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaodan Yao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yihang Fang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinlian Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ke Song
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lina Tuolihong
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zirui Zuo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi He
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuanhua Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiulin Xu
- Department of Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Zhifeng Liu
- Department of Medical Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangdong Branch Center, National Clinical Research Center for Geriatric Diseases (Chinese PLA General Hospital), Guangzhou, 510515, China
| | - Xiaohua Guo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, National Experimental Education Demonstration Center for Basic Medical Sciences, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
18
|
Yin Z, Ma L, Tian X, Sun Q, Zhang C, Wang Y, Miao Y, Xue X, Wang Y, Wang J, Zhang X, Hou X. Downregulation of the m 6A reader YTHDC2 upregulates exosome content in lung adenocarcinoma via inhibiting IFIT and OAS family members. J Biol Chem 2024; 300:107783. [PMID: 39303913 PMCID: PMC11736008 DOI: 10.1016/j.jbc.2024.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most prevalent mRNA modification. Its biological function primarily relies on its "Reader" protein, such as YTHDC2. Previous studies have shown that YTHDC2 downregulation is a procarcinogenic phenomenon in lung adenocarcinoma (LUAD). However, further investigation is needed to understand the molecular mechanisms of downstream genes and the associated biological phenomena following YTHDC2 downregulation. Here, we found that YTHDC2 knockout upregulated exosome content in LUAD. Following YTHDC2 knockout, the mRNA levels of OAS family members (OASs) and IFIT family members (IFITs) also decreased; and inhibition of OASs and IFITs could promote exosome content. Several m6A modification sites on the NT domain of OASs and the TPR12 domain of IFITs were found to increase the stability of OASs and IFITs in a YTHDC2-dependent manner. OASs and IFITs affected exosome content through target genes including RAB5A, RAB7, and RAB11A, and three arginine (R) amino acids on IFITs were critical for combination IFITs with targeted RAB mRNAs and subsequent degradation. Simultaneously, OASs degraded targeted RABs through RNAseL. Additionally, mutual bindings between OASs and IFITs were critical for their target gene degradation. Collectively, the above findings might provide a theoretical basis for the treatment of LUAD patients with low YTHDC2 expression.
Collapse
Affiliation(s)
- Zhixin Yin
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Sun
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congcong Zhang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikun Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfei Xue
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Watkins JM, Burke JM. RNase L-induced bodies sequester subgenomic flavivirus RNAs to promote viral RNA decay. Cell Rep 2024; 43:114694. [PMID: 39196777 PMCID: PMC11957735 DOI: 10.1016/j.celrep.2024.114694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 08/13/2024] [Indexed: 08/30/2024] Open
Abstract
Subgenomic flavivirus RNAs (sfRNAs) are structured RNAs encoded by flaviviruses that promote viral infection by inhibiting cellular RNA decay machinery. Herein, we analyze sfRNA production and localization using single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) throughout West Nile virus, Zika virus, or dengue virus serotype 2 infection. We observe that sfRNAs are generated during the RNA replication phase of viral infection in the cytosol and accumulate in processing bodies (P-bodies), which contain RNA decay machinery such as XRN1 and Dcp1b. However, upon activation of the host antiviral endoribonuclease, ribonuclease L (RNase L), sfRNAs re-localize to ribonucleoprotein complexes known as RNase L-induced bodies (RLBs). RLB-mediated sequestration of sfRNAs reduces sfRNA association with RNA decay machinery in P-bodies, which coincides with increased viral RNA decay. These findings establish a functional role for RLBs in enhancing the cell-mediated decay of viral RNA by sequestering functional viral RNA decay products.
Collapse
Affiliation(s)
- J Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - James M Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
| |
Collapse
|
20
|
Huang L, Huang Z, Zhang Y, Lin C, Zhao Z, Li R, Saw PE, Xu X. Advances in targeted delivery of mRNA into immune cells for enhanced cancer therapy. Theranostics 2024; 14:5528-5550. [PMID: 39310113 PMCID: PMC11413781 DOI: 10.7150/thno.93745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/06/2024] [Indexed: 09/25/2024] Open
Abstract
Messenger RNA (mRNA) therapy has been applied to the treatment of various human diseases including malignant tumors. Increasing evidences have shown that mRNA can enhance the efficacy of cancer immunotherapy by modulating the functions of immune cells and stimulating their activity. However, mRNA is a type of negatively charged biomacromolecules that are susceptible to serum nucleases and cannot readily cross the cell membrane. In the past few decades, various nanoparticles (NPs)-based delivery systems have been rationally designed and developed to facilitate the intracellular uptake and cytosolic delivery of mRNA. More importantly, by means of the specific recognition between the targeting ligands decorated on NP surface and receptors specifically expressed on immune cells, these mRNA delivery systems could be functionalized to target immune cells to further enhance the mRNA-based cancer immunotherapy. In this review, we briefly introduced the advancements of mRNA in cancer therapy, discussed the challenges faced by mRNA delivery, and systematically summarized the recent development in NPs-based mRNA delivery systems targeting various types of immune cells for cancer immunotherapy. The future development of NPs-mediated targeted mRNA delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Linzhuo Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Yuxuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Zixuan Zhao
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| |
Collapse
|
21
|
Caglar HO, Aytatli A, Barlak N, Aydin Karatas E, Tatar A, Sahin A, Karatas OF. Bioinformatics approach combined with experimental verification reveals OAS3 gene implicated in paclitaxel resistance in head and neck cancer. Head Neck 2024; 46:2178-2196. [PMID: 38752376 DOI: 10.1002/hed.27803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND This study aimed to identify a candidate gene associated with paclitaxel (PTX) resistance and to evaluate functionally its biological role in the PTX-resistant head and neck squamous cell carcinoma (HNSCC) cell lines and clinical specimens. METHODS Microarray data series containing samples of different types of cancers resistant to PTX were analyzed and then a candidate gene associated with PTX resistance was identified using various bioinformatics tools. After the suppression of the target gene expression, changes in cell viability and colony-forming ability were evaluated in PTX-resistant FaDu and SCC-9 cell lines. RESULTS Bioinformatics analyses of upregulated genes in PTX-resistant cancer cells indicated that OAS3 was associated with PTX resistance. The downregulation of OAS3 expression significantly reduced the viability and colony-forming capacity of PTX-resistant SCC-9 cells by inducing apoptosis and cell cycle arrest at G0/G1 phase. CONCLUSIONS The therapeutic targeting of OAS3 may resensitize PTX-resistant HNSCC cells with high OAS3 expression to PTX treatment.
Collapse
Affiliation(s)
- Hasan Onur Caglar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Abdulmelik Aytatli
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Neslisah Barlak
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulkadir Sahin
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
22
|
Yang K, Dong B, Asthana A, Silverman RH, Yan N. RNA helicase SKIV2L limits antiviral defense and autoinflammation elicited by the OAS-RNase L pathway. EMBO J 2024; 43:3876-3894. [PMID: 39112803 PMCID: PMC11405415 DOI: 10.1038/s44318-024-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/18/2024] Open
Abstract
The OAS-RNase L pathway is one of the oldest innate RNA sensing pathways that leads to interferon (IFN) signaling and cell death. OAS recognizes viral RNA and then activates RNase L, which subsequently cleaves both cellular and viral RNA, creating "processed RNA" as an endogenous ligand that further triggers RIG-I-like receptor signaling. However, the IFN response and antiviral activity of the OAS-RNase L pathway are weak compared to other RNA-sensing pathways. Here, we discover that the SKIV2L RNA exosome limits the antiviral capacity of the OAS-RNase L pathway. SKIV2L-deficient cells exhibit remarkably increased interferon responses to RNase L-processed RNA, resulting in heightened antiviral activity. The helicase activity of SKIV2L is indispensable for this function, acting downstream of RNase L. SKIV2L depletion increases the antiviral capacity of OAS-RNase L against RNA virus infection. Furthermore, SKIV2L loss exacerbates autoinflammation caused by human OAS1 gain-of-function mutations. Taken together, our results identify SKIV2L as a critical barrier to OAS-RNase L-mediated antiviral immunity that could be therapeutically targeted to enhance the activity of a basic antiviral pathway.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Beihua Dong
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Harioudh MK, Perez J, So L, Maheshwari M, Ebert TS, Hornung V, Savan R, Rouf Banday A, Diamond MS, Rathinam VA, Sarkar SN. The canonical antiviral protein oligoadenylate synthetase 1 elicits antibacterial functions by enhancing IRF1 translation. Immunity 2024; 57:1812-1827.e7. [PMID: 38955184 PMCID: PMC11324410 DOI: 10.1016/j.immuni.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
An important property of the host innate immune response during microbial infection is its ability to control the expression of antimicrobial effector proteins, but how this occurs post-transcriptionally is not well defined. Here, we describe a critical antibacterial role for the classic antiviral gene 2'-5'-oligoadenylate synthetase 1 (OAS1). Human OAS1 and its mouse ortholog, Oas1b, are induced by interferon-γ and protect against cytosolic bacterial pathogens such as Francisella novicida and Listeria monocytogenes in vitro and in vivo. Proteomic and transcriptomic analysis showed reduced IRF1 protein expression in OAS1-deficient cells. Mechanistically, OAS1 binds and localizes IRF1 mRNA to the rough endoplasmic reticulum (ER)-Golgi endomembranes, licensing effective translation of IRF1 mRNA without affecting its transcription or decay. OAS1-dependent translation of IRF1 leads to the enhanced expression of antibacterial effectors, such as GBPs, which restrict intracellular bacteria. These findings uncover a noncanonical function of OAS1 in antibacterial innate immunity.
Collapse
Affiliation(s)
- Munesh K Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lomon So
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Mayank Maheshwari
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas S Ebert
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Veit Hornung
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - A Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| | - Saumendra N Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Danac JMC, Matthews RE, Gungi A, Qin C, Parsons H, Antrobus R, Timms RT, Tchasovnikarova IA. Competition between two HUSH complexes orchestrates the immune response to retroelement invasion. Mol Cell 2024; 84:2870-2881.e5. [PMID: 39013473 DOI: 10.1016/j.molcel.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
The human silencing hub (HUSH) preserves genome integrity through the epigenetic repression of invasive genetic elements. However, despite our understanding of HUSH as an obligate complex of three subunits, only loss of MPP8 or Periphilin, but not TASOR, triggers interferon signaling following derepression of endogenous retroelements. Here, we resolve this paradox by characterizing a second HUSH complex that shares MPP8 and Periphilin but assembles around TASOR2, an uncharacterized paralog of TASOR. Whereas HUSH represses LINE-1 retroelements marked by the repressive histone modification H3K9me3, HUSH2 is recruited by the transcription factor IRF2 to repress interferon-stimulated genes. Mechanistically, HUSH-mediated retroelement silencing sequesters the limited pool of the shared subunits MPP8 and Periphilin, preventing TASOR2 from forming HUSH2 complexes and hence relieving the HUSH2-mediated repression of interferon-stimulated genes. Thus, competition between two HUSH complexes intertwines retroelement silencing with the induction of an immune response, coupling epigenetic and immune aspects of genome defense.
Collapse
Affiliation(s)
- Joshua Miguel C Danac
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Rachael E Matthews
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Akhila Gungi
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Chuyan Qin
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Harriet Parsons
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Robin Antrobus
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Iva A Tchasovnikarova
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
25
|
Chen M, Zhang Y, Shi W, Song X, Yang Y, Hou G, Ding H, Chen S, Yang W, Shen N, Cui Y, Zuo X, Tang Y. SPATS2L is a positive feedback regulator of the type I interferon signaling pathway and plays a vital role in lupus. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1659-1672. [PMID: 39099414 PMCID: PMC11693870 DOI: 10.3724/abbs.2024132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 08/06/2024] Open
Abstract
Through genome-wide association studies (GWAS) and integrated expression quantitative trait locus (eQTL) analyses, numerous susceptibility genes ("eGenes", whose expressions are significantly associated with common variants) associated with systemic lupus erythematosus (SLE) have been identified. Notably, a subset of these eGenes is correlated with disease activity. However, the precise mechanisms through which these genes contribute to the initiation and progression of the disease remain to be fully elucidated. In this investigation, we initially identify SPATS2L as an SLE eGene correlated with disease activity. eSignaling and transcriptomic analyses suggest its involvement in the type I interferon (IFN) pathway. We observe a significant increase in SPATS2L expression following type I IFN stimulation, and the expression levels are dependent on both the concentration and duration of stimulation. Furthermore, through dual-luciferase reporter assays, western blot analysis, and imaging flow cytometry, we confirm that SPATS2L positively modulates the type I IFN pathway, acting as a positive feedback regulator. Notably, siRNA-mediated intervention targeting SPATS2L, an interferon-inducible gene, in peripheral blood mononuclear cells (PBMCs) from patients with SLE reverses the activation of the interferon pathway. In conclusion, our research highlights the pivotal role of SPATS2L as a positive-feedback regulatory molecule within the type I IFN pathway. Our findings suggest that SPATS2L plays a critical role in the onset and progression of SLE and may serve as a promising target for disease activity assessment and intervention strategies.
Collapse
Affiliation(s)
- Mengke Chen
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Yutong Zhang
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Weiwen Shi
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Xuejiao Song
- Department of DermatologyChina-Japan Friendship HospitalBeijing100029China
| | - Yue Yang
- Department of DermatologyChina-Japan Friendship HospitalBeijing100029China
- Department of PharmacyChina-Japan Friendship HospitalBeijing100029China
| | - Guojun Hou
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Huihua Ding
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Sheng Chen
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Wanling Yang
- of Paediatrics and Adolescent MedicineThe University of Hong KongHong Kong 999077China
| | - Nan Shen
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200032China
- Center for Autoimmune Genomics and EtiologyCincinnati Children’s Hospital Medical CenterCincinnati OH 45229USA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnati OH 45229USA
| | - Yong Cui
- Department of DermatologyChina-Japan Friendship HospitalBeijing100029China
| | - Xianbo Zuo
- Department of DermatologyChina-Japan Friendship HospitalBeijing100029China
- Department of PharmacyChina-Japan Friendship HospitalBeijing100029China
| | - Yuanjia Tang
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| |
Collapse
|
26
|
Koul A, Hui LT, Lubna N, McKenna SA. Distinct domain organization and diversity of 2'-5'-oligoadenylate synthetases. Biochem Cell Biol 2024; 102:305-318. [PMID: 38603810 DOI: 10.1139/bcb-2023-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.
Collapse
Affiliation(s)
- Amit Koul
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lok Tin Hui
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Nikhat Lubna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
27
|
Gan WL, Ren X, Ng VHE, Ng L, Song Y, Tano V, Han J, An O, Xie J, Ng BYL, Tay DJT, Tang SJ, Shen H, Khare S, Chong KHC, Young DY, Wu B, DasGupta R, Chen L. Hepatocyte-macrophage crosstalk via the PGRN-EGFR axis modulates ADAR1-mediated immunity in the liver. Cell Rep 2024; 43:114400. [PMID: 38935501 DOI: 10.1016/j.celrep.2024.114400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
ADAR1-mediated RNA editing establishes immune tolerance to endogenous double-stranded RNA (dsRNA) by preventing its sensing, primarily by MDA5. Although deleting Ifih1 (encoding MDA5) rescues embryonic lethality in ADAR1-deficient mice, they still experience early postnatal death, and removing other MDA5 signaling proteins does not yield the same rescue. Here, we show that ablation of MDA5 in a liver-specific Adar knockout (KO) murine model fails to rescue hepatic abnormalities caused by ADAR1 loss. Ifih1;Adar double KO (dKO) hepatocytes accumulate endogenous dsRNAs, leading to aberrant transition to a highly inflammatory state and recruitment of macrophages into dKO livers. Mechanistically, progranulin (PGRN) appears to mediate ADAR1 deficiency-induced liver pathology, promoting interferon signaling and attracting epidermal growth factor receptor (EGFR)+ macrophages into dKO liver, exacerbating hepatic inflammation. Notably, the PGRN-EGFR crosstalk communication and consequent immune responses are significantly repressed in ADAR1high tumors, revealing that pre-neoplastic or neoplastic cells can exploit ADAR1-dependent immune tolerance to facilitate immune evasion.
Collapse
Affiliation(s)
- Wei Liang Gan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xi Ren
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Larry Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vincent Tano
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jinghe Xie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, P.R. China
| | - Bryan Y L Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Khare
- Genome Institute of Singapore, Agency for Science Technology and Research, 60 Biopolis Street, Genome, #02-01, Singapore, Singapore
| | - Kelvin Han Chung Chong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Dan Yock Young
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Division of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency for Science Technology and Research, 60 Biopolis Street, Genome, #02-01, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
28
|
Zeng Q, Ren Y, Wang Y, Yang J, Qin Y, Yang L, Zheng X, Huang A, Fan H. The nuclear matrix protein HNRNPU restricts hepatitis B virus transcription by promoting OAS3-based activation of host innate immunity. J Med Virol 2024; 96:e29805. [PMID: 39011773 DOI: 10.1002/jmv.29805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Heterogeneous nuclear protein U (HNRNPU) plays a pivotal role in innate immunity by facilitating chromatin opening to activate immune genes during host defense against viral infection. However, the mechanism by which HNRNPU is involved in Hepatitis B virus (HBV) transcription regulation through mediating antiviral immunity remains unknown. Our study revealed a significant decrease in HNRNPU levels during HBV transcription, which depends on HBx-DDB1-mediated degradation. Overexpression of HNRNPU suppressed HBV transcription, while its knockdown effectively promoted viral transcription, indicating HNRNPU as a novel host restriction factor for HBV transcription. Mechanistically, HNRNPU inhibits HBV transcription by activating innate immunity through primarily the positive regulation of the interferon-stimulating factor 2'-5'-oligoadenylate synthetase 3, which mediates an ribonuclease L-dependent mechanism to enhance innate immune responses. This study offers new insights into the host immune regulation of HBV transcription and proposes potential targets for therapeutic intervention against HBV infection.
Collapse
Affiliation(s)
- Qiqi Zeng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yanyan Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jiaxin Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Qin
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lijuan Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xinrui Zheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hui Fan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Watkins JM, Burke JM. A closer look at mammalian antiviral condensates. Biochem Soc Trans 2024; 52:1393-1404. [PMID: 38778761 PMCID: PMC11234502 DOI: 10.1042/bst20231296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Several biomolecular condensates assemble in mammalian cells in response to viral infection. The most studied of these are stress granules (SGs), which have been proposed to promote antiviral innate immune signaling pathways, including the RLR-MAVS, the protein kinase R (PKR), and the OAS-RNase L pathways. However, recent studies have demonstrated that SGs either negatively regulate or do not impact antiviral signaling. Instead, the SG-nucleating protein, G3BP1, may function to perturb viral RNA biology by condensing viral RNA into viral-aggregated RNA condensates, thus explaining why viruses often antagonize G3BP1 or hijack its RNA condensing function. However, a recently identified condensate, termed double-stranded RNA-induced foci, promotes the activation of the PKR and OAS-RNase L antiviral pathways. In addition, SG-like condensates known as an RNase L-induced bodies (RLBs) have been observed during many viral infections, including SARS-CoV-2 and several flaviviruses. RLBs may function in promoting decay of cellular and viral RNA, as well as promoting ribosome-associated signaling pathways. Herein, we review these recent advances in the field of antiviral biomolecular condensates, and we provide perspective on the role of canonical SGs and G3BP1 during the antiviral response.
Collapse
Affiliation(s)
- J. Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, U.S.A
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, U.S.A
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, U.S.A
| | - James M. Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, U.S.A
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, U.S.A
| |
Collapse
|
30
|
Lin YC, Lu M, Cai W, Hu WS. Comparative transcriptomic and proteomic kinetic analysis of adeno-associated virus production systems. Appl Microbiol Biotechnol 2024; 108:385. [PMID: 38896252 PMCID: PMC11186941 DOI: 10.1007/s00253-024-13203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a major gene delivery vehicle. We have constructed a stable rAAV producer cell line by integrating essential rAAV genome, viral and helper genes into the genome of HEK293 cell under the control of inducible promoters. Upon induction, the cell line produces transducing rAAV. To gain insight into enhancing rAAV productivity and vector quality, we performed a comparative transcriptomic and proteomic analysis of our synthetic cell line GX2 and two wild-type AAV (wtAAV) production systems, one by virus co-infection and the other by multi-plasmid transfection. The three systems had different kinetics in viral component synthesis but generated comparable copies of AAV genomes; however, the capsid titer of GX2 was an order of magnitude lower compared to those two wtAAV systems, indicating that its capsid production may be insufficient. The genome packaging efficiency was also lower in GX2 despite it produced higher levels of Rep52 proteins than either wtAAV systems, suggesting that Rep52 protein expression may not limit genome packaging. In the two wtAAV systems, VP were the most abundant AAV proteins and their levels continued to increase, while GX2 had high level of wasteful cargo gene expression. Furthermore, upregulated inflammation, innate immune responses, and MAPK signaling, as well as downregulated mitochondrial functions, were commonly observed in either rAAV or wtAAV systems. Overall, this comparative multi-omics study provided rich insights into host cell and viral factors that are potential targets for genetic and process intervention to enhance the productivity of synthetic rAAV producer cell lines. KEY POINTS: • wtAAV infection was more efficient in producing full viral particles than the synthetic cell GX2. • Capsid protein synthesis, genome replication, and packaging may limit rAAV production in GX2. • wtAAV infection and rAAV production in GX2 elicited similar host cell responses.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wen Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA.
| |
Collapse
|
31
|
Abdel-Haq H. Feasibility of Using a Type I IFN-Based Non-Animal Approach to Predict Vaccine Efficacy and Safety Profiles. Vaccines (Basel) 2024; 12:583. [PMID: 38932312 PMCID: PMC11209158 DOI: 10.3390/vaccines12060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Animal-based tests are used for the control of vaccine quality. However, because highly purified and safe vaccines are now available, alternative approaches that can replace or reduce animal use for the assessment of vaccine outcomes must be established. In vitro tests for vaccine quality control exist and have already been implemented. However, these tests are specifically designed for some next-generation vaccines, and this makes them not readily available for testing other vaccines. Therefore, universal non-animal tests are still needed. Specific signatures of the innate immune response could represent a promising approach to predict the outcome of vaccines by non-animal methods. Type I interferons (IFNs) have multiple immunomodulatory activities, which are exerted through effectors called interferon stimulated genes (ISGs), and are one of the most important immune signatures that might provide potential candidate molecular biomarkers for this purpose. This paper will mainly examine if this idea might be feasible by analyzing all relevant published studies that have provided type I IFN-related biomarkers for evaluating the safety and efficacy profiles of vaccines using an advanced transcriptomic approach as an alternative to the animal methods. Results revealed that such an approach could potentially provide biomarkers predictive of vaccine outcomes after addressing some limitations.
Collapse
Affiliation(s)
- Hanin Abdel-Haq
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
32
|
Cusic R, Burke JM. Condensation of RNase L promotes its rapid activation in response to viral infection in mammalian cells. Sci Signal 2024; 17:eadi9844. [PMID: 38771918 PMCID: PMC11391522 DOI: 10.1126/scisignal.adi9844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Oligoadenylate synthetase 3 (OAS3) and ribonuclease L (RNase L) are components of a pathway that combats viral infection in mammals. Upon detection of viral double-stranded RNA (dsRNA), OAS3 synthesizes 2'-5'-oligo(A), which activates the RNase domain of RNase L by promoting the homodimerization and oligomerization of RNase L monomers. Activated RNase L rapidly degrades all cellular mRNAs, shutting off several cellular processes. We sought to understand the molecular mechanisms underlying the rapid activation of RNase L in response to viral infection. Through superresolution microscopy and live-cell imaging, we showed that OAS3 and RNase L concentrated into higher-order cytoplasmic complexes known as dsRNA-induced foci (dRIF) in response to dsRNA or infection with dengue virus, Zika virus, or West Nile virus. The concentration of OAS3 and RNase L at dRIF corresponded with the activation of RNase L-mediated RNA decay. We showed that dimerized/oligomerized RNase L concentrated in a liquid-like shell surrounding a core OAS3-dRIF structure and dynamically exchanged with the cytosol. These data establish that the condensation of dsRNA, OAS3, and RNase L into dRIF is a molecular switch that promotes the rapid activation of RNase L upon detection of dsRNA in mammalian cells.
Collapse
Affiliation(s)
- Renee Cusic
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, United States of America
| | - James M. Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, United States of America
| |
Collapse
|
33
|
Mulè MP, Martins AJ, Cheung F, Farmer R, Sellers BA, Quiel JA, Jain A, Kotliarov Y, Bansal N, Chen J, Schwartzberg PL, Tsang JS. Integrating population and single-cell variations in vaccine responses identifies a naturally adjuvanted human immune setpoint. Immunity 2024; 57:1160-1176.e7. [PMID: 38697118 DOI: 10.1016/j.immuni.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.
Collapse
Affiliation(s)
- Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA; NIH-Oxford-Cambridge Scholars Program, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Brian A Sellers
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juan A Quiel
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Arjun Jain
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Cell Signaling and Immunity Section, NIAID, NIH, Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA; NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
34
|
Xi J, Snieckute G, Martínez JF, Arendrup FSW, Asthana A, Gaughan C, Lund AH, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent ribotoxic stress response by the innate immunity endoribonuclease RNase L. Cell Rep 2024; 43:113998. [PMID: 38551960 PMCID: PMC11090160 DOI: 10.1016/j.celrep.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
RNase L is an endoribonuclease of higher vertebrates that functions in antiviral innate immunity. Interferons induce oligoadenylate synthetase enzymes that sense double-stranded RNA of viral origin leading to the synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L remodels the host cell transcriptome. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A is directly introduced into cells. Here, we report that RNase L activation by 2-5A causes a ribotoxic stress response involving the MAP kinase kinase kinase (MAP3K) ZAKα, MAP2Ks, and the stress-activated protein kinases JNK and p38α. RNase L activation profoundly alters the transcriptome by widespread depletion of mRNAs associated with different cellular functions but also by JNK/p38α-stimulated induction of inflammatory genes. These results show that the 2-5A/RNase L system triggers a protein kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - José Francisco Martínez
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Anders H Lund
- Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
35
|
Watkins JM, Burke JM. RNase L-induced bodies sequester subgenomic flavivirus RNAs and re-establish host RNA decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586660. [PMID: 38585896 PMCID: PMC10996650 DOI: 10.1101/2024.03.25.586660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Subgenomic flavivirus RNAs (sfRNAs) are structured RNA elements encoded in the 3'-UTR of flaviviruses that promote viral infection by inhibiting cellular RNA decay machinery. Herein, we analyze the production of sfRNAs using single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) and super-resolution microscopy during West Nile virus, Zika virus, or Dengue virus serotype 2 infection. We show that sfRNAs are initially localized diffusely in the cytosol or in processing bodies (P-bodies). However, upon activation of the host antiviral endoribonuclease, Ribonuclease L (RNase L), nearly all sfRNAs re-localize to antiviral biological condensates known as RNase L-induced bodies (RLBs). RLB-mediated sequestration of sfRNAs reduces sfRNA association with RNA decay machinery in P-bodies, which coincides with increased viral RNA decay. These findings establish a role of RLBs in promoting viral RNA decay, demonstrating the complex host-pathogen interactions at the level of RNA decay and biological condensation.
Collapse
Affiliation(s)
- J. Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - James M. Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
| |
Collapse
|
36
|
Harioudh MK, Perez J, Chong Z, Nair S, So L, McCormick KD, Ghosh A, Shao L, Srivastava R, Soveg F, Ebert TS, Atianand MK, Hornung V, Savan R, Diamond MS, Sarkar SN. Oligoadenylate synthetase 1 displays dual antiviral mechanisms in driving translational shutdown and protecting interferon production. Immunity 2024; 57:446-461.e7. [PMID: 38423012 PMCID: PMC10939734 DOI: 10.1016/j.immuni.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNβ. This binding leads to the sequestration of IFNβ mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.
Collapse
Affiliation(s)
- Munesh K Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Zhenlu Chong
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharmila Nair
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lomon So
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA; Division of Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Kevin D McCormick
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Arundhati Ghosh
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Lulu Shao
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Rashmi Srivastava
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Frank Soveg
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas S Ebert
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Maninjay K Atianand
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Veit Hornung
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Saumendra N Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Skerenova M, Cibulka M, Dankova Z, Holubekova V, Kolkova Z, Lucansky V, Dvorska D, Kapinova A, Krivosova M, Petras M, Baranovicova E, Baranova I, Novakova E, Liptak P, Banovcin P, Bobcakova A, Rosolanka R, Janickova M, Stanclova A, Gaspar L, Caprnda M, Prosecky R, Labudova M, Gabbasov Z, Rodrigo L, Kruzliak P, Lasabova Z, Matakova T, Halasova E. Host genetic variants associated with COVID-19 reconsidered in a Slovak cohort. Adv Med Sci 2024; 69:198-207. [PMID: 38555007 DOI: 10.1016/j.advms.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
We present the results of an association study involving hospitalized coronavirus disease 2019 (COVID-19) patients with a clinical background during the 3rd pandemic wave of COVID-19 in Slovakia. Seventeen single nucleotide variants (SNVs) in the eleven most relevant genes, according to the COVID-19 Host Genetics Initiative, were investigated. Our study confirms the validity of the influence of LZTFL1 and 2'-5'-oligoadenylate synthetase (OAS)1/OAS3 genetic variants on the severity of COVID-19. For two LZTFL1 SNVs in complete linkage disequilibrium, rs17713054 and rs73064425, the odds ratios of baseline allelic associations and logistic regressions (LR) adjusted for age and sex ranged in the four tested designs from 2.04 to 2.41 and from 2.05 to 3.98, respectively. The OAS1/OAS3 haplotype 'gttg' carrying a functional allele G of splice-acceptor variant rs10774671 manifested its protective function in the Delta pandemic wave. Significant baseline allelic associations of two DPP9 variants in all tested designs and two IFNAR2 variants in the Omicron pandemic wave were not confirmed by adjusted LR. Nevertheless, adjusted LR showed significant associations of NOTCH4 rs3131294 and TYK2 rs2304256 variants with severity of COVID-19. Hospitalized patients' reported comorbidities were not correlated with genetic variants, except for obesity, smoking (IFNAR2), and hypertension (NOTCH4). The results of our study suggest that host genetic variations have an impact on the severity and duration of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Considering the differences in allelic associations between pandemic waves, they support the hypothesis that every new SARS-CoV-2 variant may modify the host immune response by reconfiguring involved pathways.
Collapse
Affiliation(s)
- Maria Skerenova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolkova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michaela Krivosova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Petras
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Baranova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Elena Novakova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Liptak
- Clinic of Internal Medicine- Gastroenterology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Banovcin
- Clinic of Internal Medicine- Gastroenterology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Anna Bobcakova
- Clinic of Pneumology and Phthisiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Robert Rosolanka
- Clinic of Infectology and Travel Medicine, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maria Janickova
- Clinic of Stomatology and Maxillofacial Surgery, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Stanclova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne'S University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Monika Labudova
- Faculty of Health Care and Social Work, University of Trnava in Trnava, Slovakia
| | - Zufar Gabbasov
- National Medical Research Centre for Cardiology, Moscow, Russia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo and Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- Faculty of Medicine, University of Oviedo and Central University Hospital of Asturias (HUCA), Oviedo, Spain; Research and Development Services, Olomouc, Czech Republic.
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tatiana Matakova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
38
|
Liang X, Ren H, Han F, Liang R, Zhao J, Liu H. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Med Res Rev 2024; 44:632-685. [PMID: 37983964 DOI: 10.1002/med.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fengyang Han
- School of Pharmacy, Fudan University, Shanghai, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
39
|
Phan T, Ye Q, Stach C, Lin YC, Cao H, Bowen A, Langlois RA, Hu WS. Synthetic Cell Lines for Inducible Packaging of Influenza A Virus. ACS Synth Biol 2024; 13:546-557. [PMID: 38259154 PMCID: PMC10878389 DOI: 10.1021/acssynbio.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
Influenza A virus (IAV) is a negative-sense RNA virus that causes seasonal infections and periodic pandemics, inflicting huge economic and human costs on society. The current production of influenza virus for vaccines is initiated by generating a seed virus through the transfection of multiple plasmids in HEK293 cells followed by the infection of seed viruses into embryonated chicken eggs or cultured mammalian cells. We took a system design and synthetic biology approach to engineer cell lines that can be induced to produce all viral components except hemagglutinin (HA) and neuraminidase (NA), which are the antigens that specify the variants of IAV. Upon the transfection of HA and NA, the cell line can produce infectious IAV particles. RNA-Seq transcriptome analysis revealed inefficient synthesis of viral RNA and upregulated expression of genes involved in host response to viral infection as potential limiting factors and offered possible targets for enhancing the productivity of the synthetic cell line. Overall, we showed for the first time that it was possible to create packaging cell lines for the production of a cytopathic negative-sense RNA virus. The approach allows for the exploitation of altered kinetics of the synthesis of viral components and offers a new method for manufacturing viral vaccines.
Collapse
Affiliation(s)
- Thu Phan
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Qian Ye
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Christopher Stach
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yu-Chieh Lin
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haoyu Cao
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Annika Bowen
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ryan A. Langlois
- Department
of Microbiology and Immunology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei-Shou Hu
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Burke JM, Ratnayake OC, Watkins JM, Perera R, Parker R. G3BP1-dependent condensation of translationally inactive viral RNAs antagonizes infection. SCIENCE ADVANCES 2024; 10:eadk8152. [PMID: 38295168 PMCID: PMC10830107 DOI: 10.1126/sciadv.adk8152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
G3BP1 is an RNA binding protein that condenses untranslating messenger RNAs into stress granules (SGs). G3BP1 is inactivated by multiple viruses and is thought to antagonize viral replication by SG-enhanced antiviral signaling. Here, we show that neither G3BP1 nor SGs generally alter the activation of innate immune pathways. Instead, we show that the RNAs encoded by West Nile virus, Zika virus, and severe acute respiratory syndrome coronavirus 2 are prone to G3BP1-dependent RNA condensation, which is enhanced by limiting translation initiation and correlates with the disruption of viral replication organelles and viral RNA replication. We show that these viruses counteract condensation of their RNA genomes by inhibiting the RNA condensing function of G3BP proteins, hijacking the RNA decondensing activity of eIF4A, and/or maintaining efficient translation. These findings argue that RNA condensation can function as an intrinsic antiviral mechanism, which explains why many viruses inactivate G3BP proteins and suggests that SGs may have arisen as a vestige of this antiviral mechanism.
Collapse
Affiliation(s)
- James M. Burke
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Oshani C. Ratnayake
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
- Center for Metabolism of Infectious Diseases, Colorado State University, Fort Collins, CO 80523, USA
| | - J. Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33438, USA
| | - Rushika Perera
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
- Center for Metabolism of Infectious Diseases, Colorado State University, Fort Collins, CO 80523, USA
| | - Roy Parker
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
41
|
Goldstein SA, Elde NC. Recurrent viral capture of cellular phosphodiesterases that antagonize OAS-RNase L. Proc Natl Acad Sci U S A 2024; 121:e2312691121. [PMID: 38277437 PMCID: PMC10835031 DOI: 10.1073/pnas.2312691121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 01/28/2024] Open
Abstract
Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions are less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronaviruses belonging to different genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (HCoV-OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of rotavirus A was acquired independently from rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.
Collapse
Affiliation(s)
- Stephen A. Goldstein
- Department of Human Genetics, University of Utah, School of Medicine, Salt Lake City, UT84112
- HHMI, Chevy Chase, MD20815
| | - Nels C. Elde
- Department of Human Genetics, University of Utah, School of Medicine, Salt Lake City, UT84112
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
42
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
43
|
Zhao Z, Han S, Zhang Q, Wang Y, Yue K, Abbas S, He H. Impaired influenza A virus replication by the host restriction factor SAMHD1 which inhibited by PA-mediated dephosphorylation of the host transcription factor IRF3. Virol J 2024; 21:33. [PMID: 38287375 PMCID: PMC10826253 DOI: 10.1186/s12985-024-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Influenza A virus (IAV) can cause severe and life-threatening illness in humans and animals. Therefore, it is important to search for host antiviral proteins and elucidate their antiviral mechanisms for the development of potential treatments. As a part of human innate immunity, host restriction factors can inhibit the replication of viruses, among which SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) can restrict the replication of viruses, such as HIV and enterovirus EV71. Viruses also developed countermeasures in the arms race with their hosts. There are few reports about whether SAMHD1 has a restriction effect on IAV. METHODS To investigate the impact of IAV infection on SAMHD1 expression in A549 cells, we infected A549 cells with a varying multiplicity of infection (MOI) of IAV and collected cell samples at different time points for WB and RT-qPCR analysis to detect viral protein and SAMHD1 levels. The virus replication level in the cell culture supernatant was determined using TCID50 assay. Luciferase assay was used to reveal that H5N1 virus polymerase acidic protein (PA) affected the activity of the SAMHD1 promoter. To assess the antiviral capacity of SAMHD1, we generated a knockdown and overexpressed cell line for detecting H5N1 replication. RESULTS In this study, we observed that SAMHD1 can restrict the intracellular replication of H5N1 and that the H5N1 viral protein PA can downregulate the expression of SAMHD1 by affecting SAMHD1 transcriptional promoter activity. We also found that SAMHD1's ability to restrict H5N1 is related to phosphorylation at 592-tyrosine. CONCLUSIONS In conclusion, we found that SAMHD1 may affect the replication of IAVs as a host restriction factor and be countered by PA. Furthermore, SAMHD1 may be a potential target for developing antiviral drugs.
Collapse
Affiliation(s)
- Zhilei Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Ye Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Kening Yue
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Salbia Abbas
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
44
|
Sarkar SN, Harioudh MK, Shao L, Perez J, Ghosh A. The Many Faces of Oligoadenylate Synthetases. J Interferon Cytokine Res 2023; 43:487-494. [PMID: 37751211 PMCID: PMC10654648 DOI: 10.1089/jir.2023.0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 09/27/2023] Open
Abstract
2'-5' Oligoadenylate synthetases (OAS) are interferon-stimulated genes that are most well-known to protect hosts from viral infections. They are evolutionarily related to an ancient family of Nucleotidyltransferases, which are primarily involved in pathogen-sensing and innate immune response. Classical function of OAS proteins involves double-stranded RNA-stimulated polymerization of adenosine triphosphate in 2'-5' oligoadenylates (2-5A), which can activate the latent RNase (RNase L) to degrade RNA. However, accumulated evidence over the years have suggested alternative mode of antiviral function of several OAS family proteins. Furthermore, recent studies have connected some OAS proteins with wider function beyond viral infection. Here, we review some of the canonical and noncanonical functions of OAS proteins and their mechanisms.
Collapse
Affiliation(s)
- Saumendra N. Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Munesh K. Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lulu Shao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arundhati Ghosh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Ramezannia Z, Shamekh A, Bannazadeh Baghi H. CRISPR-Cas system to discover host-virus interactions in Flaviviridae. Virol J 2023; 20:247. [PMID: 37891676 PMCID: PMC10605781 DOI: 10.1186/s12985-023-02216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
The Flaviviridae virus family members cause severe human diseases and are responsible for considerable mortality and morbidity worldwide. Therefore, researchers have conducted genetic screens to enhance insight into viral dependency and develop potential anti-viral strategies to treat and prevent these infections. The host factors identified by the clustered regularly interspaced short palindromic repeats (CRISPR) system can be potential targets for drug development. Meanwhile, CRISPR technology can be efficiently used to treat viral diseases as it targets both DNA and RNA. This paper discusses the host factors related to the life cycle of viruses of this family that were recently discovered using the CRISPR system. It also explores the role of immune factors and recent advances in gene editing in treating flavivirus-related diseases. The ever-increasing advancements of this technology may promise new therapeutic approaches with unique capabilities, surpassing the traditional methods of drug production and treatment.
Collapse
Affiliation(s)
- Zahra Ramezannia
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shamekh
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Xi J, Snieckute G, Asthana A, Gaughan C, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent Ribotoxic Stress Response by the Innate Immunity Endoribonuclease RNase L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562082. [PMID: 37873202 PMCID: PMC10592832 DOI: 10.1101/2023.10.12.562082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
RNase L is a regulated endoribonuclease in higher vertebrates that functions in antiviral innate immunity. Interferons induce OAS enzymes that sense double-stranded RNA of viral origin leading to synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L inhibits viral infections. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A was directly introduced into cells. Here we report that RNase L activation by 2-5A causes a ribotoxic stress response that requires the ribosome-associated MAP3K, ZAKα. Subsequently, the stress-activated protein kinases (SAPK) JNK and p38α are phosphorylated. RNase L activation profoundly altered the transcriptome by widespread depletion of mRNAs associated with different cellular functions, but also by SAPK-dependent induction of inflammatory genes. Our findings show that 2-5A is a ribotoxic stressor that causes RNA damage through RNase L triggering a ZAKα kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
47
|
Blengio F, Hocini H, Richert L, Lefebvre C, Durand M, Hejblum B, Tisserand P, McLean C, Luhn K, Thiebaut R, Levy Y. Identification of early gene expression profiles associated with long-lasting antibody responses to the Ebola vaccine Ad26.ZEBOV/MVA-BN-Filo. Cell Rep 2023; 42:113101. [PMID: 37691146 DOI: 10.1016/j.celrep.2023.113101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Ebola virus disease is a severe hemorrhagic fever with a high fatality rate. We investigate transcriptome profiles at 3 h, 1 day, and 7 days after vaccination with Ad26.ZEBOV and MVA-BN-Filo. 3 h after Ad26.ZEBOV injection, we observe an increase in genes related to antigen presentation, sensing, and T and B cell receptors. The highest response occurs 1 day after Ad26.ZEBOV injection, with an increase of the gene expression of interferon-induced antiviral molecules, monocyte activation, and sensing receptors. This response is regulated by the HESX1, ATF3, ANKRD22, and ETV7 transcription factors. A plasma cell signature is observed on day 7 post-Ad26.ZEBOV vaccination, with an increase of CD138, MZB1, CD38, CD79A, and immunoglobulin genes. We have identified early expressed genes correlated with the magnitude of the antibody response 21 days after the MVA-BN-Filo and 364 days after Ad26.ZEBOV vaccinations. Our results provide early gene signatures that correlate with vaccine-induced Ebola virus glycoprotein-specific antibodies.
Collapse
Affiliation(s)
- Fabiola Blengio
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Laura Richert
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Mélany Durand
- University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Boris Hejblum
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Pascaline Tisserand
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Chelsea McLean
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Kerstin Luhn
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Rodolphe Thiebaut
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France.
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| |
Collapse
|
48
|
Zhang W, Tanneti NS, Fausto A, Nouel J, Reyes H, Weiss SR, Li Y. The vaccinia virus E3L dsRNA binding protein detects distinct production patterns of exogenous and endogenous dsRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.557600. [PMID: 37790463 PMCID: PMC10542517 DOI: 10.1101/2023.09.21.557600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Double-stranded RNA (dsRNA) is a pathogen associated molecular pattern recognized by multiple pattern recognition receptors and induces innate immune responses. Viral infections can generate dsRNA during virus replication. Genetic mutations can also lead to endogenous dsRNA accumulation. DsRNA is present in multiple conformations such as the A form (A-dsRNA) or Z form (Z-dsRNA). A-dsRNA has been detected from multiple viruses with positive-stranded RNA genomes (+ssRNA) but rarely from viruses with negative RNA genomes (-RNA); Z-dsRNA can be detected from influenza virus and poxvirus infections. Viruses have evolved mechanisms to antagonize cellular antiviral responses triggered by dsRNAs. For example, the vaccinia-virus E3L protein can bind and sequester dsRNA to evade host immune responses. The E3L protein encodes a Z-DNA and a dsRNA binding domains that bind to Z-form nucleic acids or dsRNA, respectively. Here we developed recombinant E3L proteins to detect dsRNA and Z-dsRNA generated from viral infections or endogenous cellular mutations. We demonstrate that the E3L recombinant protein specifically detects A-dsRNA generated from +ssRNA viruses but not-RNA viruses. We observe that among various virus infections assayed, only the influenza A virus generates Z-RNA that can be detected by anti-Z-NA antibody but not by the E3L recombinant protein containing the Z-DNA domain. The E3L recombinant protein can also detect endogenous dsRNA in PNPT1 or SUV3L1 knockout cells. Together we concluded that A-dsRNA can be produced and detected from viruses with +ssRNA genomes but not-RNA genomes, and Z-dsRNA can be produced and detected from influenza A virus. Importance The detection of dsRNAs, which exist in the A-dsRNA or Z-RNA conformation, is important for the induction of innate immune responses. dsRNA are generated during a virus infection due to virus replication, or can accumulate to genetic mutations. We engineered recombinant vaccinia virus E3L protein that can detect A-dsRNA generated during infection with a positive-sense RNA genome virus but not a negative-sense RNA genome virus. Infection with influenza A virus generates Z-RNA that can be detected with an anti-z-antibody but not the E3L recombinant protein. The E3L recombinant protein also detects endogenous dsRNA in PNPT1 or SUV3L knockout cells. These findings highlight important characteristics of dsRNA structure and detection.
Collapse
|
49
|
Datta R, Adamska JZ, Bhate A, Li JB. A-to-I RNA editing by ADAR and its therapeutic applications: From viral infections to cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1817. [PMID: 37718249 PMCID: PMC10947335 DOI: 10.1002/wrna.1817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
ADAR deaminases catalyze adenosine-to-inosine (A-to-I) editing on double-stranded RNA (dsRNA) substrates that regulate an umbrella of biological processes. One of the two catalytically active ADAR enzymes, ADAR1, plays a major role in innate immune responses by suppression of RNA sensing pathways which are orchestrated through the ADAR1-dsRNA-MDA5 axis. Unedited immunogenic dsRNA substrates are potent ligands for the cellular sensor MDA5. Upon activation, MDA5 leads to the induction of interferons and expression of hundreds of interferon-stimulated genes with potent antiviral activity. In this way, ADAR1 acts as a gatekeeper of the RNA sensing pathway by striking a fine balance between innate antiviral responses and prevention of autoimmunity. Reduced editing of immunogenic dsRNA by ADAR1 is strongly linked to the development of common autoimmune and inflammatory diseases. In viral infections, ADAR1 exhibits both antiviral and proviral effects. This is modulated by both editing-dependent and editing-independent functions, such as PKR antagonism. Several A-to-I RNA editing events have been identified in viruses, including in the insidious viral pathogen, SARS-CoV-2 which regulates viral fitness and infectivity, and could play a role in shaping viral evolution. Furthermore, ADAR1 is an attractive target for immuno-oncology therapy. Overexpression of ADAR1 and increased dsRNA editing have been observed in several human cancers. Silencing ADAR1, especially in cancers that are refractory to immune checkpoint inhibitors, is a promising therapeutic strategy for cancer immunotherapy in conjunction with epigenetic therapy. The mechanistic understanding of dsRNA editing by ADAR1 and dsRNA sensing by MDA5 and PKR holds great potential for therapeutic applications. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Rohini Datta
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia Z Adamska
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amruta Bhate
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Goldstein SA, Elde NC. Recurrent Viral Capture of Cellular Phosphodiesterases that Antagonize OAS-RNase L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540623. [PMID: 37745432 PMCID: PMC10515750 DOI: 10.1101/2023.05.12.540623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions is less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronavirus genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of Rotavirus A was acquired independently from Rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of Rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.
Collapse
Affiliation(s)
- Stephen A Goldstein
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| |
Collapse
|