1
|
Dittmar J, Crozier R, de-Dios T, Scheib CL, Armstrong JW, Pape J, MacLennan R, Craig R, Oxenham M. The final plague outbreak in Scotland 1644-1649: Historical, archaeological, and genetic evidence. PLoS One 2024; 19:e0306432. [PMID: 39536013 PMCID: PMC11559987 DOI: 10.1371/journal.pone.0306432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/17/2024] [Indexed: 11/16/2024] Open
Abstract
This paper has several aims: to determine if Yersinia pestis was the causative agent in the last Scottish plague outbreak in the mid-17th century; map the geographic spread of the epidemic and isolate potential contributing factors to its spread and severity; and examine funerary behaviours in the context of a serious plague epidemic in early modern Scotland. Results confirm the presence of Y. pestis in individuals associated with a mid-17th century plague pit in Aberdeen. This is the first time this pathogen has been identified in an archaeological sample from Scotland. The geographic spread of the plague from 1644 through to 1649 is generally, with some key exceptions, restricted to the central lowlands of Scotland. The role of administrative responses to the epidemic in managing its spread and distribution is unclear. Finally, normative funerary practices tended to co-exist with mass burial scenarios. In conclusion, the distribution of the epidemic is arguably a function of population density/distribution, transportation networks, and the chaos associated with the concurrent civil war. Administrative responses to the epidemic likely had a variable, albeit limited, effect in the central lowlands. More peripheral cities, such as Aberdeen, while also employing sophisticated plague prevention measures, were perhaps initially spared simply due to their distance from the central plague belt. It is unclear if a general fear of the dead and contracting the Pest from plague victims can be used to characterise mid-17th century Scottish public opinion. Mass burial appears to have been a practical approach to the logistical problems mass mortality presented, while many instances of normative burial treatment can also be seen.
Collapse
Affiliation(s)
- Jenna Dittmar
- Department of Archaeology, University of Aberdeen, Aberdeen, Scotland
- Biomedical Affairs, Edward Via College of Osteopathic Medicine, Louisiana, Monroe, Louisiana, United States of America
| | - Rebecca Crozier
- Department of Archaeology, University of Aberdeen, Aberdeen, Scotland
| | - Toni de-Dios
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christiana L. Scheib
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Jenny Pape
- Aberdeen Archives, Gallery & Museums, Aberdeen, Scotland
| | - Ross MacLennan
- Aberdeen Archives, Gallery & Museums, Aberdeen, Scotland
| | - Ricky Craig
- Independent GIS Specialist and Cartographer, Scotland
| | - Marc Oxenham
- Department of Archaeology, University of Aberdeen, Aberdeen, Scotland
- School of Archaeology & Anthropology, Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Zhang L, Zheng B, Lu J, Wu H, Wu H, Zhang Q, Jiao L, Pan H, Zhou J. Evaluation of human antibodies from vaccinated volunteers for protection against Yersinia pestis infection. Microbiol Spectr 2024; 12:e0105424. [PMID: 39189763 PMCID: PMC11448073 DOI: 10.1128/spectrum.01054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Yersinia pestis has a broad host range and has caused lethal bubonic and pneumonic plague in humans. With the emergence of multiple resistant strains and the potential for biothreat use, there is an urgent need for new therapeutic strategies that can protect populations from natural or deliberate infection. Targeting F1 has been proven to be the main strategy for developing vaccines and therapeutic antibodies, but data on anti-F1 antibodies, especially in humans, are scarce. To date, three human anti-F1 monoclonal antibodies (m252, αF1Ig2, and αF1Ig8) from naive populations have been reported. Here, we constructed an antibody library from vaccinees immunized with the plague subunit vaccine IIa by phage display. The genetic basis, epitopes, and biological functions of the obtained mAbs were assessed and evaluated in plague-challenged mice. Three human mAbs, namely, F3, F19, and F23, were identified. Their biolayer responses were 0.4, 0.6, and 0.6 nm, respectively. The dissociation constants (KD) of the F1 antigen were 1 pM, 0.165 nM, and 1 pM, respectively. Although derived from distinct Ab lineages, that is, VH3-30-D3-10-JH4 (F3&F23) and VH3-43-D6-19-JH4 (F19), these mAbs share similar binding sites in F1 with some overlap with αF1Ig8 but are distinct from αF1Ig2. Each of them provided a significant protective effect for Balb/c mice against a 100 median lethal dose (MLD) challenge of a virulent Y. pestis strain when administered at a dose of 100 µg. No synergistic or antagonistic effects were observed among them. These mAbs are novel and excellent candidates for further drug development and use in clinical practice.IMPORTANCEIn this study, we identified three human monoclonal antibodies with a high affinity to F1 protein of Yersinia pestis. We discovered that they have relatively lower somatic hypermutations compared with antibodies, m252, αF1Ig2, and αF1Ig8, derived from the naive library reported previously. We also observed that these mAbs share similar binding sites in F1 with some overlapping with αF1Ig8 but distinct from that of αF1Ig2. Furthermore, each of them could provide complete protection for mice against a lethal dose of Yersinia pestis challenge. Our data provided new insights into the anti-F1 Ab repertories and their associated epitopes during vaccination in humans. The findings support the additional novel protective human anti-F1Abs for potential therapeutics against plaque.
Collapse
Affiliation(s)
- Li Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Binyang Zheng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Lu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Haisheng Wu
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Hailian Wu
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Qi Zhang
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Lei Jiao
- Lanzhou Institute of Biological Products Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Lanzhou, China
| | - Hongxing Pan
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianfang Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Mongillo J, Zedda N, Rinaldo N, Bellini T, Manfrinato MC, Du Z, Yang R, Stenseth NC, Bramanti B. Differential pathogenicity and lethality of bubonic plague (1720-1945) by sex, age and place. Proc Biol Sci 2024; 291:20240724. [PMID: 39045692 PMCID: PMC11267469 DOI: 10.1098/rspb.2024.0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
COVID-19 brought back to the attention of the scientific community that males are more susceptible to infectious diseases. What is clear for other infections-that sex and gender differences influence both risk of infection and mortality-is not yet fully elucidated for plague, particularly bubonic plague, although this knowledge can help find specific defences against a disease for which a vaccine is not yet available. To address this question, we analysed data on plague from hospitals in different parts of the world since the early eighteenth century, which provide demographic information on individual patients, diagnosis and course of the disease in the pre-antibiotic era. Assuming that the two sexes were equally represented, we observe a worldwide prevalence of male cases hospitalized at any age, a result which seems better explained by gender-biased (thus cultural) behaviours than biological sex-related factors. Conversely, case fatality rates differ among countries and geographic macro-areas, while globally, lethality appears slightly prevalent in young females and older adults (regardless of sex). Logistic regression models confirm that the main risk factor for bubonic plague death was the geographical location of the cases and being older than 50 years, whereas sex only showcased a slight trend.
Collapse
Affiliation(s)
- J. Mongillo
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
| | - N. Zedda
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
| | - N. Rinaldo
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara44121, Italy
| | - T. Bellini
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara44121, Italy
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, Ferrara44121, Italy
| | - M. C. Manfrinato
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara44121, Italy
| | - Z. Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People‘s Republic of China
| | - R. Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People‘s Republic of China
| | - N. C. Stenseth
- Center for Pandemics and One Health Research, Sustainable Health Unit (SUSTAINIT), Faculty of Medicine, University of Oslo, Oslo0316, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo0316, Norway
- Vanke School of Public Health, Tsinghua University, Beijing100084, People‘s Republic of China
| | - B. Bramanti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, Ferrara44121, Italy
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo0316, Norway
| |
Collapse
|
4
|
Bennasar-Figueras A. The Natural and Clinical History of Plague: From the Ancient Pandemics to Modern Insights. Microorganisms 2024; 12:146. [PMID: 38257973 PMCID: PMC10818976 DOI: 10.3390/microorganisms12010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The human pathogen Yersinia pestis is responsible for bubonic, septicemic, and pneumonic plague. A deeply comprehensive overview of its historical context, bacteriological characteristics, genomic analysis based on ancient DNA (aDNA) and modern strains, and its impact on historical and actual human populations, is explored. The results from multiple studies have been synthesized to investigate the origins of plague, its transmission, and effects on different populations. Additionally, molecular interactions of Y. pestis, from its evolutionary origins to its adaptation to flea-born transmission, and its impact on human and wild populations are considered. The characteristic combinations of aDNA patterns, which plays a decisive role in the reconstruction and analysis of ancient genomes, are reviewed. Bioinformatics is fundamental in identifying specific Y. pestis lineages, and automated pipelines are among the valuable tools in implementing such studies. Plague, which remains among human history's most lethal infectious diseases, but also other zoonotic diseases, requires the continuous investigation of plague topics. This can be achieved by improving molecular and genetic screening of animal populations, identifying ecological and social determinants of outbreaks, increasing interdisciplinary collaborations among scientists and public healthcare providers, and continued research into the characterization, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Antoni Bennasar-Figueras
- Microbiologia—Departament de Biologia, Universitat de les Illes Balears (UIB), Campus UIB, Carretera de Valldemossa, Km 7.5, 07122 Palma de Mallorca, Spain; ; Tel.: +34-971172778
- Facultat de Medicina, Hospital Universitari Son Espases (HUSE), Universitat de les Illes Balears (UIB), Carretera de Valldemossa, 79, 07122 Palma de Mallorca, Spain
| |
Collapse
|
5
|
Hodgins HP, Chen P, Lobb B, Wei X, Tremblay BJM, Mansfield MJ, Lee VCY, Lee PG, Coffin J, Duggan AT, Dolphin AE, Renaud G, Dong M, Doxey AC. Ancient Clostridium DNA and variants of tetanus neurotoxins associated with human archaeological remains. Nat Commun 2023; 14:5475. [PMID: 37673908 PMCID: PMC10482840 DOI: 10.1038/s41467-023-41174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
The analysis of microbial genomes from human archaeological samples offers a historic snapshot of ancient pathogens and provides insights into the origins of modern infectious diseases. Here, we analyze metagenomic datasets from 38 human archaeological samples and identify bacterial genomic sequences related to modern-day Clostridium tetani, which produces the tetanus neurotoxin (TeNT) and causes the disease tetanus. These genomic assemblies had varying levels of completeness, and a subset of them displayed hallmarks of ancient DNA damage. Phylogenetic analyses revealed known C. tetani clades as well as potentially new Clostridium lineages closely related to C. tetani. The genomic assemblies encode 13 TeNT variants with unique substitution profiles, including a subgroup of TeNT variants found exclusively in ancient samples from South America. We experimentally tested a TeNT variant selected from an ancient Chilean mummy sample and found that it induced tetanus muscle paralysis in mice, with potency comparable to modern TeNT. Thus, our ancient DNA analysis identifies DNA from neurotoxigenic C. tetani in archaeological human samples, and a novel variant of TeNT that can cause disease in mammals.
Collapse
Affiliation(s)
- Harold P Hodgins
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Pengsheng Chen
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Briallen Lobb
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Xin Wei
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin J M Tremblay
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Victoria C Y Lee
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Coffin
- Department of Anthropology, University of Waterloo, Waterloo, ON, Canada
| | - Ana T Duggan
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Alexis E Dolphin
- Department of Anthropology, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel Renaud
- Department of Health Technology, Section of Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Andrew C Doxey
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
6
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Qin J, Wu Y, Shi L, Zuo X, Zhang X, Qian X, Fan H, Guo Y, Cui M, Zhang H, Yang F, Kong J, Song Y, Yang R, Wang P, Cui Y. Genomic diversity of Yersinia pestis from Yunnan Province, China, implies a potential common ancestor as the source of two plague epidemics. Commun Biol 2023; 6:847. [PMID: 37582843 PMCID: PMC10427647 DOI: 10.1038/s42003-023-05186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Plague, caused by Yersinia pestis, is a zoonotic disease that can reemerge and cause outbreaks following decades of latency in natural plague foci. However, the genetic diversity and spread pattern of Y. pestis during these epidemic-silent cycles remain unclear. In this study, we analyze 356 Y. pestis genomes isolated between 1952 and 2016 in the Yunnan Rattus tanezumi plague focus, China, covering two epidemic-silent cycles. Through high-resolution genomic epidemiological analysis, we find that 96% of Y. pestis genomes belong to phylogroup 1.ORI2 and are subdivided into two sister clades (Sublineage1 and Sublineage2) characterized by different temporal-spatial distributions and genetic diversity. Most of the Sublineage1 strains are isolated from the first epidemic-silent cycle, while Sublineage2 strains are predominantly from the second cycle and revealing a west to east spread. The two sister clades evolved in parallel from a common ancestor and independently lead to two separate epidemics, confirming that the pathogen responsible for the second epidemic following the silent interval is not a descendant of the causative strain of the first epidemic. Our results provide a mechanism for defining epidemic-silent cycles in natural plague foci, which is valuable in the prevention and control of future plague outbreaks.
Collapse
Affiliation(s)
- Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyuan Shi
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Xiujuan Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiuwei Qian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengnan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haipeng Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Fengyi Yang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Jinjiao Kong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Peng Wang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China.
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
8
|
Parker CE, Hiss AN, Spyrou MA, Neumann GU, Slavin P, Nelson EA, Nagel S, Dalidowski X, Friederich S, Krause J, Herbig A, Haak W, Bos KI. 14th century Yersinia pestis genomes support emergence of pestis secunda within Europe. PLoS Pathog 2023; 19:e1011404. [PMID: 37463152 PMCID: PMC10414589 DOI: 10.1371/journal.ppat.1011404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/10/2023] [Accepted: 05/04/2023] [Indexed: 07/20/2023] Open
Abstract
Pestis secunda (1356-1366 CE) is the first of a series of plague outbreaks in Europe that followed the Black Death (1346-1353 CE). Collectively this period is called the Second Pandemic. From a genomic perspective, the majority of post-Black Death strains of Yersinia pestis thus far identified in Europe display diversity accumulated over a period of centuries that form a terminal sub-branch of the Y. pestis phylogeny. It has been debated if these strains arose from local evolution of Y. pestis or if the disease was repeatedly reintroduced from an external source. Plague lineages descended from the pestis secunda, however, are thought to have persisted in non-human reservoirs outside Europe, where they eventually gave rise to the Third Pandemic (19th and 20th centuries). Resolution of competing hypotheses on the origins of the many post-Black Death outbreaks has been hindered in part by the low representation of Y. pestis genomes in archaeological specimens, especially for the pestis secunda. Here we report on five individuals from Germany that were infected with lineages of plague associated with the pestis secunda. For the two genomes of high coverage, one groups within the known diversity of genotypes associated with the pestis secunda, while the second carries an ancestral genotype that places it earlier. Through consideration of historical sources that explore first documentation of the pandemic in today's Central Germany, we argue that these data provide robust evidence to support a post-Black Death evolution of the pathogen within Europe rather than a re-introduction from outside. Additionally, we demonstrate retrievability of Y. pestis DNA in post-cranial remains and highlight the importance of hypothesis-free pathogen screening approaches in evaluations of archaeological samples.
Collapse
Affiliation(s)
- Cody E. Parker
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alina N. Hiss
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maria A. Spyrou
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Achaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Gunnar U. Neumann
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philip Slavin
- Division of History, Heritage and Politics, University of Stirling, Stirling, Scotland, United Kingdom
| | | | - Sarah Nagel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Xandra Dalidowski
- Landesamt für Denkmalpflege und Archäologie, Sachsen-Anhalt, Halle (Saale), Germany
| | - Susanne Friederich
- Landesamt für Denkmalpflege und Archäologie, Sachsen-Anhalt, Halle (Saale), Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Haak
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kirsten I. Bos
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
9
|
Clavel P, Louis L, Sarkissian CD, Thèves C, Gillet C, Chauvey L, Tressières G, Schiavinato S, Calvière-Tonasso L, Telmon N, Clavel B, Jonvel R, Tzortzis S, Bouniol L, Fémolant JM, Klunk J, Poinar H, Signoli M, Costedoat C, Spyrou MA, Seguin-Orlando A, Orlando L. Improving the extraction of ancient Yersinia pestis genomes from the dental pulp. iScience 2023; 26:106787. [PMID: 37250315 PMCID: PMC10214834 DOI: 10.1016/j.isci.2023.106787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Ancient DNA preserved in the dental pulp offers the opportunity to characterize the genome of some of the deadliest pathogens in human history. However, while DNA capture technologies help, focus sequencing efforts, and therefore, reduce experimental costs, the recovery of ancient pathogen DNA remains challenging. Here, we tracked the kinetics of ancient Yersinia pestis DNA release in solution during a pre-digestion of the dental pulp. We found that most of the ancient Y. pestis DNA is released within 60 min at 37°C in our experimental conditions. We recommend a simple pre-digestion as an economical procedure to obtain extracts enriched in ancient pathogen DNA, as longer digestion times release other types of templates, including host DNA. Combining this procedure with DNA capture, we characterized the genome sequences of 12 ancient Y. pestis bacteria from France dating to the second pandemic outbreaks of the 17th and 18th centuries Common Era.
Collapse
Affiliation(s)
- Pierre Clavel
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Lexane Louis
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Clio Der Sarkissian
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Catherine Thèves
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Claudia Gillet
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Lorelei Chauvey
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Gaétan Tressières
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Stéphanie Schiavinato
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Laure Calvière-Tonasso
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Norbert Telmon
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Benoît Clavel
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), CNRS-UMR7209, Muséum national d’histoire naturelle, 55 Rue Buffon, 75005 Paris, France
| | - Richard Jonvel
- Amiens Métropole Service Archéologie Préventive, 2 rue Colbert, 80000 Amiens, France
| | - Stéfan Tzortzis
- Service Régional de l’Archéologie, 21 allée Claude Forbin, 13100 Aix-en-Provence, France
| | - Laetitia Bouniol
- Service archéologique de la ville de Beauvais, 1 rue Desgroux, 60021 Beauvais, France
| | - Jean-Marc Fémolant
- Service archéologique de la ville de Beauvais, 1 rue Desgroux, 60021 Beauvais, France
| | | | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, ON L8S 4L9, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S, 4L9, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Michel Signoli
- Aix-Marseille Université, CNRS, EFS, ADES, 13005 Marseille, France
| | | | - Maria A. Spyrou
- Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andaine Seguin-Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Ludovic Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
10
|
Chaaban T, Mohsen Y, Ezzeddine Z, Ghssein G. Overview of Yersinia pestis Metallophores: Yersiniabactin and Yersinopine. BIOLOGY 2023; 12:598. [PMID: 37106798 PMCID: PMC10136090 DOI: 10.3390/biology12040598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
The pathogenic anaerobic bacteria Yersinia pestis (Y. pestis), which is well known as the plague causative agent, has the ability to escape or inhibit innate immune system responses, which can result in host death even before the activation of adaptive responses. Bites from infected fleas in nature transmit Y. pestis between mammalian hosts causing bubonic plague. It was recognized that a host's ability to retain iron is essential in fighting invading pathogens. To proliferate during infection, Y. pestis, like most bacteria, has various iron transporters that enable it to acquire iron from its hosts. The siderophore-dependent iron transport system was found to be crucial for the pathogenesis of this bacterium. Siderophores are low-molecular-weight metabolites with a high affinity for Fe3+. These compounds are produced in the surrounding environment to chelate iron. The siderophore secreted by Y. pestis is yersiniabactin (Ybt). Another metallophore produced by this bacterium, yersinopine, is of the opine type and shows similarities with both staphylopine and pseudopaline produced by Staphylococcus aureus and Pseudomonas aeruginosa, respectively. This paper sheds light on the most important aspects of the two Y. pestis metallophores as well as aerobactin a siderophore no longer secreted by this bacterium due to frameshift mutation in its genome.
Collapse
Affiliation(s)
- Taghrid Chaaban
- Nursing Sciences Department, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
- Nursing Sciences Research Chair, Laboratory Educations and Health Practices (LEPS), (EA 3412), UFR SMBH, University Paris 13, Sorbonne Paris Cite, F-93017 Bobigny, France
| | - Yehya Mohsen
- Department of Medical Laboratory Technology, College of Health and Medical Technologies, Al-Ayen University, Nasiriyah 64001, Iraq
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
- Faculty of Sciences V, Lebanese University, Nabatieh 1700, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
- Faculty of Sciences V, Lebanese University, Nabatieh 1700, Lebanon
| |
Collapse
|
11
|
No evidence for persistent natural plague reservoirs in historical and modern Europe. Proc Natl Acad Sci U S A 2022; 119:e2209816119. [PMID: 36508668 PMCID: PMC9907128 DOI: 10.1073/pnas.2209816119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caused by Yersinia pestis, plague ravaged the world through three known pandemics: the First or the Justinianic (6th-8th century); the Second (beginning with the Black Death during c.1338-1353 and lasting until the 19th century); and the Third (which became global in 1894). It is debatable whether Y. pestis persisted in European wildlife reservoirs or was repeatedly introduced from outside Europe (as covered by European Union and the British Isles). Here, we analyze environmental data (soil characteristics and climate) from active Chinese plague reservoirs to assess whether such environmental conditions in Europe had ever supported "natural plague reservoirs". We have used new statistical methods which are validated through predicting the presence of modern plague reservoirs in the western United States. We find no support for persistent natural plague reservoirs in either historical or modern Europe. Two factors make Europe unfavorable for long-term plague reservoirs: 1) Soil texture and biochemistry and 2) low rodent diversity. By comparing rodent communities in Europe with those in China and the United States, we conclude that a lack of suitable host species might be the main reason for the absence of plague reservoirs in Europe today. These findings support the hypothesis that long-term plague reservoirs did not exist in Europe and therefore question the importance of wildlife rodent species as the primary plague hosts in Europe.
Collapse
|
12
|
Spyrou MA, Musralina L, Gnecchi Ruscone GA, Kocher A, Borbone PG, Khartanovich VI, Buzhilova A, Djansugurova L, Bos KI, Kühnert D, Haak W, Slavin P, Krause J. The source of the Black Death in fourteenth-century central Eurasia. Nature 2022; 606:718-724. [PMID: 35705810 PMCID: PMC9217749 DOI: 10.1038/s41586-022-04800-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
The origin of the medieval Black Death pandemic (AD 1346-1353) has been a topic of continuous investigation because of the pandemic's extensive demographic impact and long-lasting consequences1,2. Until now, the most debated archaeological evidence potentially associated with the pandemic's initiation derives from cemeteries located near Lake Issyk-Kul of modern-day Kyrgyzstan1,3-9. These sites are thought to have housed victims of a fourteenth-century epidemic as tombstone inscriptions directly dated to 1338-1339 state 'pestilence' as the cause of death for the buried individuals9. Here we report ancient DNA data from seven individuals exhumed from two of these cemeteries, Kara-Djigach and Burana. Our synthesis of archaeological, historical and ancient genomic data shows a clear involvement of the plague bacterium Yersinia pestis in this epidemic event. Two reconstructed ancient Y. pestis genomes represent a single strain and are identified as the most recent common ancestor of a major diversification commonly associated with the pandemic's emergence, here dated to the first half of the fourteenth century. Comparisons with present-day diversity from Y. pestis reservoirs in the extended Tian Shan region support a local emergence of the recovered ancient strain. Through multiple lines of evidence, our data support an early fourteenth-century source of the second plague pandemic in central Eurasia.
Collapse
Affiliation(s)
- Maria A Spyrou
- Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Lyazzat Musralina
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Laboratory of Population Genetics, Institute of Genetics and Physiology, Almaty, Kazakhstan
- Kazakh National University by al-Farabi, Almaty, Kazakhstan
| | - Guido A Gnecchi Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Arthur Kocher
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Pier-Giorgio Borbone
- Department of Civilisations and Forms of Knowledge, University of Pisa, Pisa, Italy
| | - Valeri I Khartanovich
- Department of Physical Anthropology, Kunstkamera, Peter the Great Museum of Anthropology and Ethnography, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Leyla Djansugurova
- Laboratory of Population Genetics, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Denise Kühnert
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Philip Slavin
- Division of History, Heritage and Politics, University of Stirling, Stirling, UK.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
13
|
Eassa HA, Helal NA, Amer AM, Fouad A, Bedair AF, Nagib R, Mansoor I, Hawash M, Abdul-Latif M, Mohammed KHA, Helal MA, Nounou MI. 3D-Printed Microfluidics Potential in Combating Future and Current Pandemics (COVID-19). RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:192-216. [PMID: 35894464 DOI: 10.2174/2667387816666220727101214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Coronavirus disease (COVID-19) emerged in China in December 2019. In March 2020, the WHO declared it a pandemic leading to worldwide lockdowns and travel restrictions. By May, it infected 4,789,205 and killed 318,789 people. This led to severe shortages in the medical sector besides devastating socio-economic effects. Many technologies such as artificial intelligence (AI), virtual reality (VR), microfluidics, 3D printing, and 3D scanning can step into contain the virus and hinder its extensive spread. This article aims to explore the potentials of 3D printing and microfluidic in accelerating the diagnosis and monitoring of the disease and fulfilling the shortages of personal protective equipment (PPE) and medical equipment. It highlights the main applications of 3D printers and microfluidics in providing PPE (masks, respirators, face shields, goggles, and isolation chambers/hoods), supportive care (respiratory equipment) and diagnostic supplies (sampling swabs & lab-on-chip) to ease the COVID-19 pressures. Also, the cost of such technology and regulation considerations are addressed. We conclude that 3D printing provided reusable and low-cost solutions to mitigate the shortages. However, safety, sterility, and compatibility with environmental protection standards need to be guaranteed through standardization and assessment by regulatory bodies. Finally, lessons learned from this pandemic can also help the world prepare for upcoming outbreaks.
Collapse
Affiliation(s)
- Heba A Eassa
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies, University of Saint Joseph, Hartford, CT 06103, USA
| | - Nada A Helal
- Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, TX, 78363, USA
| | - Ahmed M Amer
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Aliaa Fouad
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Asser F Bedair
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | - Motaz Hawash
- Dept of Food Science and Agri-Food Supply Chains, Harper Adams University, Newport, UK
| | | | - Kamilia H A Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al- Azhar University, Cairo, Egypt
| | - Mohamed A Helal
- Construction Planning Department, National Marine Dredging Company (NMDC), Abu Dhabi 11372, United Arab Emirates
| | - Mohamed Ismail Nounou
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies, University of Saint Joseph, Hartford, CT 06103, USA
| |
Collapse
|
14
|
Guellil M, Rinaldo N, Zedda N, Kersten O, Gonzalez Muro X, Stenseth NC, Gualdi-Russo E, Bramanti B. Bioarchaeological insights into the last plague of Imola (1630-1632). Sci Rep 2021; 11:22253. [PMID: 34782694 PMCID: PMC8593082 DOI: 10.1038/s41598-021-98214-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
The plague of 1630-1632 was one of the deadliest plague epidemics to ever hit Northern Italy, and for many of the affected regions, it was also the last. While accounts on plague during the early 1630s in Florence and Milan are frequent, much less is known about the city of Imola. We analyzed the full skeletal assemblage of four mass graves (n = 133 individuals) at the Lazaretto dell'Osservanza, which date back to the outbreak of 1630-1632 in Imola and evaluated our results by integrating new archival sources. The skeletons showed little evidence of physical trauma and were covered by multiple layers of lime, which is characteristic for epidemic mass mortality sites. We screened 15 teeth for Yersinia pestis aDNA and were able to confirm the presence of plague in Imola via metagenomic analysis. Additionally, we studied a contemporaneous register, in which a friar recorded patient outcomes at the lazaretto during the last year of the epidemic. Our multidisciplinary approach combining historical, osteological and genomic data provided a unique opportunity to reconstruct an in-depth picture of the last plague of Imola through the city's main lazaretto.
Collapse
Affiliation(s)
- Meriam Guellil
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Institute of Genomics, Estonian Biocentre, University of Tartu, 51010, Tartu, Estonia.
| | - Natascia Rinaldo
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121, Ferrara, Italy.
| | - Nicoletta Zedda
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121, Ferrara, Italy
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | | | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Emanuela Gualdi-Russo
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121, Ferrara, Italy
| | - Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
15
|
Mahmoudi A, Kryštufek B, Sludsky A, Schmid BV, DE Almeida AMP, Lei X, Ramasindrazana B, Bertherat E, Yeszhanov A, Stenseth NC, Mostafavi E. Plague reservoir species throughout the world. Integr Zool 2021; 16:820-833. [PMID: 33264458 DOI: 10.1111/1749-4877.12511] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plague has been known since ancient times as a re-emerging infectious disease, causing considerable socioeconomic burden in regional hotspots. To better understand the epidemiological cycle of the causative agent of the plague, its potential occurrence, and possible future dispersion, one must carefully consider the taxonomy, distribution, and ecological requirements of reservoir-species in relation either to natural or human-driven changes (e.g. climate change or urbanization). In recent years, the depth of knowledge on species taxonomy and species composition in different landscapes has undergone a dramatic expansion, driven by modern taxonomic methods such as synthetic surveys that take into consideration morphology, genetics, and the ecological setting of captured animals to establish their species identities. Here, we consider the recent taxonomic changes of the rodent species in known plague reservoirs and detail their distribution across the world, with a particular focus on those rodents considered to be keystone host species. A complete checklist of all known plague-infectable vertebrates living in plague foci is provided as a Supporting Information table.
Collapse
Affiliation(s)
- Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Iran
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Alexander Sludsky
- Russian Research Anti-Plague Institute «Microbe», Saratov, Russian Federation
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Xu Lei
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Eric Bertherat
- Department of Infectious Hazard Management, Health Emergencies Programme, WHO, Geneva, Switzerland
| | - Aidyn Yeszhanov
- M.Aikimbaev's National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran
| |
Collapse
|
16
|
Badania kopalnego DNA – możliwości i ograniczenia. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Ostatnie cztery dekady przyniosły znaczący rozwój archeologii molekularnej i badania nad kopalnym DNA (aDNA). Nowatorskie metody uwzględniają szeroki zakres badań, począwszy od sekwencjonowania niewielkich fragmentów mitochondrialnego DNA po wielkoskalowe badania całych populacji, łączące sekwencjonowanie genomów mitochondrialnych, genów podlegających doborowi naturalnemu, jak i całych genomów jądrowych. Postęp, zwłaszcza w dziedzinie technologii sekwencjonowania DNA, umożliwił pozyskanie informacji ze szczątków paleontologicznych i materiału archeologicznego, umożliwiając zbadanie związków filogenetycznych między wymarłymi i współczesnymi gatunkami. Dzięki zastosowaniu technologii sekwencjonowania nowej generacji możliwe stało się poznanie sekwencji DNA nie tylko bezpośrednio ze szczątków ludzkich lub zwierzęcych, ale także z osadów sedymentacyjnych z głębin jezior oraz jaskiń. W artykule przedstawiono możliwości i ograniczenia występujące w badaniach nad kopalnym DNA ludzi, zwierząt czy bakterii z podkreśleniem wkładu polskich badaczy w rozwój tej dziedziny nauki.
Collapse
|
17
|
Genetic Evidence of the Black Death in the Abbey of San Leonardo (Apulia Region, Italy): Tracing the Cause of Death in Two Individuals Buried with Coins. Pathogens 2021; 10:pathogens10111354. [PMID: 34832510 PMCID: PMC8619915 DOI: 10.3390/pathogens10111354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022] Open
Abstract
The Abbey of San Leonardo in Siponto (Apulia, Southern Italy) was an important religious and medical center during the Middle Ages. It was a crossroads for pilgrims heading along the Via Francigena to the Sanctuary of Monte Sant’Angelo and for merchants passing through the harbor of Manfredonia. A recent excavation of Soprintendenza Archeologica della Puglia investigated a portion of the related cemetery, confirming its chronology to be between the end of the 13th and beginning of the 14th century. Two single graves preserved individuals accompanied by numerous coins dating back to the 14th century, hidden in clothes and in a bag tied to the waist. The human remains of the individuals were analyzed in the Laboratorio di Antropologia Fisica of Soprintendenza ABAP della città metropolitana di Bari. Three teeth from each individual were collected and sent to the Istituto Zooprofilattico Sperimentale di Puglia e Basilicata to study infectious diseases such as malaria, plague, tuberculosis, epidemic typhus and Maltese fever (Brucellosis), potentially related to the lack of inspection of the bodies during burial procedures. DNA extracted from six collected teeth and two additional unrelated human teeth (negative controls) were analyzed using PCR to verify the presence of human DNA (β-globulin) and of pathogens such as Plasmodium spp., Yersinia pestis, Mycobacterium spp., Rickettsia spp. and Brucella spp. The nucleotide sequence of the amplicon was determined to confirm the results. Human DNA was successfully amplified from all eight dental extracts and two different genes of Y. pestis were amplified and sequenced in 4 out of the 6 teeth. Molecular analyses ascertained that the individuals buried in San Leonardo were victims of the Black Death (1347–1353) and the data confirmed the lack of inspection of the corpses despite the presence of numerous coins. This study represents molecular evidence, for the first time, of Southern Italy’s involvement in the second wave of the plague pandemic.
Collapse
|
18
|
Immel A, Key FM, Szolek A, Barquera R, Robinson MK, Harrison GF, Palmer WH, Spyrou MA, Susat J, Krause-Kyora B, Bos KI, Forrest S, Hernández-Zaragoza DI, Sauter J, Solloch U, Schmidt AH, Schuenemann VJ, Reiter E, Kairies MS, Weiß R, Arnold S, Wahl J, Hollenbach JA, Kohlbacher O, Herbig A, Norman PJ, Krause J. Analysis of Genomic DNA from Medieval Plague Victims Suggests Long-Term Effect of Yersinia pestis on Human Immunity Genes. Mol Biol Evol 2021; 38:4059-4076. [PMID: 34002224 PMCID: PMC8476174 DOI: 10.1093/molbev/msab147] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathogens and associated outbreaks of infectious disease exert selective pressure on human populations, and any changes in allele frequencies that result may be especially evident for genes involved in immunity. In this regard, the 1346-1353 Yersinia pestis-caused Black Death pandemic, with continued plague outbreaks spanning several hundred years, is one of the most devastating recorded in human history. To investigate the potential impact of Y. pestis on human immunity genes, we extracted DNA from 36 plague victims buried in a mass grave in Ellwangen, Germany in the 16th century. We targeted 488 immune-related genes, including HLA, using a novel in-solution hybridization capture approach. In comparison with 50 modern native inhabitants of Ellwangen, we find differences in allele frequencies for variants of the innate immunity proteins Ficolin-2 and NLRP14 at sites involved in determining specificity. We also observed that HLA-DRB1*13 is more than twice as frequent in the modern population, whereas HLA-B alleles encoding an isoleucine at position 80 (I-80+), HLA C*06:02 and HLA-DPB1 alleles encoding histidine at position 9 are half as frequent in the modern population. Simulations show that natural selection has likely driven these allele frequency changes. Thus, our data suggest that allele frequencies of HLA genes involved in innate and adaptive immunity responsible for extracellular and intracellular responses to pathogenic bacteria, such as Y. pestis, could have been affected by the historical epidemics that occurred in Europe.
Collapse
Affiliation(s)
- Alexander Immel
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Felix M Key
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - András Szolek
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Tübingen, Germany
| | - Rodrigo Barquera
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Madeline K Robinson
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, Boulder, CO, USA
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, Boulder, CO, USA
| | - William H Palmer
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, Boulder, CO, USA
| | - Maria A Spyrou
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Stephen Forrest
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Diana I Hernández-Zaragoza
- Max Planck Institute for the Science of Human History, Jena, Germany
- Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | | | | | | | - Verena J Schuenemann
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Ella Reiter
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Madita S Kairies
- Institute for Archaeological Sciences, WG Palaeoanthropology, University of Tübingen, Tübingen, Germany
| | - Rainer Weiß
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Esslingen, Germany
| | - Susanne Arnold
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Esslingen, Germany
| | - Joachim Wahl
- Institute for Archaeological Sciences, WG Palaeoanthropology, University of Tübingen, Tübingen, Germany
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Esslingen, Germany
| | - Jill A Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, Boulder, CO, USA
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
19
|
Bramanti B, Wu Y, Yang R, Cui Y, Stenseth NC. Assessing the origins of the European Plagues following the Black Death: A synthesis of genomic, historical, and ecological information. Proc Natl Acad Sci U S A 2021; 118:e2101940118. [PMID: 34465619 PMCID: PMC8433512 DOI: 10.1073/pnas.2101940118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The second plague pandemic started in Europe with the Black Death in 1346 and lasted until the 19th century. Based on ancient DNA studies, there is a scientific disagreement over whether the bacterium, Yersinia pestis, came into Europe once (Hypothesis 1) or repeatedly over the following four centuries (Hypothesis 2). Here, we synthesize the most updated phylogeny together with historical, archeological, evolutionary, and ecological information. On the basis of this holistic view, we conclude that Hypothesis 2 is the most plausible. We also suggest that Y. pestis lineages might have developed attenuated virulence during transmission, which can explain the convergent evolutionary signals, including pla decay, that appeared at the end of the pandemics.
Collapse
Affiliation(s)
- Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Ottoni C, Borić D, Cheronet O, Sparacello V, Dori I, Coppa A, Antonović D, Vujević D, Price TD, Pinhasi R, Cristiani E. Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus. Proc Natl Acad Sci U S A 2021; 118:e2102116118. [PMID: 34312252 PMCID: PMC8364157 DOI: 10.1073/pnas.2102116118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Archaeological dental calculus, or mineralized plaque, is a key tool to track the evolution of oral microbiota across time in response to processes that impacted our culture and biology, such as the rise of farming during the Neolithic. However, the extent to which the human oral flora changed from prehistory until present has remained elusive due to the scarcity of data on the microbiomes of prehistoric humans. Here, we present our reconstruction of oral microbiomes via shotgun metagenomics of dental calculus in 44 ancient foragers and farmers from two regions playing a pivotal role in the spread of farming across Europe-the Balkans and the Italian Peninsula. We show that the introduction of farming in Southern Europe did not alter significantly the oral microbiomes of local forager groups, and it was in particular associated with a higher abundance of the species Olsenella sp. oral taxon 807. The human oral environment in prehistory was dominated by a microbial species, Anaerolineaceae bacterium oral taxon 439, that diversified geographically. A Near Eastern lineage of this bacterial commensal dispersed with Neolithic farmers and replaced the variant present in the local foragers. Our findings also illustrate that major taxonomic shifts in human oral microbiome composition occurred after the Neolithic and that the functional profile of modern humans evolved in recent times to develop peculiar mechanisms of antibiotic resistance that were previously absent.
Collapse
Affiliation(s)
- Claudio Ottoni
- DANTE - Diet and Ancient Technology Laboratory, Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Dušan Borić
- The Italian Academy for Advanced Studies in America, Columbia University, New York, NY 10027
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Vitale Sparacello
- Department of Environmental and Life Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Irene Dori
- Soprintendenza Archeologia, Belle Arti e Paesaggio per le province di Verona, Rovigo e Vicenza, 37121 Verona, Italy
| | - Alfredo Coppa
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
- Department of Genetics, Harvard Medical School, Harvard University, Cambridge, MA 02138
| | | | - Dario Vujević
- Department of Archaeology, University of Zadar, 23000 Zadar, Croatia
| | - T Douglas Price
- Laboratory for Archaeological Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Emanuela Cristiani
- DANTE - Diet and Ancient Technology Laboratory, Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
21
|
Krauer F, Viljugrein H, Dean KR. The influence of temperature on the seasonality of historical plague outbreaks. Proc Biol Sci 2021; 288:20202725. [PMID: 34255997 PMCID: PMC8277479 DOI: 10.1098/rspb.2020.2725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/04/2021] [Indexed: 01/13/2023] Open
Abstract
Modern plague outbreaks exhibit a distinct seasonal pattern. By contrast, the seasonality of historical outbreaks and its drivers has not been studied systematically. Here, we investigate the seasonal pattern, the epidemic peak timing and growth rates, and the association with latitude, temperature, and precipitation using a large, novel dataset of plague- and all-cause mortality during the Second Pandemic in Europe and the Mediterranean. We show that epidemic peak timing followed a latitudinal gradient, with mean annual temperature negatively associated with peak timing. Based on modern temperature data, the predicted epidemic growth of all outbreaks was positive between 11.7°C and 21.5°C with a maximum around 17.3°C. Hence, our study provides evidence that the growth of plague epidemics across the whole study region depended on similar absolute temperature thresholds. Here, we present a systematic analysis of the seasonality of historical plague in the Northern Hemisphere, and we show consistent evidence for a temperature-related process influencing the epidemic peak timing and growth rates of plague epidemics.
Collapse
Affiliation(s)
- Fabienne Krauer
- Centre for Ecological and Evolutionary Synthesis CEES, University of Oslo, Norway
- Centre for Mathematical Modelling of Infectious Diseases CMMID, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis CEES, University of Oslo, Norway
- Norwegian Veterinary Institute, Ås, Norway
| | | |
Collapse
|
22
|
Boualam MA, Pradines B, Drancourt M, Barbieri R. Malaria in Europe: A Historical Perspective. Front Med (Lausanne) 2021; 8:691095. [PMID: 34277665 PMCID: PMC8277918 DOI: 10.3389/fmed.2021.691095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Endemic malaria, which claimed 229 million new cases and 409,000 deaths in 2019 mainly in Africa, was eradicated from Europe by the mid-20th century. Historical descriptions of intermittent tertian and quartan fever reported in texts of Hippocrates in Greece and Celsus in Italy suggest malaria. A few paleomicrobiology investigations have confirmed the presence of malarial parasite Plasmodium falciparum in 1st, 2nd, and 5th century infected individuals in diverse regions of Italy, and Plasmodium sp. later in Bavaria. The causative Plasmodium pathogens, discovered in the 19th century in Algeria, were controversially used as therapeutic agents in the European pharmacopeia more than two centuries after effective quinine-based treatments had been introduced in Europe. How Europe managed to eradicate malaria and what the history of malaria was in Europe are of medical interest, and this review traces research pathways for a renewed understanding of malaria eradication in Europe through combined historical and paleomicrobiological investigations.
Collapse
Affiliation(s)
- Mahmoud A. Boualam
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Bruno Pradines
- IHU Méditerranée Infection, Marseille, France
- Unité parasitologie et entomologie, Département microbiologie et maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, Marseille, France
- Centre national de référence du paludisme, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rémi Barbieri
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
23
|
van Spelde AM, Schroeder H, Kjellström A, Lidén K. Approaches to osteoporosis in paleopathology: How did methodology shape bone loss research? INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 33:245-257. [PMID: 34044198 DOI: 10.1016/j.ijpp.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This paper will review how different methods employed to study bone loss in the past were used to explore different questions and aspects of bone loss, how methodology has changed over time, and how these different approaches have informed our understanding of bone loss in the past. MATERIALS AND METHODS A review and discussion is conducted on research protocols and results of 84 paleopathology publications on bone loss in archaeological skeletal collections published between 1969 and 2021. CONCLUSIONS The variety in research protocols confounds accurate meta-analysis of previously published research; however, more recent publications incorporate a combination of bone mass and bone quality based methods. Biased sample selection has resulted in a predominance of European and Medieval publications, limiting more general observations on bone loss in the past. Collection of dietary or paleopathological covariables is underemployed in the effort to interpret bone loss patterns. SIGNIFICANCE Paleopathology publications have demonstrated differences in bone loss between distinct archaeological populations, between sex and age groups, and have suggested factors underlying observed differences. However, a lack of a gold standard has encouraged the use of a wide range of methods. Understanding how this array of methods effects results is crucial in contextualizing our knowledge of bone loss in the past. LIMITATIONS The development of a research protocol is also influenced by available expertise, available equipment, restrictions imposed by the curator, and site-specific taphonomic aspects. These factors will likely continue to cause (minor) biases even if a best practice can be established. SUGGESTIONS FOR FUTURE RESEARCH Greater effort to develop uniform terminology and operational definitions of osteoporosis in skeletal remains, as well as the expansion of time scale and geographical areas studied. The Next-Generation Sequencing revolution has also opened up the possibility of ancient DNA analyses to study genetic predisposition to bone loss in the past.
Collapse
Affiliation(s)
- Anne-Marijn van Spelde
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 114 18 Stockholm, Sweden; The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark.
| | - Hannes Schroeder
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Anna Kjellström
- Osteological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 114 18 Stockholm, Sweden
| | - Kerstin Lidén
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 114 18 Stockholm, Sweden
| |
Collapse
|
24
|
Sebbane F, Lemaître N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021; 11:724. [PMID: 34065940 PMCID: PMC8151713 DOI: 10.3390/biom11050724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and β-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.
Collapse
Affiliation(s)
- Florent Sebbane
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaître
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire Amiens Picardie, UR 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Université de Picardie Jules Verne, F-80000 Amiens, France
| |
Collapse
|
25
|
Seguin-Orlando A, Costedoat C, Der Sarkissian C, Tzortzis S, Kamel C, Telmon N, Dalén L, Thèves C, Signoli M, Orlando L. No particular genomic features underpin the dramatic economic consequences of 17 th century plague epidemics in Italy. iScience 2021; 24:102383. [PMID: 33981971 PMCID: PMC8082092 DOI: 10.1016/j.isci.2021.102383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 10/26/2022] Open
Abstract
The 17th century plague epidemic had a particularly strong demographic toll in Southern Europe, especially Italy, where it caused long-lasting economical damage. Whether this resulted from ineffective sanitation measures or more pathogenic Yersinia pestis strains remains unknown. DNA screening of 26 skeletons from the 1629-1630 plague cemetery of Lariey (French Alps) identified two teeth rich in plague genetic material. Further sequencing revealed two Y. pestis genomes phylogenetically closest to those from the 1636 outbreak of San Procolo a Naturno, Italy. They both belonged to a cluster extending from the Alps to Northern Germany that probably propagated during the Thirty Years war. Sequence variation did not support faster evolutionary rates in the Italian genomes and revealed only rare private non-synonymous mutations not affecting virulence genes. This, and the more heterogeneous spatial diffusion of the epidemic outside Italy, suggests environmental or social rather than biological causes for the severe Italian epidemic trajectory.
Collapse
Affiliation(s)
- Andaine Seguin-Orlando
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
- Institute for Advanced Study in Toulouse IAST, Université Toulouse I Capitole, Esplanade de l’Université, 31080 Toulouse cedex 06, France
| | - Caroline Costedoat
- Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268 CNRS EFS, Aix-Marseille Université, Faculté de Médecine, Secteur Nord Bâtiment A CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France
| | - Clio Der Sarkissian
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Stéfan Tzortzis
- Ministère de la Culture et de la Communication, Direction Régionale des Affaires Culturelles de PACA, Service Régional de l’Archéologie, 23 bd du Roi René, 13617 Aix-en-Provence cedex, France
| | - Célia Kamel
- Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268 CNRS EFS, Aix-Marseille Université, Faculté de Médecine, Secteur Nord Bâtiment A CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France
| | - Norbert Telmon
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Catherine Thèves
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Michel Signoli
- Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268 CNRS EFS, Aix-Marseille Université, Faculté de Médecine, Secteur Nord Bâtiment A CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
26
|
Fellows Yates JA, Lamnidis TC, Borry M, Andrades Valtueña A, Fagernäs Z, Clayton S, Garcia MU, Neukamm J, Peltzer A. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ 2021; 9:e10947. [PMID: 33777521 PMCID: PMC7977378 DOI: 10.7717/peerj.10947] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
The broadening utilisation of ancient DNA to address archaeological, palaeontological, and biological questions is resulting in a rising diversity in the size of laboratories and scale of analyses being performed. In the context of this heterogeneous landscape, we present an advanced, and entirely redesigned and extended version of the EAGER pipeline for the analysis of ancient genomic data. This Nextflow pipeline aims to address three main themes: accessibility and adaptability to different computing configurations, reproducibility to ensure robust analytical standards, and updating the pipeline to the latest routine ancient genomic practices. The new version of EAGER has been developed within the nf-core initiative to ensure high-quality software development and maintenance support; contributing to a long-term life-cycle for the pipeline. nf-core/eager will assist in ensuring that a wider range of ancient DNA analyses can be applied by a diverse range of research groups and fields.
Collapse
Affiliation(s)
- James A. Fellows Yates
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische Archäologie, Ludwig-Maximilians-Universität München, Münich, Germany
| | - Thiseas C. Lamnidis
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Maxime Borry
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Aida Andrades Valtueña
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Zandra Fagernäs
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Stephen Clayton
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Maxime U. Garcia
- National Genomics Infrastructure, Science for Life Laboratory, Stockholm, Sweden
- Barntumörbanken, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
- Institute for Bioinformatics and Medical Informatics, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Alexander Peltzer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Quantitative Biology Center, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Barbieri R, Signoli M, Chevé D, Costedoat C, Tzortzis S, Aboudharam G, Raoult D, Drancourt M. Yersinia pestis: the Natural History of Plague. Clin Microbiol Rev 2020; 34:e00044-19. [PMID: 33298527 PMCID: PMC7920731 DOI: 10.1128/cmr.00044-19] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Gram-negative bacterium Yersinia pestis is responsible for deadly plague, a zoonotic disease established in stable foci in the Americas, Africa, and Eurasia. Its persistence in the environment relies on the subtle balance between Y. pestis-contaminated soils, burrowing and nonburrowing mammals exhibiting variable degrees of plague susceptibility, and their associated fleas. Transmission from one host to another relies mainly on infected flea bites, inducing typical painful, enlarged lymph nodes referred to as buboes, followed by septicemic dissemination of the pathogen. In contrast, droplet inhalation after close contact with infected mammals induces primary pneumonic plague. Finally, the rarely reported consumption of contaminated raw meat causes pharyngeal and gastrointestinal plague. Point-of-care diagnosis, early antibiotic treatment, and confinement measures contribute to outbreak control despite residual mortality. Mandatory primary prevention relies on the active surveillance of established plague foci and ectoparasite control. Plague is acknowledged to have infected human populations for at least 5,000 years in Eurasia. Y. pestis genomes recovered from affected archaeological sites have suggested clonal evolution from a common ancestor shared with the closely related enteric pathogen Yersinia pseudotuberculosis and have indicated that ymt gene acquisition during the Bronze Age conferred Y. pestis with ectoparasite transmissibility while maintaining its enteric transmissibility. Three historic pandemics, starting in 541 AD and continuing until today, have been described. At present, the third pandemic has become largely quiescent, with hundreds of human cases being reported mainly in a few impoverished African countries, where zoonotic plague is mostly transmitted to people by rodent-associated flea bites.
Collapse
Affiliation(s)
- R Barbieri
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Signoli
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - D Chevé
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - C Costedoat
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - S Tzortzis
- Ministère de la Culture, Direction Régionale des Affaires Culturelles de Provence-Alpes-Côte d'Azur, Service Régional de l'Archéologie, Aix-en-Provence, France
| | - G Aboudharam
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, Faculty of Odontology, Marseille, France
| | - D Raoult
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Drancourt
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| |
Collapse
|
28
|
Morozova I, Kasianov A, Bruskin S, Neukamm J, Molak M, Batieva E, Pudło A, Rühli FJ, Schuenemann VJ. New ancient Eastern European Yersinia pestis genomes illuminate the dispersal of plague in Europe. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190569. [PMID: 33012225 PMCID: PMC7702796 DOI: 10.1098/rstb.2019.0569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, has been prevalent among humans for at least 5000 years, being accountable for several devastating epidemics in history, including the Black Death. Analyses of the genetic diversity of ancient strains of Y. pestis have shed light on the mechanisms of evolution and the spread of plague in Europe. However, many questions regarding the origins of the pathogen and its long persistence in Europe are still unresolved, especially during the late medieval time period. To address this, we present four newly assembled Y. pestis genomes from Eastern Europe (Poland and Southern Russia), dating from the fifteenth to eighteenth century AD. The analysis of polymorphisms in these genomes and their phylogenetic relationships with other ancient and modern Y. pestis strains may suggest several independent introductions of plague into Eastern Europe or its persistence in different reservoirs. Furthermore, with the reconstruction of a partial Y. pestis genome from rat skeletal remains found in a Polish ossuary, we were able to identify a potential animal reservoir in late medieval Europe. Overall, our results add new information concerning Y. pestis transmission and its evolutionary history in Eastern Europe. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Artem Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, Moscow 119991, Russia
- Laboratory of Plant Genomics, The Institute for Information Transmission Problems RAS, Moscow 127051, Russia
| | - Sergey Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, Moscow 119991, Russia
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Martyna Molak
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, Warsaw 00-679, Poland
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, Warsaw 02-097, Poland
| | - Elena Batieva
- Azov History, Archeology and Paleontology Museum-Reserve, Moskovskaya Street 38/40, Azov 346780, Russia
| | - Aleksandra Pudło
- Archaeological Museum in Gdańsk, Mariacka Street 25/26, Gdańsk 80-833, Poland
| | - Frank J. Rühli
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Verena J. Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Abstract
Plague continued to afflict Europe for more than five centuries after the Black Death. Yet, by the 17th century, the dynamics of plague had changed, leading to its slow decline in Western Europe over the subsequent 200 y, a period for which only one genome was previously available. Using a multidisciplinary approach, combining genomic and historical data, we assembled Y. pestis genomes from nine individuals covering four Eurasian sites and placed them into an historical context within the established phylogeny. CHE1 (Chechnya, Russia, 18th century) is now the latest Second Plague Pandemic genome and the first non-European sample in the post-Black Death lineage. Its placement in the phylogeny and our synthesis point toward the existence of an extra-European reservoir feeding plague into Western Europe in multiple waves. By considering socioeconomic, ecological, and climatic factors we highlight the importance of a noneurocentric approach for the discussion on Second Plague Pandemic dynamics in Europe.
Collapse
|
30
|
Barbieri R, Drancourt M, Raoult D. The role of louse-transmitted diseases in historical plague pandemics. THE LANCET. INFECTIOUS DISEASES 2020; 21:e17-e25. [PMID: 33035476 DOI: 10.1016/s1473-3099(20)30487-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022]
Abstract
The rodent-murine ectoparasite-human model of plague transmission does not correspond with historical details around plague pandemics in Europe. New analysis of ancient genomes reveal that Yersinia pestis was unable to be transmitted by rat fleas until around 4000 Before Present, which challenges the rodent-murine ectoparasite-human model of plague transmission and historical details around plague pandemics in Europe. In this Review, we summarise data regarding Y pestis transmission by human lice in the context of genomic evolution and co-transmission of other major epidemic deadly pathogens throughout human history, with the aim of broadening our view of plague transmission. Experimental models support the efficiency of human lice as plague vectors through infected faeces, which suggest that Y pestis could be a louse-borne disease, similar to Borrelia recurrentis, Rickettsia prowazekii, and Bartonella quintana. Studies have shown that louse-borne outbreaks often involve multiple pathogens, and several cases of co-transmission of Y pestis and B quintana have been reported. Furthermore, an exclusive louse-borne bacterium, namely B recurrentis, was found to be circulating in northern Europe during the second plague pandemic (14th-18th century). Current data make it possible to attribute large historical pandemics to multiple bacteria, and suggests that human lice probably played a preponderant role in the interhuman transmission of plague and pathogen co-transmission during previous large epidemics, including plague pandemics.
Collapse
Affiliation(s)
- Rémi Barbieri
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix-Marseille Université, Centre National de la Recherche Scientifique, Établissement Français du Sang, Anthropologie Bio-culturelle, Droit, Éthique et Santé, Marseille, France; Fondation Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Fondation Méditerranée Infection, Marseille, France.
| |
Collapse
|
31
|
Luterbacher J, Newfield TP, Xoplaki E, Nowatzki E, Luther N, Zhang M, Khelifi N. Past pandemics and climate variability across the Mediterranean. EURO-MEDITERRANEAN JOURNAL FOR ENVIRONMENTAL INTEGRATION 2020; 5:46. [PMID: 32984502 PMCID: PMC7500992 DOI: 10.1007/s41207-020-00197-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The influence that meteorological, climatological and environmental factors had on historical disease outbreaks is often speculated upon, but little investigated. Here, we explore potential associations between pandemic disease and climate over the last 2,500 years in Mediterranean history, focusing on ancient disease outbreaks and the Justinianic plague in particular. We underscore variation in the quality, quantity and interpretation of written evidence and proxy information from natural archives, the comlexity of identifying and disentangling past climatological and environmental drivers, and the need to integrate diverse methodologies to discern past climate-disease linkages and leverage historical experiences to prepare for the rapid expansion of novel pathogenic diseases. Although the difficulties entailed in establishing historical climate-pandemic linkages persist to the present, this is a research area as urgent as it is complex and historical perspectives are desperately needed.
Collapse
Affiliation(s)
- J. Luterbacher
- Science and Innovation Department, World Meteorological Organization (WMO), 7bis Avenue de la Paix, 1211 Geneva, Switzerland
| | - T. P. Newfield
- Department of History, Georgetown University, 37th and O Streets NW, ICC, Washington, DC USA
- Department of Biology, Georgetown University, 37th and O Streets NW, ICC, Washington, DC USA
| | - E. Xoplaki
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Senckenbergstrasse 1, 35390 Giessen, Germany
- Centre of International Development and Environmental Research, Justus Liebig University of Giessen, Senckenbergstrasse 3, 35390 Giessen, Germany
| | - E. Nowatzki
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Senckenbergstrasse 1, 35390 Giessen, Germany
| | - N. Luther
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Senckenbergstrasse 1, 35390 Giessen, Germany
| | - M. Zhang
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Senckenbergstrasse 1, 35390 Giessen, Germany
| | - N. Khelifi
- Earth and Environmental Sciences Editorial Department, Springer, a Part of Springer Nature, Tiergartenstrasse 17, 69121 Heidelberg, Germany
| |
Collapse
|
32
|
Susat J, Bonczarowska JH, Pētersone-Gordina E, Immel A, Nebel A, Gerhards G, Krause-Kyora B. Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic. Sci Rep 2020; 10:14628. [PMID: 32884081 PMCID: PMC7471286 DOI: 10.1038/s41598-020-71530-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022] Open
Abstract
Ancient genomic studies have identified Yersinia pestis (Y. pestis) as the causative agent of the second plague pandemic (fourteenth–eighteenth century) that started with the Black Death (1,347–1,353). Most of the Y. pestis strains investigated from this pandemic have been isolated from western Europe, and not much is known about the diversity and microevolution of this bacterium in eastern European countries. In this study, we investigated human remains excavated from two cemeteries in Riga (Latvia). Historical evidence suggests that the burials were a consequence of plague outbreaks during the seventeenth century. DNA was extracted from teeth of 16 individuals and subjected to shotgun sequencing. Analysis of the metagenomic data revealed the presence of Y. pestis sequences in four remains, confirming that the buried individuals were victims of plague. In two samples, Y. pestis DNA coverage was sufficient for genome reconstruction. Subsequent phylogenetic analysis showed that the Riga strains fell within the diversity of the already known post-Black Death genomes. Interestingly, the two Latvian isolates did not cluster together. Moreover, we detected a drop in coverage of the pPCP1 plasmid region containing the pla gene. Further analysis indicated the presence of two pPCP1 plasmids, one with and one without the pla gene region, and only one bacterial chromosome, indicating that the same bacterium carried two distinct pPCP1 plasmids. In addition, we found the same pattern in the majority of previously published post-Black Death strains, but not in the Black Death strains. The pla gene is an important virulence factor for the infection of and transmission in humans. Thus, the spread of pla-depleted strains may, among other causes, have contributed to the disappearance of the second plague pandemic in eighteenth century Europe.
Collapse
Affiliation(s)
- Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Joanna H Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | | | - Alexander Immel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Guntis Gerhards
- Institute of Latvian History, University of Latvia, Kalpaka bulvāris 4, Riga, 1050, Latvia
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| |
Collapse
|
33
|
Arning N, Wilson DJ. The past, present and future of ancient bacterial DNA. Microb Genom 2020; 6:mgen000384. [PMID: 32598277 PMCID: PMC7478633 DOI: 10.1099/mgen.0.000384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Groundbreaking studies conducted in the mid-1980s demonstrated the possibility of sequencing ancient DNA (aDNA), which has allowed us to answer fundamental questions about the human past. Microbiologists were thus given a powerful tool to glimpse directly into inscrutable bacterial history, hitherto inaccessible due to a poor fossil record. Initially plagued by concerns regarding contamination, the field has grown alongside technical progress, with the advent of high-throughput sequencing being a breakthrough in sequence output and authentication. Albeit burdened with challenges unique to the analysis of bacteria, a growing number of viable sources for aDNA has opened multiple avenues of microbial research. Ancient pathogens have been extracted from bones, dental pulp, mummies and historical medical specimens and have answered focal historical questions such as identifying the aetiological agent of the black death as Yersinia pestis. Furthermore, ancient human microbiomes from fossilized faeces, mummies and dental plaque have shown shifts in human commensals through the Neolithic demographic transition and industrial revolution, whereas environmental isolates stemming from permafrost samples have revealed signs of ancient antimicrobial resistance. Culminating in an ever-growing repertoire of ancient genomes, the quickly expanding body of bacterial aDNA studies has also enabled comparisons of ancient genomes to their extant counterparts, illuminating the evolutionary history of bacteria. In this review we summarize the present avenues of research and contextualize them in the past of the field whilst also pointing towards questions still to be answered.
Collapse
Affiliation(s)
- Nicolas Arning
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
34
|
Yu H, Spyrou MA, Karapetian M, Shnaider S, Radzevičiūtė R, Nägele K, Neumann GU, Penske S, Zech J, Lucas M, LeRoux P, Roberts P, Pavlenok G, Buzhilova A, Posth C, Jeong C, Krause J. Paleolithic to Bronze Age Siberians Reveal Connections with First Americans and across Eurasia. Cell 2020; 181:1232-1245.e20. [DOI: 10.1016/j.cell.2020.04.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/16/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022]
|
35
|
Godde K, Pasillas V, Sanchez A. Survival analysis of the Black Death: Social inequality of women and the perils of life and death in Medieval London. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:168-178. [PMID: 32472637 DOI: 10.1002/ajpa.24081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/25/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Described as an indiscriminate killer by many chroniclers, the Black Death descended on London during the 14th century. To best understand the pattern of transmission among demographic groups, models should include multiple demographic and health covariates concurrently, something rarely done when examining Black Death, but implemented in this study to identify which demographic groups had a higher susceptibility. Female predisposition to the Black Death was also explored, focusing on whether social inequality added to vulnerability. MATERIALS AND METHODS Three attritional cemeteries from the Wellcome Osteological Research Database were compared with the Black Death cemetery, East Smithfield. A Cox proportional hazards regression estimated hazards ratios of dying of the Black Death, using transition analysis ages-at-death as the time variable, and sex and frailty as covariates. Additionally, a binomial logistic regression generated odds ratios for age-at-death, sex, and frailty. RESULTS The Cox model produced a significant hazards ratio for individuals deemed frail. Similarly, the logit model calculated significantly increased odds ratios for frail individuals, and decreased odds for individuals aged 65+. DISCUSSION The older individuals were not undergoing growth during times of great stress in London pre-dating the Black Death epidemic, which may explain the decreased odds of contracting the Black Death. Further, although women dealt with social inequality, which partially led to the demographic puzzle of the Medieval "missing" women, women's susceptibility to infection by the Black Death was not increased. The phenomenon of the missing women may be due to a combination of factors, including infant and child mortality and preservation.
Collapse
Affiliation(s)
- Kanya Godde
- Anthropology Program, University of La Verne, La Verne, California, USA
| | - Valerie Pasillas
- Anthropology Program, University of La Verne, La Verne, California, USA
| | - America Sanchez
- Anthropology Program, University of La Verne, La Verne, California, USA
| |
Collapse
|
36
|
Cui Y, Schmid BV, Cao H, Dai X, Du Z, Ryan Easterday W, Fang H, Guo C, Huang S, Liu W, Qi Z, Song Y, Tian H, Wang M, Wu Y, Xu B, Yang C, Yang J, Yang X, Zhang Q, Jakobsen KS, Zhang Y, Stenseth NC, Yang R. Evolutionary selection of biofilm-mediated extended phenotypes in Yersinia pestis in response to a fluctuating environment. Nat Commun 2020; 11:281. [PMID: 31941912 PMCID: PMC6962365 DOI: 10.1038/s41467-019-14099-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Yersinia pestis is transmitted from fleas to rodents when the bacterium develops an extensive biofilm in the foregut of a flea, starving it into a feeding frenzy, or, alternatively, during a brief period directly after feeding on a bacteremic host. These two transmission modes are in a trade-off regulated by the amount of biofilm produced by the bacterium. Here by investigating 446 global isolated Y. pestis genomes, including 78 newly sequenced isolates sampled over 40 years from a plague focus in China, we provide evidence for strong selection pressures on the RNA polymerase ω-subunit encoding gene rpoZ. We demonstrate that rpoZ variants have an increased rate of biofilm production in vitro, and that they evolve in the ecosystem during colder and drier periods. Our results support the notion that the bacterium is constantly adapting-through extended phenotype changes in the fleas-in response to climate-driven changes in the niche.
Collapse
Affiliation(s)
- Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, N-0316, Oslo, Norway
| | - Hanli Cao
- The Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830002, China
| | - Xiang Dai
- The Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830002, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, N-0316, Oslo, Norway
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chenyi Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shanqian Huang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Wanbing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhizhen Qi
- Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Diseases Prevention and Control, Xining, 811602, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Min Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Bing Xu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jing Yang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Xianwei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qingwen Zhang
- Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Diseases Prevention and Control, Xining, 811602, China
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, N-0316, Oslo, Norway.
| | - Yujiang Zhang
- The Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830002, China.
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, N-0316, Oslo, Norway. .,Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
37
|
Zhou Z, Alikhan NF, Mohamed K, Fan Y, Achtman M. The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020; 30:138-152. [PMID: 31809257 PMCID: PMC6961584 DOI: 10.1101/gr.251678.119] [Citation(s) in RCA: 596] [Impact Index Per Article: 119.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
EnteroBase is an integrated software environment that supports the identification of global population structures within several bacterial genera that include pathogens. Here, we provide an overview of how EnteroBase works, what it can do, and its future prospects. EnteroBase has currently assembled more than 300,000 genomes from Illumina short reads from Salmonella, Escherichia, Yersinia, Clostridioides, Helicobacter, Vibrio, and Moraxella and genotyped those assemblies by core genome multilocus sequence typing (cgMLST). Hierarchical clustering of cgMLST sequence types allows mapping a new bacterial strain to predefined population structures at multiple levels of resolution within a few hours after uploading its short reads. Case Study 1 illustrates this process for local transmissions of Salmonella enterica serovar Agama between neighboring social groups of badgers and humans. EnteroBase also supports single nucleotide polymorphism (SNP) calls from both genomic assemblies and after extraction from metagenomic sequences, as illustrated by Case Study 2 which summarizes the microevolution of Yersinia pestis over the last 5000 years of pandemic plague. EnteroBase can also provide a global overview of the genomic diversity within an entire genus, as illustrated by Case Study 3, which presents a novel, global overview of the population structure of all of the species, subspecies, and clades within Escherichia.
Collapse
|
38
|
Ottoni C, Guellil M, Ozga AT, Stone AC, Kersten O, Bramanti B, Porcier S, Van Neer W. Metagenomic analysis of dental calculus in ancient Egyptian baboons. Sci Rep 2019; 9:19637. [PMID: 31873124 PMCID: PMC6927955 DOI: 10.1038/s41598-019-56074-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Dental calculus, or mineralized plaque, represents a record of ancient biomolecules and food residues. Recently, ancient metagenomics made it possible to unlock the wealth of microbial and dietary information of dental calculus to reconstruct oral microbiomes and lifestyle of humans from the past. Although most studies have so far focused on ancient humans, dental calculus is known to form in a wide range of animals, potentially informing on how human-animal interactions changed the animals' oral ecology. Here, we characterise the oral microbiome of six ancient Egyptian baboons held in captivity during the late Pharaonic era (9th-6th centuries BC) and of two historical baboons from a zoo via shotgun metagenomics. We demonstrate that these captive baboons possessed a distinctive oral microbiome when compared to ancient and modern humans, Neanderthals and a wild chimpanzee. These results may reflect the omnivorous dietary behaviour of baboons, even though health, food provisioning and other factors associated with human management, may have changed the baboons' oral microbiome. We anticipate our study to be a starting point for more extensive studies on ancient animal oral microbiomes to examine the extent to which domestication and human management in the past affected the diet, health and lifestyle of target animals.
Collapse
Affiliation(s)
- Claudio Ottoni
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway.
- Department of Oral and Maxillofacial Sciences, Diet and Ancient Technology Laboratory (DANTE), Sapienza University, Rome, Italy.
| | - Meriam Guellil
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway
- University of Tartu, Institute of Genomics, Estonian Biocentre, 51010, Tartu, Estonia
| | - Andrew T Ozga
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, USA
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway
| | - Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway
- Department of Biomedical and Specialty Surgical Sciences, Faculty of Medicine, Pharmacy, and Prevention, University of Ferrara, 35-441221, Ferrara, Italy
| | - Stéphanie Porcier
- Laboratoire CNRS ASM ≪ Archéologie des Sociétés Méditerranéennes (UMR 5140), Université Paul-Valéry, LabEx Archimede, F-34199, Montpellier, France
| | - Wim Van Neer
- Royal Belgian Institute of Natural Sciences, B-1000, Brussels, Belgium.
- KU Leuven-University of Leuven, Department of Biology, Laboratory of Biodiversity and Evolutionary Genomics, Center of Archaeological Sciences, B-3000, Leuven, Belgium.
| |
Collapse
|
39
|
Spyrou MA, Keller M, Tukhbatova RI, Scheib CL, Nelson EA, Andrades Valtueña A, Neumann GU, Walker D, Alterauge A, Carty N, Cessford C, Fetz H, Gourvennec M, Hartle R, Henderson M, von Heyking K, Inskip SA, Kacki S, Key FM, Knox EL, Later C, Maheshwari-Aplin P, Peters J, Robb JE, Schreiber J, Kivisild T, Castex D, Lösch S, Harbeck M, Herbig A, Bos KI, Krause J. Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nat Commun 2019; 10:4470. [PMID: 31578321 PMCID: PMC6775055 DOI: 10.1038/s41467-019-12154-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/15/2019] [Indexed: 12/30/2022] Open
Abstract
The second plague pandemic, caused by Yersinia pestis, devastated Europe and the nearby regions between the 14th and 18th centuries AD. Here we analyse human remains from ten European archaeological sites spanning this period and reconstruct 34 ancient Y. pestis genomes. Our data support an initial entry of the bacterium through eastern Europe, the absence of genetic diversity during the Black Death, and low within-outbreak diversity thereafter. Analysis of post-Black Death genomes shows the diversification of a Y. pestis lineage into multiple genetically distinct clades that may have given rise to more than one disease reservoir in, or close to, Europe. In addition, we show the loss of a genomic region that includes virulence-related genes in strains associated with late stages of the pandemic. The deletion was also identified in genomes connected with the first plague pandemic (541-750 AD), suggesting a comparable evolutionary trajectory of Y. pestis during both events.
Collapse
Affiliation(s)
- Maria A Spyrou
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
- Institute for Archaeological Sciences, University of Tübingen, 72070, Tübingen, Germany.
| | - Marcel Keller
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
| | - Rezeda I Tukhbatova
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- Laboratory of Structural Biology, Kazan Federal University, Kazan, Russian Federation, 420008
| | | | - Elizabeth A Nelson
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- Institute for Archaeological Sciences, University of Tübingen, 72070, Tübingen, Germany
| | | | - Gunnar U Neumann
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Don Walker
- MOLA (Museum of London Archaeology), London, N1 7ED, UK
| | - Amelie Alterauge
- Department of Physical Anthropology, Institute for Forensic Medicine, University of Bern, 3007, Bern, Switzerland
| | - Niamh Carty
- MOLA (Museum of London Archaeology), London, N1 7ED, UK
| | - Craig Cessford
- Department of Archaeology, University of Cambridge, Downing St, Cambridge, CB2 3ER, UK
| | - Hermann Fetz
- Archaeological Service, State Archive Nidwalden, 6371, Nidwalden, Switzerland
| | - Michaël Gourvennec
- Archeodunum SAS, Agency Toulouse, 8 allée Michel de Montaigne, 31770, Colomiers, France
| | - Robert Hartle
- MOLA (Museum of London Archaeology), London, N1 7ED, UK
| | | | - Kristin von Heyking
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Downing St, Cambridge, CB2 3ER, UK
| | - Sacha Kacki
- PACEA, CNRS Institute, Université de Bordeaux, 33615, Pessac, France
- Department of Archaeology, Durham University, South Rd, Durham, DH1 3LE, UK
| | - Felix M Key
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Christian Later
- Bavarian State Department of Monuments and Sites, 80539, Munich, Germany
| | | | - Joris Peters
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
- ArchaeoBioCenter and Department of Veterinary Sciences, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig Maximilian University Munich, Kaulbachstr. 37/III, 80539, Munich, Germany
| | - John E Robb
- Department of Archaeology, University of Cambridge, Downing St, Cambridge, CB2 3ER, UK
| | | | - Toomas Kivisild
- Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Dominique Castex
- PACEA, CNRS Institute, Université de Bordeaux, 33615, Pessac, France
| | - Sandra Lösch
- Department of Physical Anthropology, Institute for Forensic Medicine, University of Bern, 3007, Bern, Switzerland
| | - Michaela Harbeck
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
- Institute for Archaeological Sciences, University of Tübingen, 72070, Tübingen, Germany.
| |
Collapse
|
40
|
Abstract
Over the past decade, a genomics revolution, made possible through the development of high-throughput sequencing, has triggered considerable progress in the study of ancient DNA, enabling complete genomes of past organisms to be reconstructed. A newly established branch of this field, ancient pathogen genomics, affords an in-depth view of microbial evolution by providing a molecular fossil record for a number of human-associated pathogens. Recent accomplishments include the confident identification of causative agents from past pandemics, the discovery of microbial lineages that are now extinct, the extrapolation of past emergence events on a chronological scale and the characterization of long-term evolutionary history of microorganisms that remain relevant to public health today. In this Review, we discuss methodological advancements, persistent challenges and novel revelations gained through the study of ancient pathogen genomes.
Collapse
|
41
|
Reply to McLean et al.: Collections are critical. Proc Natl Acad Sci U S A 2019; 116:14413. [DOI: 10.1073/pnas.1909035116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Demeure CE, Dussurget O, Mas Fiol G, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun 2019; 20:357-370. [PMID: 30940874 PMCID: PMC6760536 DOI: 10.1038/s41435-019-0065-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022]
Abstract
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged <6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer-membrane proteins (Yops), the broad-range protease Pla, pathogen-associated molecular patterns (PAMPs), and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and <48 h for pneumonic plague). Here, we review recent research advances on Y. pestis evolution, virulence factor function, bacterial strategies to subvert mammalian innate immune responses, vaccination, and problems associated with pneumonic plague diagnosis.
Collapse
Affiliation(s)
| | - Olivier Dussurget
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Guillem Mas Fiol
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Anne-Sophie Le Guern
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Cyril Savin
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France.
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France.
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France.
| |
Collapse
|
43
|
Bramanti B, Dean KR, Walløe L, Chr. Stenseth N. The Third Plague Pandemic in Europe. Proc Biol Sci 2019; 286:20182429. [PMID: 30991930 PMCID: PMC6501942 DOI: 10.1098/rspb.2018.2429] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Plague has a long history on the European continent, with evidence of the disease dating back to the Stone Age. Plague epidemics in Europe during the First and Second Pandemics, including the Black Death, are infamous for their widespread mortality and lasting social and economic impact. Yet, Europe still experienced plague outbreaks during the Third Pandemic, which began in China and spread globally at the end of the nineteenth century. The digitization of international records of notifiable diseases, including plague, has enabled us to retrace the introductions of the disease to Europe from the earliest reported cases in 1899, to its disappearance in the 1940s. Using supplemental literature, we summarize the potential sources of plague in Europe and the transmission of the disease, including the role of rats. Finally, we discuss the international efforts aimed at prevention and intervention measures, namely improved hygiene and sanitation, that ultimately led to the disappearance of plague in Europe.
Collapse
Affiliation(s)
- Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Katharine R. Dean
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lars Walløe
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Reply to Barbieri et al.: Out of the Land of Darkness: Plague on the fur trade routes. Proc Natl Acad Sci U S A 2019; 116:7622-7623. [PMID: 30948635 DOI: 10.1073/pnas.1902274116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
|