1
|
Hull MA, Pritchard SM, Nicola AV. Herpes simplex virus 1 envelope glycoprotein C shields glycoprotein D to protect virions from entry-blocking antibodies. J Virol 2025; 99:e0009025. [PMID: 40135897 PMCID: PMC11998518 DOI: 10.1128/jvi.00090-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Herpes simplex virus 1 (HSV-1) gD interaction with the host cell receptor nectin-1 triggers the membrane fusion cascade during viral entry. Potent neutralizing antibodies to gD prevent receptor-binding or prevent gD interaction with gH/gL critical for fusion. HSV has many strategies to evade host immune responses. We investigated the ability of virion envelope gC to protect envelope gD from antibody neutralization. HSV-1 lacking gC was more sensitive to neutralization by anti-gD monoclonal antibodies than a wild-type rescuant virus. gD in the HSV-1 gC-null viral envelope had enhanced reactivity to anti-gD antibodies compared to wild type. Soluble nectin-1 bound similar to HSV-1 particles regardless of the presence of gC in the envelope. However, entry of HSV-1 ΔgC was more sensitive to inhibition by soluble nectin-1 receptor. The viral membrane protein composition of HSV-1 ΔgC is equivalent to that of wild type, suggesting that the lack of gC is responsible for the increased reactivity of gD-specific antibodies and the consequent increased susceptibility to neutralization by those antibodies. Together, the results suggest that gC in the HSV-1 envelope shields both receptor-binding domains and gH/gL-interacting domains of gD from neutralizing antibodies, facilitating HSV cell entry.IMPORTANCEHSV-1 causes lifelong infections. There is no vaccine and no cure. Understanding HSV immune evasion strategies is an important goal. HSV-1 gC is a multi-functional envelope glycoprotein. This study suggests that virion gC physically shields neighboring gD from antibodies, including neutralizing monoclonal antibodies. This mechanism may allow HSV to escape immune detection, promoting HSV infection in the host.
Collapse
Affiliation(s)
- McKenna A. Hull
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M. Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Enriquez AS, Avalos RD, Parekh D, Cooper CL, Morrow G, Geisbert TW, Parks CL, Hastie KM, Saphire EO. Mapping the antibody response to Lassa virus vaccination of non-human primates. EBioMedicine 2025; 114:105673. [PMID: 40168843 PMCID: PMC11999075 DOI: 10.1016/j.ebiom.2025.105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Lassa fever, caused by Lassa virus, is a severe disease, endemic in Western Africa, for which no vaccines or therapeutics are yet approved. Understanding the immune responses elicited by candidate vaccines is key for approval, including characterisation of antibody epitopes recognised and capacity for neutralisation. METHODS Here we used negative-stain electron microscopy polyclonal antibody epitope mapping (EMPEM), in-vitro pseudovirus neutralisation assays, and biophysical antibody competition assays to uncover components of polyclonal antibody responses elicited in nonhuman primates 26 days after receipt of a single immunisation with a fully protective, recombinant, replication-competent vesicular stomatitis virus-based vaccine bearing the Lassa virus glycoprotein GPC. FINDINGS Although the vaccinee sera are overall poorly-neutralising, we do directly visualise, within the polyclonal pool, antibodies targeting epitopes on GPC that are consistent with neutralisation, as well as competition with known neutralising mAbs. Nearly every animal, for example, produced antibodies that compete with mAbs against GP1-A and GPC-A neutralising epitopes. The most abundant classes of antibodies, however, are directed against interior interfaces of GPC, while other antibodies recognise post-fusion GPC epitopes not consistent with neutralisation. INTERPRETATION It may be that some individual antibodies in the pool are neutralising, but that the abundance of non-neutralising epitopes reduces potency as measured at the polyclonal level. The finding, however, neutralisation-consistent sites and competition with known neutralising antibodies are important steps in vaccine design toward eliciting more potent neutralisation. FUNDING A complete list of funding bodies that supported this study is presented in the Funding section.
Collapse
Affiliation(s)
- Adrian S Enriquez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ruben Diaz Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Diptiben Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Gavin Morrow
- International AIDS Vaccine Initiative; New York, NY, 10004, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Dept. of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Wang S, Li R, Pan X, Wang M, Wu Y, Li Y, Huang X, Zhu R, Wang X, Zhang Y, Yang Y, Zhang J, Xiao G, Zai X, Xu J, Chen W. Structure-guided design of a prefusion GPC trimer induces neutralizing responses against LASV. NPJ Vaccines 2025; 10:37. [PMID: 39987102 PMCID: PMC11847010 DOI: 10.1038/s41541-025-01090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
Lassa virus (LASV) belongs to the Arenaviridae family and causes severe hemorrhagic fever in humans. Although many vaccine candidates for Lassa fever exist, no vaccines have been approved for clinical use currently. The precursor glycoprotein complex (GPC), which is expressed as a trimer on the viral surface, is the main target for vaccine development. However, it has been a significant challenge to elicit effective neutralizing antibodies against LASV. In this study, we designed and produced a prefusion GPC trimer antigen of LASV, named GPCv2. Based on the structural information of GPC, we made modifications by replacing the amino acid at position 328 with proline and appending the trimerization domain. This resulted in a highly expressed prefusion trimeric form of GPCv2 that retained important conformational epitopes and stimulated higher levels of neutralizing antibodies. Moreover, vaccination with GPCv2 protected mice from LASV pseudovirus challenge. Additionally, immune repertoire sequencing showed that the induced immune clones in the trimeric group were more convergent and has its own unique V-J pairing bias compared with monomeric group. These findings demonstrate the potential of GPCv2 as a promising candidate antigen for an effective vaccine against LASV.
Collapse
Affiliation(s)
- Shaoyan Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Meirong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaohui Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaoyan Huang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Rui Zhu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaolin Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yue Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yilong Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Wei Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
4
|
Vishwanath S, Carnell GW, Ferrari M, Asbach B, Billmeier M, George C, Sans MS, Nadesalingam A, Huang CQ, Paloniemi M, Stewart H, Chan A, Wells DA, Neckermann P, Peterhoff D, Einhauser S, Cantoni D, Neto MM, Jordan I, Sandig V, Tonks P, Temperton N, Frost S, Sohr K, Ballesteros MTL, Arbabi F, Geiger J, Dohmen C, Plank C, Kinsley R, Wagner R, Heeney JL. A computationally designed antigen eliciting broad humoral responses against SARS-CoV-2 and related sarbecoviruses. Nat Biomed Eng 2025; 9:153-166. [PMID: 37749309 PMCID: PMC11839467 DOI: 10.1038/s41551-023-01094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/23/2023] [Indexed: 09/27/2023]
Abstract
The threat of spillovers of coronaviruses associated with the severe acute respiratory syndrome (SARS) from animals to humans necessitates vaccines that offer broader protection from sarbecoviruses. By leveraging a viral-genome-informed computational method for selecting immune-optimized and structurally engineered antigens, here we show that a single antigen based on the receptor binding domain of the spike protein of sarbecoviruses elicits broad humoral responses against SARS-CoV-1, SARS-CoV-2, WIV16 and RaTG13 in mice, rabbits and guinea pigs. When administered as a DNA immunogen or by a vector based on a modified vaccinia virus Ankara, the optimized antigen induced vaccine protection from the Delta variant of SARS-CoV-2 in mice genetically engineered to express angiotensin-converting enzyme 2 and primed by a viral-vector vaccine (AZD1222) against SARS-CoV-2. A vaccine formulation incorporating mRNA coding for the optimized antigen further validated its broad immunogenicity. Vaccines that elicit broad immune responses across subgroups of coronaviruses may counteract the threat of zoonotic spillovers of betacoronaviruses.
Collapse
Affiliation(s)
- Sneha Vishwanath
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - George William Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Charlotte George
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Maria Suau Sans
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Angalee Nadesalingam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chloe Qingzhou Huang
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Minna Paloniemi
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew Chan
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | | | | | - Paul Tonks
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | - Simon Frost
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
- Microsoft Health Futures, Redmond, WA, USA
| | | | | | | | | | | | | | - Rebecca Kinsley
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
| | - Ralf Wagner
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan Luke Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Mantlo E, Maruyama J, Manning JT, Reyna RA, Huang C, Paessler S. Development and characterization of a reverse genetics system for the lineage II Chicava strain of Machupo virus in a guinea pig model. PLoS Negl Trop Dis 2025; 19:e0012834. [PMID: 39854593 PMCID: PMC11778707 DOI: 10.1371/journal.pntd.0012834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/29/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations. To date, up to eight lineages of MACV have been identified in Bolivia. While the prototype MACV Carvallo strain belongs to lineage I discovered in the Memore Province in the 1960s, the MACV lineage II strains have become the dominantly-circulating lineage in the same province since 1993. METHODS We report the development of a reverse genetics system for the MACV lineage II Chicava strain, using a pRF42 plasmid encoding the L and S segment genomic RNA under the transcriptional control of a murine DNA-dependent RNA polymerase I promoter sequence. Rescue of the recombinant MACV Chicava strain (rMACV-Chicava) was accomplished by expression of the L protein and nucleoprotein genes of the MACV Carvallo strain in trans in transfected baby hamster kidney (BHK-21) cells. We characterized the multiplication kinetics of rMACV-Chicava in African green monkey kidney epithelial Vero cells, followed by determining the virulence phenotype in outbred Hartley guinea pigs. PRINCIPAL FINDINGS We demonstrated that the multiplication kinetics in Vero cells, virulence phenotype in guinea pigs, and neutralizing antibody titers are indistinguishable between rMACV-Chicava and the wild-type parental virus. CONCLUSION AND SIGNIFICANCE We conclude that rMACV-Chicava provides a useful model system to investigate the emergence of MACV lineage II strains and the guinea pig model has utility for the development of candidate vaccines and therapeutic antibodies for BHF.
Collapse
Affiliation(s)
- Emily Mantlo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John T. Manning
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Slobodan Paessler
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
6
|
Pandey B, S S, Chatterjee A, Mangala Prasad V. Role of surface glycans in enveloped RNA virus infections: A structural perspective. Proteins 2025; 93:93-104. [PMID: 37994197 DOI: 10.1002/prot.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Enveloped RNA viruses have been causative agents of major pandemic outbreaks in the recent past. Glycans present on these virus surface proteins are critical for multiple processes during the viral infection cycle. Presence of glycans serves as a key determinant of immunogenicity, but intrinsic heterogeneity, dynamics, and evolutionary shifting of glycans in heavily glycosylated enveloped viruses confounds typical structure-function analysis. Glycosylation sites are also conserved across different viral families, which further emphasizes their functional significance. In this review, we summarize findings regarding structure-function correlation of glycans on enveloped RNA virus proteins.
Collapse
Affiliation(s)
- Bhawna Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Srividhya S
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
8
|
Brouwer PJM, Perrett HR, Beaumont T, Nijhuis H, Kruijer S, Burger JA, Bontjer I, Lee WH, Ferguson JA, Schauflinger M, Müller-Kräuter H, Sanders RW, Strecker T, van Gils MJ, Ward AB. Defining bottlenecks and opportunities for Lassa virus neutralization by structural profiling of vaccine-induced polyclonal antibody responses. Cell Rep 2024; 43:114708. [PMID: 39243373 PMCID: PMC11422484 DOI: 10.1016/j.celrep.2024.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
Lassa fever continues to be a major public health burden in West Africa, yet effective therapies or vaccines are lacking. The isolation of protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccine candidates have generally been unsuccessful at doing so, and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron microscopy-based epitope mapping workflow that enables high-resolution structural characterization of polyclonal antibodies to the GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization that involve epitopes of the GPC-A competition cluster. Furthermore, by identifying undescribed immunogenic off-target epitopes, we expose the challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Hailee R Perrett
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Haye Nijhuis
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Sabine Kruijer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | | | | | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Peter AS, Hoffmann DS, Klier J, Lange CM, Moeller J, Most V, Wüst CK, Beining M, Gülesen S, Junker H, Brumme B, Schiffner T, Meiler J, Schoeder CT. Strategies of rational and structure-driven vaccine design for Arenaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105626. [PMID: 38908736 PMCID: PMC12010953 DOI: 10.1016/j.meegid.2024.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The COVID-19 outbreak has highlighted the importance of pandemic preparedness for the prevention of future health crises. One virus family with high pandemic potential are Arenaviruses, which have been detected almost worldwide, particularly in Africa and the Americas. These viruses are highly understudied and many questions regarding their structure, replication and tropism remain unanswered, making the design of an efficacious and molecularly-defined vaccine challenging. We propose that structure-driven computational vaccine design will contribute to overcome these challenges. Computational methods for stabilization of viral glycoproteins or epitope focusing have made progress during the last decades and particularly during the COVID-19 pandemic, and have proven useful for rational vaccine design and the establishment of novel diagnostic tools. In this review, we summarize gaps in our understanding of Arenavirus molecular biology, highlight challenges in vaccine design and discuss how structure-driven and computationally informed strategies will aid in overcoming these obstacles.
Collapse
Affiliation(s)
- Antonia Sophia Peter
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Dieter S Hoffmann
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johannes Klier
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina M Lange
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johanna Moeller
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany
| | - Victoria Most
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina K Wüst
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Molecular Medicine Studies, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Max Beining
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; SECAI, School of Embedded Composite Artificial Intelligence, Dresden/Leipzig, Germany
| | - Sevilay Gülesen
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Hannes Junker
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Birke Brumme
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Torben Schiffner
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; The Scripps Research Institute, Department for Immunology and Microbiology, La Jolla, CA, United States
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany; Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Clara T Schoeder
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany.
| |
Collapse
|
10
|
Hull MA, Pritchard SM, Nicola AV. Herpes Simplex Virus 1 Envelope Glycoprotein C Shields Glycoprotein D to Protect Virions from Entry-Blocking Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608756. [PMID: 39229192 PMCID: PMC11370450 DOI: 10.1101/2024.08.20.608756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Herpes simplex virus 1 (HSV-1) gD interaction with the host cell receptor nectin-1 triggers the membrane fusion cascade during viral entry. Potent neutralizing antibodies to gD prevent receptor-binding or prevent gD interaction with gH/gL critical for fusion. HSV has many strategies to evade host immune responses. We investigated the ability of virion envelope gC to protect envelope gD from antibody neutralization. HSV-1 lacking gC was more sensitive to neutralization by anti-gD monoclonal antibodies than a wild type rescuant virus. gD in the HSV-1 gC-null viral envelope had enhanced reactivity to anti-gD antibodies compared to wild type. HSV-1 ΔgC binding to the nectin-1 receptor was more readily inhibited by a neutralizing anti-gD monoclonal antibody. HSV-1 ΔgC was also more sensitive to inhibition by soluble nectin-1 receptor. The viral membrane protein composition of HSV-1 ΔgC was equivalent to that of wild type, suggesting that the lack of gC is responsible for the increased reactivity of gD-specific antibodies and the consequent increased susceptibility to neutralization by those antibodies. Together, the results suggest that gC in the HSV-1 envelope shields both receptor-binding domains and gH/gL-interacting domains of gD from neutralizing antibodies, facilitating HSV cell entry.
Collapse
Affiliation(s)
- McKenna A Hull
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
Nakagawa Y, Fujii M, Ito N, Ojika M, Akase D, Aida M, Kinoshita T, Sakurai Y, Yasuda J, Igarashi Y, Ito Y. Molecular basis of N-glycan recognition by pradimicin a and its potential as a SARS-CoV-2 entry inhibitor. Bioorg Med Chem 2024; 105:117732. [PMID: 38643719 DOI: 10.1016/j.bmc.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Virus entry inhibitors are emerging as an attractive class of therapeutics for the suppression of viral transmission. Naturally occurring pradimicin A (PRM-A) has received particular attention as the first-in-class entry inhibitor that targets N-glycans present on viral surface. Despite the uniqueness of its glycan-targeted antiviral activity, there is still limited knowledge regarding how PRM-A binds to viral N-glycans. Therefore, in this study, we performed binding analysis of PRM-A with synthetic oligosaccharides that reflect the structural motifs characteristic of viral N-glycans. Binding assays and molecular modeling collectively suggest that PRM-A preferentially binds to branched oligomannose motifs of N-glycans via simultaneous recognition of two mannose residues at the non-reducing ends. We also demonstrated, for the first time, that PRM-A can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vitro. Significantly, the anti-SARS-CoV-2 effect of PRM-A is attenuated in the presence of the synthetic branched oligomannose, suggesting that the inhibition of SARS-CoV-2 infection is due to the interaction of PRM-A with the branched oligomannose-containing N-glycans. These data provide essential information needed to understand the antiviral mechanism of PRM-A and suggest that PRM-A could serve as a candidate SARS-CoV-2 entry inhibitor targeting N-glycans.
Collapse
Affiliation(s)
- Yu Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Masato Fujii
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nanaka Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Takaaki Kinoshita
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Katz M, Diskin R. The underlying mechanisms of arenaviral entry through matriglycan. Front Mol Biosci 2024; 11:1371551. [PMID: 38516183 PMCID: PMC10955480 DOI: 10.3389/fmolb.2024.1371551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Matriglycan, a recently characterized linear polysaccharide, is composed of alternating xylose and glucuronic acid subunits bound to the ubiquitously expressed protein α-dystroglycan (α-DG). Pathogenic arenaviruses, like the Lassa virus (LASV), hijack this long linear polysaccharide to gain cellular entry. Until recently, it was unclear through what mechanisms LASV engages its matriglycan receptor to initiate infection. Additionally, how matriglycan is synthesized onto α-DG by the Golgi-resident glycosyltransferase LARGE1 remained enigmatic. Recent structural data for LARGE1 and for the LASV spike complex informs us about the synthesis of matriglycan as well as its usage as an entry receptor by arenaviruses. In this review, we discuss structural insights into the system of matriglycan generation and eventual recognition by pathogenic viruses. We also highlight the unique usage of matriglycan as a high-affinity host receptor compared with other polysaccharides that decorate cells.
Collapse
Affiliation(s)
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Stiving AQ, Foreman DJ, VanAernum ZL, Durr E, Wang S, Vlasak J, Galli J, Kafader JO, Tsukidate T, Li X, Schuessler HA, Richardson DD. Dissecting the Heterogeneous Glycan Profiles of Recombinant Coronavirus Spike Proteins with Individual Ion Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:62-73. [PMID: 38032172 DOI: 10.1021/jasms.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Surface-embedded glycoproteins, such as the spike protein trimers of coronaviruses MERS, SARS-CoV, and SARS-CoV-2, play a key role in viral function and are the target antigen for many vaccines. However, their significant glycan heterogeneity poses an analytical challenge. Here, we utilized individual ion mass spectrometry (I2MS), a multiplexed charge detection measurement with similarities to charge detection mass spectrometry (CDMS), in which a commercially available Orbitrap analyzer is used to directly produce mass profiles of these heterogeneous coronavirus spike protein trimers under native-like conditions. Analysis by I2MS shows that glycosylation contributes to the molecular mass of each protein trimer more significantly than expected by bottom-up techniques, highlighting the importance of obtaining complementary intact mass information when characterizing glycosylation of such heterogeneous proteins. Enzymatic dissection to remove sialic acid or N-linked glycans demonstrates that I2MS can be used to better understand the glycan profile from a native viewpoint. Deglycosylation of N-glycans followed by I2MS analysis indicates that the SARS-CoV-2 spike protein trimer contains glycans that are more difficult to remove than its MERS and SARS-CoV counterparts, and these differences are correlated with solvent accessibility. I2MS technology enables characterization of protein mass and intact glycan profile and is orthogonal to traditional mass analysis methods such as size exclusion chromatography-multiangle light scattering (SEC-MALS) and field flow fractionation-multiangle light scattering (FFF-MALS). An added advantage of I2MS is low sample use, requiring 100-fold less than other methodologies. This work highlights how I2MS technology can enable efficient development of vaccines and therapeutics for pharmaceutical development.
Collapse
Affiliation(s)
- Alyssa Q Stiving
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - David J Foreman
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zachary L VanAernum
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Eberhard Durr
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Shiyi Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Josef Vlasak
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jennifer Galli
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Taku Tsukidate
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Hillary A Schuessler
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Douglas D Richardson
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
14
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
15
|
Brouwer PJ, Perrett HR, Beaumont T, Nijhuis H, Kruijer S, Burger JA, Lee WH, Müller-Kraüter H, Sanders RW, Strecker T, van Gils MJ, Ward AB. Defining bottlenecks and opportunities for Lassa virus neutralization by structural profiling of vaccine-induced polyclonal antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572918. [PMID: 38187682 PMCID: PMC10769344 DOI: 10.1101/2023.12.21.572918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Lassa fever continues to be a major public health burden in endemic countries in West Africa, yet effective therapies or vaccines are lacking. The isolation of potent and protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccines candidates have generally been unsuccessful in doing so and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron-microscopy based epitope mapping pipeline that enables high-resolution structural characterization of polyclonal antibodies to GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization which involve epitopes of the GPC-C, GPC-A, and GP1-A competition clusters. Furthermore, by identifying previously undescribed immunogenic off-target epitopes, we expose challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.
Collapse
Affiliation(s)
- Philip J.M. Brouwer
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Haye Nijhuis
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Sabine Kruijer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | | | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
- Lead contact
| |
Collapse
|
16
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans. Nat Commun 2023; 14:7175. [PMID: 37935678 PMCID: PMC10630519 DOI: 10.1038/s41467-023-42836-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Vitalant Research Institute, San Francisco, CA, 94118, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA.
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
17
|
Hastie KM, Melnik LI, Cross RW, Klitting RM, Andersen KG, Saphire EO, Garry RF. The Arenaviridae Family: Knowledge Gaps, Animal Models, Countermeasures, and Prototype Pathogens. J Infect Dis 2023; 228:S359-S375. [PMID: 37849403 PMCID: PMC10582522 DOI: 10.1093/infdis/jiac266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Lassa virus (LASV), Junin virus (JUNV), and several other members of the Arenaviridae family are capable of zoonotic transfer to humans and induction of severe viral hemorrhagic fevers. Despite the importance of arenaviruses as potential pandemic pathogens, numerous gaps exist in scientific knowledge pertaining to this diverse family, including gaps in understanding replication, immunosuppression, receptor usage, and elicitation of neutralizing antibody responses, that in turn complicates development of medical countermeasures. A further challenge to the development of medical countermeasures for arenaviruses is the requirement for use of animal models at high levels of biocontainment, where each model has distinct advantages and limitations depending on, availability of space, animals species-specific reagents, and most importantly the ability of the model to faithfully recapitulate human disease. Designation of LASV and JUNV as prototype pathogens can facilitate progress in addressing the public health challenges posed by members of this important virus family.
Collapse
Affiliation(s)
- Kathryn M Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Lilia I Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, Texas, USA
| | - Raphaëlle M Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Scripps Research Translational Institute, La Jolla, California, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Scripps Research Translational Institute, La Jolla, California, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Zalgen Labs LLC, Frederick, Maryland, USA
| |
Collapse
|
18
|
Gorzkiewicz M, Cramer J, Xu HC, Lang PA. The role of glycosylation patterns of viral glycoproteins and cell entry receptors in arenavirus infection. Biomed Pharmacother 2023; 166:115196. [PMID: 37586116 DOI: 10.1016/j.biopha.2023.115196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Mammarenaviruses are enveloped RNA viruses that can be associated with rodent-transmitted diseases in humans. Their virions are composed of a nucleocapsid surrounded by a lipid bilayer with glycoprotein (GP) spikes interacting with receptors on target cells. Both the GP and receptors are highly glycosylated, with glycosylation patterns being crucial for virus binding and cell entry, viral tropism, immune responses, or therapy strategies. These effects have been previously described for several different viruses. In case of arenaviruses, they remain insufficiently understood. Thus, it is important to determine the mechanisms of glycosylation of viral proteins and receptors responsible for infection, in order to fully understand the biology of arenaviruses. In this article, we have summarized and critically evaluated the available literature data on the glycosylation of mammarenavirus-associated proteins to facilitate further research in this field.
Collapse
Affiliation(s)
- Michal Gorzkiewicz
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Onigbinde S, Reyes CDG, Fowowe M, Daramola O, Atashi M, Bennett AI, Mechref Y. Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants. Biomolecules 2023; 13:1467. [PMID: 37892149 PMCID: PMC10604390 DOI: 10.3390/biom13101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The highly glycosylated S protein plays a vital role in host cell invasion, making it the principal target for vaccine development. Differences in mutations observed on the spike (S) protein of SARS-CoV-2 variants may result in distinct glycosylation patterns, thus influencing immunological evasion, infectivity, and transmissibility. The glycans can mask key epitopes on the S1 protein and alter its structural conformation, allowing the virus to escape the immune system. Therefore, we comprehensively characterize O-glycosylation in eleven variants of SARS-CoV-2 S1 subunits to understand the differences observed in the biology of the variants. In-depth characterization was performed with a double digestion strategy and an efficient LC-MS/MS approach. We observed that O-glycosylation is highly conserved across all variants in the region between the NTD and RBD, whereas other domains and regions exhibit variation in O-glycosylation. Notably, omicron has the highest number of O-glycosylation sites on the S1 subunit. Also, omicron has the highest level of sialylation in the RBD and RBM functional motifs. Our findings may shed light on how differences in O-glycosylation impact viral pathogenicity in variants of SARS-CoV-2 and facilitate the development of a robust vaccine with high protective efficacy against the variants of concern.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (S.O.); (C.D.G.R.); (M.F.); (O.D.); (M.A.); (A.I.B.)
| |
Collapse
|
20
|
Perrett HR, Brouwer PJM, Hurtado J, Newby ML, Liu L, Müller-Kräuter H, Müller Aguirre S, Burger JA, Bouhuijs JH, Gibson G, Messmer T, Schieffelin JS, Antanasijevic A, Boons GJ, Strecker T, Crispin M, Sanders RW, Briney B, Ward AB. Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies. Cell Rep 2023; 42:112524. [PMID: 37209096 PMCID: PMC10242449 DOI: 10.1016/j.celrep.2023.112524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines.
Collapse
Affiliation(s)
- Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philip J M Brouwer
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan Hurtado
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Joey H Bouhuijs
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Grace Gibson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - John S Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Tamasi V, Németh K, Csala M. Role of Extracellular Vesicles in Liver Diseases. Life (Basel) 2023; 13:life13051117. [PMID: 37240762 DOI: 10.3390/life13051117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane structures that are formed by budding from the plasma membrane or originate from the endosomal system. These microparticles (100 nm-100 µm) or nanoparticles (>100 nm) can transport complex cargos to other cells and, thus, provide communication and intercellular regulation. Various cells, such as hepatocytes, liver sinusoidal endothelial cells (LSECs) or hepatic stellate cells (HSCs), secrete and take up EVs in the healthy liver, and the amount, size and content of these vesicles are markedly altered under pathophysiological conditions. A comprehensive knowledge of the modified EV-related processes is very important, as they are of great value as biomarkers or therapeutic targets. In this review, we summarize the latest knowledge on hepatic EVs and the role they play in the homeostatic processes in the healthy liver. In addition, we discuss the characteristic changes of EVs and their potential exacerbating or ameliorating effects in certain liver diseases, such as non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), drug induced liver injury (DILI), autoimmune hepatitis (AIH), hepatocarcinoma (HCC) and viral hepatitis.
Collapse
Affiliation(s)
- Viola Tamasi
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Krisztina Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, 1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
22
|
Dong S, Mao W, Liu Y, Jia X, Zhang Y, Zhou M, Hou Y, Xiao G, Wang W. Deletion of the first glycosylation site promotes Lassa virus glycoprotein-mediated membrane fusion. Virol Sin 2023:S1995-820X(23)00030-5. [PMID: 37059226 DOI: 10.1016/j.virs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
The Lassa virus is endemic in West Africa and causes severe hemorrhagic Lassa fever in humans. The glycoprotein complex (GPC) of LASV is highly glycosylation-modified, with 11 N-glycosylation sites. All 11 N-linked glycan chains play critical roles in GPC cleavage, folding, receptor binding, membrane fusion, and immune evasion. In this study, we focused on the first glycosylation site because its deletion mutant (N79Q) results in an unexpected enhanced membrane fusion, whereas it exerts little effect on GPC expression, cleavage, and receptor binding. Meanwhile, the pseudotype virus bearing GPCN79Q was more sensitive to the neutralizing antibody 37.7H and was attenuated in virulence. Exploring the biological functions of the key glycosylation site on LASV GPC will help elucidate the mechanism of LASV infection and provide strategies for the development of attenuated vaccines against LASV infection.
Collapse
Affiliation(s)
- Siqi Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenting Mao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxia Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Dickey TH, Gupta R, McAleese H, Ouahes T, Orr-Gonzalez S, Ma R, Muratova O, Salinas ND, Hume JCC, Lambert LE, Duffy PE, Tolia NH. Design of a stabilized non-glycosylated Pfs48/45 antigen enables a potent malaria transmission-blocking nanoparticle vaccine. NPJ Vaccines 2023; 8:20. [PMID: 36808125 PMCID: PMC9938515 DOI: 10.1038/s41541-023-00619-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
A malaria vaccine that blocks parasite transmission from human to mosquito would be a powerful method of disrupting the parasite lifecycle and reducing the incidence of disease in humans. Pfs48/45 is a promising antigen in development as a transmission blocking vaccine (TBV) against the deadliest malaria parasite Plasmodium falciparum. The third domain of Pfs48/45 (D3) is an established TBV candidate, but production challenges have hampered development. For example, to date, a non-native N-glycan is required to stabilize the domain when produced in eukaryotic systems. Here, we implement a SPEEDesign computational design and in vitro screening pipeline that retains the potent transmission blocking epitope in Pfs48/45 while creating a stabilized non-glycosylated Pfs48/45 D3 antigen with improved characteristics for vaccine manufacture. This antigen can be genetically fused to a self-assembling single-component nanoparticle, resulting in a vaccine that elicits potent transmission-reducing activity in rodents at low doses. The enhanced Pfs48/45 antigen enables many new and powerful approaches to TBV development, and this antigen design method can be broadly applied towards the design of other vaccine antigens and therapeutics without interfering glycans.
Collapse
Affiliation(s)
- Thayne H. Dickey
- grid.94365.3d0000 0001 2297 5165Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Richi Gupta
- grid.94365.3d0000 0001 2297 5165Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Holly McAleese
- grid.94365.3d0000 0001 2297 5165Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Tarik Ouahes
- grid.94365.3d0000 0001 2297 5165Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Sachy Orr-Gonzalez
- grid.94365.3d0000 0001 2297 5165Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Rui Ma
- grid.94365.3d0000 0001 2297 5165Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Olga Muratova
- grid.94365.3d0000 0001 2297 5165Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Nichole D. Salinas
- grid.94365.3d0000 0001 2297 5165Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Jen C. C. Hume
- grid.94365.3d0000 0001 2297 5165Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Lynn E. Lambert
- grid.94365.3d0000 0001 2297 5165Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Patrick E. Duffy
- grid.94365.3d0000 0001 2297 5165Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| | - Niraj H. Tolia
- grid.94365.3d0000 0001 2297 5165Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD USA
| |
Collapse
|
24
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Integrated analyses reveal a hinge glycan regulates coronavirus spike tilting and virus infectivity. RESEARCH SQUARE 2023:rs.3.rs-2553619. [PMID: 36824920 PMCID: PMC9949256 DOI: 10.21203/rs.3.rs-2553619/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectroscopy. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a novel role of stalk glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays support the hypothesis that this glycan-dependent motion impacts virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Eric A. Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
25
|
Chen J, Li Y, Liu Z. Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101249. [PMID: 36714073 PMCID: PMC9869493 DOI: 10.1016/j.xcrp.2023.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The COVID-19 pandemic has posed a severe threat to human life and the global economy. Although conventional treatments, including vaccines, antibodies, and small-molecule inhibitors, have been broadly developed, they usually fall behind the constant mutation of SARS-CoV-2, due to the long screening process and high production cost. Functional nucleic acid (FNA)-based therapeutics are a newly emerging promising means against COVID-19, considering their timely adaption to different mutants and easy design for broad-spectrum virus inhibition. In this review, we survey typical FNA-related therapeutics against SARS-CoV-2 infection, including aptamers, aptamer-integrated DNA frameworks, functional RNA, and CRISPR-Cas technology. We first introduce the pathogenesis, transmission, and evolution of SARS-CoV-2, then analyze the existing therapeutic and prophylactic strategies, including their pros and cons. Subsequently, the FNAs are recommended as potent alternative therapeutics from their screening process and controllable engineering to effective neutralization. Finally, we put forward the remaining challenges of the existing field and sketch out the future development directions.
Collapse
Affiliation(s)
- Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Abstract
Lassa virus (LASV) is endemic in the rodent populations of Sierra Leone, Nigeria and other countries in West Africa. Spillover to humans occurs frequently and results in Lassa fever, a viral haemorrhagic fever (VHF) associated with a high case fatality rate. Despite advances, fundamental gaps in knowledge of the immunology, epidemiology, ecology and pathogenesis of Lassa fever persist. More frequent outbreaks, the potential for further geographic expansion of Mastomys natalensis and other rodent reservoirs, the ease of procurement and possible use and weaponization of LASV, the frequent importation of LASV to North America and Europe, and the emergence of novel LASV strains in densely populated West Africa have driven new initiatives to develop countermeasures for LASV. Although promising candidates are being evaluated, as yet there are no approved vaccines or therapeutics for human use. This Review discusses the virology of LASV, the clinical course of Lassa fever and the progress towards developing medical countermeasures.
Collapse
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA.
- Zalgen Labs, Frederick, MD, USA.
- Global Viral Network, Baltimore, MD, USA.
| |
Collapse
|
27
|
Ruda A, Aytenfisu AH, Angles d’Ortoli T, MacKerell AD, Widmalm G. Glycosidic α-linked mannopyranose disaccharides: an NMR spectroscopy and molecular dynamics simulation study employing additive and Drude polarizable force fields. Phys Chem Chem Phys 2023; 25:3042-3060. [PMID: 36607620 PMCID: PMC9890503 DOI: 10.1039/d2cp05203b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
D-Mannose is a structural component in N-linked glycoproteins from viruses and mammals as well as in polysaccharides from fungi and bacteria. Structural components often consist of D-Manp residues joined via α-(1→2)-, α-(1→3)-, α-(1→4)- or α-(1→6)-linkages. As models for these oligo- and polysaccharides, a series of mannose-containing disaccharides have been investigated with respect to conformation and dynamics. Translational diffusion NMR experiments were performed to deduce rotational correlation times for the molecules, 1D 1H,1H-NOESY and 1D 1H,1H-T-ROESY NMR experiments were carried out to obtain inter-residue proton-proton distances and one-dimensional long-range and 2D J-HMBC experiments were acquired to gain information about conformationally dependent heteronuclear coupling constants across glycosidic linkages. To attain further spectroscopic data, the doubly 13C-isotope labeled α-D-[1,2-13C2]Manp-(1→4)-α-D-Manp-OMe was synthesized thereby facilitating conformational analysis based on 13C,13C coupling constants as interpreted by Karplus-type relationships. Molecular dynamics simulations were carried out for the disaccharides with explicit water as solvent using the additive CHARMM36 and Drude polarizable force fields for carbohydrates, where the latter showed broader population distributions. Both simulations sampled conformational space in such a way that inter-glycosidic proton-proton distances were very well described whereas in some cases deviations were observed between calculated conformationally dependent NMR scalar coupling constants and those determined from experiment, with closely similar root-mean-square differences for the two force fields. However, analyses of dipole moments and radial distribution functions with water of the hydroxyl groups indicate differences in the underlying physical forces dictating the wider conformational sampling with the Drude polarizable versus additive C36 force field and indicate the improved utility of the Drude polarizable model in investigating complex carbohydrates.
Collapse
Affiliation(s)
- Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-106 91 StockholmSweden
| | - Asaminew H. Aytenfisu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of MarylandBaltimoreMaryland 21201USA
| | - Thibault Angles d’Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-106 91 StockholmSweden
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of MarylandBaltimoreMaryland 21201USA
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-106 91 StockholmSweden
| |
Collapse
|
28
|
Carnell GW, Billmeier M, Vishwanath S, Suau Sans M, Wein H, George CL, Neckermann P, Del Rosario JMM, Sampson AT, Einhauser S, Aguinam ET, Ferrari M, Tonks P, Nadesalingam A, Schütz A, Huang CQ, Wells DA, Paloniemi M, Jordan I, Cantoni D, Peterhoff D, Asbach B, Sandig V, Temperton N, Kinsley R, Wagner R, Heeney JL. Glycan masking of a non-neutralising epitope enhances neutralising antibodies targeting the RBD of SARS-CoV-2 and its variants. Front Immunol 2023; 14:1118523. [PMID: 36911730 PMCID: PMC9995963 DOI: 10.3389/fimmu.2023.1118523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.
Collapse
Affiliation(s)
- George W Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martina Billmeier
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Sneha Vishwanath
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maria Suau Sans
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Wein
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Charlotte L George
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | | | - Alexander T Sampson
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sebastian Einhauser
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ernest T Aguinam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Paul Tonks
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Angalee Nadesalingam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anja Schütz
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Chloe Qingzhou Huang
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Minna Paloniemi
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ingo Jordan
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - David Peterhoff
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Volker Sandig
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Rebecca Kinsley
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,DIOSynVax, Ltd., Cambridge, United Kingdom
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan L Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,DIOSynVax, Ltd., Cambridge, United Kingdom
| |
Collapse
|
29
|
Brouwer PJM, Antanasijevic A, Ronk AJ, Müller-Kräuter H, Watanabe Y, Claireaux M, Perrett HR, Bijl TPL, Grobben M, Umotoy JC, Schriek AI, Burger JA, Tejjani K, Lloyd NM, Steijaert TH, van Haaren MM, Sliepen K, de Taeye SW, van Gils MJ, Crispin M, Strecker T, Bukreyev A, Ward AB, Sanders RW. Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection. Cell Host Microbe 2022; 30:1759-1772.e12. [PMID: 36400021 PMCID: PMC9794196 DOI: 10.1016/j.chom.2022.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom P L Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Jeffrey C Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Angela I Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Nicole M Lloyd
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thijs H Steijaert
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marlies M van Haaren
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
30
|
Abstract
The development of Lassa virus (LASV) vaccines has been challenging due to the instability of recombinant immunogens. In this issue of Cell Host & Microbe, Brouwer et al. use a two-component nanoparticle strategy that enables stable trimeric presentation of the LASV glycoprotein complex (GPC) and induction of broadly neutralizing antibodies.
Collapse
|
31
|
Li H, Buck T, Zandonatti M, Yin J, Moon-Walker A, Fang J, Koval A, Heinrich ML, Rowland MM, Avalos RD, Schendel SL, Parekh D, Zyla D, Enriquez A, Harkins S, Sullivan B, Smith V, Chukwudozie O, Watanabe R, Robinson JE, Garry RF, Branco LM, Hastie KM, Saphire EO. A cocktail of protective antibodies subverts the dense glycan shield of Lassa virus. Sci Transl Med 2022; 14:eabq0991. [PMID: 36288283 PMCID: PMC10084740 DOI: 10.1126/scitranslmed.abq0991] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Developing potent therapeutics and effective vaccines are the ultimate goals in controlling infectious diseases. Lassa virus (LASV), the causative pathogen of Lassa fever (LF), infects hundreds of thousands annually, but effective antivirals or vaccines against LASV infection are still lacking. Furthermore, neutralizing antibodies against LASV are rare. Here, we describe biochemical analyses and high-resolution cryo-electron microscopy structures of a therapeutic cocktail of three broadly protective antibodies that target the LASV glycoprotein complex (GPC), previously identified from survivors of multiple LASV infections. Structural and mechanistic analyses reveal compatible neutralizing epitopes and complementary neutralization mechanisms that offer high potency, broad range, and resistance to escape. These antibodies either circumvent or exploit specific glycans comprising the extensive glycan shield of GPC. Further, they require mammalian glycosylation, native GPC cleavage, and proper GPC trimerization. These findings guided engineering of a next-generation GPC antigen suitable for future neutralizing antibody and vaccine discovery. Together, these results explain protective mechanisms of rare, broad, and potent antibodies and identify a strategy for the rational design of therapeutic modalities against LF and related infectious diseases.
Collapse
Affiliation(s)
- Haoyang Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Tierra Buck
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Jieyun Yin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Alex Moon-Walker
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Jingru Fang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Anatoliy Koval
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
| | - Megan L. Heinrich
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
| | - Megan M. Rowland
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
| | - Ruben Diaz Avalos
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Diptiben Parekh
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Dawid Zyla
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Adrian Enriquez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Stephanie Harkins
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Brian Sullivan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Victoria Smith
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92037 USA
| | - Onyeka Chukwudozie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92037 USA
| | - Reika Watanabe
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - James E. Robinson
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70118 USA
| | - Robert F. Garry
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70118 USA
| | - Luis M. Branco
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92037 USA
| |
Collapse
|
32
|
Dong X, Li X, Chen C, Zhang X, Liang X. Systematic analysis and comparison of O-glycosylation of five recombinant spike proteins in β-coronaviruses. Anal Chim Acta 2022; 1230:340394. [PMID: 36192065 PMCID: PMC9478876 DOI: 10.1016/j.aca.2022.340394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/27/2022] [Accepted: 09/11/2022] [Indexed: 12/01/2022]
Abstract
β-coronaviruses (β-CoVs), representative with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), depend on their highly glycosylated spike proteins to mediate cell entry and membrane fusion. Compared with the extensively identified N-glycosylation, less is known about O-glycosylation of β-CoVs S proteins, let alone its biological functions. Herein we comprehensively characterized O-glycosylation of five recombinant β-CoVs S1 subunits and revealed the macro- and micro-heterogeneity nature of site-specific O-glycosylation. We also uncovered the O-glycosylation differences between SARS-CoV-2 and its natural D614G mutant on functional domains. This work describes the systematic O-glycosylation analysis of β-CoVs S1 proteins and will help to guide the related vaccines and antiviral drugs development.
Collapse
Affiliation(s)
- Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China.
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Xiaofei Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China.
| |
Collapse
|
33
|
Allen JD, Ivory D, Ge Song S, He WT, Capozzola T, Yong P, Burton DR, Andrabi R, Crispin M. The diversity of the glycan shield of sarbecoviruses closely related to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.24.505118. [PMID: 36052375 PMCID: PMC9435400 DOI: 10.1101/2022.08.24.505118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The animal reservoirs of sarbecoviruses represent a significant risk of emergent pandemics, as evidenced by the impact of SARS-CoV-2. Vaccines remain successful at limiting severe disease and death, however the continued emergence of SARS-CoV-2 variants, together with the potential for further coronavirus zoonosis, motivates the search for pan-coronavirus vaccines that induce broadly neutralizing antibodies. This necessitates a better understanding of the glycan shields of coronaviruses, which can occlude potential antibody epitopes on spike glycoproteins. Here, we compare the structure of several sarbecovirus glycan shields. Many N-linked glycan attachment sites are shared by all sarbecoviruses, and the processing state of certain sites is highly conserved. However, there are significant differences in the processing state at several glycan sites that surround the receptor binding domain. Our studies reveal similarities and differences in the glycosylation of sarbecoviruses and show how subtle changes in the protein sequence can have pronounced impacts on the glycan shield.
Collapse
Affiliation(s)
- Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dylan Ivory
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sophie Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
34
|
Abstract
Lassa virus (LASV) is the causative agent of the deadly Lassa fever (LF). Seven distinct LASV lineages circulate through western Africa, among which lineage I (LI), the first to be identified, is particularly resistant to antibody neutralization. Lineage I LASV evades neutralization by half of known antibodies in the GPC-A antibody competition group and all but one of the antibodies in the GPC-B competition group. Here, we solve two cryo-electron microscopy (cryo-EM) structures of LI GP in complex with a GPC-A and a GPC-B antibody. We used complementary structural and biochemical techniques to identify single-amino-acid substitutions in LI that are responsible for immune evasion by each antibody group. Further, we show that LI infection is more dependent on the endosomal receptor lysosome-associated membrane protein 1 (LAMP1) for viral entry relative to LIV. In the absence of LAMP1, LI requires a more acidic fusion pH to initiate membrane fusion with the host cell relative to LIV.
Collapse
|
35
|
Enriquez AS, Buck TK, Li H, Norris MJ, Moon-Walker A, Zandonatti MA, Harkins SS, Robinson JE, Branco LM, Garry RF, Saphire EO, Hastie KM. Delineating the mechanism of anti-Lassa virus GPC-A neutralizing antibodies. Cell Rep 2022; 39:110841. [PMID: 35613585 PMCID: PMC9258627 DOI: 10.1016/j.celrep.2022.110841] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Lassa virus (LASV) is the etiologic agent of Lassa Fever, a hemorrhagic disease that is endemic to West Africa. During LASV infection, LASV glycoprotein (GP) engages with multiple host receptors for cell entry. Neutralizing antibodies against GP are rare and principally target quaternary epitopes displayed only on the metastable, pre-fusion conformation of GP. Currently, the structural features of the neutralizing GPC-A antibody competition group are understudied. Structures of two GPC-A antibodies presented here demonstrate that they bind the side of the pre-fusion GP trimer, bridging the GP1 and GP2 subunits. Complementary biochemical analyses indicate that antibody 25.10C, which is broadly specific, neutralizes by inhibiting binding of the endosomal receptor LAMP1 and also by blocking membrane fusion. The other GPC-A antibody, 36.1F, which is lineage-specific, prevents LAMP1 association only. These data illuminate a site of vulnerability on LASV GP and will guide efforts to elicit broadly reactive therapeutics and vaccines. Enriquez et al. present two structures of GPC-A antibody Fab fragments bound to Lassa virus glycoprotein. Complementary biochemical analyses illuminate mechanistic differences between pan-Lassa 25.10C and lineage-specific 36.1F. 25.10C inhibits two steps of Lassa virus infection, LAMP1 binding and membrane fusion, while 36.1F only blocks LAMP1.
Collapse
Affiliation(s)
| | - Tierra K Buck
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Haoyang Li
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Alex Moon-Walker
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Program in Virology, Harvard University, Boston, MA 02115, USA; Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | | | | | - James E Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Robert F Garry
- Zalgen Labs, LLC, Germantown, MD 20876, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
36
|
Mantlo EK, Maruyama J, Manning JT, Wanninger TG, Huang C, Smith JN, Patterson M, Paessler S, Koma T. Machupo Virus with Mutations in the Transmembrane Domain and Glycosylation Sites of the Glycoprotein Is Attenuated and Immunogenic in Animal Models of Bolivian Hemorrhagic Fever. J Virol 2022; 96:e0020922. [PMID: 35343792 PMCID: PMC9044957 DOI: 10.1128/jvi.00209-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
Several highly pathogenic mammarenaviruses cause severe hemorrhagic and neurologic disease in humans for which vaccines and antivirals are limited or unavailable. New World (NW) mammarenavirus Machupo virus (MACV) infection causes Bolivian hemorrhagic fever in humans. We previously reported that the disruption of specific N-linked glycan sites on the glycoprotein (GPC) partially attenuates MACV in an interferon alpha/beta and gamma (IFN-α/β and -γ) receptor knockout (R-/-) mouse model. However, some capability to induce neurological pathology still remained. The highly pathogenic Junin virus (JUNV) is another NW arenavirus closely related to MACV. An F427I substitution in the GPC transmembrane domain (TMD) rendered JUNV attenuated in a lethal mouse model after intracranial inoculation. In this study, we rationally designed and rescued a MACV containing mutations at two glycosylation sites and the corresponding F438I substitution in the GPC TMD. The MACV mutant is fully attenuated in IFN-α/β and -γ R-/- mice and outbred guinea pigs. Furthermore, inoculation with this mutant MACV completely protected guinea pigs from wild-type MACV lethal challenge. Last, we found the GPC TMD F438I substitution greatly impaired MACV growth in neuronal cell lines of mouse and human origins. Our results highlight the critical roles of the glycans and the TMD on the GPC in arenavirus virulence, which provide insight into the rational design of potential vaccine candidates for highly pathogenic arenaviruses. IMPORTANCE For arenaviruses, the only vaccine available is the live attenuated Candid#1 vaccine, a JUNV vaccine approved in Argentina. We and others have found that the glycans on GPC and the F427 residue in the GPC TMD are important for virulence of JUNV. Nevertheless, mutating either of them is not sufficient for full and stable attenuation of JUNV. Using reverse genetics, we disrupted specific glycosylation sites on MACV GPC and also introduced the corresponding F438I substitution in the GPC TMD. This MACV mutant is fully attenuated in two animal models and protects animals from lethal infection. Thus, our studies highlight the feasibility of rational attenuation of highly pathogenic arenaviruses for vaccine development. Another important finding from this study is that the F438I substitution in GPC TMD could substantially affect MACV replication in neurons. Future studies are warranted to elucidate the underlying mechanism and the implication of this mutation in arenavirus neural tropism.
Collapse
Affiliation(s)
- Emily K. Mantlo
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - John T. Manning
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Timothy G. Wanninger
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Jeanon N. Smith
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Michael Patterson
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
37
|
Ng WM, Sahin M, Krumm SA, Seow J, Zeltina A, Harlos K, Paesen GC, Pinschewer DD, Doores KJ, Bowden TA. Contrasting Modes of New World Arenavirus Neutralization by Immunization-Elicited Monoclonal Antibodies. mBio 2022; 13:e0265021. [PMID: 35315691 PMCID: PMC9040744 DOI: 10.1128/mbio.02650-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/28/2022] [Indexed: 12/31/2022] Open
Abstract
Transmission of the New World hemorrhagic fever arenaviruses Junín virus (JUNV) and Machupo virus (MACV) to humans is facilitated, in part, by the interaction between the arenavirus GP1 glycoprotein and the human transferrin receptor 1 (hTfR1). We utilize a mouse model of live-attenuated immunization with envelope exchange viruses to isolate neutralizing monoclonal antibodies (NAbs) specific to JUNV GP1 and MACV GP1. Structures of two NAbs, termed JUN1 and MAC1, demonstrate that they neutralize through disruption of hTfR1 recognition. JUN1 utilizes a binding mode common to all characterized infection- and vaccine-elicited JUNV-specific NAbs, which involves mimicking hTfR1 binding through the insertion of a tyrosine into the receptor-binding site. In contrast, MAC1 undergoes a tyrosine-mediated mode of antigen recognition distinct from that used by the reported anti-JUNV NAbs and the only other characterized anti-MACV NAb. These data reveal the varied modes of GP1-specific recognition among New World arenaviruses by the antibody-mediated immune response. IMPORTANCE The GP1 subcomponent of the New World arenavirus GP is a primary target of the neutralizing antibody response, which has been shown to be effective in the prevention and treatment of infection. Here, we characterize the structural basis of the antibody-mediated immune response that arises from immunization of mice against Junín virus and Machupo virus, two rodent-borne zoonotic New World arenaviruses. We isolate a panel of GP1-specific monoclonal antibodies that recognize overlapping epitopes and exhibit neutralizing behavior, in vitro. Structural characterization of two of these antibodies indicates that antibody recognition likely interferes with GP1-mediated recognition of the transferrin receptor 1. These data provide molecular-level detail for a key region of vulnerability on the New World arenavirus surface and a blueprint for therapeutic antibody development.
Collapse
Affiliation(s)
- Weng M. Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mehmet Sahin
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Stefanie A. Krumm
- Kings College London, Department of Infectious Diseases, Guy’s Hospital, London, United Kingdom
| | - Jeffrey Seow
- Kings College London, Department of Infectious Diseases, Guy’s Hospital, London, United Kingdom
| | - Antra Zeltina
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniel D. Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Katie J. Doores
- Kings College London, Department of Infectious Diseases, Guy’s Hospital, London, United Kingdom
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Pennington H, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Biosci Rep 2022; 42:BSR20211930. [PMID: 35088070 PMCID: PMC8844875 DOI: 10.1042/bsr20211930] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever-a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit-a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.
Collapse
Affiliation(s)
- Hallie N. Pennington
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| |
Collapse
|
39
|
Spillings BL, Day CJ, Garcia-Minambres A, Aggarwal A, Condon ND, Haselhorst T, Purcell DFJ, Turville SG, Stow JL, Jennings MP, Mak J. Host glycocalyx captures HIV proximal to the cell surface via oligomannose-GlcNAc glycan-glycan interactions to support viral entry. Cell Rep 2022; 38:110296. [PMID: 35108536 DOI: 10.1016/j.celrep.2022.110296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/18/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Here, we present ultrastructural analyses showing that incoming HIV are captured near the lymphocyte surface in a virion-glycan-dependent manner. Biophysical analyses show that removal of either virion- or cell-associated N-glycans impairs virus-cell binding, and a similar glycan-dependent relationship is observed between purified HIV envelope (Env) and primary T cells. Trimming of N-glycans from either HIV or Env does not inhibit protein-protein interactions. Glycan arrays reveal HIV preferentially binds to N-acetylglucosamine and mannose. Interfering with these glycan-based interactions reduces HIV infectivity. These glycan interactions are distinct from previously reported glycan-lectin and non-specific electrostatic charge-based interactions. Specific glycan-glycan-mediated attachment occurs prior to virus entry and enhances efficiency of infection. Binding and fluorescent imaging data support glycan-glycan interactions as being responsible, at least in part, for initiating contact between HIV and the host cell, prior to viral Env-cellular CD4 engagement.
Collapse
Affiliation(s)
- Belinda L Spillings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Damian F J Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia; School of Medicine, Deakin University, Geelong, VIC 3216, Australia.
| |
Collapse
|
40
|
Chawla H, Jossi SE, Faustini SE, Samsudin F, Allen JD, Watanabe Y, Newby ML, Marcial-Juárez E, Lamerton RE, McLellan JS, Bond PJ, Richter AG, Cunningham AF, Crispin M. Glycosylation and Serological Reactivity of an Expression-enhanced SARS-CoV-2 Viral Spike Mimetic. J Mol Biol 2022; 434:167332. [PMID: 34717971 PMCID: PMC8550889 DOI: 10.1016/j.jmb.2021.167332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Extensive glycosylation of viral glycoproteins is a key feature of the antigenic surface of viruses and yet glycan processing can also be influenced by the manner of their recombinant production. The low yields of the soluble form of the trimeric spike (S) glycoprotein from SARS-CoV-2 has prompted advances in protein engineering that have greatly enhanced the stability and yields of the glycoprotein. The latest expression-enhanced version of the spike incorporates six proline substitutions to stabilize the prefusion conformation (termed SARS-CoV-2 S HexaPro). Although the substitutions greatly enhanced expression whilst not compromising protein structure, the influence of these substitutions on glycan processing has not been explored. Here, we show that the site-specific N-linked glycosylation of the expression-enhanced HexaPro resembles that of an earlier version containing two proline substitutions (2P), and that both capture features of native viral glycosylation. However, there are site-specific differences in glycosylation of HexaPro when compared to 2P. Despite these discrepancies, analysis of the serological reactivity of clinical samples from infected individuals confirmed that both HexaPro and 2P protein are equally able to detect IgG, IgA, and IgM responses in all sera analysed. Moreover, we extend this observation to include an analysis of glycan engineered S protein, whereby all N-linked glycans were converted to oligomannose-type and conclude that serological activity is not impacted by large scale changes in glycosylation. These observations suggest that variations in glycan processing will not impact the serological assessments currently being performed across the globe.
Collapse
Affiliation(s)
- Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sian E Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Sian E Faustini
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Firdaus Samsudin
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Edith Marcial-Juárez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Rachel E Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Alex G Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
41
|
Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rougé P. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Cells 2022; 11:cells11030339. [PMID: 35159151 PMCID: PMC8834014 DOI: 10.3390/cells11030339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic enveloped viruses are covered with a glycan shield that provides a dual function: the glycan structures contribute to virus protection as well as host cell recognition. The three classical types of N-glycans, in particular complex glycans, high-mannose glycans, and hybrid glycans, together with some O-glycans, participate in the glycan shield of the Ebola virus, influenza virus, human cytomegalovirus, herpes virus, human immunodeficiency virus, Lassa virus, and MERS-CoV, SARS-CoV, and SARS-CoV-2, which are responsible for respiratory syndromes. The glycans are linked to glycoproteins that occur as metastable prefusion glycoproteins on the surface of infectious virions such as gp120 of HIV, hemagglutinin of influenza, or spike proteins of beta-coronaviruses. Plant lectins with different carbohydrate-binding specificities and, especially, mannose-specific lectins from the Vicieae tribe, such as pea lectin and lentil lectin, can be used as glycan probes for targeting the glycan shield because of their specific interaction with the α1,6-fucosylated core Man3GlcNAc2, which predominantly occurs in complex and hybrid glycans. Other plant lectins with Neu5Ac specificity or GalNAc/T/Tn specificity can also serve as potential glycan probes for the often sialylated complex glycans and truncated O-glycans, respectively, which are abundantly distributed in the glycan shield of enveloped viruses. The biomedical and therapeutical potential of plant lectins as antiviral drugs is discussed.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Bernard Klonjkowski
- UMR Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Jan Sudor
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
42
|
Harvey DJ, Struwe WB, Behrens AJ, Vasiljevic S, Crispin M. Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins. Anal Bioanal Chem 2021; 413:7277-7294. [PMID: 34342671 PMCID: PMC8329908 DOI: 10.1007/s00216-021-03480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/05/2022]
Abstract
Structural determination of N-glycans by mass spectrometry is ideally performed by negative ion collision-induced dissociation because the spectra are dominated by cross-ring fragments leading to ions that reveal structural details not available by many other methods. Most glycans form [M - H]- or [M + adduct]- ions but larger ones (above approx. m/z 2000) typically form doubly charged ions. Differences have been reported between the fragmentation of singly and doubly charged ions but a detailed comparison does not appear to have been reported. In addition to [M + adduct]- ions (this paper uses phosphate as the adduct) other doubly, triply, and quadruply charged ions of composition [Mn + (H2PO4)n]n- have been observed in mixtures of N-glycans released from viral and other glycoproteins. This paper explores the formation and fragmentation of these different types of multiply charged ions with particular reference to the presence of diagnostic fragments in the CID spectra and comments on how these ions can be used to characterize these glycans.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- GlycoEra AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- School of Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
43
|
Lauterbach H, Schmidt S, Katchar K, Qing X, Iacobucci C, Hwang A, Schlienger K, Berka U, Raguz J, Ahmadi-Erber S, Schippers T, Stemeseder F, Pinschewer DD, Matushansky I, Orlinger KK. Development and Characterization of a Novel Non-Lytic Cancer Immunotherapy Using a Recombinant Arenavirus Vector Platform. Front Oncol 2021; 11:732166. [PMID: 34722273 PMCID: PMC8551556 DOI: 10.3389/fonc.2021.732166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
Engineered viral vectors represent a promising strategy to trigger antigen-specific antitumor T cell responses. Arenaviruses have been widely studied because of their ability to elicit potent and protective T cell responses. Here, we provide an overview of a novel intravenously administered, replication-competent, non-lytic arenavirus-based vector technology that delivers tumor antigens to induce antigen-specific anti-cancer T cell responses. Preclinical studies in mice and cell culture experiments with human peripheral blood mononuclear cells demonstrate that arenavirus vectors preferentially infect antigen-presenting cells. This, in conjunction with a non-lytic functional activation of the infected antigen-presenting cells, leads to a robust antigen-specific CD8+ T cell response. T cell migration to, and infiltration of, the tumor microenvironment has been demonstrated in various preclinical tumor models with vectors encoding self- and non-self-antigens. The available data also suggest that arenavirus-based vector therapy can induce immunological memory protecting from tumor rechallenge. Based on promising preclinical data, a phase 1/2 clinical trial was initiated and is currently ongoing to test the activity and safety of arenavirus vectors, HB-201 and HB-202, created using lymphocytic choriomeningitis virus and Pichinde virus, respectively. Both vectors have been engineered to deliver non-oncogenic versions of the human papilloma virus 16 (HPV16) antigens E7 and E6 and will be injected intravenously with or without an initial intratumoral dose. This dose escalation/expansion study is being conducted in patients with recurrent or metastatic HPV16+ cancers. Promising preliminary data from this ongoing clinical study have been reported. Immunogenicity data from several patients demonstrate that a single injection of HB-201 or HB-202 monotherapy is highly immunogenic, as evidenced by an increase in inflammatory cytokines/chemokines and the expansion of antigen-specific CD8+ T cell responses. This response can be further enhanced by alternating injections of HB-202 and HB-201, which has resulted in frequencies of circulating HPV16 E7/E6-specific CD8+ T cells of up to 40% of the total CD8+ T cell compartment in peripheral blood in analyses to date. Treatment with intravenous administration also resulted in a disease control rate of 73% among 11 evaluable patients with head and neck cancer dosed every three weeks, including 2 patients with a partial response.
Collapse
Affiliation(s)
| | | | - Kia Katchar
- Hookipa Pharma Inc., New York, NY, United States
| | | | | | - Andy Hwang
- Hookipa Pharma Inc., New York, NY, United States
| | | | - Ursula Berka
- Hookipa Pharma Inc., New York, NY, United States
| | - Josipa Raguz
- Hookipa Pharma Inc., New York, NY, United States
| | | | | | | | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
44
|
Thornlow DN, Macintyre AN, Oguin TH, Karlsson AB, Stover EL, Lynch HE, Sempowski GD, Schmidt AG. Altering the Immunogenicity of Hemagglutinin Immunogens by Hyperglycosylation and Disulfide Stabilization. Front Immunol 2021; 12:737973. [PMID: 34691043 PMCID: PMC8528956 DOI: 10.3389/fimmu.2021.737973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza virus alters glycosylation patterns on its surface exposed glycoproteins to evade host adaptive immune responses. The viral hemagglutinin (HA), in particular the H3 subtype, has increased its overall surface glycosylation since its introduction in 1968. We previously showed that modulating predicted N-linked glycosylation sites on H3 A/Hong Kong/1/1968 HA identified a conserved epitope at the HA interface. This epitope is occluded on the native HA trimer but is likely exposed during HA "breathing" on the virion surface. Antibodies directed to this site are protective via an ADCC-mediated mechanism. This glycan engineering strategy made an otherwise subdominant epitope dominant in the murine model. Here, we asked whether cysteine stabilization of the hyperglycosylated HA trimer could reverse this immunodominance by preventing access to the interface epitope and focus responses to the HA receptor binding site (RBS). While analysis of serum responses from immunized mice did not show a redirection to the RBS, cysteine stabilization did result in an overall reduction in immunogenicity of the interface epitope. Thus, glycan engineering and cysteine stabilization are two strategies that can be used together to alter immunodominance patterns to HA. These results add to rational immunogen design approaches used to manipulate immune responses for the development of next-generation influenza vaccines.
Collapse
Affiliation(s)
- Dana N. Thornlow
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Thomas H. Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Amelia B. Karlsson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Erica L. Stover
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Heather E. Lynch
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Departments of Medicine and Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Schön K, Lepenies B, Goyette-Desjardins G. Impact of Protein Glycosylation on the Design of Viral Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 175:319-354. [PMID: 32935143 DOI: 10.1007/10_2020_132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play crucial roles in various biological processes such as cell proliferation, cell-cell interactions, and immune responses. Since viruses co-opt cellular biosynthetic pathways, viral glycosylation mainly depends on the host cell glycosylation machinery. Consequently, several viruses exploit the cellular glycosylation pathway to their advantage. It was shown that viral glycosylation is strongly dependent on the host system selected for virus propagation and/or protein expression. Therefore, the use of different expression systems results in various glycoforms of viral glycoproteins that may differ in functional properties. These differences clearly illustrate that the choice of the expression system can be important, as the resulting glycosylation may influence immunological properties. In this review, we will first detail protein N- and O-glycosylation pathways and the resulting glycosylation patterns; we will then discuss different aspects of viral glycosylation in pathogenesis and in vaccine development; and finally, we will elaborate on how to harness viral glycosylation in order to optimize the design of viral vaccines. To this end, we will highlight specific examples to demonstrate how glycoengineering approaches and exploitation of different expression systems could pave the way towards better self-adjuvanted glycan-based viral vaccines.
Collapse
Affiliation(s)
- Kathleen Schön
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Guillaume Goyette-Desjardins
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| |
Collapse
|
46
|
Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry 2021; 60:2153-2169. [PMID: 34213308 PMCID: PMC8262170 DOI: 10.1021/acs.biochem.1c00279] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/18/2021] [Indexed: 02/08/2023]
Abstract
A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
Collapse
Affiliation(s)
- Joel D. Allen
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Himanshi Chawla
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Firdaus Samsudin
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
| | - Lorena Zuzic
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Chemistry, Faculty of Science and Engineering, Manchester Institute
of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K.
| | - Aishwary Tukaram Shivgan
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Biological Sciences, National University
of Singapore, Singapore 117543
| | - Yasunori Watanabe
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Wan-ting He
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sean Callaghan
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ge Song
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peter Yong
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Philip J. M. Brouwer
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, Amsterdam Infection & Immunity Institute, 1007 MB Amsterdam, The Netherlands
| | - Yutong Song
- Tsinghua-Peking
Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing
Advanced Innovation Center for Structural Biology and Frontier Research
Center for Biological Structure, Beijing 100084, China
| | - Yongfei Cai
- Division
of Molecular Medicine, Boston Children’s
Hospital, 3 Blackfan
Street, Boston, Massachusetts 02115, United States
| | - Helen M. E. Duyvesteyn
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
| | - Tomas Malinauskas
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
| | - Joeri Kint
- ExcellGene SA, CH1870 Monthey, Switzerland
| | - Paco Pino
- ExcellGene SA, CH1870 Monthey, Switzerland
| | | | - Martin Frank
- Biognos AB, Generatorsgatan
1, 41705 Göteborg, Sweden
| | - Bing Chen
- Division
of Molecular Medicine, Boston Children’s
Hospital, 3 Blackfan
Street, Boston, Massachusetts 02115, United States
- Department
of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, Massachusetts 02115, United States
| | - David I. Stuart
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
- Diamond Light Source Ltd., Harwell Science
& Innovation Campus, Didcot OX11 0DE, U.K.
| | - Rogier W. Sanders
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, Amsterdam Infection & Immunity Institute, 1007 MB Amsterdam, The Netherlands
- Department
of Microbiology and Immunology, Weill Medical
College of Cornell University, New York, New York 10065, United States
| | - Raiees Andrabi
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dennis R. Burton
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
- Ragon Institute of Massachusetts General
Hospital, Massachusetts
Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, United States
| | - Sai Li
- Tsinghua-Peking
Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing
Advanced Innovation Center for Structural Biology and Frontier Research
Center for Biological Structure, Beijing 100084, China
| | - Peter J. Bond
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Biological Sciences, National University
of Singapore, Singapore 117543
| | - Max Crispin
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
47
|
Jayawardena N, Miles LA, Burga LN, Rudin C, Wolf M, Poirier JT, Bostina M. N-Linked Glycosylation on Anthrax Toxin Receptor 1 Is Essential for Seneca Valley Virus Infection. Viruses 2021; 13:v13050769. [PMID: 33924774 PMCID: PMC8145208 DOI: 10.3390/v13050769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 01/12/2023] Open
Abstract
Seneca Valley virus (SVV) is a picornavirus with potency in selectively infecting and lysing cancerous cells. The cellular receptor for SVV mediating the selective tropism for tumors is anthrax toxin receptor 1 (ANTXR1), a type I transmembrane protein expressed in tumors. Similar to other mammalian receptors, ANTXR1 has been shown to harbor N-linked glycosylation sites in its extracellular vWA domain. However, the exact role of ANTXR1 glycosylation on SVV attachment and cellular entry was unknown. Here we show that N-linked glycosylation in the ANTXR1 vWA domain is necessary for SVV attachment and entry. In our study, tandem mass spectrometry analysis of recombinant ANTXR1-Fc revealed the presence of complex glycans at N166, N184 in the vWA domain, and N81 in the Fc domain. Symmetry-expanded cryo-EM reconstruction of SVV-ANTXR1-Fc further validated the presence of N166 and N184 in the vWA domain. Cell blocking, co-immunoprecipitation, and plaque formation assays confirmed that deglycosylation of ANTXR1 prevents SVV attachment and subsequent entry. Overall, our results identified N-glycosylation in ANTXR1 as a necessary post-translational modification for establishing stable interactions with SVV. We anticipate our findings will aid in selecting patients for future cancer therapeutics, where screening for both ANTXR1 and its glycosylation could lead to an improved outcome from SVV therapy.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Linde A. Miles
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Laura N. Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
| | - Charles Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - John T. Poirier
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Otago Micro and Nano Imaging Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| |
Collapse
|
48
|
Matoba Y, Sato Y, Oda K, Hatori Y, Morimoto K. Lectins engineered to favor a glycan-binding conformation have enhanced antiviral activity. J Biol Chem 2021; 296:100698. [PMID: 33895142 PMCID: PMC8166773 DOI: 10.1016/j.jbc.2021.100698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Homologues of the Oscillatoria agardhii agglutinin (OAA) lectins contain a sequence repeat of ∼66 amino acids, with the number of tandem repeats varying across family members. OAA homologues bind high-mannose glycans on viral surface proteins, thereby interfering with viral entry into host cells. As such, OAA homologues have potential utility as antiviral agents, but a more detailed understanding of their structure–function relationships would enable us to develop improved constructs. Here, we determined the X-ray crystal structure of free and glycan-bound forms of Pseudomonas taiwanensis lectin (PTL), an OAA-family lectin consisting of two tandem repeats. Like other OAA-family lectins, PTL exhibited a β-barrel-like structure with two symmetrically positioned glycan-binding sites at the opposite ends of the barrel. Upon glycan binding, the conformation of PTL undergoes a more significant change than expected from previous OAA structural analysis. Moreover, the electron density of the bound glycans suggested that the binding affinities are different at the two binding sites. Next, based on analysis of these structures, we used site-specific mutagenesis to create PTL constructs expected to increase the population with a conformation suitable for glycan binding. The engineered PTLs were examined for their antiviral activity against the influenza virus. Interestingly, some exhibited stronger activity compared with that of the parent PTL. We propose that our approach is effective for the generation of potential microbicides with enhanced antiviral activity.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Yuichiro Sato
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Kosuke Oda
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Hatori
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Kinjiro Morimoto
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan.
| |
Collapse
|
49
|
Abass OA, Timofeev VI, Sarkar B, Onobun DO, Ogunsola SO, Aiyenuro AE, Aborode AT, Aigboje AE, Omobolanle BN, Imolele AG, Abiodun AA. Immunoinformatics analysis to design novel epitope based vaccine candidate targeting the glycoprotein and nucleoprotein of Lassa mammarenavirus (LASMV) using strains from Nigeria. J Biomol Struct Dyn 2021; 40:7283-7302. [PMID: 33719908 DOI: 10.1080/07391102.2021.1896387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lassa mammarenavirus (LASMV) is responsible for a specific type of acute viral hemorrhagic fever known as Lassa fever. Lack of effective treatments and counter-measures against the virus has resulted in a high mortality rate in its endemic regions. Therefore, in this study, a novel epitope-based vaccine has been designed using the methods of immunoinformatics targeting the glycoprotein and nucleoprotein of the virus. After numerous robust analyses, two CTL epitopes, eight HTL epitopes and seven B-cell epitopes were finally selected for constructing the vaccine. All these most promising epitopes were found to be antigenic, non-allergenic, nontoxic and non-human homolog, which made them suitable for designing the subunit vaccine. Furthermore, the selected T-cell epitopes which were found to be fully conserved across different isolates of the virus, were also considered for final vaccine construction. After that, numerous validation experiments, i.e. molecular docking, molecular dynamics simulation and immune simulation were conducted, which predicted that our designed vaccine should be stable within the biological environment and effective in combating the LASMV infection. In the end, codon adaptation and in silico cloning studies were performed to design a recombinant plasmid for producing the vaccine industrially. However, further in vitro and in vivo assessments should be done on the constructed vaccine to finally confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ohilebo Abdulateef Abass
- Department of Bioinformatics & Computational Biology, Centre for BioCode, Benin, Nigeria.,Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Nigeria
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Bishajit Sarkar
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Desmond Odiamehi Onobun
- Department of Bioinformatics & Computational Biology, Centre for BioCode, Benin, Nigeria.,Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Nigeria
| | | | | | - Abdullahi Tunde Aborode
- Research & Development, Shaping Women in STEM (SWIS) Africa, Lagos, Nigeria.,Research & Development, Healthy Africans Platform, Ibadan, Nigeria
| | | | | | | | - Alade Adebowale Abiodun
- Bio-Computing Research Unit, Molecular Biology & Simulations (Mols & Sims) Centre, Ado-Ekiti, Nigeria
| |
Collapse
|
50
|
Zhu X, Liu Y, Guo J, Cao J, Wang Z, Xiao G, Wang W. Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response. Virol Sin 2021; 36:774-783. [PMID: 33689141 PMCID: PMC7945000 DOI: 10.1007/s12250-021-00358-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022] Open
Abstract
Lassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. The glycoprotein complex (GPC) contains eleven N-linked glycans that play essential roles in GPC functionalities such as cleavage, transport, receptor recognition, epitope shielding, and immune response. We used three mutagenesis strategies (asparagine to glutamine, asparagine to alanine, and serine/tyrosine to alanine mutants) to abolish individual glycan chain on GPC and found that all the three strategies led to cleavage inefficiency on the 2nd (N89), 5th (N119), or 8th (N365) glycosylation motif. To evaluate N to Q mutagenesis for further research, it was found that deletion of the 2nd (N89Q) or 8th (N365Q) glycan completely inhibited the transduction efficiency of pseudotyped particles. We further investigated the role of individual glycan on GPC-mediated immune response by DNA immunization of mice. Deletion of the individual 1st (N79Q), 3rd (N99Q), 5th (N119Q), or 6th (N167Q) glycan significantly enhanced the proportion of effector CD4+ cells, whereas deletion of the 1st (N79Q), 2nd (N89Q), 3rd (N99Q), 4th (N109Q), 5th (N119Q), 6th (N167Q), or 9th (N373Q) glycan enhanced the proportion of CD8+ effector T cells. Deletion of specific glycan improves the Th1-type immune response, and abolishment of glycan on GPC generally increases the antibody titer to the glycan-deficient GPC. However, the antibodies from either the mutant or WT GPC-immunized mice show little neutralization effect on wild-type LASV. The glycan residues on GPC provide an immune shield for the virus, and thus represent a target for the design and development of a vaccine.
Collapse
Affiliation(s)
- Xueqin Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiao Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zonglin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|