1
|
Osman MK, Robert J, Broich L, Frank D, Grosse R, Schwemmle M, Wrobel AG, Ciminski K, Sieben C, Reuther P. The bat influenza A virus subtype H18N11 induces nanoscale MHCII clustering upon host cell attachment. Nat Commun 2025; 16:3847. [PMID: 40280957 PMCID: PMC12032283 DOI: 10.1038/s41467-025-58834-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Prior to the discovery of bat influenza A virus (IAV) subtypes H17N10 and H18N11, all IAVs were thought to bind sialic acid residues via hemagglutinin (HA) to mediate attachment and subsequent viral entry. However, H17 and H18 engage a proteinaceous receptor: the major histocompatibility complex class II (MHCII). The mechanistic details of this hitherto unknown protein-mediated entry are not understood. Given that conventional IAVs rely on multivalent binding to sialylated glycans, we hypothesized that bat HA similarly interacts with multiple MHCII molecules. Using photoactivated localization microscopy (PALM) on fixed and live cells, we demonstrate that bat IAV particles attach to pre-existing MHCII clusters and induce a further increase in cluster size upon binding. To measure the impact of viral attachment on the dynamics of MHCII, we employ an "inverse attachment" approach, immobilizing viral particles on coverslips before seeding live MHCII-expressing cells on top. Single-molecule tracking reveals that the mobility of MHCII is indeed slowed down in viral proximity leading to a local enrichment of MHCII molecules beneath the viral particle. These findings suggest that viral attachment induces MHCII clustering, a process similar to the MHCII dynamics observed during the formation of an immunological synapse.
Collapse
Affiliation(s)
- Maria Kaukab Osman
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jonathan Robert
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lukas Broich
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dennis Frank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signaling Studies-CIBSS, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kevin Ciminski
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Peter Reuther
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Griffiths ME, Broos A, Morales J, Tu IT, Bergner L, Behdenna A, Valderrama Bazan W, Tello C, Carrera JE, Recuenco S, Streicker DG, Viana M. Dynamics of influenza transmission in vampire bats revealed by longitudinal monitoring and a large-scale anthropogenic perturbation. SCIENCE ADVANCES 2025; 11:eads1267. [PMID: 39908385 PMCID: PMC11797540 DOI: 10.1126/sciadv.ads1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025]
Abstract
Interrupting pathogen transmission between species is a priority strategy to mitigate zoonotic threats. However, avoiding counterproductive interventions requires knowing animal reservoirs of infection and the dynamics of transmission within them, neither of which are easily ascertained from the cross-sectional surveys that now dominate investigations into newly discovered viruses. We used biobanked sera and metagenomic data to reconstruct the transmission of recently discovered bat-associated influenza virus (BIV; H18N11) over 12 years in three zones of Peru. Mechanistic models fit under a Bayesian framework, which enabled joint inference from serological and molecular data, showed that common vampire bats maintain BIV independently of the now assumed fruit bat reservoir through immune waning and seasonal transmission pulses. A large-scale vampire bat cull targeting rabies incidentally halved BIV transmission, confirming vampire bats as maintenance hosts. Our results show how combining field studies, perturbation responses, and multi-data-type models can elucidate pathogen dynamics in nature and reveal pathogen-dependent effects of interventions.
Collapse
Affiliation(s)
- Megan E. Griffiths
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- MRC–University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Alice Broos
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- MRC–University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Juan Morales
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- INIBIOMA-CONICET, Bariloche, Argentina
| | - I-Ting Tu
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- MRC–University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Laura Bergner
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- MRC–University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - William Valderrama Bazan
- Universidad Peruana Cayetano Heredia, Facultad de Medicina Veteriaria y Zootecnia, Lima, Perú
- Asociación para el Desarrollo y Conservación de los Recursos Naturales (Illariy), Lima, Perú
| | - Carlos Tello
- Asociación para el Desarrollo y Conservación de los Recursos Naturales (Illariy), Lima, Perú
| | - Jorge E. Carrera
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Sergio Recuenco
- Centro de Investigaciones Tecnologicas, Biomedica y Medioambientales-CITBM, Faculty of Medicine San Fernando, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Daniel G. Streicker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- MRC–University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Mafalda Viana
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- MRC–University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
3
|
Wang L, Shi L, Liu H, Zhang J, Yang W, Schountz T, Ma W. Incompatible packaging signals and impaired protein functions hinder reassortment of bat H17N10 or H18N11 segment 7 with human H1N1 influenza A viruses. J Virol 2024; 98:e0086424. [PMID: 39162567 PMCID: PMC11406886 DOI: 10.1128/jvi.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
Novel bat H17N10 and H18N11 influenza A viruses (IAVs) are incapable of reassortment with conventional IAVs during co-infection. To date, the underlying mechanisms that inhibit bat and conventional IAV reassortment remain poorly understood. Herein, we used the bat influenza M gene in the PR8 H1N1 virus genetic background to determine the molecular basis that restricts reassortment of segment 7. Our results showed that NEP and M1 from bat H17N10 and H18N11 can interact with PR8 M1 and NEP, resulting in mediating PR8 viral ribonucleoprotein (vRNP) nuclear export and formation of virus-like particles with single vRNP. Further studies demonstrated that the incompatible packaging signals (PSs) of H17N10 or H18N11 M segment led to the failure to rescue recombinant viruses in the PR8 genetic background. Recombinant PR8 viruses (rPR8psH18M and rPR8psH17M) containing bat influenza M coding region flanked with the PR8 M PSs were rescued but displayed lower replication in contrast to the parental PR8 virus, which is due to a low efficiency of recombinant virus uncoating correlating with the functions of the bat M2. Our studies reveal molecular mechanisms of the M gene that hinder reassortment between bat and conventional IAVs, which will help to understand the biology of novel bat IAVs. IMPORTANCE Reassortment is one of the mechanisms in fast evolution of influenza A viruses (IAVs) and responsible for generating pandemic strains. To date, why novel bat IAVs are incapable of reassorting with conventional IAVs remains completely understood. Here, we attempted to rescue recombinant PR8 viruses with M segment from bat IAVs to understand the molecular mechanisms in hindering their reassortment. Results showed that bat influenza NEP and M1 have similar functions as respective counterparts of PR8 to medicating viral ribonucleoprotein nuclear export. Moreover, the incompatible packaging signals of M genes from bat and conventional IAVs and impaired bat M2 functions are the major reasons to hinder their reassortment. Recombinant PR8 viruses with bat influenza M open reading frames were generated but showed attenuation, which correlated with the functions of the bat M2 protein. Our studies provide novel insights into the molecular mechanisms that restrict reassortment between bat and conventional IAVs.
Collapse
Affiliation(s)
- Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Lei Shi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Heidi Liu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jialin Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
Crowley DE, Falvo CA, Benson E, Hedges J, Jutila M, Ezzatpour S, Aguilar HC, Ruiz-Aravena M, Ma W, Schountz T, Rynda-Apple A, Plowright RK. Bats generate lower affinity but higher diversity antibody responses than those of mice, but pathogen-binding capacity increases if protein is restricted in their diet. PLoS Biol 2024; 22:e3002800. [PMID: 39316608 PMCID: PMC11421821 DOI: 10.1371/journal.pbio.3002800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
Bats are reservoirs of many zoonotic viruses that are fatal in humans but do not cause disease in bats. Moreover, bats generate low neutralizing antibody titers in response to experimental viral infection, although more robust antibody responses have been observed in wild-caught bats during times of food stress. Here, we compared the antibody titers and B cell receptor (BCR) diversity of Jamaican fruit bats (Artibeus jamaicensis; JFBs) and BALB/c mice generated in response to T-dependent and T-independent antigens. We then manipulated the diet of JFBs and challenged them with H18N11 influenza A-like virus or a replication incompetent Nipah virus VSV (Nipah-riVSV). Under standard housing conditions, JFBs generated a lower avidity antibody response and possessed more BCR mRNA diversity compared to BALB/c mice. However, withholding protein from JFBs improved serum neutralization in response to Nipah-riVSV and improved serum antibody titers specific to H18 but reduced BCR mRNA diversity.
Collapse
Affiliation(s)
- Daniel E. Crowley
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Caylee A. Falvo
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Evelyn Benson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Jodi Hedges
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Manuel Ruiz-Aravena
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology Colorado State University, Fort Collins, Colorado, United States of America
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Raina K. Plowright
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
5
|
Goldhill DH. Opening another door on influenza entry. Cell Host Microbe 2024; 32:1043-1045. [PMID: 38991500 DOI: 10.1016/j.chom.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
In this issue of Cell Host & Microbe, Karakus et al. find that an influenza virus enters cells by exclusively binding to a protein instead of sugars.
Collapse
|
6
|
Karakus U, Mena I, Kottur J, El Zahed SS, Seoane R, Yildiz S, Chen L, Plancarte M, Lindsay L, Halpin R, Stockwell TB, Wentworth DE, Boons GJ, Krammer F, Stertz S, Boyce W, de Vries RP, Aggarwal AK, García-Sastre A. H19 influenza A virus exhibits species-specific MHC class II receptor usage. Cell Host Microbe 2024; 32:1089-1102.e10. [PMID: 38889725 PMCID: PMC11295516 DOI: 10.1016/j.chom.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.
Collapse
Affiliation(s)
- Umut Karakus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Jithesh Kottur
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara S El Zahed
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rocío Seoane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leanne Chen
- Department of Biology, Barnard College, New York, NY 10027, USA
| | - Magdalena Plancarte
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - LeAnn Lindsay
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | | | | | | | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA; Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Walter Boyce
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Aneel K Aggarwal
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Ogunjinmi OD, Abdullahi T, Somji RA, Bevan CL, Barclay WS, Temperton N, Brooke GN, Giotis ES. The antiviral potential of the antiandrogen enzalutamide and the viral-androgen signaling interplay in seasonal coronaviruses. J Med Virol 2024; 96:e29540. [PMID: 38529542 DOI: 10.1002/jmv.29540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
The sex disparity in COVID-19 outcomes with males generally faring worse than females has been associated with the androgen-regulated expression of the protease TMPRSS2 and the cell receptor ACE2 in the lung and fueled interest in antiandrogens as potential antivirals. In this study, we explored enzalutamide, an antiandrogen used commonly to treat prostate cancer, as a potential antiviral against the human coronaviruses which cause seasonal respiratory infections (HCoV-NL63, -229E, and -OC43). Using lentivirus-pseudotyped and authentic HCoV, we report that enzalutamide reduced 229E and NL63 entry and infection in both TMPRSS2- and nonexpressing immortalized cells, suggesting a TMPRSS2-independent mechanism. However, no effect was observed against OC43. To decipher this distinction, we performed RNA-sequencing analysis on 229E- and OC43-infected primary human airway cells. Our results show a significant induction of androgen-responsive genes by 229E compared to OC43 at 24 and 72 h postinfection. The virus-mediated effect on AR-signaling was further confirmed with a consensus androgen response element-driven luciferase assay in androgen-depleted MRC-5 cells. Specifically, 229E induced luciferase-reporter activity in the presence and absence of the synthetic androgen mibolerone, while OC43 inhibited induction. These findings highlight a complex interplay between viral infections and androgen-signaling, offering insights for disparities in viral outcomes and antiviral interventions.
Collapse
Affiliation(s)
| | - Tukur Abdullahi
- School of Life Sciences, University of Essex, Colchester, UK
| | - Riaz-Ali Somji
- School of Life Sciences, University of Essex, Colchester, UK
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Colchester, UK
| | - Efstathios S Giotis
- School of Life Sciences, University of Essex, Colchester, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| |
Collapse
|
8
|
Xu ZS, Du WT, Wang SY, Wang MY, Yang YN, Li YH, Li ZQ, Zhao LX, Yang Y, Luo WW, Wang YY. LDLR is an entry receptor for Crimean-Congo hemorrhagic fever virus. Cell Res 2024; 34:140-150. [PMID: 38182887 PMCID: PMC10837205 DOI: 10.1038/s41422-023-00917-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.
Collapse
Affiliation(s)
- Zhi-Sheng Xu
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Tian Du
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Su-Yun Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Mo-Yu Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Ning Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Hui Li
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Qi Li
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Xin Zhao
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Wei Luo
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Yi Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Kessler S, García-Sastre A, Schwemmle M, Ciminski K. Reverse Genetics of Bat Influenza A Viruses. Methods Mol Biol 2024; 2733:75-86. [PMID: 38064027 DOI: 10.1007/978-1-0716-3533-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
New World fruit bats were recently found to harbor two distinct and previously unknown influenza A viruses (IAVs) of the subtypes H17N10 and H18N11. Although viral genome sequences were detected in the liver, intestine, lung, and kidney of infected bats and the complete genome sequences have been isolated from their rectal swab samples, all attempts to isolate an infectious virus from bats in nature have failed. The lack of an infectious bat IAV isolate was overcome by reverse genetic approaches that led to the generation of an infectious virus in vitro. Using such synthetic bat IAVs enabled the identification of their unconventional cell entry via major histocompatibility complex II (MCH-II) molecules and their ability to replicate in mice, ferrets, and bats. Importantly, we also showed that these synthetic recombinant bat IAVs are not able to reassort with conventional IAVs, preventing the acquisition of enhanced transmission properties in non-bat species by reassortment with conventional IAVs. As authentic viruses are key for understanding the molecular biology of bat IAVs, in this chapter, we describe our recently established reverse genetics protocol for generating H17N10 and H18N11 in vitro. This step-by-step protocol starts with cloning of cDNA copies of the viral RNA segments into reverse genetics plasmids, followed by the generation of a highly concentrated stock and finally a method to determine viral titers.
Collapse
Affiliation(s)
- Susanne Kessler
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Schwemmle
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Thompson D, Cismaru CV, Rougier JS, Schwemmle M, Zimmer G. The M2 proteins of bat influenza A viruses reveal atypical features compared to conventional M2 proteins. J Virol 2023; 97:e0038823. [PMID: 37540019 PMCID: PMC10506471 DOI: 10.1128/jvi.00388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
The influenza A virus (IAV) M2 protein has proton channel activity, which plays a role in virus uncoating and may help to preserve the metastable conformation of the IAV hemagglutinin (HA). In contrast to the highly conserved M2 proteins of conventional IAV, the primary sequences of bat IAV H17N10 and H18N11 M2 proteins show remarkable divergence, suggesting that these proteins may differ in their biological function. We, therefore, assessed the proton channel activity of bat IAV M2 proteins and investigated its role in virus replication. Here, we show that the M2 proteins of bat IAV did not fully protect acid-sensitive HA of classical IAV from low pH-induced conformational change, indicating low proton channel activity. Interestingly, the N31S substitution not only rendered bat IAV M2 proteins sensitive to inhibition by amantadine but also preserved the metastable conformation of acid-sensitive HA to a greater extent. In contrast, the acid-stable HA of H18N11 did not rely on such support by M2 protein. When mutant M2(N31S) protein was expressed in the context of chimeric H18N11/H5N1(6:2) encoding HA and NA of avian IAV H5N1, amantadine significantly inhibited virus entry, suggesting that ion channel activity supported virus uncoating. Finally, the cytoplasmic domain of the H18N11 M2 protein mediated rapid internalization of the protein from the plasma membrane leading to low-level expression at the cell surface. However, cell surface levels of H18N11 M2 protein were significantly enhanced in cells infected with the chimeric H18N11/H5N1(6:2) virus. The potential role of the N1 sialidase in arresting M2 internalization is discussed. IMPORTANCE Bat IAV M2 proteins not only differ from the homologous proteins of classical IAV by their divergent primary sequence but are also unable to preserve the metastable conformation of acid-sensitive HA, indicating low proton channel activity. This unusual feature may help to avoid M2-mediated cytotoxic effects and inflammation in bats infected with H17N10 or H18N11. Unlike classical M2 proteins, bat IAV M2 proteins with the N31S substitution mediated increased protection of HA from acid-induced conformational change. This remarkable gain of function may help to understand how single point mutations can modulate proton channel activity. In addition, the cytoplasmic domain was found to be responsible for the low cell surface expression level of bat IAV M2 proteins. Given that the M2 cytoplasmic domain of conventional IAV is well known to participate in virus assembly at the plasma membrane, this atypical feature might have consequences for bat IAV budding and egress.
Collapse
Affiliation(s)
- Danielle Thompson
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christiana Victoria Cismaru
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Martin Schwemmle
- Institute of Virology, Medical Center – University of Freiburg, Freiburg im Breisgau, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Pathology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Olajide OM, Osman MK, Robert J, Kessler S, Toews LK, Thamamongood T, Neefjes J, Wrobel AG, Schwemmle M, Ciminski K, Reuther P. Evolutionarily conserved amino acids in MHC-II mediate bat influenza A virus entry into human cells. PLoS Biol 2023; 21:e3002182. [PMID: 37410798 DOI: 10.1371/journal.pbio.3002182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
The viral hemagglutinins of conventional influenza A viruses (IAVs) bind to sialylated glycans on host cell surfaces for attachment and subsequent infection. In contrast, hemagglutinins of bat-derived IAVs target major histocompatibility complex class II (MHC-II) for cell entry. MHC-II proteins from various vertebrate species can facilitate infection with the bat IAV H18N11. Yet, it has been difficult to biochemically determine the H18:MHC-II binding. Here, we followed a different approach and generated MHC-II chimeras from the human leukocyte antigen DR (HLA-DR), which supports H18-mediated entry, and the nonclassical MHC-II molecule HLA-DM, which does not. In this context, viral entry was supported only by a chimera containing the HLA-DR α1, α2, and β1 domains. Subsequent modeling of the H18:HLA-DR interaction identified the α2 domain as central for this interaction. Further mutational analyses revealed highly conserved amino acids within loop 4 (N149) and β-sheet 6 (V190) of the α2 domain as critical for virus entry. This suggests that conserved residues in the α1, α2, and β1 domains of MHC-II mediate H18-binding and virus propagation. The conservation of MHC-II amino acids, which are critical for H18N11 binding, may explain the broad species specificity of this virus.
Collapse
Affiliation(s)
- Okikiola M Olajide
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maria Kaukab Osman
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jonathan Robert
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Susanne Kessler
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lina Kathrin Toews
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thiprampai Thamamongood
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Nueng, Khlong Luang District, Pathum Thani, Thailand
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Martin Schwemmle
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Chen Y, Wang F, Yin L, Jiang H, Lu X, Bi Y, Zhang W, Shi Y, Burioni R, Tong Z, Song H, Qi J, Gao GF. Structural basis for a human broadly neutralizing influenza A hemagglutinin stem-specific antibody including H17/18 subtypes. Nat Commun 2022; 13:7603. [PMID: 36494358 PMCID: PMC9734383 DOI: 10.1038/s41467-022-35236-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza infection continues are a persistent threat to public health. The identification and characterization of human broadly neutralizing antibodies can facilitate the development of antibody drugs and the design of universal influenza vaccines. Here, we present structural information for the human antibody PN-SIA28's heterosubtypic binding of hemagglutinin (HA) from circulating and emerging potential influenza A viruses (IAVs). Aside from group 1 and 2 conventional IAV HAs, PN-SIA28 also inhibits membrane fusion mediated by bat-origin H17 and H18 HAs. Crystallographic analyses of Fab alone or in complex with H1, H14, and H18 HA proteins reveal that PN-SIA28 binds to a highly conserved epitope in the fusion domain of different HAs, with the same CDRHs but different CDRLs for different HAs tested, distinguishing it from other structurally characterized anti-stem antibodies. The binding characteristics of PN-SIA28 provides information to support the design of increasingly potent engineered antibodies, antiviral drugs, and/or universal influenza vaccines.
Collapse
Affiliation(s)
- Yulu Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Liwei Yin
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haihai Jiang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xishan Lu
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuhai Bi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yi Shi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Roberto Burioni
- grid.15496.3f0000 0001 0439 0892Università Vita-Salute San Raffaele, Milano, 20132 Italy
| | - Zhou Tong
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hao Song
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianxun Qi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - George F. Gao
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
13
|
Structural and inhibitor sensitivity analysis of influenza B-like viral neuraminidases derived from Asiatic toad and spiny eel. Proc Natl Acad Sci U S A 2022; 119:e2210724119. [PMID: 36191180 PMCID: PMC9586306 DOI: 10.1073/pnas.2210724119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus neuraminidase (NA) is an important target for antiviral development because it plays a crucial role in releasing newly assembled viruses. Two unique influenza-like virus genomes were recently reported in the Wuhan Asiatic toad and Wuhan spiny eel. Their NA genes appear to be highly divergent from all known influenza NAs, raising key questions as to whether the Asiatic toad influenza-like virus NA (tNA) and spiny eel NA (eNA) have canonical NA activities and structures and whether they show sensitivity to NA inhibitors (NAIs). Here, we found that both tNA and eNA have neuraminidase activities. A detailed structural analysis revealed that tNA and eNA present similar overall structures to currently known NAs, with a conserved calcium binding site. Inhibition assays indicated that tNA is resistant to NAIs, while eNA is still sensitive to NAIs. E119 is conserved in canonical NAs. The P119E substitution in tNA can restore sensitivity to NAIs, and, in contrast, the E119P substitution in eNA decreased its sensitivity to NAIs. The structures of NA-inhibitor complexes further provide a detailed insight into NA-inhibitor interactions at the atomic level. Moreover, tNA and eNA have unique N-glycosylation sites compared with canonical NAs. Collectively, the structural features, NA activities, and sensitivities to NAIs suggest that fish- and amphibian-derived influenza-like viruses may circulate in these vertebrates. More attention should be paid to these influenza-like viruses because their NA molecules may play roles in the emergence of NAI resistance.
Collapse
|
14
|
Uribe M, Rodríguez-Posada ME, Ramirez-Nieto GC. Molecular Evidence of Orthomyxovirus Presence in Colombian Neotropical Bats. Front Microbiol 2022; 13:845546. [PMID: 35558106 PMCID: PMC9087557 DOI: 10.3389/fmicb.2022.845546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
The Orthomyxoviridae family includes the genera Influenzavirus, Isavirus, Quaranjavirus, and Thogotovirus. In turn, Influenzavirus can be classified into four types: α, β, γ, and δ (Formerly A, B, C, and D), from which Alphainfluenzavirus (AIV) has the broadest host range, including birds, mammals, reptiles, and amphibians. Additionally, AIV has shown global epidemiological relevance owing to its pandemic potential. The epidemiological relevance of Chiropteran due to its multiple functional characteristics makes them ideal reservoirs for many viral agents. Recently, new influenza-like subtypes have been reported in Neotropical bats, but little is known about the relevance of bats as natural reservoirs of influenza viruses. Therefore, the current study aimed to determine the presence of AIV and new influenza-like subtypes in South American bats. For a better understanding of the drivers and interactions between AIV and bats, we used molecular assays with different gene targets (i.e., M, NP, and PB1) to identify AIV in New World bats. A housekeeping gene (CytB) PCR was used to check for nucleic acid preservation and to demonstrate the bat-origin of the samples. A total of 87 free-living bats belonging to 25 different species of the families Phyllostomidae and Vespertilionidae were collected in Casanare, Colombia. As a result, this study found seven AIV-positive bat species, three of them reported for the first time as AIV prone hosts. Neither of the AIV-like analyzed samples were positive for H17N10/H18/N11 subtypes. Although additional information is needed, the presence of a completely new or divergent AIV subtype in neotropical bats cannot be discarded. Collectively, the results presented here expand the epidemiological knowledge and distribution of AIV in neotropical free-ranging bats and emphasize the need to continue studying these viruses to establish the role they could play as a threat to animal and public health.
Collapse
Affiliation(s)
- Manuel Uribe
- Microbiología y Epidemiologia Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia.,CIBAV Research Group, Veterinary Medicine School, Universidad de Antioquia, Medellín, Colombia
| | - Miguel E Rodríguez-Posada
- Research Center Fundación Reserva Natural La Palmita, Grupo de Investigaciones Territoriales Parael uso y Conservación de la Biodiversidad, Trinidad, Colombia
| | - Gloria C Ramirez-Nieto
- Microbiología y Epidemiologia Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
15
|
Yang J, Huang M, Qiao S, Zhang P, Teng Q, Li X, Liu Q, Chen H, Zhang Z, Yan D, Li Z. Replication and virulence of chimeric bat influenza viruses in mammalian and avian cells and in mice. Microb Pathog 2021; 157:104992. [PMID: 34044053 DOI: 10.1016/j.micpath.2021.104992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Previous studies have shown that chimeric bat influenza viruses can be generated by reverse genetic system. However, the roles of the surface or internal genes of chimeric bat influenza viruses in viral replication and virulence in different host species were still not completely understood. In this study, we generated a chimeric H9N2 bat virus with both HA and NA surface genes from the avian A2093/H9N2 virus and compared its replication and virulence with the chimeric H1N1 bat virus with both HA and NA from the PR8/H1N1 virus in vitro and in mice. The chimeric H1N1 virus showed significantly higher replication in mammalian and avian cells and significantly higher virulence in mice than the chimeric H9N2 virus. Moreover, the chimeric H9N2 virus with the bat influenza internal M gene showed a higher replication in mammalian cells than in avian cells. While the chimeric H9N2 virus with the avian-origin viral M gene displayed a higher replication than that with the bat influenza M gene in avian cells, which likely resulted from increased receptor binding ability to α 2,3 sialic acid linked glycans of the former virus. Our study indicates that bat influenza internal genes are permissive in both mammalian and avian cells, and the bat influenza internal M gene shows more compatibility in mammals than in the avian host. Although the surface genes play more critical roles for viral replication in different host substrates, influenza M gene also potentially impacts on replication, virulence and host tropism.
Collapse
Affiliation(s)
- Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China; Animal Influenza and Emerging Avian Viral Diseases Innovation Team, China.
| | - Min Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China
| | - Shuyuan Qiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China
| | - Pei Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China; Animal Influenza and Emerging Avian Viral Diseases Innovation Team, China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China; Animal Influenza and Emerging Avian Viral Diseases Innovation Team, China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China; Animal Influenza and Emerging Avian Viral Diseases Innovation Team, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China
| | - Zhifei Zhang
- Animal Influenza and Emerging Avian Viral Diseases Innovation Team, China
| | - Dawei Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China; Animal Influenza and Emerging Avian Viral Diseases Innovation Team, China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), China; Animal Influenza and Emerging Avian Viral Diseases Innovation Team, China.
| |
Collapse
|
16
|
Neumann G. Influenza Reverse Genetics-Historical Perspective. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038547. [PMID: 31964649 DOI: 10.1101/cshperspect.a038547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The generation of wild-type, mutant, and reassortant influenza viruses from viral cDNAs (reverse genetics) is now a basic molecular virology technique in many influenza virus laboratories. Here, I describe the original RNA polymerase I reverse genetics system and the modifications that have been developed in past years. Together, these technologies have made possible many advances in basic and applied influenza virology that would not have been otherwise attainable, including the revival and study of extinct influenza viruses, the rapid characterization of emerging influenza viruses, the generation of conventional influenza vaccines, and the development of novel influenza vaccines.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| |
Collapse
|
17
|
Yang W, Schountz T, Ma W. Bat Influenza Viruses: Current Status and Perspective. Viruses 2021; 13:v13040547. [PMID: 33805956 PMCID: PMC8064322 DOI: 10.3390/v13040547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Bats are natural reservoirs for many viruses, including several that are zoonotic. Two unusual H17N10 and H18N11 influenza viruses have been found in New World bats. Although neither of these viruses have been isolated, infectious clone technology has permitted significant progress to understand their biology, which include unique features compared to all other known influenza A viruses. In addition, an H9N2-like influenza A virus was isolated from Old World bats and it shows similar characteristics of normal influenza A viruses. In this review, current status and perspective on influenza A viruses identified in bats is reviewed and discussed.
Collapse
Affiliation(s)
- Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Tony Schountz
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
18
|
Holwerda M, Laloli L, Wider M, Schönecker L, Becker J, Meylan M, Dijkman R. Establishment of a Reverse Genetic System from a Bovine Derived Influenza D Virus Isolate. Viruses 2021; 13:v13030502. [PMID: 33803792 PMCID: PMC8003313 DOI: 10.3390/v13030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
The ruminant-associated influenza D virus (IDV) has a broad host tropism and was shown to have zoonotic potential. To identify and characterize molecular viral determinants influencing the host spectrum of IDV, a reverse genetic system is required. For this, we first performed 5′ and 3′ rapid amplification of cDNA ends (RACE) of all seven genomic segments, followed by assessment of the 5′ and 3′ NCR activity prior to constructing the viral genomic segments of a contemporary Swiss bovine IDV isolate (D/CN286) into the bidirectional pHW2000 vector. The bidirectional plasmids were transfected in HRT-18G cells followed by viral rescue on the same cell type. Analysis of the segment specific 5′ and 3′ non-coding regions (NCR) highlighted that the terminal 3′ end of all segments harbours an uracil instead of a cytosine nucleotide, similar to other influenza viruses. Subsequent analysis on the functionality of the 5′ and 3′ NCR in a minireplicon assay revealed that these sequences were functional and that the variable sequence length of the 5′ and 3′ NCR influences reporter gene expression. Thereafter, we evaluated the replication efficiency of the reverse genetic clone on conventional cell lines of human, swine and bovine origin, as well as by using an in vitro model recapitulating the natural replication site of IDV in bovine and swine. This revealed that the reverse genetic clone D/CN286 replicates efficiently in all cell culture models. Combined, these results demonstrate the successful establishment of a reverse genetic system from a contemporary bovine IDV isolate that can be used for future identification and characterization of viral determinants influencing the broad host tropism of IDV.
Collapse
Affiliation(s)
- Melle Holwerda
- Institute of Virology and Immunology, 3012 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (L.L.); (M.W.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Laura Laloli
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (L.L.); (M.W.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Manon Wider
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (L.L.); (M.W.)
| | - Lutz Schönecker
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.B.); (M.M.)
- Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jens Becker
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.B.); (M.M.)
- Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.B.); (M.M.)
- Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology, 3012 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (L.L.); (M.W.)
- Correspondence: ; Tel.: +41-31-664-0783
| |
Collapse
|
19
|
Abstract
Influenza A viruses (IAVs) originating from aquatic waterfowl recurrently cross interspecies barriers, which is greatly facilitated by utilizing cell surface-exposed monosaccharide sialic acids located on vertebrate cells as a universal host cell receptor. These glycan structures are first bound by the viral hemagglutinin (HA) for cell entry and then cleaved by the viral neuraminidase (NA) for particle release. In contrast, viruses of the recently identified bat-borne IAV subtypes H17N10 and H18N11 encode HA and NA homologs unable to interact with sialic acid residues despite a high degree of structural homology with their conventional counterparts. However, the most recent findings show that bat IAV HAs make use of the major histocompatibility complex class II proteins of different vertebrate species to gain entry into host cells, potentially permitting a broader host tropism. This review recapitulates current progress in the field of bat IAV research including the first assessment of the spillover potential of these bat viruses into other mammals.
Collapse
|
20
|
Giotis ES. Inferring the Urban Transmission Potential of Bat Influenza Viruses. Front Cell Infect Microbiol 2020; 10:264. [PMID: 32582567 PMCID: PMC7283454 DOI: 10.3389/fcimb.2020.00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/02/2022] Open
Abstract
Bats are considered natural reservoirs of various, potentially zoonotic viruses, exemplified by the influenza A-like viruses H17N10 and H18N11 in asymptomatic Neotropical bats. These influenza viruses are evolutionarily distinct, are poorly adapted to laboratory mice and ferrets and cannot reassort in vitro with conventional strains to form new influenza subtypes. However, they have attracted renewed attention following reports that their entry in host cells is mediated by the trans-species conserved MHC-II proteins, suggesting that they hold zoonotic potential. Despite the recent studies, the viruses' epidemiology and public health significance remain incompletely understood. Delineating the mechanistic basis of the interactions with their hosts and assessing their global distribution are essential in order to fully assess the zoonotic threat that these strains pose.
Collapse
Affiliation(s)
- Efstathios S Giotis
- Section of Molecular Virology, Department of Infectious Diseases, Imperial College London, London, United Kingdom.,School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
21
|
|
22
|
Characterization of Experimental Oro-Nasal Inoculation of Seba's Short-Tailed Bats ( Carollia perspicillata) with Bat Influenza A Virus H18N11. Viruses 2020; 12:v12020232. [PMID: 32093076 PMCID: PMC7077217 DOI: 10.3390/v12020232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022] Open
Abstract
In 2012 and 2013, the genomic sequences of two novel influenza A virus (IAV) subtypes, designated H17N10 and H18N11, were identified via next-generation sequencing in the feces of the little yellow-shouldered fruit bat (Sturnira lilium) and the flat-faced fruit-eating bat (Artibeus planirostris), respectively. The pathogenesis caused by these viruses in their respective host species is currently insufficiently understood, which is primarily due to the inability to obtain and keep these bat species under appropriate environmental and biosafety conditions. Seba’s short-tailed bats (Carollia perspicillata), in contrast, are close relatives and a natural H18N11 reservoir species, with the advantage of established animal husbandry conditions in academic research. To study viral pathogenesis in more detail, we here oro-nasally inoculated Seba’s short-tailed bats with the bat IAV H18N11 subtype. Following inoculation, bats appeared clinically healthy, but the histologic examination of tissues revealed a mild necrotizing rhinitis. Consistently, IAV-matrix protein and H18-RNA positive cells were seen in lesioned respiratory and olfactory nasal epithelia, as well as in intestinal tissues. A RT-qPCR analysis confirmed viral replication in the conchae and intestines as well as the presence of viral RNA in the excreted feces, without horizontal transmission to naïve contact animals. Moreover, all inoculated animals seroconverted with low titers of neutralizing antibodies.
Collapse
|
23
|
Mutations in the Neuraminidase-Like Protein of Bat Influenza H18N11 Virus Enhance Virus Replication in Mammalian Cells, Mice, and Ferrets. J Virol 2020; 94:JVI.01416-19. [PMID: 31801857 DOI: 10.1128/jvi.01416-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
To characterize bat influenza H18N11 virus, we propagated a reverse genetics-generated H18N11 virus in Madin-Darby canine kidney subclone II cells and detected two mammal-adapting mutations in the neuraminidase (NA)-like protein (NA-F144C and NA-T342A, N2 numbering) that increased the virus titers in three mammalian cell lines (i.e., Madin-Darby canine kidney, Madin-Darby canine kidney subclone II, and human lung adenocarcinoma [Calu-3] cells). In mice, wild-type H18N11 virus replicated only in the lungs of the infected animals, whereas the NA-T342A and NA-F144C/T342A mutant viruses were detected in the nasal turbinates, in addition to the lungs. Bat influenza viruses have not been tested for their virulence or organ tropism in ferrets. We detected wild-type and single mutant viruses each possessing NA-F144C or NA-T342A in the nasal turbinates of one or several infected ferrets, respectively. A mutant virus possessing both the NA-F144C and NA-T342A mutations was isolated from both the lung and the trachea, suggesting that it has a broader organ tropism than the wild-type virus. However, none of the H18N11 viruses caused symptoms in mice or ferrets. The NA-F144C/T342A double mutation did not substantially affect virion morphology or the release of virions from cells. Collectively, our data demonstrate that the propagation of bat influenza H18N11 virus in mammalian cells can result in mammal-adapting mutations that may increase the replicative ability and/or organ tropism of the virus; overall, however, these viruses did not replicate to high titers throughout the respiratory tract of mice and ferrets.IMPORTANCE Bats are reservoirs for several severe zoonotic pathogens. The genomes of influenza A viruses of the H17N10 and H18N11 subtypes have been identified in bats, but no live virus has been isolated. The characterization of artificially generated bat influenza H18N11 virus in mammalian cell lines and animal models revealed that this virus can acquire mammal-adapting mutations that may increase its zoonotic potential; however, the wild-type and mutant viruses did not replicate to high titers in all infected animals.
Collapse
|
24
|
Ng WM, Stelfox AJ, Bowden TA. Unraveling virus relationships by structure-based phylogenetic classification. Virus Evol 2020; 6:veaa003. [PMID: 32064119 PMCID: PMC7015158 DOI: 10.1093/ve/veaa003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Delineation of the intricacies of protein function from macromolecular structure constitutes a continual obstacle in the study of cell and pathogen biology. Structure-based phylogenetic analysis has emerged as a powerful tool for addressing this challenge, allowing the detection and quantification of conserved architectural properties between proteins, including those with low or no detectable sequence homology. With a focus on viral protein structure, we highlight how a number of investigations have utilized this powerful method to infer common functionality and ancestry.
Collapse
Affiliation(s)
- Weng M Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Alice J Stelfox
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
25
|
Breaking the Convention: Sialoglycan Variants, Coreceptors, and Alternative Receptors for Influenza A Virus Entry. J Virol 2020; 94:JVI.01357-19. [PMID: 31776280 DOI: 10.1128/jvi.01357-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
The influenza A virus (IAV) envelope protein hemagglutinin binds α2,6- or α2,3-linked sialic acid as a host cell receptor. Bat IAV subtypes H17N10 and H18N11 form an exception to this rule and do not bind sialic acid but enter cells via major histocompatibility complex (MHC) class II. Here, we review current knowledge on IAV receptors with a focus on sialoglycan variants, protein coreceptors, and alternative receptors that impact IAV attachment and internalization beyond the well-described sialic acid binding.
Collapse
|
26
|
Ciminski K, Ran W, Gorka M, Lee J, Malmlov A, Schinköthe J, Eckley M, Murrieta RA, Aboellail TA, Campbell CL, Ebel GD, Ma J, Pohlmann A, Franzke K, Ulrich R, Hoffmann D, García-Sastre A, Ma W, Schountz T, Beer M, Schwemmle M. Bat influenza viruses transmit among bats but are poorly adapted to non-bat species. Nat Microbiol 2019; 4:2298-2309. [PMID: 31527796 DOI: 10.1038/s41564-019-0556-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022]
Abstract
Major histocompatibility complex class II (MHC-II) molecules of multiple species function as cell-entry receptors for the haemagglutinin-like H18 protein of the bat H18N11 influenza A virus, enabling tropism of the viruses in a potentially broad range of vertebrates. However, the function of the neuraminidase-like N11 protein is unknown because it is dispensable for viral infection or the release of H18-pseudotyped viruses. Here, we show that infection of mammalian cells with wild-type H18N11 leads to the emergence of mutant viruses that lack the N11 ectodomain and acquired mutations in H18. An infectious clone of one such mutant virus, designated rP11, appeared to be genetically stable in mice and replicated to higher titres in mice and cell culture compared with wild-type H18N11. In ferrets, rP11 antigen and RNA were detected at low levels in various tissues, including the tonsils, whereas the wild-type virus was not. In Neotropical Jamaican fruit bats, wild-type H18N11 was found in intestinal Peyer's patches and was shed to high concentrations in rectal samples, resulting in viral transmission to naive contact bats. Notably, rP11 also replicated efficiently in bats; however, only restored full-length N11 viruses were transmissible. Our findings suggest that wild-type H18N11 replicates poorly in mice and ferrets and that N11 is a determinant for viral transmission in bats.
Collapse
Affiliation(s)
- Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wei Ran
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Gorka
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ashley Malmlov
- Arthropod Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jan Schinköthe
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Miles Eckley
- Arthropod Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Reyes A Murrieta
- Arthropod Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tawfik A Aboellail
- Arthropod Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Corey L Campbell
- Arthropod Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Arthropod Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Adolfo García-Sastre
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| | - Tony Schountz
- Arthropod Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany.
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Giotis ES, Carnell G, Young EF, Ghanny S, Soteropoulos P, Wang LF, Barclay WS, Skinner MA, Temperton N. Entry of the bat influenza H17N10 virus into mammalian cells is enabled by the MHC class II HLA-DR receptor. Nat Microbiol 2019; 4:2035-2038. [PMID: 31358984 DOI: 10.1038/s41564-019-0517-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
Haemagglutinin and neuraminidase surface glycoproteins of the bat influenza H17N10 virus neither bind to nor cleave sialic acid receptors, indicating that this virus employs cell entry mechanisms distinct from those of classical influenza A viruses. We observed that certain human haematopoietic cancer cell lines and canine MDCK II cells are susceptible to H17-pseudotyped viruses. We identified the human HLA-DR receptor as an entry mediator for H17 pseudotypes, suggesting that H17N10 possesses zoonotic potential.
Collapse
Affiliation(s)
- Efstathios S Giotis
- Section of Virology, Department of Medicine, Imperial College London, London, UK.
| | - George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham, UK.,Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Erik F Young
- Department of Surgery, Hackensack University Medical Center, Hackensack, NJ, USA.,Bioelectronic Systems Lab, Columbia University, New York, NY, USA
| | - Saleena Ghanny
- The Genomics Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | | - Lin-Fa Wang
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Wendy S Barclay
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Michael A Skinner
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham, UK
| |
Collapse
|
28
|
Campos ACA, Góes LGB, Moreira-Soto A, de Carvalho C, Ambar G, Sander AL, Fischer C, Ruckert da Rosa A, Cardoso de Oliveira D, Kataoka APG, Pedro WA, Martorelli LFA, Queiroz LH, Cruz-Neto AP, Durigon EL, Drexler JF. Bat Influenza A(HL18NL11) Virus in Fruit Bats, Brazil. Emerg Infect Dis 2019; 25:333-337. [PMID: 30666923 PMCID: PMC6346480 DOI: 10.3201/eid2502.181246] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Screening of 533 bats for influenza A viruses showed subtype HL18NL11 in intestines of 2 great fruit-eating bats (Artibeus lituratus). High concentrations suggested fecal shedding. Genomic characterizations revealed conservation of viral genes across different host species, countries, and sampling years, suggesting a conserved cellular receptor and wide-ranging occurrence of bat influenza A viruses.
Collapse
|
29
|
Caì Y, Yú S, Jangra RK, Postnikova EN, Wada J, Tesh RB, Whelan SPJ, Lauck M, Wiley MR, Finch CL, Radoshitzky SR, O’Connor DH, Palacios G, Chandran K, Chiu CY, Kuhn JH. Human, Nonhuman Primate, and Bat Cells Are Broadly Susceptible to Tibrovirus Particle Cell Entry. Front Microbiol 2019; 10:856. [PMID: 31105663 PMCID: PMC6499107 DOI: 10.3389/fmicb.2019.00856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/03/2019] [Indexed: 12/23/2022] Open
Abstract
In 2012, the genome of a novel rhabdovirus, Bas-Congo virus (BASV), was discovered in the acute-phase serum of a Congolese patient with presumed viral hemorrhagic fever. In the absence of a replicating virus isolate, fulfilling Koch's postulates to determine whether BASV is indeed a human virus and/or pathogen has been impossible. However, experiments with vesiculoviral particles pseudotyped with Bas-Congo glycoprotein suggested that BASV particles can enter cells from multiple animals, including humans. In 2015, genomes of two related viruses, Ekpoma virus 1 (EKV-1) and Ekpoma virus 2 (EKV-2), were detected in human sera in Nigeria. Isolates could not be obtained. Phylogenetic analyses led to the classification of BASV, EKV-1, and EKV-2 in the same genus, Tibrovirus, together with five biting midge-borne rhabdoviruses [i.e., Beatrice Hill virus (BHV), Bivens Arm virus (BAV), Coastal Plains virus (CPV), Sweetwater Branch virus (SWBV), and Tibrogargan virus (TIBV)] not known to infect humans. Using individual recombinant vesiculoviruses expressing the glycoproteins of all eight known tibroviruses and more than 75 cell lines representing different animal species, we demonstrate that the glycoproteins of all tibroviruses can mediate vesiculovirus particle entry into human, bat, nonhuman primate, cotton rat, boa constrictor, and Asian tiger mosquito cells. Using four of five isolated authentic tibroviruses (i.e., BAV, CPV, SWBV, and TIBV), our experiments indicate that many cell types may be partially resistant to tibrovirus replication after virion cell entry. Consequently, experimental data solely obtained from experiments using tibrovirus surrogate systems (e.g., vesiculoviral pseudotypes, recombinant vesiculoviruses) cannot be used to predict whether BASV, or any other tibrovirus, infects humans.
Collapse
Affiliation(s)
- Yíngyún Caì
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Shuǐqìng Yú
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elena N. Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Robert B. Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, United States
| | - Sean P. J. Whelan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, United States
| | - Michael R. Wiley
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Courtney L. Finch
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Sheli R. Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, United States
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Charles Y. Chiu
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
30
|
MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature 2019; 567:109-112. [PMID: 30787439 DOI: 10.1038/s41586-019-0955-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
Zoonotic influenza A viruses of avian origin can cause severe disease in individuals, or even global pandemics, and thus pose a threat to human populations. Waterfowl and shorebirds are believed to be the reservoir for all influenza A viruses, but this has recently been challenged by the identification of novel influenza A viruses in bats1,2. The major bat influenza A virus envelope glycoprotein, haemagglutinin, does not bind the canonical influenza A virus receptor, sialic acid or any other glycan1,3,4, despite its high sequence and structural homology with conventional haemagglutinins. This functionally uncharacterized plasticity of the bat influenza A virus haemagglutinin means the tropism and zoonotic potential of these viruses has not been fully determined. Here we show, using transcriptomic profiling of susceptible versus non-susceptible cells in combination with genome-wide CRISPR-Cas9 screening, that the major histocompatibility complex class II (MHC-II) human leukocyte antigen DR isotype (HLA-DR) is an essential entry determinant for bat influenza A viruses. Genetic ablation of the HLA-DR α-chain rendered cells resistant to infection by bat influenza A virus, whereas ectopic expression of the HLA-DR complex in non-susceptible cells conferred susceptibility. Expression of MHC-II from different bat species, pigs, mice or chickens also conferred susceptibility to infection. Notably, the infection of mice with bat influenza A virus resulted in robust virus replication in the upper respiratory tract, whereas mice deficient for MHC-II were resistant. Collectively, our data identify MHC-II as a crucial entry mediator for bat influenza A viruses in multiple species, which permits a broad vertebrate tropism.
Collapse
|
31
|
Generation of bat-derived influenza viruses and their reassortants. Sci Rep 2019; 9:1158. [PMID: 30718752 PMCID: PMC6362294 DOI: 10.1038/s41598-018-37830-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/15/2018] [Indexed: 01/20/2023] Open
Abstract
Two novel influenza A virus-like genomes were detected in fruit bats in Central and South America. However, the biological properties of these bat-derived influenza viruses (BatIVs) are still largely unknown since infectious viral particles have never been isolated from the infected host species. In this study, a reverse genetics approach was used to generate infectious BatIV particles entirely from plasmids encoding full-length sequences in eight gene segments. We inoculated BatIV particles into various cell cultures including bat-derived cell lines and found that BatIVs infected particular bat-derived cells efficiently but not the other cell lines tested. Reassortant viruses between the two BatIVs were also successfully generated and their replication in the susceptible bat cell lines was confirmed. These findings suggest a limited host range and reassortment potential of BatIVs in nature, providing fundamental information for understanding of the ecology of BatIVs.
Collapse
|
32
|
Viruses in bats and potential spillover to animals and humans. Curr Opin Virol 2019; 34:79-89. [PMID: 30665189 PMCID: PMC7102861 DOI: 10.1016/j.coviro.2018.12.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
Bats are a very important source of emerging viruses. Bat coronavirus, filovirus, paramyxovirus and reovirus are known zoonotic viruses. Many of the emergent bat viruses are highly lethal in livestock and humans. Past incidents and viral genetic features predict bat coronaviruses as the highest risk.
In the last two decades, several high impact zoonotic disease outbreaks have been linked to bat-borne viruses. These include SARS coronavirus, Hendra virus and Nipah virus. In addition, it has been suspected that ebolaviruses and MERS coronavirus are also linked to bats. It is being increasingly accepted that bats are potential reservoirs of a large number of known and unknown viruses, many of which could spillover into animal and human populations. However, our knowledge into basic bat biology and immunology is very limited and we have little understanding of major factors contributing to the risk of bat virus spillover events. Here we provide a brief review of the latest findings in bat viruses and their potential risk of cross-species transmission.
Collapse
|
33
|
Wang S, Zhang L, Zhang R, Chi X, Yang Z, Xie Y, Shu S, Liao Y, Chen JL. Identification of two residues within the NS1 of H7N9 influenza A virus that critically affect the protein stability and function. Vet Res 2018; 49:98. [PMID: 30285871 PMCID: PMC6389221 DOI: 10.1186/s13567-018-0594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/19/2018] [Indexed: 01/31/2023] Open
Abstract
The emerging avian-origin H7N9 influenza A virus, which causes mild to lethal human respiratory disease, continues to circulate in China, posing a great threat to public health. Influenza NS1 protein plays a key role in counteracting host innate immune responses, allowing the virus to efficiently replicate in the host. In this study, we compared NS1 amino acid sequences of H7N9 influenza A virus with those of other strains, and determined NS1 protein variability within the H7N9 virus and then evaluated the impact of amino acid substitutions on ability of the NS1 proteins to inhibit host innate immunity. Interestingly, the amino acid residue S212 was identified to have a profound effect on the primary function of NS1, since S212P substitution disabled H7N9 NS1 in suppressing the host RIG-I-dependent interferon response, as well as the ability to promote the virus replication. In addition, we identified another amino acid residue, I178, serving as a key site to keep NS1 protein high steady-state levels. When the isoleucine was replaced by valine at 178 site (I178V mutation), NS1 of H7N9 underwent rapid degradation through proteasome pathway. Furthermore, we observed that P212S and V178I mutation in NS1 of PR8 virus enhanced virulence and promoted the virus replication in vivo. Together, these results indicate that residues I178 and S212 within H7N9 NS1 protein are critical for stability and functioning of the NS1 protein respectively, and may contribute to the enhanced pathogenicity of H7N9 influenza virus.
Collapse
Affiliation(s)
- Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanlan Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhou Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Xie
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sicheng Shu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China. .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Novel Flu Viruses in Bats and Cattle: "Pushing the Envelope" of Influenza Infection. Vet Sci 2018; 5:vetsci5030071. [PMID: 30082582 PMCID: PMC6165133 DOI: 10.3390/vetsci5030071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
Influenza viruses are among the major infectious disease threats of animal and human health. This review examines the recent discovery of novel influenza viruses in bats and cattle, the evolving complexity of influenza virus host range including the ability to cross species barriers and geographic boundaries, and implications to animal and human health.
Collapse
|
35
|
Specific Mutations in the PB2 Protein of Influenza A Virus Compensate for the Lack of Efficient Interferon Antagonism of the NS1 Protein of Bat Influenza A-Like Viruses. J Virol 2018; 92:JVI.02021-17. [PMID: 29321309 DOI: 10.1128/jvi.02021-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023] Open
Abstract
Recently, two new influenza A-like viruses have been discovered in bats, A/little yellow-shouldered bat/Guatemala/060/2010 (HL17NL10) and A/flat-faced bat/Peru/033/2010 (HL18NL11). The hemagglutinin (HA)-like (HL) and neuraminidase (NA)-like (NL) proteins of these viruses lack hemagglutination and neuraminidase activities, despite their sequence and structural homologies with the HA and NA proteins of conventional influenza A viruses. We have now investigated whether the NS1 proteins of the HL17NL10 and HL18NL11 viruses can functionally replace the NS1 protein of a conventional influenza A virus. For this purpose, we generated recombinant influenza A/Puerto Rico/8/1934 (PR8) H1N1 viruses containing the NS1 protein of the PR8 wild-type, HL17NL10, and HL18NL11 viruses. These viruses (r/NS1PR8, r/NS1HL17, and r/NS1HL18, respectively) were tested for replication in bat and nonbat mammalian cells and in mice. Our results demonstrate that the r/NS1HL17 and r/NS1HL18 viruses are attenuated in vitro and in vivo However, the bat NS1 recombinant viruses showed a phenotype similar to that of the r/NS1PR8 virus in STAT1-/- human A549 cells and mice, both in vitro and in vivo systems being unable to respond to interferon (IFN). Interestingly, multiple mouse passages of the r/NS1HL17 and r/NS1HL18 viruses resulted in selection of mutant viruses containing single amino acid mutations in the viral PB2 protein. In contrast to the parental viruses, virulence and IFN antagonism were restored in the selected PB2 mutants. Our results indicate that the NS1 protein of bat influenza A-like viruses is less efficient than the NS1 protein of its conventional influenza A virus NS1 counterpart in antagonizing the IFN response and that this deficiency can be overcome by the influenza virus PB2 protein.IMPORTANCE Significant gaps in our understanding of the basic features of the recently discovered bat influenza A-like viruses HL17NL10 and HL18NL11 remain. The basic biology of these unique viruses displays both similarities to and differences from the basic biology of conventional influenza A viruses. Here, we show that recombinant influenza A viruses containing the NS1 protein from HL17NL10 and HL18NL11 are attenuated. This attenuation was mediated by their inability to antagonize the type I IFN response. However, this deficiency could be compensated for by single amino acid replacements in the PB2 gene. Our results unravel a functional divergence between the NS1 proteins of bat influenza A-like and conventional influenza A viruses and demonstrate an interplay between the viral PB2 and NS1 proteins to antagonize IFN.
Collapse
|
36
|
Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins. J Virol 2018; 92:JVI.02097-17. [PMID: 29237829 PMCID: PMC5809727 DOI: 10.1128/jvi.02097-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The recent discovery of influenza A-like viruses in bats has raised questions over whether these entities could be a threat to humans. Understanding unique properties of the newly described bat influenza A-like viruses, such as their mechanisms to infect cells or how they manipulate host functions, is critical to assess their likelihood of causing disease. Here, we characterized the bat influenza A-like virus NS1 protein, a key virulence factor, and found unexpected functional divergence of this protein from counterparts in other influenza A viruses. Our study dissects the molecular changes required by bat influenza A-like virus NS1 to adopt classical influenza A virus properties and suggests consequences of bat influenza A-like virus infection, potential future evolutionary trajectories, and intriguing virus-host biology in bat species.
Collapse
|
37
|
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, García-Sastre A. Influenza. Nat Rev Dis Primers 2018; 4:3. [PMID: 29955068 PMCID: PMC7097467 DOI: 10.1038/s41572-018-0002-y] [Citation(s) in RCA: 963] [Impact Index Per Article: 137.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
Collapse
Affiliation(s)
- Florian Krammer
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Gavin J. D. Smith
- 0000 0001 2180 6431grid.4280.eDuke–NUS Medical School, Singapore, Singapore ,0000 0004 1936 7961grid.26009.3dDuke Global Health Institute, Duke University, Durham, NC USA
| | - Ron A. M. Fouchier
- 000000040459992Xgrid.5645.2Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Malik Peiris
- 0000000121742757grid.194645.bWHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China ,0000000121742757grid.194645.bCenter of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Katherine Kedzierska
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Peter C. Doherty
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,0000 0001 0224 711Xgrid.240871.8Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Peter Palese
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDivision of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Megan L. Shaw
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Treanor
- 0000 0004 1936 9166grid.412750.5Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Robert G. Webster
- 0000 0001 0224 711Xgrid.240871.8Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
38
|
Role of influenza A virus NP acetylation on viral growth and replication. Nat Commun 2017; 8:1259. [PMID: 29097654 PMCID: PMC5668263 DOI: 10.1038/s41467-017-01112-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
Lysine acetylation is a post-translational modification known to regulate protein functions. Here we identify several acetylation sites of the influenza A virus nucleoprotein (NP), including the lysine residues K77, K113 and K229. Viral growth of mutant virus encoding K229R, mimicking a non-acetylated NP lysine residue, is severely impaired compared to wildtype or the mutant viruses encoding K77R or K113R. This attenuation is not the result of decreased polymerase activity, altered protein expression or disordered vRNP co-segregation but rather caused by impaired particle release. Interestingly, release deficiency is also observed mimicking constant acetylation at this site (K229Q), whereas virus encoding NP-K113Q could not be generated. However, mimicking NP hyper-acetylation at K77 and K229 severely diminishes viral polymerase activity, while mimicking NP hypo-acetylation at these sites has no effect on viral replication. These results suggest that NP acetylation at K77, K113 and K229 impacts multiple steps in viral replication of influenza A viruses. Post-translational modifications of influenza A virus proteins can regulate virus replication, but the effect of nucleoprotein (NP) acetylation is not known. Here, Giese et al. identify four NP lysine residues that are acetylated in infected cells and study their role in polymerase activity and virion release.
Collapse
|
39
|
Abstract
A new world of possibilities for “virus discovery” was opened up with high-throughput sequencing becoming available in the last decade. While scientifically metagenomic analysis was established before the start of the era of high-throughput sequencing, the availability of the first second-generation sequencers was the kick-off for diagnosticians to use sequencing for the detection of novel pathogens. Today, diagnostic metagenomics is becoming the standard procedure for the detection and genetic characterization of new viruses or novel virus variants. Here, we provide an overview about technical considerations of high-throughput sequencing-based diagnostic metagenomics together with selected examples of “virus discovery” for animal diseases or zoonoses and metagenomics for food safety or basic veterinary research.
Collapse
Affiliation(s)
- Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
40
|
Abstract
In 2012 and 2013, influenza virus genome sequences of two new influenza A virus (IAV) subtypes were discovered in bat specimens, but further characterization was largely impeded by the lack of infectious virus. With the identification of highly susceptible cell lines, reconstitution of infectious bat IAV by reverse genetics recently succeeded and allowed a first insight into the life cycle of these viruses. Although there is a certain degree of functional compatibility between bat and conventional influenza A virus proteins, there are striking differences, including receptor usage, polarity of infection and reassortment potential.
Collapse
Affiliation(s)
- Kevin Ciminski
- Institute of Virology, Medical Center - University of Freiburg, 79104 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Thiprampai Thamamongood
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Institute of Virology, Medical Center - University of Freiburg, 79104 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gert Zimmer
- Division of Virology, Institute of Virology and Immunology, CH-3147 Mittelhäusern, Switzerland
| | - Martin Schwemmle
- Institute of Virology, Medical Center - University of Freiburg, 79104 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
41
|
Avian and human influenza virus compatible sialic acid receptors in little brown bats. Sci Rep 2017; 7:660. [PMID: 28386114 PMCID: PMC5429623 DOI: 10.1038/s41598-017-00793-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.
Collapse
|