1
|
Miao Y, Wang H, Jude KM, Wang J, Wang J, Wernig M, Südhof TC. Structure of the complex of C1q-like 3 protein with adhesion-GPCR BAI3. Commun Biol 2025; 8:693. [PMID: 40316654 PMCID: PMC12048575 DOI: 10.1038/s42003-025-08112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
The adhesion-GPCR Brain-specific Angiogenesis Inhibitor-3 (BAI3) plays a crucial role in organizing synapses in the brain. However, how BAI3 engages one of its ligands, the C1q-like proteins (C1qls), remains largely unexplored. Here, we present the single-particle cryo-electron microscopy (cryo-EM) structure of the C1ql3-BAI3 complex at 2.8 Å resolution. The structure reveals a hexameric configuration, where C1ql3 forms a central homotrimer that effectively captures three BAI3 molecules. These BAI3 molecules fit snugly into the grooves between the trimeric C1q domains of the C1qls, employing calcium ion (Ca2+)-mediated interactions that differ from previously characterized structures of C1q-like domain-mediated complexes. Furthermore, we conducted mutant analysis and cell surface staining, which confirmed the essential contact residues involved in this interaction. This unique binding mechanism not only enhances our understanding of the C1ql-BAI3-mediated synaptic organization but also sheds light on the functional dynamics of BAI3 in the brain.
Collapse
Affiliation(s)
- Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Haoqing Wang
- Sarafan CHEM-H, Stanford University, Stanford, CA, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jie Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinzhao Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Qu C, Koskinen Holm C. Impact of a Heterozygous C1R R301P/WT Mutation on Collagen Metabolism and Inflammatory Response in Human Gingival Fibroblasts. Cells 2025; 14:479. [PMID: 40214433 PMCID: PMC11987961 DOI: 10.3390/cells14070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Periodontal Ehlers-Danlos syndrome arising from heterozygous pathogenic mutation in C1R and/or C1S genes is an autosomal-dominant disorder characterized by early-onset periodontitis. Due to the difficulties in obtaining and culturing the patient-derived gingival fibroblasts, we established a model system by introducing a heterozygous C1RR301P/WT mutation into human TERT-immortalized gingival fibroblasts (hGFBs) to investigate its specific effects on collagen metabolism and inflammatory responses. A heterozygous C1RR301P/WT mutation was introduced into hGFBs using engineered prime editing. The functional consequences of this mutation were assessed at cellular, molecular, and enzymatic levels using a variety of techniques, including cell growth analysis, collagen deposition quantification, immunocytochemistry, enzyme-linked immunosorbent assay, and quantitative real-time reverse transcription polymerase chain reaction. The C1RR301P/WT-mutated hGFBs (mhGFBs) exhibited normal morphology and growth rate compared to wild-type hGFBs. However, mhGFBs displayed upregulated procollagen α1(V), MMP-1, and IL-6 mRNA expression while simultaneously downregulating collagen deposition and C1r protein levels. A modest accumulation of unfolded collagens was observed in mhGFBs. The mhGFBs exhibited a heightened inflammatory response, with a more pronounced increase in MMP-1 and IL-6 mRNA expression compared to TNF-α/IL-1β-stimulated hGFBs. Unlike cytokine-stimulated hGFBs, cytokine-stimulated mhGFB did not increase C1R, C1S, procollagen α1(III), and procollagen α1(V) mRNA expression. Our results suggest that the C1RR301P/WT mutation specifically disrupts collagen metabolism and inflammatory pathways in hGFBs, highlighting the mutation's role in these processes. While other cellular functions appear largely unaffected, these findings underscore the potential of targeting collagen metabolism and inflammation for therapeutic interventions in pEDS.
Collapse
Affiliation(s)
- Chengjuan Qu
- Department of Odontology, Umeå University, 90185 Umeå, Sweden;
| | | |
Collapse
|
3
|
Ovcinnikovs V, Dijkman K, Zom GG, Beurskens FJ, Trouw LA. Enhancing complement activation by therapeutic anti-tumor antibodies: Mechanisms, strategies, and engineering approaches. Semin Immunol 2025; 77:101922. [PMID: 39742715 DOI: 10.1016/j.smim.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
The complement system plays an integral role in both innate and adaptive immune responses. Beyond its protective function against infections, complement is also known to influence tumor immunity, where its activation can either promote tumor progression or mediate tumor cell destruction, depending on the context. One such context can be provided by antibodies, with their inherent capacity to activate the classical complement pathway. In recent years, our understanding of the mechanisms governing complement activation by IgG and IgM antibodies has expanded significantly. At the same time, preclinical and clinical studies on antibodies such as rituximab, ofatumumab, and daratumumab have provided evidence for the role of complement in therapeutic success, encouraging strategies to further enhance its activity. In this review we examine the main determinants of antibody-mediated complement activation, highlighting the importance of antibody subclass, affinity, valency, and geometry of antigen engagement. We summarize the evidence for complement involvement in anti-tumor activity and challenges of accurately estimating the extent of its contribution to therapeutic efficacy. Furthermore, we explore several engineering approaches designed to enhance complement activation, including increased Fc oligomerization and C1q affinity, bispecific C1q-recruiting antibodies, IgG subclass chimeras, as well as antibody and paratope combinations. Strategies targeting membrane-bound complement regulatory proteins to overcome tumor-associated complement inhibition are also discussed as a method to boost therapeutic efficacy. Finally, we highlight the potential of complement-dependent cellular cytotoxicity (CDCC) and complement-dependent cellular phagocytosis (CDCP) as effector mechanisms that warrant deeper investigation. By integrating advances in antibody and complement biology with insights from efforts to enhance complement activation in therapeutic antibodies, this review aims to provide a comprehensive framework of antibody design and engineering strategies that optimize complement activity for improved anti-tumor efficacy.
Collapse
Affiliation(s)
| | - Karin Dijkman
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
4
|
Li L, Li M, Zhou Y, Kakhniashvili D, Wang X, Liao FF. OTULIN Interactome Reveals Immune Response and Autophagy Associated with Tauopathy in a Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636114. [PMID: 39974971 PMCID: PMC11839074 DOI: 10.1101/2025.02.07.636114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Tauopathies are neurodegenerative diseases that are pathologically characterized by accumulation of misfolded microtubule-associated protein tau aggregates in the brain. Deubiquitination, particularly by OTULIN, a unique deubiquitinase targeting methionine-1 (M1) linkages from linear ubiquitin chain assembly complex (LUBAC)), is reportedly associated with the accumulation of neurotoxic proteins in several neurodegenerative diseases, likely including tauopathies. To investigate the potential roles of OTULIN in tauopathies, we analyzed the OTULIN interactome in hippocampal tissues from PS19 transgenic (Tg) mice and their non-transgenic (nTg) littermate controls using affinity purification-mass spectrometry (AP-MS). We identified 705 and 800 proteins enriched in Tg and nTg samples, respectively, with a protein false discovery rate (FDR) of <1%. Of these, 189 and 205 proteins were classified as probable OTULIN interactors in Tg and nTg groups, respectively, based on Significance Analysis of INTeractome (SAINT) score of ≥0.80 and FDR of ≤ 5%. A total of 84 proteins were identified as OTULIN interactors in the PS19 Tg group, while 100 proteins were associated with OTULIN in the nTg controls. Functional enrichment analyses revealed that OTULIN-interacting proteins in the nTg group were enriched in pathways related to spliceosome, complement and coagulation cascades, and ribosome, whereas those in the Tg group were associated with immune response and autophagy. These findings suggest that OTULIN-interacting proteins may play a critical role in the pathogenesis of tauopathy in this mouse model.
Collapse
Affiliation(s)
- Ling Li
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Mingqi Li
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Yuyang Zhou
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - David Kakhniashvili
- Proteomics & Metabolomics Core Facility, Office of Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Xusheng Wang
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Francesca-Fang Liao
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
5
|
Nandakumar V, Braun KMP, Willrich MAV. Challenges for complement functional assays in the clinical laboratory: From test validation to clinical interpretation. J Immunol Methods 2025; 537:113824. [PMID: 39914516 DOI: 10.1016/j.jim.2025.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/06/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Complement functional assays are essential first-tier tests for a gamut of disorders spanning from inborn errors of the immune system which lead to recurrent severe infections, to angioedema attacks, presentation of autoimmune disease, thrombotic microangiopathies and rare kidney disorders. These assays evaluate the activity of the three complement pathways and specific complement components, which helps in differential diagnosis and monitoring disease progression. The rising use of complement inhibitors for treating complement-mediated thrombotic microangiopathies has heightened the demand for personalized treatment plans and laboratory assessment of complement blockage. However, conducting these assays is challenging due to the labile nature of complement proteins, which necessitates strict handling protocols-prompt processing, cold centrifugation, and preferable storage at -80 °C. Currently, the only FDA-approved complement functional test is the classical pathway activity assay while other tests are categorized as laboratory developed tests (LDTs). Validation of LDTs requires thorough evaluation of precision, accuracy, reference intervals, clinical reportable ranges, analytical sensitivity, and specificity. Achieving harmonization across laboratories is critical but heavily relies on the methodologies and calibrators used. This article discusses the various challenges and limitations associated with complement functional assays, highlighting the need for standardization and improved practices in clinical laboratories.
Collapse
Affiliation(s)
- Vijayalakshmi Nandakumar
- Exsera BioLabs, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Karin M P Braun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Maria Alice V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
6
|
Li Z, Lu F, Zhou F, Song D, Chang L, Liu W, Yan G, Zhang G. From actinic keratosis to cutaneous squamous cell carcinoma: the key pathogenesis and treatments. Front Immunol 2025; 16:1518633. [PMID: 39925808 PMCID: PMC11802505 DOI: 10.3389/fimmu.2025.1518633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common non-melanoma skin cancer, among which 82% arise from actinic keratosis (AK) characterized by lesions of epidermal keratinocyte dysplasia. It is of great significance to uncover the progression mechanisms from AK to cSCC, which will facilitate the early therapeutic intervention of AK before malignant transformation. Thus, more and more studies are trying to ascertain the potential transformation mechanisms through multi-omics, including genetics, transcriptomics, and epigenetics. In this review, we gave an overview of the specific biomarkers and signaling pathways that may be involved in the pathogenesis from AK to cSCC, pointing out future possible molecular therapies for the early intervention of AK and cSCC. We also discussed current interventions on AK and cSCC, together with future perspectives.
Collapse
MESH Headings
- Humans
- Keratosis, Actinic/therapy
- Keratosis, Actinic/pathology
- Keratosis, Actinic/etiology
- Keratosis, Actinic/metabolism
- Skin Neoplasms/therapy
- Skin Neoplasms/etiology
- Skin Neoplasms/pathology
- Skin Neoplasms/metabolism
- Carcinoma, Squamous Cell/therapy
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Animals
- Signal Transduction
- Cell Transformation, Neoplastic/genetics
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Zhenlin Li
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Fangqi Lu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Fujin Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dekun Song
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lunhui Chang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Weiying Liu
- Department of Dermatology, Hunan Aerospace Hospital, Changsha, China
| | - Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Nandakumar V, Braun KMP, Willrich MAV. Challenges for complement functional assays in the clinical laboratory: From test validation to clinical interpretation. J Immunol Methods 2025; 538:113814. [PMID: 39863160 DOI: 10.1016/j.jim.2025.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/06/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Complement functional assays are essential first-tier tests for a gamut of disorders spanning from inborn errors of the immune system which lead to recurrent severe infections, to angioedema attacks, presentation of autoimmune disease, thrombotic microangiopathies and rare kidney disorders. These assays evaluate the activity of the three complement pathways and specific complement components, which helps in differential diagnosis and monitoring disease progression. The rising use of complement inhibitors for treating complement-mediated thrombotic microangiopathies has heightened the demand for personalized treatment plans and laboratory assessment of complement blockage. However, conducting these assays is challenging due to the labile nature of complement proteins, which necessitates strict handling protocols-prompt processing, cold centrifugation, and preferable storage at -80 °C. Currently, the only FDA-approved complement functional test is the classical pathway activity assay while other tests are categorized as laboratory developed tests (LDTs). Validation of LDTs requires thorough evaluation of precision, accuracy, reference intervals, clinical reportable ranges, analytical sensitivity, and specificity. Achieving harmonization across laboratories is critical but heavily relies on the methodologies and calibrators used. This article discusses the various challenges and limitations associated with complement functional assays, highlighting the need for standardization and improved practices in clinical laboratories.
Collapse
Affiliation(s)
- Vijayalakshmi Nandakumar
- Exsera BioLabs, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Karin M P Braun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Maria Alice V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
8
|
Goldbach-Mansky R, Alehashemi S, de Jesus AA. Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus. Nat Rev Rheumatol 2025; 21:22-45. [PMID: 39623155 DOI: 10.1038/s41584-024-01184-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/22/2024]
Abstract
Over the past two decades, the number of genetically defined autoinflammatory interferonopathies has steadily increased. Aicardi-Goutières syndrome and proteasome-associated autoinflammatory syndromes (PRAAS, also known as CANDLE) are caused by genetic defects that impair homeostatic intracellular nucleic acid and protein processing respectively. Research into these genetic defects revealed intracellular sensors that activate type I interferon production. In SAVI and COPA syndrome, genetic defects that cause chronic activation of the dinucleotide sensor stimulator of interferon genes (STING) share features of lung inflammation and fibrosis; and selected mutations that amplify interferon-α/β receptor signalling cause central nervous system manifestations resembling Aicardi-Goutières syndrome. Research into the monogenic causes of childhood-onset systemic lupus erythematosus (SLE) demonstrates the pathogenic role of autoantibodies to particle-bound extracellular nucleic acids that distinguishes monogenic SLE from the autoinflammatory interferonopathies. This Review introduces a classification for autoinflammatory interferonopathies and discusses the divergent and shared pathomechanisms of interferon production and signalling in these diseases. Early success with drugs that block type I interferon signalling, new insights into the roles of cytoplasmic DNA or RNA sensors, pathways in type I interferon production and organ-specific pathology of the autoinflammatory interferonopathies and monogenic SLE, reveal novel drug targets that could personalize treatment approaches.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Topper MJ, Guarnieri JW, Haltom JA, Chadburn A, Cope H, Frere J, An J, Borczuk A, Sinha S, Kim J, Park J, Butler D, Meydan C, Foox J, Bram Y, Richard SA, Epsi NJ, Agan B, Chenoweth JG, Simons MP, Tribble D, Burgess T, Dalgard C, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Beigel K, Widjaja GA, Janssen KA, Lie T, Murdock DG, Angelin A, Soto Albrecht YE, Olali AZ, Cen Z, Dybas J, Priebe W, Emmett MR, Best SM, Kelsey Johnson M, Trovao NS, Clark KB, Zaksas V, Meller R, Grabham P, Schisler JC, Moraes-Vieira PM, Pollett S, Mason CE, Syrkin Wurtele E, Taylor D, Schwartz RE, Beheshti A, Wallace DC, Baylin SB. Lethal COVID-19 associates with RAAS-induced inflammation for multiple organ damage including mediastinal lymph nodes. Proc Natl Acad Sci U S A 2024; 121:e2401968121. [PMID: 39602262 PMCID: PMC11626201 DOI: 10.1073/pnas.2401968121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Lethal COVID-19 outcomes are attributed to classic cytokine storm. We revisit this using RNA sequencing of nasopharyngeal and 40 autopsy samples from patients dying of SARS-CoV-2. Subsets of the 100 top-upregulated genes in nasal swabs are upregulated in the heart, lung, kidney, and liver, but not mediastinal lymph nodes. Twenty-two of these are "noncanonical" immune genes, which we link to components of the renin-angiotensin-activation-system that manifest as increased fibrin deposition, leaky vessels, thrombotic tendency, PANoptosis, and mitochondrial dysfunction. Immunohistochemistry of mediastinal lymph nodes reveals altered architecture, excess collagen deposition, and pathogenic fibroblast infiltration. Many of the above findings are paralleled in animal models of SARS-CoV-2 infection and human peripheral blood mononuclear and whole blood samples from individuals with early and later SARS-CoV-2 variants. We then redefine cytokine storm in lethal COVID-19 as driven by upstream immune gene and mitochondrial signaling producing downstream RAAS (renin-angiotensin-aldosterone system) overactivation and organ damage, including compromised mediastinal lymph node function.
Collapse
Affiliation(s)
- Michael J. Topper
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Joseph W. Guarnieri
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jeffrey A. Haltom
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Henry Cope
- School of Medicine, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Justin Frere
- Icahn School of Medicine, Mount Sinai, New York, NY10023
| | - Julia An
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | | | | | | | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY10065
| | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY10065
| | - Stephanie A. Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Nusrat J. Epsi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Josh G. Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Mark P. Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD20814
| | | | | | | | | | | | | | | | | | - Katherine Beigel
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kevin A. Janssen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The University of Pennsylvania, Philadelphia, PA19104
| | - Arnold Z. Olali
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Zimu Cen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Joseph Dybas
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Monroe Dunaway Anderson Cancer Center, Houston, TX77030
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Medical Branch, Galveston, TX77555
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA02155
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT59840
| | - Maya Kelsey Johnson
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA02155
- Fogarty International Center, NIH, Bethesda, MD20892
| | - Kevin B. Clark
- COVID-19 International Research Team, Medford, MA02155
- Cures Within Reach, Chicago, IL60602
- Champions Service, Computational Sciences Support Network, Multi-Tier Assistance, Training, and Computational Help Track, NSF's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA02155
- Center for Translational Data Science, University of Chicago, Chicago, IL60615
- Clever Research Lab, Springfield, IL62704
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA02155
- Morehouse School of Medicine, Atlanta, GA30310
| | - Peter Grabham
- COVID-19 International Research Team, Medford, MA02155
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY19103
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA02155
- University of North Carolina, Chapel Hill, NC27599
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA02155
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil13083-862
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
- New York Genome Center, New York, NY10013
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA02155
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA50011
- Center for Bioinformatics and Computational Biology Iowa State University, Ames, IA50011
- Center for Genetics Development, and Cell Biology Iowa State University, Ames, IA50011
| | - Deanne Taylor
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA02155
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Blue Marble Space Institute of Science, Seattle, WA98104
- McGowan Institute for Regenerative Medicine and Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA15219
| | - Douglas C. Wallace
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA19104
| | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Van Andel Institute, Grand Rapids, MI49503
| |
Collapse
|
10
|
Noone DP, Isendoorn MME, Hamers SMWR, Keizer ME, Wulffelé J, van der Velden TT, Dijkstra DJ, Trouw LA, Filippov DV, Sharp TH. Structural basis for surface activation of the classical complement cascade by the short pentraxin C-reactive protein. Proc Natl Acad Sci U S A 2024; 121:e2404542121. [PMID: 39240968 PMCID: PMC11406272 DOI: 10.1073/pnas.2404542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/04/2024] [Indexed: 09/08/2024] Open
Abstract
Human C-reactive protein (CRP) is a pentameric complex involved in immune defense and regulation of autoimmunity. CRP is also a therapeutic target, with both administration and depletion of serum CRP being pursued as a possible treatment for autoimmune and cardiovascular diseases, among others. CRP binds to phosphocholine (PC) moieties on membranes to activate the complement system via the C1 complex, but it is unknown how CRP, or any pentraxin, binds to C1. Here, we present a cryoelectron tomography (cryoET)-derived structure of CRP bound to PC ligands and the C1 complex. To gain control of CRP binding, a synthetic mimotope of PC was synthesized and used to decorate cell-mimetic liposome surfaces. Structure-guided mutagenesis of CRP yielded a fully active complex able to bind PC-coated liposomes that was ideal for cryoET and subtomogram averaging. In contrast to antibodies, which form Fc-mediated hexameric platforms to bind and activate the C1 complex, CRP formed rectangular platforms assembled from four laterally associated CRP pentamers that bind only four of the six available globular C1 head groups. Potential residues mediating lateral association of CRP were identified from interactions between unit cells in existing crystal structures, which rationalized previously unexplained mutagenesis data regarding CRP-mediated complement activation. The structure also enabled interpretation of existing biochemical data regarding interactions mediating C1 binding and identified additional residues for further mutagenesis studies. These structural data therefore provide a possible mechanism for regulation of complement by CRP, which limits complement progression and has consequences for how the innate immune system influences autoimmunity.
Collapse
Affiliation(s)
- Dylan P. Noone
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Marjolein M. E. Isendoorn
- Leiden Institute of Chemistry, Gorlaeus Laboratory, Leiden University, 2333 CCLeiden, The Netherlands
| | - Sebastiaan M. W. R. Hamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Mariska E. Keizer
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Jip Wulffelé
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Tijn T. van der Velden
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
| | - Douwe J. Dijkstra
- Department of Immunology, Leiden University Medical Center, 2333 ZALeiden, The Netherlands
| | - Leendert A. Trouw
- Department of Immunology, Leiden University Medical Center, 2333 ZALeiden, The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Gorlaeus Laboratory, Leiden University, 2333 CCLeiden, The Netherlands
| | - Thomas H. Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RCLeiden, The Netherlands
- School of Biochemistry, University of Bristol, BristolBS8 1TD, United Kingdom
| |
Collapse
|
11
|
Alkaff FF, Lammerts RGM, Daha MR, Berger SP, van den Born J. Apical tubular complement activation and the loss of kidney function in proteinuric kidney diseases. Clin Kidney J 2024; 17:sfae215. [PMID: 39135935 PMCID: PMC11318052 DOI: 10.1093/ckj/sfae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 08/15/2024] Open
Abstract
Many kidney diseases are associated with proteinuria. Since proteinuria is independently associated with kidney function loss, anti-proteinuric medication, often in combination with dietary salt restriction, comprises a major cornerstone in the prevention of progressive kidney failure. Nevertheless, complete remission of proteinuria is very difficult to achieve, and most patients with persistent proteinuria slowly progress toward kidney failure. It is well-recognized that proteinuria leads to kidney inflammation and fibrosis via various mechanisms. Among others, complement activation at the apical side of the proximal tubular epithelial cells is suggested to play a crucial role as a cause of progressive loss of kidney function. However, hitherto limited attention is given to the pathophysiological role of tubular complement activation relative to glomerular complement activation. This review aims to summarize the evidence for tubular epithelial complement activation in proteinuric kidney diseases in relation to loss of kidney function.
Collapse
Affiliation(s)
- Firas F Alkaff
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Rosa G M Lammerts
- Transplantation Immunology, Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Sun J, Liu C, Wang L, Song L. The Establishment of Complement System Is from Gene Duplication and Domain Shuffling. Int J Mol Sci 2024; 25:8119. [PMID: 39125697 PMCID: PMC11312191 DOI: 10.3390/ijms25158119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The mammalian complement system constitutes a highly sophisticated body defense machinery. The evolutionary origin of the complement system can be traced to Coelenterata as the presence of the central component C3 and two activation proteases BF and MASP. In the present study, the main complement components were screened and analyzed from the genomes of different species in metazoan subphyla/phyla. C1q with classical domains can be traced to Annelida, and ficolin and MBL to Urochordata. C1r and C1s are only found in Chondrichthyes and even higher species, and MASP is traced to Coelenterata. In the evolutionary tree, C1r from Vertebrates is close to MASP1/2/3 from Deuterostomia and Coelenterata, and C1s from Vertebrates is close to MASP-like protease (MASPL) from Arthropoda, Mollusca, and Annelida. C2, BF, and DF can be traced to Mollusca, Coelenterata, and Porifera, respectively. There are no clear C2 and BF branches in the evolutionary tree. C3 can be traced to Coelenterata, and C4 and C5 are only in Chondrichthyes and even higher species. There are three clear C3, C4, and C5 branches in the evolutionary tree. C6-like (C6L) and C8 can be traced to Urochordata, and C7-like (C7L) can be traced to Cephalochordara. C6L, C7L, and C8 from Urochordata and Cephalochordara provide the structural conditions for the formation of Vertebrate MAC components. The findings unveil the evolutionary principles of the complement system and provide insight into its sophistication.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
13
|
Mazur-Melewska K, Luczak M, Watral J, Małecki P, Mania A, Figlerowicz M. The Impact of Acute EBV Infection on Changes in the Serum Proteome in Children-A Pilot Study. Pathogens 2024; 13:471. [PMID: 38921769 PMCID: PMC11206626 DOI: 10.3390/pathogens13060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
This study investigates the impact of Epstein-Barr virus (EBV) infection on children's proteomes across different phases of the disease, utilising seventy-nine blood samples categorised into three groups: EBV-naive patients, acute infectious mononucleosis (IM) cases, and convalescents followed up for 12 months post-IM. The aim is to identify proteins influenced by EBV infection, shedding light on the chronic processes triggered by the virus. The results reveal thirty-nine proteins distinguishing between naive patients and those with IM, including actin, lumican, peroxiredoxin-2, fibulin-1, gelsolin, and alpha-2-macroglobulin, which are involved in immune responses, cell adhesion, and inflammation. Elevated oxidative stress markers like peroxiredoxin-2 in IM patients suggest potential links to EBV's induction of reactive oxygen species. Increased levels of apolipoproteins A-I, A-IV, C-IV, and M during IM imply associations with viral infection, while complement system proteins (C1q, C1r, and C8 gamma chain) are also elevated, reflecting their role in the immune response and viral clearance. This study's focus on children provides unique insights into EBV's impact on young populations, emphasising proteomics' role in uncovering protein associations and understanding the virus's long-term consequences. However, specific relationships between identified proteins and EBV infection require further investigation.
Collapse
Affiliation(s)
- Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Magdalena Luczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Joanna Watral
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Paweł Małecki
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Anna Mania
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| |
Collapse
|
14
|
Kulkarni HS. Hexamerization: explaining the original sin of IgG-mediated complement activation in acute lung injury. J Clin Invest 2024; 134:e181137. [PMID: 38828725 PMCID: PMC11142731 DOI: 10.1172/jci181137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Although antibody-mediated lung damage is a major factor in transfusion-related acute lung injury (ALI), autoimmune lung disease (for example, coatomer subunit α [COPA] syndrome), and primary graft dysfunction following lung transplantation, the mechanism by which antigen-antibody complexes activate complement to induce lung damage remains unclear. In this issue of the JCI, Cleary and colleagues utilized several approaches to demonstrate that IgG forms hexamers with MHC class I alloantibodies. This hexamerization served as a key pathophysiological mechanism in alloimmune lung injury models and was mediated through the classical pathway of complement activation. Additionally, the authors provided avenues for exploring therapeutics for this currently hard-to-treat clinical entity that has several etiologies but a potentially focused mechanism.
Collapse
|
15
|
John MM, Hunjadi M, Hawlin V, Reiser JB, Kunert R. Interaction Studies of Hexameric and Pentameric IgMs with Serum-Derived C1q and Recombinant C1q Mimetics. Life (Basel) 2024; 14:638. [PMID: 38792658 PMCID: PMC11123335 DOI: 10.3390/life14050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The interaction between IgM and C1q represents the first step of the classical pathway of the complement system in higher vertebrates. To identify the significance of particular IgM/C1q interactions, recombinant IgMs were used in both hexameric and pentameric configurations and with two different specificities, along with C1q derived from human serum (sC1q) and two recombinant single-chain variants of the trimeric globular region of C1q. Interaction and complement activation assays were performed using the ELISA format, and bio-layer interferometry measurements to study kinetic behavior. The differences between hexameric and pentameric IgM conformations were only slightly visible in the interaction assay, but significant in the complement activation assay. Hexameric IgM requires a lower concentration of sC1q to activate the complement compared to pentameric IgM, leading to an increased release of C4 compared to pentameric IgM. The recombinant C1q mimetics competed with sC1q in interaction assays and were able to inhibit complement activation. The bio-layer interferometry measurements revealed KD values in the nanomolar range for the IgM/C1q interaction, while the C1q mimetics exhibited rapid on and off binding rates with the IgMs. Our results make C1q mimetics valuable tools for developing recombinant C1q, specifically its variants, for further scientific studies and clinical applications.
Collapse
Affiliation(s)
- Maria Magdalena John
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, BOKU University, Muthgasse 11, 1190 Vienna, Austria; (M.M.J.)
| | - Monika Hunjadi
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, BOKU University, Muthgasse 11, 1190 Vienna, Austria; (M.M.J.)
| | - Vanessa Hawlin
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, BOKU University, Muthgasse 11, 1190 Vienna, Austria; (M.M.J.)
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Renate Kunert
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, BOKU University, Muthgasse 11, 1190 Vienna, Austria; (M.M.J.)
| |
Collapse
|
16
|
MacMillan S, Hosgood SA, Walker-Panse L, Rahfeld P, Macdonald SS, Kizhakkedathu JN, Withers SG, Nicholson ML. Enzymatic conversion of human blood group A kidneys to universal blood group O. Nat Commun 2024; 15:2795. [PMID: 38555382 PMCID: PMC10981661 DOI: 10.1038/s41467-024-47131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
ABO blood group compatibility restrictions present the first barrier to donor-recipient matching in kidney transplantation. Here, we present the use of two enzymes, FpGalNAc deacetylase and FpGalactosaminidase, from the bacterium Flavonifractor plautii to enzymatically convert blood group A antigens from the renal vasculature of human kidneys to 'universal' O-type. Using normothermic machine perfusion (NMP) and hypothermic machine perfusion (HMP) strategies, we demonstrate blood group A antigen loss of approximately 80% in as little as 2 h NMP and HMP. Furthermore, we show that treated kidneys do not bind circulating anti-A antibodies in an ex vivo model of ABO-incompatible transplantation and do not activate the classical complement pathway. This strategy presents a solution to the donor organ shortage crisis with the potential for direct clinical translation to reduce waiting times for patients with end stage renal disease.
Collapse
Affiliation(s)
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | - Peter Rahfeld
- Avivo Biomedical Inc., Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Spence S Macdonald
- Avivo Biomedical Inc., Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- The School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
17
|
Yuan D, Zheng Z, Shen C, Ye J, Zhu L. Cytoprotective effects of C1s enzyme in macrophages in atherosclerosis mediated through the LRP5 and Wnt/β-catenin pathway. Mol Immunol 2024; 166:29-38. [PMID: 38218080 DOI: 10.1016/j.molimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
C1s enzyme (active C1s) is a subunit of the complement C1 complex that cleaves low-density lipoprotein receptor-related proteins 5 and 6, leading to Wnt/β-catenin pathway activation in some cell lines. Macrophages have two major functional polarization states (the classically activated M1 state and the alternatively activated M2 state) and play an essential role in atherosclerosis. An increasing amount of evidence suggests that canonical Wnt signaling is related to macrophage polarization. In this study, we explored the cytoprotective effects of C1s enzyme in macrophages. The results show that C1s enzyme activates canonical Wnt signaling in macrophages, exacerbates macrophage M2 polarization, and inhibits M1 polarization. Moreover, C1s enzyme reduces foam cell formation and simultaneously enhances efferocytosis. This study reveals a novel function of C1s enzyme in macrophages in the context of atherosclerosis.
Collapse
Affiliation(s)
- Dong Yuan
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | | | - Cheng Shen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Ye
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Li Zhu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| |
Collapse
|
18
|
Fuller SA, Abernathy JW, Sankappa NM, Beck BH, Rawles SD, Green BW, Rosentrater KA, McEntire ME, Huskey G, Webster CD. Hepatic transcriptome analyses of juvenile white bass ( Morone chrysops) when fed diets where fish meal is partially or totally replaced by alternative protein sources. Front Physiol 2024; 14:1308690. [PMID: 38288350 PMCID: PMC10822904 DOI: 10.3389/fphys.2023.1308690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
White bass (Morone chrysops) are a popular sportfish throughout the southern United States, and one parent of the commercially-successful hybrid striped bass (M. chrysops ♂ x M. saxatilis ♀). Currently, white bass are cultured using diets formulated for other carnivorous fish, such as largemouth bass (Micropterus salmoides) or hybrid striped bass and contain a significant percentage of marine fish meal. Since there are no studies regarding the utilization of alternative proteins in this species, we evaluated the global gene expression of white bass fed diets in which fish meal was partially or totally replaced by various combinations of soybean meal, poultry by-product meal, canola meal, soy protein concentrate, wheat gluten, or a commercial protein blend (Pro-Cision™). Six isonitrogenous (40% protein), isolipidic (11%), and isocaloric (17.1 kJ/g) diets were formulated to meet the known nutrient and energy requirements of largemouth bass and hybrid striped bass using nutrient availability data for most of the dietary ingredients. One of the test diets consisted exclusively of plant protein sources. Juvenile white bass (40.2 g initial weight) were stocked into a flow-through aquaculture system (three tanks/diet; 10 fish/tank) and fed the test diets twice daily to satiation for 60 days. RNA sequencing and bioinformatic analyses revealed significant differentially expressed genes between all test diets when compared to fish meal control. A total of 1,260 differentially expressed genes were identified, with major ontology relating to cell cycle and metabolic processes as well as immune gene functions. This data will be useful as a resource for future refinements to moronid diet formulation, as marine fish meal becomes limiting and plant ingredients are increasingly added as a reliable protein source.
Collapse
Affiliation(s)
- S. Adam Fuller
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Jason W. Abernathy
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Nithin Muliya Sankappa
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States
| | - Benjamin H. Beck
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Steven D. Rawles
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Bartholomew W. Green
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Kurt A. Rosentrater
- Iowa State University, Agricultural and Biosystems Engineering, Ames, IA, United States
| | - Matthew E. McEntire
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - George Huskey
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Carl D. Webster
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| |
Collapse
|
19
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med 2023; 29:2866-2884. [PMID: 37814059 PMCID: PMC10667107 DOI: 10.1038/s41591-023-02566-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.
Collapse
Affiliation(s)
- Daniel K Wilton
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
| | - Kevin Mastro
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Molly D Heller
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Frederick W Gergits
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Carly Rose Willing
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Jaclyn B Fahey
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Arnaud Frouin
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Anthony Daggett
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yejin A Kim
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Richard L M Faull
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Beth Stevens
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
- Stanley Center, Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Rajasekaran A, Green TJ, Renfrow MB, Julian BA, Novak J, Rizk DV. Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy. Drugs 2023; 83:1475-1499. [PMID: 37747686 PMCID: PMC10807511 DOI: 10.1007/s40265-023-01940-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and a frequent cause of kidney failure. Currently, the diagnosis necessitates a kidney biopsy, with routine immunofluorescence microscopy revealing IgA as the dominant or co-dominant immunoglobulin in the glomerular immuno-deposits, often with IgG and sometimes IgM or both. Complement protein C3 is observed in most cases. IgAN leads to kidney failure in 20-40% of patients within 20 years of diagnosis and reduces average life expectancy by about 10 years. There is increasing clinical, biochemical, and genetic evidence that the complement system plays a paramount role in the pathogenesis of IgAN. The presence of C3 in the kidney immuno-deposits differentiates the diagnosis of IgAN from subclinical glomerular mesangial IgA deposition. Markers of complement activation via the lectin and alternative pathways in kidney-biopsy specimens are associated with disease activity and are predictive of poor outcome. Levels of select complement proteins in the circulation have also been assessed in patients with IgAN and found to be of prognostic value. Ongoing genetic studies have identified at least 30 loci associated with IgAN. Genes within some of these loci encode complement-system regulating proteins that can interact with immune complexes. The growing appreciation for the central role of complement components in IgAN pathogenesis highlighted these pathways as potential treatment targets and sparked great interest in pharmacological agents targeting the complement cascade for the treatment of IgAN, as evidenced by the plethora of ongoing clinical trials.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd J Green
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
21
|
González-Del-Barrio L, Pérez-Alós L, Cyranka L, Rosbjerg A, Nagy S, Prohászka Z, Garred P, Bayarri-Olmos R. MAP-2:CD55 chimeric construct effectively modulates complement activation. FASEB J 2023; 37:e23256. [PMID: 37823685 DOI: 10.1096/fj.202300571r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
The complement system is a complex, tightly regulated protein cascade involved in pathogen defense and the pathogenesis of several diseases. Thus, the development of complement modulators has risen as a potential treatment for complement-driven inflammatory pathologies. The enzymatically inactive MAP-2 has been reported to inhibit the lectin pathway by competing with its homologous serine protease MASP-2. The membrane-bound complement inhibitor CD55 acts on the C3/C5 convertase level. Here, we fused MAP-2 to the four N-terminal domains of CD55 generating a targeted chimeric inhibitor to modulate complement activation at two different levels of the complement cascade. Its biological properties were compared in vitro with the parent molecules. While MAP-2 and CD55 alone showed a minor inhibition of the three complement pathways when co-incubated with serum (IC50MAP-2+CD55 1-4 = 60.98, 36.10, and 97.01 nM on the classical, lectin, and alternative pathways, respectively), MAP-2:CD551-4 demonstrated a potent inhibitory activity (IC50MAP-2:CD55 1-4 = 2.94, 1.76, and 12.86 nM, respectively). This inhibitory activity was substantially enhanced when pre-complexes were formed with the lectin pathway recognition molecule mannose-binding lectin (IC50MAP-2:CD55 1-4 = 0.14 nM). MAP-2:CD551-4 was also effective at protecting sensitized sheep erythrocytes in a classical hemolytic assay (CH50 = 13.35 nM). Finally, the chimeric inhibitor reduced neutrophil activation in full blood after stimulation with Aspergillus fumigatus conidia, as well as phagocytosis of conidia by isolated activated neutrophils. Our results demonstrate that MAP-2:CD551-4 is a potent complement inhibitor reinforcing the idea that engineered fusion proteins are a promising design strategy for identifying and developing drug candidates to treat complement-mediated diseases.
Collapse
Affiliation(s)
- Lydia González-Del-Barrio
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Leon Cyranka
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Simon Nagy
- Research Laboratory, Department of Internal Medicine and Hematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Hematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
22
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
23
|
Abendstein L, Dijkstra DJ, Tjokrodirijo RTN, van Veelen PA, Trouw LA, Hensbergen PJ, Sharp TH. Complement is activated by elevated IgG3 hexameric platforms and deposits C4b onto distinct antibody domains. Nat Commun 2023; 14:4027. [PMID: 37419978 PMCID: PMC10328927 DOI: 10.1038/s41467-023-39788-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
IgG3 is unique among the IgG subclasses due to its extended hinge, allotypic diversity and enhanced effector functions, including highly efficient pathogen neutralisation and complement activation. It is also underrepresented as an immunotherapeutic candidate, partly due to a lack of structural information. Here, we use cryoEM to solve structures of antigen-bound IgG3 alone and in complex with complement components. These structures reveal a propensity for IgG3-Fab clustering, which is possible due to the IgG3-specific flexible upper hinge region and may maximise pathogen neutralisation by forming high-density antibody arrays. IgG3 forms elevated hexameric Fc platforms that extend above the protein corona to maximise binding to receptors and the complement C1 complex, which here adopts a unique protease conformation that may precede C1 activation. Mass spectrometry reveals that C1 deposits C4b directly onto specific IgG3 residues proximal to the Fab domains. Structural analysis shows this to be caused by the height of the C1-IgG3 complex. Together, these data provide structural insights into the role of the unique IgG3 extended hinge, which will aid the development and design of upcoming immunotherapeutics based on IgG3.
Collapse
Affiliation(s)
- Leoni Abendstein
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Douwe J Dijkstra
- Department of Immunology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Rayman T N Tjokrodirijo
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
24
|
Adzibolosu N, Alvero AB, Ali-Fehmi R, Gogoi R, Corey L, Tedja R, Chehade H, Gogoi V, Morris R, Anderson M, Vitko J, Lam C, Craig DB, Draghici S, Rutherford T, Mor G. Immunological modifications following chemotherapy are associated with delayed recurrence of ovarian cancer. Front Immunol 2023; 14:1204148. [PMID: 37435088 PMCID: PMC10331425 DOI: 10.3389/fimmu.2023.1204148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Ovarian cancer recurs in most High Grade Serous Ovarian Cancer (HGSOC) patients, including initial responders, after standard of care. To improve patient survival, we need to identify and understand the factors contributing to early or late recurrence and therapeutically target these mechanisms. We hypothesized that in HGSOC, the response to chemotherapy is associated with a specific gene expression signature determined by the tumor microenvironment. In this study, we sought to determine the differences in gene expression and the tumor immune microenvironment between patients who show early recurrence (within 6 months) compared to those who show late recurrence following chemotherapy. Methods Paired tumor samples were obtained before and after Carboplatin and Taxol chemotherapy from 24 patients with HGSOC. Bioinformatic transcriptomic analysis was performed on the tumor samples to determine the gene expression signature associated with differences in recurrence pattern. Gene Ontology and Pathway analysis was performed using AdvaitaBio's iPathwayGuide software. Tumor immune cell fractions were imputed using CIBERSORTx. Results were compared between late recurrence and early recurrence patients, and between paired pre-chemotherapy and post-chemotherapy samples. Results There was no statistically significant difference between early recurrence or late recurrence ovarian tumors pre-chemotherapy. However, chemotherapy induced significant immunological changes in tumors from late recurrence patients but had no impact on tumors from early recurrence patients. The key immunological change induced by chemotherapy in late recurrence patients was the reversal of pro-tumor immune signature. Discussion We report for the first time, the association between immunological modifications in response to chemotherapy and the time of recurrence. Our findings provide novel opportunities to ultimately improve ovarian cancer patient survival.
Collapse
Affiliation(s)
- Nicholas Adzibolosu
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ayesha B. Alvero
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Rouba Ali-Fehmi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Radhika Gogoi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Logan Corey
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roslyn Tedja
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hussein Chehade
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vir Gogoi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert Morris
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Julie Vitko
- Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Clarissa Lam
- Department of Gynecologic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Douglas B. Craig
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sorin Draghici
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
- Advaita Corporation, Ann Arbor, MI, United States
- Division of Information and Intelligent Systems, Directorate for Computer and Information Science and Engineering, National Science Foundation, Alexandria, VA, United States
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Gil Mor
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
25
|
Wagner N, Shayakhmetov DM, Stewart PL. Structural Model for Factor X Inhibition of IgM and Complement-Mediated Neutralization of Adenovirus. Viruses 2023; 15:1343. [PMID: 37376642 PMCID: PMC10305487 DOI: 10.3390/v15061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adenovirus has strong therapeutic potential as an oncolytic virus and gene therapy vector. However, injecting human species C serotype 5 adenovirus, HAdv-C5, into the bloodstream leads to numerous interactions with plasma proteins that affect viral tropism and biodistribution, and can lead to potent immune responses and viral neutralization. The HAdv/factor X (FX) interaction facilitates highly efficient liver transduction and protects virus particles from complement-mediated neutralization after intravenous delivery. Ablating the FX interaction site on the HAdv-C5 capsid leaves the virus susceptible to neutralization by natural IgM followed by activation of the complement cascade and covalent binding of complement components C4b and C3b to the viral capsid. Here we present structural models for IgM and complement components C1, C4b, and C3b in complex with HAdv-C5. Molecular dynamics simulations indicate that when C3b binds near the vertex, multiple stabilizing interactions can be formed between C3b, penton base, and fiber. These interactions may stabilize the vertex region of the capsid and prevent release of the virally encoded membrane lytic factor, protein VI, which is packaged inside of the viral capsid, thus effectively neutralizing the virus. In a situation where FX and IgM are competing for binding to the capsid, IgM may not be able to form a bent conformation in which most of its Fab arms interact with the capsid. Our structural modeling of the competitive interaction of FX and IgM with HAdv-C5 allows us to propose a mechanistic model for FX inhibition of IgM-mediated virus neutralization. According to this model, although IgM may bind to the capsid, in the presence of FX it will likely retain a planar conformation and thus be unable to promote activation of the complement cascade at the virus surface.
Collapse
Affiliation(s)
- Nicole Wagner
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Phoebe L. Stewart
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
26
|
Ruiz-Lozano RE, Salan-Gomez M, Rodriguez-Garcia A, Quiroga-Garza ME, Ramos-Dávila EM, Perez VL, Azar NS, Merayo-Lloves J, Hernandez-Camarena JC, Valdez-García JE. Wessely corneal ring phenomenon: An unsolved pathophysiological dilemma. Surv Ophthalmol 2023:S0039-6257(23)00041-3. [PMID: 36882129 DOI: 10.1016/j.survophthal.2023.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The cornea is a densely innervated, avascular tissue showing exceptional inflammatory and immune responses. The cornea is a site of lymphangiogenic and angiogenic privilege devoid of blood and lymphatic vessels that limits the entry of inflammatory cells from the adjacent and highly immunoreactive conjunctiva. Immunological and anatomical differences between the central and peripheral cornea are also necessary to sustain passive immune privilege. The lower density of antigen-presenting cells in the central cornea and the 5:1 peripheral-to-central corneal ratio of C1 are 2 main features conferring passive immune privilege. C1 activates the complement system by antigen-antibody complexes more effectively in the peripheral cornea and, thus, protects the central corneas' transparency from immune-driven and inflammatory reactions. Wessely rings, also known as corneal immune rings, are non-infectious ring-shaped stromal infiltrates usually formed in the peripheral cornea. They result from a hypersensitivity reaction to foreign antigens, including those of microorganism origin. Thus, they are thought to be composed of inflammatory cells and antigen-antibody complexes. Corneal immune rings have been associated with various infectious and non-infectious causes, including foreign bodies, contact lens wear, refractive procedures, and drugs. We describe the anatomical and immunologic basis underlying Wessely ring formation, its causes, clinical presentation, and management.
Collapse
Affiliation(s)
- Raul E Ruiz-Lozano
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Marcelo Salan-Gomez
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Alejandro Rodriguez-Garcia
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Manuel E Quiroga-Garza
- Foster Center for Ocular Immunology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Eugenia M Ramos-Dávila
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Victor L Perez
- Foster Center for Ocular Immunology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Nadim S Azar
- Foster Center for Ocular Immunology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Jesus Merayo-Lloves
- Instituto Universitario Fernández Vega, Universidad de Oviedo, Oviedo, Spain
| | - Julio C Hernandez-Camarena
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Jorge E Valdez-García
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico.
| |
Collapse
|
27
|
Ye J, Xu J, Zhang C, Zhu L, Xia S. Quantitative fluorescence resonance energy transfer-based immunoassay for activated complement C1s. Front Immunol 2023; 14:1081793. [PMID: 36761732 PMCID: PMC9904206 DOI: 10.3389/fimmu.2023.1081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Objectives C1s activation is associated with the pathogenesis of various diseases, indicating the potential value of C1s activation detection in clinic. Here we aimed to establish fluorescence resonance energy transfer (FRET)-based immunoassay for the quantitative detection of activated C1s in serum. Methods FRET-based fluorogenic peptides, sensitive to the enzymatic activity of activated C1s, were prepared and labeled with the fluorophore ortho-aminobenzoic acid (Abz) and quencher 2,4-dinitrophenyl (Dnp), and then were further selected depending on its Kcat/Km value. C1s in the samples was captured and separated using anti-C1s-conjugated magnetic microbeads. Next, enzymatic activity of activated C1s in samples and standards was examined using fluorescent quenched substrate assays. Limit of detection (LOD), accuracy, precision, and specificity of FRET-based immunoassay were also investigated. Results This method presented a linear quantification range for the enzymatic activity of activated C1s up to 10 μmol min-1 mL-1 and LOD of 0.096 μmol·min-1·mL-1 for serum samples. The recovery of the method was in the range of 90% ~ 110%. All CV values of the intra-analysis and inter-analysis of three levels in samples were less than 10%. The cross-reaction rates with C1r enzyme, MASP1, and MASP2 were less than 0.5%. No significant interferences were found with bilirubin (0.2 mg mL-1), Chyle (2000 FTU), and haemoglobin (5 mg mL-1), but anticoagulants (EDTA, citrate and heparin) inhibited the enzymatic ability of activated C1s. Thus, this established method can be used for the determination of active C1s in human serum samples in the concentration interval of 0.096-10.000 μmol min-1 mL-1. Conclusions One anti-C1s-based FRET immunoassay for activated C1s detection in serum samples were established, and it will be useful to explore the role of C1s activation in the pathogenesis, diagnosis and treatment in complement-related diseases.
Collapse
Affiliation(s)
- Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jie Xu
- The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chuanmeng Zhang
- The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Li Zhu
- The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
28
|
Brandwijk RJMGE, Michels MAHM, van Rossum M, de Nooijer AH, Nilsson PH, de Bruin WCC, Toonen EJM. Pitfalls in complement analysis: A systematic literature review of assessing complement activation. Front Immunol 2022; 13:1007102. [PMID: 36330514 PMCID: PMC9623276 DOI: 10.3389/fimmu.2022.1007102] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The complement system is an essential component of our innate defense and plays a vital role in the pathogenesis of many diseases. Assessment of complement activation is critical in monitoring both disease progression and response to therapy. Complement analysis requires accurate and standardized sampling and assay procedures, which has proven to be challenging. Objective We performed a systematic analysis of the current methods used to assess complement components and reviewed whether the identified studies performed their complement measurements according to the recommended practice regarding pre-analytical sample handling and assay technique. Results are supplemented with own data regarding the assessment of key complement biomarkers to illustrate the importance of accurate sampling and measuring of complement components. Methods A literature search using the Pubmed/MEDLINE database was performed focusing on studies measuring the key complement components C3, C5 and/or their split products and/or the soluble variant of the terminal C5b-9 complement complex (sTCC) in human blood samples that were published between February 2017 and February 2022. The identified studies were reviewed whether they had used the correct sample type and techniques for their analyses. Results A total of 92 out of 376 studies were selected for full-text analysis. Forty-five studies (49%) were identified as using the correct sample type and techniques for their complement analyses, while 25 studies (27%) did not use the correct sample type or technique. For 22 studies (24%), it was not specified which sample type was used. Conclusion A substantial part of the reviewed studies did not use the appropriate sample type for assessing complement activation or did not mention which sample type was used. This deviation from the standardized procedure can lead to misinterpretation of complement biomarker levels and hampers proper comparison of complement measurements between studies. Therefore, this study underlines the necessity of general guidelines for accurate and standardized complement analysis
Collapse
Affiliation(s)
| | - Marloes A. H. M. Michels
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mara van Rossum
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
| | - Aline H. de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Per H. Nilsson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Erik J. M. Toonen
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
- *Correspondence: Erik J. M. Toonen,
| |
Collapse
|
29
|
Ye J, Yang P, Yang Y, Xia S. Complement C1s as a diagnostic marker and therapeutic target: Progress and propective. Front Immunol 2022; 13:1015128. [PMID: 36275687 PMCID: PMC9582509 DOI: 10.3389/fimmu.2022.1015128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The molecules of the complement system connect the effectors of innate and adaptive immunity and play critical roles in maintaining homeostasis. Among them, the C1 complex, composed of C1q, C1r, and C1s (C1qr2s2), is the initiator of the classical complement activation pathway. While deficiency of C1s is associated with early-onset systemic lupus erythematosus and increased susceptibility to bacteria infections, the gain-of- function variants of C1r and C1s may lead to periodontal Ehlers Danlos syndrome. As C1s is activated under various pathological conditions and associated with inflammation, autoimmunity, and cancer development, it is becoming an informative biomarker for the diagnosis and treatment of a variety of diseases. Thus, more sensitive and convenient methods for assessing the level as well as activity of C1s in clinic samples are highly desirable. Meanwhile, a number of small molecules, peptides, and monoclonal antibodies targeting C1s have been developed. Some of them are being evaluated in clinical trials and one of the antibodies has been approved by US FDA for the treatment of cold agglutinin disease, an autoimmune hemolytic anemia. In this review, we will summarize the biological properties of C1s, its association with development and diagnosis of diseases, and recent progress in developing drugs targeting C1s. These progress illustrate that the C1s molecule is an effective biomarker and promising drug target.
Collapse
Affiliation(s)
- Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Peng Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Sheng Xia,
| |
Collapse
|
30
|
Jize Z, Zhuoga D, Xiaoqing Z, Na T, Jiacuo G, Cuicheng L, Bandan P. Different feeding strategies can affect growth performance and rumen functions in Gangba sheep as revealed by integrated transcriptome and microbiome analyses. Front Microbiol 2022; 13:908326. [PMID: 36090079 PMCID: PMC9449551 DOI: 10.3389/fmicb.2022.908326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Due to the harsh environment in the Tibetan Plateau, traditional grazing greatly limits the growth potential of local animals and causes severe ecosystem degradation. This is an urgent issue to be solved, which requires alternative strategies for grazing animals in the Tibetan alpine pastoral livestock systems. This study aimed to investigate the effects of different feeding strategies on growth performance and ruminal microbiota-host interactions in the local breed of sheep (Gangba sheep). Thirty 9-month old Gangba sheep (n = 10 per group) were assigned to natural grazing (G), semi-grazing with supplementation (T), and barn feeding (F) groups (supplementation of concentrate and oat hay) based on body weight. At the end of the experiment (75 d), all sheep were weighed, rumen fluid was obtained from six sheep per group, and ruminal epithelium was obtained from 3 sheep per group. The results showed that: (1) Compared with the G and T groups, the F group significantly increased dry matter intake, average daily gain, and feed conversion ratio of animals. Additionally, Gangba sheep in the F group had higher concentrations of ruminal short-chain volatile fatty acids (VFAs), especially propionate and butyrate (P <0.05) than sheep in the G and T groups. (2) The principal coordinates analysis indicated a significant difference in bacterial composition among different feed strategies. More specifically, the relative abundance of propionate (unidentified F082 and Succiniclasticum) and butyrate-producing (Eubacterium_coprostanoligenes_group) genera were also observed to be increased in the F group, in which unidentified F082 was identified as a differential biomarker among the three groups according to linear discriminant analysis effect size analysis. (3) The dynamics of the rumen epithelial transcriptome revealed that ECM-receptor interactions, focal adhesion, and PI3K-Akt signaling pathways, which are critical in mediating many aspects of cellular functions such as cell proliferation and motility, were upregulated in the F group. In conclusion, under harsh conditions in the Tibetan alpine meadow, barn feeding increased ruminal VFAs concentrations (especially propionate and butyrate), which stimulated gene expression related to cell proliferation in rumen epithelium, appearing to be superior to natural grazing and semi-grazing in gaining body weight of the local Gangba sheep.
Collapse
Affiliation(s)
- Zhang Jize
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Deqing Zhuoga
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Zhang Xiaoqing
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- *Correspondence: Zhang Xiaoqing
| | - Ta Na
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Gesang Jiacuo
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Luosang Cuicheng
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Pingcuo Bandan
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| |
Collapse
|
31
|
A morphological study of adipose-derived stem cell sheets created with temperature-responsive culture dishes using scanning electron microscopy. Med Mol Morphol 2022; 55:187-198. [PMID: 35449367 DOI: 10.1007/s00795-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Adipose-derived stem cell (ADSC) sheets have potential to be effective in various therapies. In this study, we first demonstrated that a cell sheet composed of human ADSCs could be created using a new temperature-responsive culture dish from the DIC Corporation. The dish can cause detachment of adherent cells due to temperature changes, but a few morphological analyses have evaluated the presence or absence of damage on the detached surface of cell sheet. To characterize our ADSC sheet, we tried to observe the surface of ADSC sheets with scanning electron microscope (SEM) using the ionic liquid, which enables the rapid preparation of samples. No damage was found on the surface of the ADSC sheets on the side that had been in contact with the surface of the culture dishes. In addition, when the transcriptomes of the harvested cell sheets were compared with those of monolayer cultures, no up-regulation of cell death related genes were detected. These results propose that the detachment from temperature-responsive culture dish causes no serious damage on the prepared ADSC sheet. It is also suggested that the SEM with ionic liquids is a useful and rapid method for the analysis of ADSC sheets for therapy.
Collapse
|
32
|
The Early Immune Response of Lymphoid and Myeloid Head-Kidney Cells of Rainbow Trout (Oncorhynchus mykiss) Stimulated with Aeromonas salmonicida. FISHES 2022. [DOI: 10.3390/fishes7010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The teleost head kidney is a highly relevant immune organ, and myeloid cells play a major role in this organ’s innate and adaptive immune responses. Because of their complexity, the early phases of the innate immune reaction of fish against bacteria are still poorly understood. In this study, naïve rainbow trout were stimulated with inactivated A. salmonicida and sampled at 12 h, 24 h and 7 d poststimulation. Cells from the head kidney were magnetically sorted with a monoclonal antibody mAB21 to obtain one (MAb21-positive) fraction enriched with myeloid cells and one (MAb21-negative) fraction enriched with lymphocytes and thrombocytes. The gene expression pattern of the resulting cell subpopulations was analysed using a panel of 43 immune-related genes. The results show an overall downregulation of the complement pathway and cytokine production at the considered time points. Some of the selected genes may be considered as parameters for diagnosing bacterial furunculosis of rainbow trout.
Collapse
|
33
|
Wu T, Wang X, Ren K, Huang X, Liu J. The Alterations in Methylene Blue/Light-Treated Frozen Plasma Proteins Revealed by Proteomics. Transfus Med Hemother 2021; 48:298-305. [PMID: 34803573 DOI: 10.1159/000515119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction The aim of this study was to investigate the modified proteins in methylene blue/light-treated frozen plasma (MB-FP) compared with fresh frozen plasma (FFP) in order to gain a better application of MB/light-treated plasma in clinic transfusion. Methods MB-FP and FFP were collected from Changchun central blood station, and a trichloroacetic acid/acetone precipitation method was used to remove albumin for the enrichment of lower abundance proteins. The plasma protein in MB-FP and FFP were separated using two-dimensional gel electrophoresis (2-DE) and the differentially expressed protein spots were analyzed using mass spectrometry. Finally, the differentially expressed proteins were tested using Western blot and enzyme-linked immunosorbent assay (ELISA). Results Approximately 14 differentially expressed protein spots were detected in the MB-FP, and FFP was chosen as the control. After 2-DE comparison analysis and mass spectrometry, 8 significantly differentially expressed protein spots were identified, corresponding to 6 different proteins, including complement C1r subcomponent (C1R), inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4), keratin, type II cytoskeletal 1 (KRT1), hemopexin (HPX), fibrinogen gamma chain (FGG), and transthyretin (TTR). Western blot showed no significant difference in the expression level of KRT1 between MB-FP and FFP (p > 0.05). Both Western blot and ELISA indicated that the level of HPX was significantly higher in FFP than in MB-FP (p < 0.05). Conclusion This comparative proteomics study revealed that some significantly modified proteins occur in MB-FP, such as C1R, ITI-H4, KRT1, HPX, FGG, and TTR. Our findings provide more theoretical data for using MB-FP in transfusion medicine. However, the relevance of the data for the transfusion of methylene blue/light-treated plasma remains unclear. The exact modification of these proteins and the effects of these modified proteins on their functions and their effects in clinical plasma infusion need to be further studied.
Collapse
Affiliation(s)
- Tiange Wu
- Blood Transfusion Department, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoning Wang
- Blood Transfusion Department, The First Hospital of Jilin University, Changchun, China
| | - Kai Ren
- Blood Transfusion Department, The Second Hospital of Jilin University, Changchun, China
| | - Xiaochen Huang
- Anesthesiology, Changchun University of Chinese Medicine, Changchun, China
| | - Jiankai Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
34
|
Feng P, Yang G, Zhang W, Zhang L, Wu J, Yang L. Early pregnancy regulates expression of complement components in ovine liver. Anim Sci J 2021; 92:e13660. [PMID: 34786795 DOI: 10.1111/asj.13660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023]
Abstract
Complement pathways participate in the regulation of innate immune system, and complement activation is inhibited in normal pregnancy. The liver plays key roles in the modulation of immunity and tolerance, but it is unclear that early pregnancy induces the changes in expression of complement components in the ovine maternal liver. The aim of the present study was to explore the expression of complement components in the liver using quantitative real-time polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Maternal livers were collected on Day 16 of the estrous cycle and Days 13, 16, and 25 of gestation. The results indicated that early pregnancy suppressed the expression of C1q, C1r, C1s, C2, C4a, C5b, and C9 in the maternal liver, but C3 expression was increased. In addition, C3 protein was located in the endothelial cells of the proper hepatic arteries and portal veins and hepatocytes. In summary, the downregulaltion of C1q, C1r, C1s, C2, C4a, C5b, and C9 may be involved in the suppression of complement activation, and upregulation of C3 is related to the modulation of maternal immune tolerance in ovine liver.
Collapse
Affiliation(s)
- Pengfei Feng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Gengxin Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Weifeng Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jiaxuan Wu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
35
|
Frazer-Abel A, Kirschfink M, Prohászka Z. Expanding Horizons in Complement Analysis and Quality Control. Front Immunol 2021; 12:697313. [PMID: 34434189 PMCID: PMC8381195 DOI: 10.3389/fimmu.2021.697313] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
Complement not only plays a key role in host microbial defense but also modulates the adaptive immune response through modification of T- and B-cell reactivity. Moreover, a normally functioning complement system participates in hematopoiesis, reproduction, lipid metabolism, and tissue regeneration. Because of its powerful inflammatory potential, multiple regulatory proteins are needed to prevent potential tissue damage. In clinical practice, dysregulation and overactivation of the complement system are major causes of a variety of inflammatory and autoimmune diseases ranging from nephropathies, age-related macular degeneration (AMD), and systemic lupus erythematosus (SLE) to graft rejection, sepsis, and multi-organ failure. The clinical importance is reflected by the recent development of multiple drugs targeting complement with a broad spectrum of indications. The recognition of the role of complement in diverse diseases and the advent of complement therapeutics has increased the number of laboratories and suppliers entering the field. This has highlighted the need for reliable complement testing. The relatively rapid expansion in complement testing has presented challenges for a previously niche field. This is exemplified by the issue of cross-reactivity of complement-directed antibodies and by the challenges of the poor stability of many of the complement analytes. The complex nature of complement testing and increasing clinical demand has been met in the last decade by efforts to improve the standardization among laboratories. Initiated by the IUIS/ICS Committee for the Standardization and Quality Assessment in Complement Measurements 14 rounds of external quality assessment since 2010 resulted in improvements in the consistency of testing across participating institutions, while extending the global reach of the efforts to more than 200 laboratories in 30 countries. Worldwide trends of assay availability, usage, and analytical performance are summarized based on the past years’ experiences. Progress in complement analysis has been facilitated by the quality assessment and standardization efforts that now allow complement testing to provide a comprehensive insight into deficiencies and the activation state of the system. This in turn enables clinicians to better define disease severity, evolution, and response to therapy.
Collapse
Affiliation(s)
| | | | - Zoltán Prohászka
- Department of Medicine and Hematology, Research Laboratory Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
Ali YM, Ferrari M, Lynch NJ, Yaseen S, Dudler T, Gragerov S, Demopulos G, Heeney JL, Schwaeble WJ. Lectin Pathway Mediates Complement Activation by SARS-CoV-2 Proteins. Front Immunol 2021; 12:714511. [PMID: 34290717 PMCID: PMC8287855 DOI: 10.3389/fimmu.2021.714511] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Early and persistent activation of complement is considered to play a key role in the pathogenesis of COVID-19. Complement activation products orchestrate a proinflammatory environment that might be critical for the induction and maintenance of a severe inflammatory response to SARS-CoV-2 by recruiting cells of the cellular immune system to the sites of infection and shifting their state of activation towards an inflammatory phenotype. It precedes pathophysiological milestone events like the cytokine storm, progressive endothelial injury triggering microangiopathy, and further complement activation, and causes an acute respiratory distress syndrome (ARDS). To date, the application of antiviral drugs and corticosteroids have shown efficacy in the early stages of SARS-CoV-2 infection, but failed to ameliorate disease severity in patients who progressed to severe COVID-19 pathology. This report demonstrates that lectin pathway (LP) recognition molecules of the complement system, such as MBL, FCN-2 and CL-11, bind to SARS-CoV-2 S- and N-proteins, with subsequent activation of LP-mediated C3b and C4b deposition. In addition, our results confirm and underline that the N-protein of SARS-CoV-2 binds directly to the LP- effector enzyme MASP-2 and activates complement. Inhibition of the LP using an inhibitory monoclonal antibody against MASP-2 effectively blocks LP-mediated complement activation. FACS analyses using transfected HEK-293 cells expressing SARS-CoV-2 S protein confirm a robust LP-dependent C3b deposition on the cell surface which is inhibited by the MASP-2 inhibitory antibody. In light of our present results, and the encouraging performance of our clinical candidate MASP-2 inhibitor Narsoplimab in recently published clinical trials, we suggest that the targeting of MASP-2 provides an unsurpassed window of therapeutic efficacy for the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Youssif M. Ali
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Matteo Ferrari
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas J. Lynch
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | - Jonathan L. Heeney
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Wilhelm J. Schwaeble
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Identification of Diagnostic Biomarkers and Their Correlation with Immune Infiltration in Age-Related Macular Degeneration. Diagnostics (Basel) 2021; 11:diagnostics11061079. [PMID: 34204836 PMCID: PMC8231534 DOI: 10.3390/diagnostics11061079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease of the central retina, with no suitable biomarkers for early diagnosis and treatment. This study aimed to find potential diagnostic biomarker candidates for AMD and investigate their immune-related roles in this pathology. Weight gene correlation analysis was first performed based on data from the Gene Expression Omnibus database and 20 hub genes were identified. The functional enrichment analyses showed that the innate immune response, inflammatory response, and complement activation were key pathways associated with AMD. Complement C1s (C1S), adrenomedullin (ADM), and immediate early response 5 like (IER5L) were identified as the crucial genes with favorable diagnostic values for AMD by using LASSO analysis and multiple logistic regression. Furthermore, a 3-gene model was constructed and proved to be of good diagnostic and predictive performance for AMD (AUC = 0.785, 0.840, and 0.810 in training, test, and validation set, respectively). Finally, CIBERSORT was used to evaluate the infiltration of immune cells in AMD tissues. The results showed that the NK cells, CD4 memory T cell activation, and macrophage polarization may be involved in the AMD process. C1S, ADM, and IER5L were correlated with the infiltration of the above immune cells. In conclusion, our study suggests that C1S, ADM, and IER5L are promising diagnostic biomarker candidates for AMD and may regulate the infiltration of immune cells in the occurrence and progression of AMD.
Collapse
|
38
|
Kim HJ, Xu Y, Petri A, Vanhoorelbeke K, Crawley JTB, Emsley J. Crystal structure of ADAMTS13 CUB domains reveals their role in global latency. SCIENCE ADVANCES 2021; 7:7/16/eabg4403. [PMID: 33863735 PMCID: PMC8051872 DOI: 10.1126/sciadv.abg4403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
ADAMTS13 is a plasma metalloprotease that is essential for the regulation of von Willebrand factor (VWF) function, mediator of platelet recruitment to sites of blood vessel damage. ADAMTS13 function is dynamically regulated by structural changes induced by VWF binding that convert it from a latent to active conformation. ADAMTS13 global latency is manifest by the interaction of its C-terminal CUB1-2 domains with its central Spacer domain. We resolved the crystal structure of the ADAMTS13 CUB1-2 domains revealing a previously unreported configuration for the tandem CUB domains. Docking simulations between the CUB1-2 domains with the Spacer domain in combination with enzyme kinetic functional characterization of ADAMTS13 CUB domain mutants enabled the mapping of the CUB1-2 domain site that binds the Spacer domain. Together, these data reveal the molecular basis of the ADAMTS13 Spacer-CUB interaction and the control of ADAMTS13 global latency.
Collapse
Affiliation(s)
- H J Kim
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Y Xu
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - A Petri
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - K Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - J T B Crawley
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| | - J Emsley
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
39
|
Frey AM, Chaput D, Shaw LN. Insight into the human pathodegradome of the V8 protease from Staphylococcus aureus. Cell Rep 2021; 35:108930. [PMID: 33826899 PMCID: PMC8054439 DOI: 10.1016/j.celrep.2021.108930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2020] [Accepted: 03/11/2021] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus possesses ten extracellular proteases with mostly unknown targets in the human proteome. To assist with bacterial protease target discovery, we have applied and compared two N-terminomics methods to investigate cleavage of human serum proteins by S. aureus V8 protease, discovering 85 host-protein targets. Among these are virulence-relevant complement, iron sequestration, clotting cascade, and host protease inhibitor proteins. Protein cleavage sites have been identified, providing insight into the disruption of host protein function by V8. Complement proteins are cleaved within peptidase and sushi domains, and host protease inhibitors are cleaved outside their protease-trapping motifs. Our data highlight the potential for further application of N-terminomics in discovery of bacterial protease substrates in other host niches and provide omics-scale insight into the role of the V8 protease in S. aureus pathogenesis. S. aureus-secreted proteases are central to disease causation, but the discovery of their host substrates has been limited. Frey et al. use N-terminomic approaches to uncover human serum targets of the V8 protease that are from virulence-relevant processes such as the host inflammatory network and nutrient sequestration.
Collapse
Affiliation(s)
- Andrew Michael Frey
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey Neil Shaw
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
40
|
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 2020; 16:601-617. [PMID: 33005040 PMCID: PMC7528717 DOI: 10.1038/s41582-020-0400-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
The complement system consists of a network of plasma and membrane proteins that modulate tissue homeostasis and contribute to immune surveillance by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement components contribute to the pathogenesis of some autoimmune neurological disorders and could even contribute to neurodegenerative diseases. In this Review, we summarize current knowledge about the main functions of the complement pathways and the involvement of complement in neurological disorders. We describe the complex network of complement proteins that target muscle, the neuromuscular junction, peripheral nerves, the spinal cord or the brain and discuss the autoimmune mechanisms of complement-mediated myopathies, myasthenia, peripheral neuropathies, neuromyelitis and other CNS disorders. We also consider the emerging role of complement in some neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis and even schizophrenia. Finally, we provide an overview of the latest complement-targeted immunotherapies including monoclonal antibodies, fusion proteins and peptidomimetics that have been approved, that are undergoing phase I–III clinical trials or that show promise for the treatment of neurological conditions that respond poorly to existing immunotherapies. In this Review, Dalakas et al. discuss the complement system, the role it plays in autoimmune neurological disease and neurodegenerative disease, and provide an overview of the latest therapeutics that target complement and that can be used for or have potential in neurological disorders. Complement has an important physiological role in host immune defences and tissue remodelling. The physiological role of complement extends to the regulation of synaptic development. Complement has a key pathophysiological role in autoimmune neurological diseases and mediates the actions of pathogenic autoantibodies, such as acetylcholine receptor antibodies and aquaporin 4 antibodies. For some autoimmune neurological diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, approved complement-targeted treatments are now available. Complement also seems to be of pathogenic relevance in neurodegenerative diseases such as Alzheimer disease, in which innate immune-driven inflammation is receiving increasing attention. The field of complement-targeted therapeutics is rapidly expanding, with several FDA-approved agents and others currently in phase II and phase III clinical trials.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA. .,Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter J Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
41
|
Targeting the Initiator Protease of the Classical Pathway of Complement Using Fragment-Based Drug Discovery. Molecules 2020; 25:molecules25174016. [PMID: 32899120 PMCID: PMC7504721 DOI: 10.3390/molecules25174016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
The initiating protease of the complement classical pathway, C1r, represents an upstream and pathway-specific intervention point for complement-related autoimmune and inflammatory diseases. Yet, C1r-targeted therapeutic development is currently underrepresented relative to other complement targets. In this study, we developed a fragment-based drug discovery approach using surface plasmon resonance (SPR) and molecular modeling to identify and characterize novel C1r-binding small-molecule fragments. SPR was used to screen a 2000-compound fragment library for binding to human C1r. This led to the identification of 24 compounds that bound C1r with equilibrium dissociation constants ranging between 160–1700 µM. Two fragments, termed CMP-1611 and CMP-1696, directly inhibited classical pathway-specific complement activation in a dose-dependent manner. CMP-1611 was selective for classical pathway inhibition, while CMP-1696 also blocked the lectin pathway but not the alternative pathway. Direct binding experiments mapped the CMP-1696 binding site to the serine protease domain of C1r and molecular docking and molecular dynamics studies, combined with C1r autoactivation assays, suggest that CMP-1696 binds within the C1r active site. The group of structurally distinct fragments identified here, along with the structure–activity relationship profiling of two lead fragments, form the basis for future development of novel high-affinity C1r-binding, classical pathway-specific, small-molecule complement inhibitors.
Collapse
|
42
|
Laursen NS, Pedersen DV, Gytz H, Zarantonello A, Bernth Jensen JM, Hansen AG, Thiel S, Andersen GR. Functional and Structural Characterization of a Potent C1q Inhibitor Targeting the Classical Pathway of the Complement System. Front Immunol 2020; 11:1504. [PMID: 32849513 PMCID: PMC7396675 DOI: 10.3389/fimmu.2020.01504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
The classical pathway of complement is important for protection against pathogens and in maintaining tissue homeostasis, but excessive or aberrant activation is directly linked to numerous pathologies. We describe the development and in vitro characterization of C1qNb75, a single domain antibody (nanobody) specific for C1q, the pattern recognition molecule of the classical pathway. C1qNb75 binds to the globular head modules of human C1q with sub-nanomolar affinity and impedes classical pathway mediated hemolysis by IgG and IgM. Crystal structure analysis revealed that C1qNb75 recognizes an epitope primarily located in the C1q B-chain that overlaps with the binding sites of IgG and IgM. Thus, C1qNb75 competitively prevents C1q from binding to IgG and IgM causing blockade of complement activation by the classical pathway. Overall, C1qNb75 represents a high-affinity nanobody-based inhibitor of IgG- and IgM-mediated activation of the classical pathway and may serve as a valuable reagent in mechanistic and functional studies of complement, and as an efficient inhibitor of complement under conditions of excessive CP activation.
Collapse
Affiliation(s)
- Nick S Laursen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Dennis V Pedersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Heidi Gytz
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Alessandra Zarantonello
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Riihilä P, Viiklepp K, Nissinen L, Farshchian M, Kallajoki M, Kivisaari A, Meri S, Peltonen J, Peltonen S, Kähäri V. Tumour-cell-derived complement components C1r and C1s promote growth of cutaneous squamous cell carcinoma. Br J Dermatol 2020; 182:658-670. [PMID: 31049937 PMCID: PMC7065064 DOI: 10.1111/bjd.18095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incidence of epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is increasing worldwide. OBJECTIVES To study the role of the complement classical pathway components C1q, C1r and C1s in the progression of cSCC. METHODS The mRNA levels of C1Q subunits and C1R and C1S in cSCC cell lines, normal human epidermal keratinocytes, cSCC tumours in vivo and normal skin were analysed with quantitative real-time polymerase chain reaction. The production of C1r and C1s was determined with Western blotting. The expression of C1r and C1s in tissue samples in vivo was analysed with immunohistochemistry and further investigated in human cSCC xenografts by knocking down C1r and C1s. RESULTS Significantly elevated C1R and C1S mRNA levels and production of C1r and C1s were detected in cSCC cells, compared with normal human epidermal keratinocytes. The mRNA levels of C1R and C1S were markedly elevated in cSCC tumours in vivo compared with normal skin. Abundant expression of C1r and C1s by tumour cells was detected in invasive sporadic cSCCs and recessive dystrophic epidermolysis bullosa-associated cSCCs, whereas the expression of C1r and C1s was lower in cSCC in situ, actinic keratosis and normal skin. Knockdown of C1r and C1s expression in cSCC cells inhibited activation of extracellular signal-related kinase 1/2 and Akt, promoted apoptosis of cSCC cells and significantly suppressed growth and vascularization of human cSCC xenograft tumours in vivo. CONCLUSIONS These results provide evidence for the role of tumour-cell-derived C1r and C1s in the progression of cSCC and identify them as biomarkers and putative therapeutic targets in cSCC. What's already known about this topic? The incidences of actinic keratosis, cutaneous squamous cell carcinoma (cSCC) in situ and invasive cSCC are increasing globally. Few specific biomarkers for progression of cSCC have been identified, and no biological markers are in clinical use to predict the aggressiveness of actinic keratosis, cSCC in situ and invasive cSCC. What does this study add? Our results provide novel evidence for the role of complement classical pathway components C1r and C1s in the progression of cSCC. What is the translational message? Our results identify complement classical pathway components C1r and C1s as biomarkers and putative therapeutic targets in cSCC.
Collapse
Affiliation(s)
- P. Riihilä
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - K. Viiklepp
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - L. Nissinen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - M. Farshchian
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - M. Kallajoki
- Department of PathologyTurku University HospitalTurkuFinland
| | - A. Kivisaari
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - S. Meri
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
| | - J. Peltonen
- Department of Anatomy and Cell BiologyUniversity of TurkuTurkuFinland
| | - S. Peltonen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - V.‐M. Kähäri
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| |
Collapse
|
44
|
Gröbner R, Kapferer-Seebacher I, Amberger A, Redolfi R, Dalonneau F, Björck E, Milnes D, Bally I, Rossi V, Thielens N, Stoiber H, Gaboriaud C, Zschocke J. C1R Mutations Trigger Constitutive Complement 1 Activation in Periodontal Ehlers-Danlos Syndrome. Front Immunol 2019; 10:2537. [PMID: 31749804 PMCID: PMC6848165 DOI: 10.3389/fimmu.2019.02537] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022] Open
Abstract
Heterozygous missense or in-frame insertion/deletion mutations in complement 1 subunits C1r and C1s cause periodontal Ehlers-Danlos Syndrome (pEDS), a specific EDS subtype characterized by early severe periodontal destruction and connective tissue abnormalities like easy bruising, pretibial haemosiderotic plaques, and joint hypermobility. We report extensive functional studies of 16 C1R variants associated with pEDS by in-vitro overexpression studies in HEK293T cells followed by western blot, size exclusion chromatography and surface plasmon resonance analyses. Patient-derived skin fibroblasts were analyzed by western blot and Enzyme-linked Immunosorbent Assay (ELISA). Overexpression of C1R variants in HEK293T cells revealed that none of the pEDS variants was integrated into the C1 complex but cause extracellular presence of catalytic C1r/C1s activities. Variants showed domain-specific abnormalities of intracellular processing and secretion with preservation of serine protease function in the supernatant. In contrast to C1r wild type, and with the exception of a C1R missense variant disabling a C1q binding site, pEDS variants had different impact on the cell: retention of C1r fragments inside the cell, secretion of aggregates, or a new C1r cleavage site. Overexpression of C1R variants in HEK293T as well as western blot analyses of patient fibroblasts showed decreased levels of secreted C1r. Importantly, all available patient fibroblasts exhibited activated C1s and activation of externally added C4 in the supernatant while control cell lines secreted proenzyme C1s and showed no increase in C4 activation. The central elements in the pathogenesis of pEDS seem to be the intracellular activation of C1r and/or C1s, and extracellular presence of activated C1s that independently of microbial triggers can activate the classical complement cascade.
Collapse
Affiliation(s)
- Rebekka Gröbner
- Institute for Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Ines Kapferer-Seebacher
- Department for Operative and Restorative Dentistry, Medical University Innsbruck, Innsbruck, Austria
| | - Albert Amberger
- Institute for Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Rita Redolfi
- Institute for Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Erik Björck
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Di Milnes
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Isabelle Bally
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Veronique Rossi
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Nicole Thielens
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Heribert Stoiber
- Institute of Virology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Johannes Zschocke
- Institute for Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
46
|
Li H, Kong N, Sun J, Wang W, Li M, Gong C, Dong M, Wang M, Wang L, Song L. A C1qDC (CgC1qDC-6) with a collagen-like domain mediates hemocyte phagocytosis and migration in oysters. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:157-165. [PMID: 31028761 DOI: 10.1016/j.dci.2019.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Most of the bivalve C1q domain containing proteins (C1qDCs) are either only composed of the globular head domain, or contain an N-terminal coiled-coil domain, presumed to cover a role in oligomerization. On the other hand, collagen regions, widespread in vertebrate C1qDCs, are very uncommon in bivalves. In the present study, a C1qDC with a collagen-like domain (designated CgC1qDC-6) was identified from the Pacific oyster Crassostrea gigas and its possible involvement in immune responses was also characterized. The coding sequence of CgC1qDC-6 was of 756 bp, encoding a peptide of 251 amino acids with an N-terminal signal peptide, a central collagen-like domain, and a C-terminal ghC1q domain. CgC1qDC-6 was clustered with the C1qDCs from several mollusks in the phylogenetic tree. CgC1qDC-6 was detected at both mRNA and protein levels in all tested tissues including hepatopancreas, gonad, gill, mantle, adductor muscle, and hemocytes. The recombinant CgC1qDC-6 protein (rCgC1qDC-6) exhibited binding activity to various pathogen-associated molecular patterns (PAMPs) including LPS, PGN, mannose and Poly I:C, and microorganisms including Gram-negative bacteria (Escherichia coli and Vibrio splendidus), Gram-positive bacteria (Micrococcus luteus and Staphylococcus aureus), and fungus (Pichia pastoris). The phagocytic rates of oyster hemocytes towards V. splendidus pre-incubation with rCgC1qDC-6 were significantly enhanced (p < 0.05). In the chemotaxis assay, rCgC1qDC-6 could mediate the migration of oyster hemocytes in a dose-dependent manner, which exhibited a positive chemotactic effect at low concentration (<10 nM). These results collectively indicated that CgC1qDC-6 could serve as a pattern recognition receptor and mediate the hemocyte phagocytosis and migration to eliminate the invading pathogens.
Collapse
Affiliation(s)
- Huan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Changhao Gong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
47
|
Insights into IgM-mediated complement activation based on in situ structures of IgM-C1-C4b. Proc Natl Acad Sci U S A 2019; 116:11900-11905. [PMID: 31147461 PMCID: PMC6575175 DOI: 10.1073/pnas.1901841116] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
IgM antibodies protect mammals against humoral microbial infection and mediate clearance of cellular debris. IgM activates the immune complement system only after binding to cell-surface antigens. Here we report the in situ 3D structures of surface-antigen–bound IgM antibodies in complex with both C1 and C4b complement components. The data indicate the structural arrangement of pentameric and hexameric IgM upon antigen binding, exposing the C1q-binding sites with both adopting hexagonal symmetry. The structures reveal the entire C1qr2s2 complex and elucidate several protein–protein interactions with C4b and IgM. Based on the structural data, we hypothesize a C1q-transmitted surface trigger that activates C1, leading to C4 cleavage and C4b deposition on membranes. Antigen binding by serum Ig-M (IgM) protects against microbial infections and helps to prevent autoimmunity, but causes life-threatening diseases when mistargeted. How antigen-bound IgM activates complement-immune responses remains unclear. We present cryoelectron tomography structures of IgM, C1, and C4b complexes formed on antigen-bearing lipid membranes by normal human serum at 4 °C. The IgM-C1-C4b complexes revealed C4b product release as the temperature-limiting step in complement activation. Both IgM hexamers and pentamers adopted hexagonal, dome-shaped structures with Fab pairs, dimerized by hinge domains, bound to surface antigens that support a platform of Fc regions. C1 binds IgM through widely spread C1q-collagen helices, with C1r proteases pointing outward and C1s bending downward and interacting with surface-attached C4b, which further interacts with the adjacent IgM-Fab2 and globular C1q-recognition unit. Based on these data, we present mechanistic models for antibody-mediated, C1q-transmitted activation of C1 and for C4b deposition, while further conformational rearrangements are required to form C3 convertases.
Collapse
|
48
|
Structural determination of the complement inhibitory domain of Borrelia burgdorferi BBK32 provides insight into classical pathway complement evasion by Lyme disease spirochetes. PLoS Pathog 2019; 15:e1007659. [PMID: 30897158 PMCID: PMC6445466 DOI: 10.1371/journal.ppat.1007659] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/02/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023] Open
Abstract
The carboxy-terminal domain of the BBK32 protein from Borrelia burgdorferi sensu stricto, termed BBK32-C, binds and inhibits the initiating serine protease of the human classical complement pathway, C1r. In this study we investigated the function of BBK32 orthologues of the Lyme-associated Borrelia burgdorferi sensu lato complex, designated BAD16 from B. afzelii strain PGau and BGD19 from B. garinii strain IP90. Our data show that B. afzelii BAD16-C exhibits BBK32-C-like activities in all assays tested, including high-affinity binding to purified C1r protease and C1 complex, and potent inhibition of the classical complement pathway. Recombinant B. garinii BGD19-C also bound C1 and C1r with high-affinity yet exhibited significantly reduced in vitro complement inhibitory activities relative to BBK32-C or BAD16-C. Interestingly, natively produced BGD19 weakly recognized C1r relative to BBK32 and BAD16 and, unlike these proteins, BGD19 did not confer significant protection from serum killing. Site-directed mutagenesis was performed to convert BBK32-C to resemble BGD19-C at three residue positions that are identical between BBK32 and BAD16 but different in BGD19. The resulting chimeric protein was designated BXK32-C and this BBK32-C variant mimicked the properties observed for BGD19-C. To query the disparate complement inhibitory activities of BBK32 orthologues, the crystal structure of BBK32-C was solved to 1.7Å limiting resolution. BBK32-C adopts an anti-parallel four-helix bundle fold with a fifth alpha-helix protruding from the helical core. The structure revealed that the three residues targeted in the BXK32-C chimera are surface-exposed, further supporting their potential relevance in C1r binding and inhibition. Additional binding assays showed that BBK32-C only recognized C1r fragments containing the serine protease domain. The structure-function studies reported here improve our understanding of how BBK32 recognizes and inhibits C1r and provide new insight into complement evasion mechanisms of Lyme-associated spirochetes of the B. burgdorferi sensu lato complex.
Collapse
|
49
|
Rizk DV, Maillard N, Julian BA, Knoppova B, Green TJ, Novak J, Wyatt RJ. The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Front Immunol 2019; 10:504. [PMID: 30941137 PMCID: PMC6433978 DOI: 10.3389/fimmu.2019.00504] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide and a common cause of end-stage renal disease. Evaluation of a kidney biopsy is necessary for diagnosis, with routine immunofluorescence microscopy revealing dominant or co-dominant IgA immunodeposits usually with complement C3 and sometimes IgG and/or IgM. IgA nephropathy reduces life expectancy by more than 10 years and leads to kidney failure in 20–40% of patients within 20 years of diagnosis. There is accumulating clinical, genetic, and biochemical evidence that complement plays an important role in the pathogenesis of IgA nephropathy. The presence of C3 differentiates the diagnosis of IgA nephropathy from the subclinical deposition of glomerular IgA. Markers for the activation of the alternative and mannan-binding lectin (MBL) pathways in renal-biopsy specimens are associated with disease activity and portend a worse renal outcome. Complement proteins in the circulation have also been evaluated in IgA nephropathy and found to be of prognostic value. Recently, genetic studies have identified IgA nephropathy-associated loci. Within these loci are genes encoding products involved in complement regulation and interaction with immune complexes. Put together, these data identify the complement cascade as a rational treatment target for this chronic kidney disease. Recent case reports on the successful use of humanized anti-C5 monoclonal antibody eculizumab are consistent with this hypothesis, but a better understanding of the role of complement in IgA nephropathy is needed to guide future therapeutic interventions.
Collapse
Affiliation(s)
- Dana V Rizk
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicolas Maillard
- Department of Nephrology, Dialysis, Transplantation, CHU de Saint-Etienne, GIMAP, EA3064, Université Jean Monnet, COMUE Université de Lyon, Rhône-Alpes, France
| | - Bruce A Julian
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert J Wyatt
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
50
|
The utility of complement assays in clinical immunology: A comprehensive review. J Autoimmun 2018; 95:191-200. [PMID: 30391025 DOI: 10.1016/j.jaut.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
The multi-tasking organ liver, which is the major synthesis site of most serum proteins, supplies humoral components of the innate, - including proteins of the complement system; and, less intensely, also of the acquired immune system. In addition to hepatocyte origins, C1q, factor D, C3, C7 and other protein components of the complement system are produced at various body locations by monocytes/macrophages, lymphocytes, adipocytes, endometrium, enterocytes, keratinocytes and epithelial cells; but the contribution of these alternate sites to the total serum concentrations is slight. The two major exceptions are factor D, which cleaves factor B of the alternative pathway derived largely from adipocytes, and C7, derived largely from polymorphonuclear leukocytes and monocytes/macrophages. Whereas the functional meaning of the extrahepatic synthesis of factor D remains to be elucidated, the local contribution of C7 may up- or downregulate the complement attack. The liver, however, is not classified as part of the immune system but is rather seen as victim of autoimmune diseases, a point that needs apology. Recent histological and cell marker technologies now turn the hands to also conceive the liver as proactive autoimmune disease catalyst. Hosting non-hepatocytic cells, e.g. NK cells, macrophages, dendritic cells as well as T and B lymphocytes, the liver outreaches multiple sites of the immune system. Immunopharmacological follow up of liver transplant recipients teaches us on liver-based presence of ABH-glycan HLA phenotypes and complement mediated ischemia/regeneration processes. In clinical context, the adverse reactions of the complement system can now be curbed by specific drug therapy. This review extends on the involvement of the complement system in liver autoimmune diseases and should allow to direct therapeutic opportunities.
Collapse
|