1
|
Abbo SR, Yan K, Geertsema C, Hick TAH, Altenburg JJ, Nowee G, van Toor C, van Lent JW, Nakayama E, Tang B, Metz SW, Bhowmik R, de Silva AM, Prow NA, Correia R, Alves PM, Roldão A, Martens DE, van Oers MM, Suhrbier A, Pijlman GP. Virus-like particle vaccine with authentic quaternary epitopes protects against Zika virus-induced viremia and testicular damage. J Virol 2025; 99:e0232224. [PMID: 40013767 PMCID: PMC11998496 DOI: 10.1128/jvi.02322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Zika virus (ZIKV) caused unprecedented outbreaks in South America and the Caribbean in 2015-2016, leading primarily to a series of abnormalities in neonates termed congenital Zika syndrome. The threat of ZIKV reemergence has seen the development of multiple ZIKV vaccines that are at the preclinical stage or in early-stage clinical trials. Herein, we describe a pathway to the development of ZIKV vaccines generated using a baculovirus-insect cell expression system, which is widely applied for the manufacture of biologics for human use. Virus-like particle (VLP) vaccines comprising CprME and subviral particle (SVP) vaccines comprising prME were evaluated for their ability to mediate protection against ZIKV challenge in Ifnar1-/- mice. Initial attempts resulted in VLP and SVP vaccines that failed to present quaternary epitopes and did not provide effective protection. To improve the SVP vaccine, two modifications were introduced: firstly, an alanine to cysteine substitution (A264C) in the E domain II region to promote the formation of stabilized E homodimers and, secondly, the use of Spodoptera frugiperda Sf9 insect cells that had been adapted to grow and produce vaccine at a neutral pH of 7. E homodimers largely retain their pre-fusion conformation at pH 7, which is a requirement for the induction of effective neutralizing antibody responses. The stabilized SVP-A26C vaccine induced high levels of neutralizing antibodies and protected male Ifnar1-/- mice against viremia and testicular damage. Our study reiterates the need to present the immune system with E dimers arranged in authentic quaternary conformations and provides a scalable production method for this novel ZIKV vaccine.IMPORTANCEWe describe the generation of a subviral particle (SVP) vaccine comprising prME proteins of ZIKV, with an envelope protein substitution, A264C, that stabilizes E dimer formation. The SVP vaccine was produced in a novel Sf9 insect cell line adapted to grow in suspension at pH 7. The study highlights the importance of challenge experiments to ascertain whether the responses induced by an experimental vaccine actually mediate protection against virus infection and disease. The study also reiterates the contention that effective flavivirus vaccines need to present the immunogen in an authentic tertiary and quaternary structure with a pre-fusion conformation.
Collapse
Affiliation(s)
- Sandra R. Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Tessy A. H. Hick
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Jort J. Altenburg
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Gwen Nowee
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Chris van Toor
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jan W. van Lent
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Eri Nakayama
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stefan W. Metz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan Bhowmik
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dirk E. Martens
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
3
|
Salem GM, Galula JU, Wu SR, Liu JH, Chen YH, Wang WH, Wang SF, Song CS, Chen FC, Abarientos AB, Chen GW, Wang CI, Chao DY. Antibodies from dengue patients with prior exposure to Japanese encephalitis virus are broadly neutralizing against Zika virus. Commun Biol 2024; 7:15. [PMID: 38267569 PMCID: PMC10808242 DOI: 10.1038/s42003-023-05661-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
Exposure to multiple mosquito-borne flaviviruses within a lifetime is not uncommon; however, how sequential exposures to different flaviviruses shape the cross-reactive humoral response against an antigen from a different serocomplex has yet to be explored. Here, we report that dengue-infected individuals initially primed with the Japanese encephalitis virus (JEV) showed broad, highly neutralizing potencies against Zika virus (ZIKV). We also identified a rare class of ZIKV-cross-reactive human monoclonal antibodies with increased somatic hypermutation and broad neutralization against multiple flaviviruses. One huMAb, K8b, binds quaternary epitopes with heavy and light chains separately interacting with overlapping envelope protein dimer units spanning domains I, II, and III through cryo-electron microscopy and structure-based mutagenesis. JEV virus-like particle immunization in mice further confirmed that such cross-reactive antibodies, mainly IgG3 isotype, can be induced and proliferate through heterologous dengue virus (DENV) serotype 2 virus-like particle stimulation. Our findings highlight the role of prior immunity in JEV and DENV in shaping the breadth of humoral response and provide insights for future vaccination strategies in flavivirus-endemic countries.
Collapse
Affiliation(s)
- Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung City, 40227, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Cheng-Sheng Song
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Fan-Chi Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan
| | - Adrian B Abarientos
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Guan-Wen Chen
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
4
|
Smith TC, Espinoza DO, Zhu Y, Cardona-Ospina JA, Bowman NM, Becker-Dreps S, Rouphael N, Rodriguez-Morales AJ, Bucardo F, Edupuganti S, Premkumar L, Mulligan MJ, de Silva AM, Collins MH. Natural infection by Zika virus but not DNA vaccination consistently elicits antibodies that compete with two potently neutralising monoclonal antibodies targeting distinct epitopes. EBioMedicine 2023; 98:104875. [PMID: 37983984 PMCID: PMC10694573 DOI: 10.1016/j.ebiom.2023.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Autochthonous transmission of Zika virus (ZIKV) has been reported in 87 countries since 2015. Although most infections are mild, there is risk of Guillain-Barré syndrome and adverse pregnancy outcomes. Vaccines are urgently needed to prevent Zika, but sufficient understanding of humoral responses and tools to assess ZIKV-specific immunity are lacking. METHODS We developed a blockade-of-binding (BOB) ELISA using A9E and G9E, two strongly neutralising ZIKV-specific monoclonal antibodies, which do not react with dengue virus. Receiver operating characteristic curve analysis assessed A9E and G9E BOB serodiagnostic performance. BOB was then applied to samples from a surveillance cohort in Risaralda, Colombia, and phase 1 ZIKV vaccine trial samples, comparing results against traditional serologic tests. FINDINGS In the validation sample set (n = 120), A9E BOB has a sensitivity of 93.5% (95% CI: 79.3, 98.9) and specificity 97.8 (95% CI: 92.2, 99.6). G9E BOB had a sensitivity of 100% (95% CI: 89.0, 100.0) and specificity 100% (95% CI: 95.9, 100). Serum from natural infections consistently tested positive in these assays for up to one year, and reactivity tracks well with ZIKV infection status among sera from endemic areas with complicated flavivirus exposures. Interestingly, a leading ZIKV vaccine candidate elicited minimal BOB reactivity despite generating neutralising antibody responses. INTERPRETATION In conclusion, A9E and G9E BOB assays are sensitive and specific assays for detecting antibodies elicited by recent or remote ZIKV infections. Given the additional ability of these BOB assays to detect immune responses that target different epitopes, further development of these assays is well justified for applications including flavivirus surveillance, translational vaccinology research and as potential serologic correlates of protective immunity against Zika. FUNDING R21 AI129532 (PI: S. Becker-Dreps), CDCBAA 2017-N-18041 (PI: A. M. de Silva), Thrasher Fund (PI: M. H. Collins), K22 AI137306 (PI: M. H. Collins).
Collapse
Affiliation(s)
- Teresa C Smith
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Daniel O Espinoza
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yerun Zhu
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jaime A Cardona-Ospina
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia; Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
| | - Natalie M Bowman
- Division of Infectious Diseases, Department of Medicine, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia; Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Filemon Bucardo
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
6
|
Zhao Z, Cao L, Sun Z, Liu W, Li X, Fang K, Shang X, Hu J, Chen H, Lou Z, Qian P. A Structure-Guided Genetic Modification Strategy: Developing Seneca Valley Virus Therapy against Nonsensitive Nonsmall Cell Lung Carcinoma. J Virol 2023; 97:e0045923. [PMID: 37097154 PMCID: PMC10231241 DOI: 10.1128/jvi.00459-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Numerous studies have illustrated that the Seneca Valley virus (SVV) shows sufficient oncolytic efficacy targeting small cell lung cancer (SCLC). However, the therapeutics of nonsmall cell lung carcinoma (NSCLC, accounts for 85% of lung cancer cases) using oncolytic virus have been resisting due to the filtration of neutralizing antibody and limited reproduction capacity. Here, we employed structural biology and reverse genetics to optimize novel oncolytic SVV mutants (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related variant SVV-S177A/P60S) with increased infectivity and lower immunogenicity. The results of the NSCLC-bearing athymic mouse model demonstrated that wild-type (wt) SVV-HB extended the median overall survival (mOS) from 11 days in the PBS group to 19 days. Notably, the newly discovered mutations significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort. Taken together, we present a structure-guided genetic modification strategy for oncolytic SVV optimization and provide a candidate for developing oncolytic viral therapy against nonsensitive NSCLC. IMPORTANCE Nonsmall cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases (more than 1.85 million cases with 1.48 million deaths in 2020). In the present study, two novel oncolytic SVV mutants modified based on structural biology and reverse genetics (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related mutant SVV-S177A/P60S) with increased infectivity or lower immunogenicity significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort in the NSCLC-bearing athymic mouse model, which may provide the direction for modifying SVV to improve the effect of oncolysis.
Collapse
Affiliation(s)
- Zekai Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lin Cao
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology Nankai University, Tianjin, China
| | - Zixian Sun
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, China
| | - Wenqiang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kui Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianfei Shang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junjie Hu
- Hubei Colorectal Cancer Clinical Research Center, Hubei Cancer Hospital, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhiyong Lou
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Fowler A, Ye C, Clarke EC, Pascale JM, Peabody DS, Bradfute SB, Frietze KM, Chackerian B. A method for mapping the linear epitopes targeted by the natural antibody response to Zika virus infection using a VLP platform technology. Virology 2023; 579:101-110. [PMID: 36623351 PMCID: PMC9904412 DOI: 10.1016/j.virol.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV), a mosquito-borne pathogen, is associated with neurological complications in adults and congenital abnormalities in newborns. There are no vaccines or treatments for ZIKV infection. Understanding the specificity of natural antibody responses to ZIKV could help inform vaccine efforts. Here, we used a technology called Deep Sequence-Coupled Biopanning to map the targets of the human antibody responses to ZIKV infection. A bacteriophage virus-like particle (VLP) library displaying overlapping linear peptides derived from the ZIKV polyprotein was generated. The library was panned using IgG from 23 ZIKV-infected patients from Panama and deep sequencing identified common targets of anti-ZIKV antibodies within the ZIKV envelope glycoprotein. These included epitopes within the fusion loop within domain II and four epitopes within domain III. Additionally, we showed that VLPs displaying selected epitopes elicited antibodies that bound to native ZIKV envelope protein but failed to prevent infection in a mouse challenge model.
Collapse
Affiliation(s)
- Alexandra Fowler
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Elizabeth C Clarke
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | | | - David S Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Kathryn M Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Adams C, Carbaugh DL, Shu B, Ng TS, Castillo IN, Bhowmik R, Segovia-Chumbez B, Puhl AC, Graham S, Diehl SA, Lazear HM, Lok SM, de Silva AM, Premkumar L. Structure and neutralization mechanism of a human antibody targeting a complex Epitope on Zika virus. PLoS Pathog 2023; 19:e1010814. [PMID: 36626401 PMCID: PMC9870165 DOI: 10.1371/journal.ppat.1010814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/23/2023] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
We currently have an incomplete understanding of why only a fraction of human antibodies that bind to flaviviruses block infection of cells. Here we define the footprint of a strongly neutralizing human monoclonal antibody (mAb G9E) with Zika virus (ZIKV) by both X-ray crystallography and cryo-electron microscopy. Flavivirus envelope (E) glycoproteins are present as homodimers on the virion surface, and G9E bound to a quaternary structure epitope spanning both E protomers forming a homodimer. As G9E mainly neutralized ZIKV by blocking a step after viral attachment to cells, we tested if the neutralization mechanism of G9E was dependent on the mAb cross-linking E molecules and blocking low-pH triggered conformational changes required for viral membrane fusion. We introduced targeted mutations to the G9E paratope to create recombinant antibodies that bound to the ZIKV envelope without cross-linking E protomers. The G9E paratope mutants that bound to a restricted epitope on one protomer poorly neutralized ZIKV compared to the wild-type mAb, demonstrating that the neutralization mechanism depended on the ability of G9E to cross-link E proteins. In cell-free low pH triggered viral fusion assay, both wild-type G9E, and epitope restricted paratope mutant G9E bound to ZIKV but only the wild-type G9E blocked fusion. We propose that, beyond antibody binding strength, the ability of human antibodies to cross-link E-proteins is a critical determinant of flavivirus neutralization potency.
Collapse
Affiliation(s)
- Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Derek L. Carbaugh
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Bo Shu
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thiam-Seng Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Izabella N. Castillo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ryan Bhowmik
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Bruno Segovia-Chumbez
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ana C. Puhl
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen Graham
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Sean A. Diehl
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Shee-mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
9
|
Assalauova D, Vartanyants IA. The structure of tick-borne encephalitis virus determined at X-ray free-electron lasers. Simulations. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:24-34. [PMID: 36601923 PMCID: PMC9814066 DOI: 10.1107/s1600577522011341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The study of virus structures by X-ray free-electron lasers (XFELs) has attracted increased attention in recent decades. Such experiments are based on the collection of 2D diffraction patterns measured at the detector following the application of femtosecond X-ray pulses to biological samples. To prepare an experiment at the European XFEL, the diffraction data for the tick-borne encephalitis virus (TBEV) was simulated with different parameters and the optimal values were identified. Following the necessary steps of a well established data-processing pipeline, the structure of TBEV was obtained. In the structure determination presented, a priori knowledge of the simulated virus orientations was used. The efficiency of the proposed pipeline was demonstrated.
Collapse
Affiliation(s)
- Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
10
|
Singh T, Hwang KK, Miller AS, Jones RL, Lopez CA, Dulson SJ, Giuberti C, Gladden MA, Miller I, Webster HS, Eudailey JA, Luo K, Von Holle T, Edwards RJ, Valencia S, Burgomaster KE, Zhang S, Mangold JF, Tu JJ, Dennis M, Alam SM, Premkumar L, Dietze R, Pierson TC, Eong Ooi E, Lazear HM, Kuhn RJ, Permar SR, Bonsignori M. A Zika virus-specific IgM elicited in pregnancy exhibits ultrapotent neutralization. Cell 2022; 185:4826-4840.e17. [PMID: 36402135 PMCID: PMC9742325 DOI: 10.1016/j.cell.2022.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.
Collapse
Affiliation(s)
- Tulika Singh
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew S. Miller
- Department of Biological Sciences, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Rebecca L. Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cesar A. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah J. Dulson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camila Giuberti
- Núcleo de Doenças Infecciosas—Universidade Federal do Espírito Santo, Vitoria, Espírito Santo 29075-910, Brazil
| | - Morgan A. Gladden
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Itzayana Miller
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Helen S. Webster
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua A. Eudailey
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Kan Luo
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katherine E. Burgomaster
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Summer Zhang
- Duke-National University of Singapore Medical School, 169857, Singapore
| | - Jesse F. Mangold
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria Dennis
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas—Universidade Federal do Espírito Santo, Vitoria, Espírito Santo 29075-910, Brazil,Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Eng Eong Ooi
- Duke-National University of Singapore Medical School, 169857, Singapore
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA,Senior author. These authors contributed equally,Correspondence: (S.R.P.), (M.B.)
| | - Mattia Bonsignori
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Monoclonal antibody therapeutics for infectious diseases: Beyond normal human immunoglobulin. Pharmacol Ther 2022; 240:108233. [PMID: 35738431 PMCID: PMC9212443 DOI: 10.1016/j.pharmthera.2022.108233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Antibody therapy is effective for treating infectious diseases. Due to the coronavirus disease 2019 (COVID-19) pandemic and the rise of drug-resistant bacteria, rapid development of neutralizing monoclonal antibodies (mAbs) to treat infectious diseases is urgently needed. Using a therapeutic human mAb with the lowest immunogenicity is recommended, because chimera and humanized mAbs are occasionally immunogenic. In order to directly obtain naïve human mAbs, there are three methods: phage display, B cell receptor (BCR) cDNA sequencing of a single cell, and antibody-encoding gene and amino acid sequencing of immortalized cells using memory B cells, which are isolated from human peripheral blood mononuclear cells of healthy, vaccinated, infected, or recovered individuals. After screening against the antigen and performing neutralization assays, a human neutralizing mAb is constructed from the antibody-encoding DNA sequences of these memory B cells. This review describes examples of obtaining human neutralizing mAbs against various infectious diseases using these methods. However, a few of these mAbs have been approved for therapy. Therefore, antigen characterization and evaluation of neutralization activity in vitro and in vivo are indispensable for the development of therapeutic mAbs. These results will accelerate the development of antibody drug as therapeutic agents.
Collapse
|
12
|
Doyle MP, Genualdi JR, Bailey AL, Kose N, Gainza C, Rodriguez J, Reeder KM, Nelson CA, Jethva PN, Sutton RE, Bombardi RG, Gross ML, Julander JG, Fremont DH, Diamond MS, Crowe JE. Isolation of a Potently Neutralizing and Protective Human Monoclonal Antibody Targeting Yellow Fever Virus. mBio 2022; 13:e0051222. [PMID: 35420472 PMCID: PMC9239089 DOI: 10.1128/mbio.00512-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 01/23/2023] Open
Abstract
Yellow fever virus (YFV) causes sporadic outbreaks of infection in South America and sub-Saharan Africa. While live-attenuated yellow fever virus vaccines based on three substrains of 17D are considered some of the most effective vaccines in use, problems with production and distribution have created large populations of unvaccinated, vulnerable individuals in areas of endemicity. To date, specific antiviral therapeutics have not been licensed for human use against YFV or any other related flavivirus. Recent advances in monoclonal antibody (mAb) technology have allowed the identification of numerous candidate therapeutics targeting highly pathogenic viruses, including many flaviviruses. Here, we sought to identify a highly neutralizing antibody targeting the YFV envelope (E) protein as a therapeutic candidate. We used human B cell hybridoma technology to isolate mAbs from circulating memory B cells from human YFV vaccine recipients. These antibodies bound to recombinant YFV E protein and recognized at least five major antigenic sites on E. Two mAbs (designated YFV-136 and YFV-121) recognized a shared antigenic site and neutralized the YFV-17D vaccine strain in vitro. YFV-136 also potently inhibited infection by multiple wild-type YFV strains, in part, at a postattachment step in the virus replication cycle. YFV-136 showed therapeutic protection in two animal models of YFV challenge, including hamsters and immunocompromised mice engrafted with human hepatocytes. These studies define features of the antigenic landscape of the YFV E protein recognized by the human B cell response and identify a therapeutic antibody candidate that inhibits infection and disease caused by highly virulent strains of YFV. IMPORTANCE Yellow fever virus (YFV) is a mosquito-borne virus that occasionally causes outbreaks of severe infection and disease in South America and sub-Saharan Africa. There are very effective live-attenuated (weakened) yellow fever virus vaccines, but recent problems with their production and distribution have left many people in affected areas vulnerable. Here, we sought to isolate an antibody targeting the surface of the virus for possible use in the future as a biologic drug to prevent or treat YFV infection. We isolated naturally occurring antibodies from individuals who had received a YFV vaccine. We created antibodies and tested them. We found that the antibody with the most powerful antiviral activity was a beneficial treatment in two different small-animal models of human infection. These studies identified features of the virus that are recognized by the human immune system and generated a therapeutic antibody candidate that inhibits infection caused by highly virulent strains of YFV.
Collapse
Affiliation(s)
- Michael P. Doyle
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joseph R. Genualdi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adam L. Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher Gainza
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jessica Rodriguez
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Reeder
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher A. Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rachel E. Sutton
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robin G. Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Justin G. Julander
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Yu Y, Si L, Meng Y. Flavivirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:171-197. [PMID: 35412141 DOI: 10.1007/978-981-16-8702-0_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flaviviruses, including Dengue virus, Zika virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, cause thousands of deaths and millions of illnesses each year. The large outbreak of ZIKV in 2016 reminds us that flaviviruses can pose a serious threat to human safety and public health as emerging and re-emerging viruses. However, there are no specific drugs approved for the treatment of flavivirus infections. Due to no need to enter the cells, viral entry inhibitors have the unique advantage in suppressing viral infections. Flaviviruses bind to receptors and attach to the cell surface, then enter the endosome in a clathrin-dependent manner and finalizes the viral entry process after fusion with the cell membrane in a low pH environment. Small molecules, antibodies or peptides can inhibit flavivirus entry by targeting the above processes. Here, we focus on flavivirus entry inhibitors with well-defined target and antiviral activity. We hope that our review will provide a theoretical basis for flavivirus treatment and drug research and help to accelerate the clinical application of flavivirus entry inhibitors.
Collapse
Affiliation(s)
- Yufeng Yu
- Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Lulu Si
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Meng
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
14
|
Crowe JE, Carnahan RH. Even old foes can learn sweet new tricks. Cell Host Microbe 2022; 30:151-153. [PMID: 35143767 DOI: 10.1016/j.chom.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this issue of Cell Host and Microbe, Haslwanter et al. (2022) present a comprehensive investigation into the molecular and functional basis of 17D vaccine responses and into differences between antibody neutralization of the 17D and related African lineage strains to contemporary Central/South American strains, including the emergent YFV ES-504 strain.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Liu Z, Zhang Y, Cheng M, Ge N, Shu J, Xu Z, Su X, Kou Z, Tong Y, Qin C, Jin X. A single nonsynonymous mutation on ZIKV E protein-coding sequences leads to markedly increased neurovirulence in vivo. Virol Sin 2022; 37:115-126. [PMID: 35234632 PMCID: PMC8922429 DOI: 10.1016/j.virs.2022.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 01/23/2023] Open
Abstract
Zika virus (ZIKV) can infect a wide range of tissues including the developmental brain of human fetus. Whether specific viral genetic variants are linked to neuropathology is incompletely understood. To address this, we have intracranially serially passaged a clinical ZIKV isolate (SW01) in neonatal mice and discovered variants that exhibit markedly increased virulence and neurotropism. Deep sequencing analysis combining with molecular virology studies revealed that a single 67D (Aspartic acid) to N (Asparagine) substitution on E protein is sufficient to confer the increased virulence and neurotropism in vivo. Notably, virus clones with D67N mutation had higher viral production and caused more severe cytopathic effect (CPE) in human neural astrocytes U251 cells in vitro, indicating its potential neurological toxicity to human brain. These findings revealed that a single mutation D67N on ZIKV envelope may lead to severe neuro lesion that may help to explain the neurovirulence of ZIKV and suggest monitoring the occurrence of this mutation during nature infection may be important. Construction of a ZIKV adaptation mouse mode. Specific viral genetic changes of ZIKV are associated with severe neuropathology. D67N mutation on E protein markedly increase the neurovirulence of ZIKA virus.
Collapse
Affiliation(s)
- Zhihua Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yawei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Mengli Cheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ningning Ge
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jiayi Shu
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Kou
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Xia Jin
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
16
|
Abernathy ME, Dam KMA, Esswein SR, Jette CA, Bjorkman PJ. How Antibodies Recognize Pathogenic Viruses: Structural Correlates of Antibody Neutralization of HIV-1, SARS-CoV-2, and Zika. Viruses 2021; 13:2106. [PMID: 34696536 PMCID: PMC8537525 DOI: 10.3390/v13102106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
The H1N1 pandemic of 2009-2010, MERS epidemic of 2012, Ebola epidemics of 2013-2016 and 2018-2020, Zika epidemic of 2015-2016, and COVID-19 pandemic of 2019-2021, are recent examples in the long history of epidemics that demonstrate the enormous global impact of viral infection. The rapid development of safe and effective vaccines and therapeutics has proven vital to reducing morbidity and mortality from newly emerging viruses. Structural biology methods can be used to determine how antibodies elicited during infection or vaccination target viral proteins and identify viral epitopes that correlate with potent neutralization. Here we review how structural and molecular biology approaches have contributed to our understanding of antibody recognition of pathogenic viruses, specifically HIV-1, SARS-CoV-2, and Zika. Determining structural correlates of neutralization of viruses has guided the design of vaccines, monoclonal antibodies, and small molecule inhibitors in response to the global threat of viral epidemics.
Collapse
Affiliation(s)
- Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Shannon R. Esswein
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA;
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| |
Collapse
|
17
|
Su S, Liu X, Tian RR, Qiao KX, Zheng CB, Gao WC, Yang LM, Kang QZ, Zheng YT. Cell membrane skeletal protein 4.1R participates in entry of Zika virus into cells. Virus Res 2021; 306:198593. [PMID: 34637814 DOI: 10.1016/j.virusres.2021.198593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Zika virus (ZIKV) is a typical mosquito-borne flavivirus known to cause severe fetal microcephaly and adult Guillain-Barré syndrome. Currently, there are no specific drugs or licensed vaccines available for ZIKV infection, and further research is required to identify host cell proteins involved in the virus's life cycle. Viruses are known to use host cell membrane skeletal proteins, such as actin and spectrin, to complete cell entry, transportation, and release. Here, based on immunoprecipitation, the Axl and ZIKV envelope (E) protein were shown to interact with the cell membrane skeleton protein 4.1R. Furthermore, deletion of 4.1R significantly reduced virus titer and viral protein synthesis. Our study showed that 4.1R is an important host cell protein during ZIKV infection and may be involved in the process of viral entry into host cells.
Collapse
Affiliation(s)
- Shan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Kai-Xuan Qiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Wen-Cong Gao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qiao-Zhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
18
|
Cimica V, Galarza JM, Rashid S, Stedman TT. Current development of Zika virus vaccines with special emphasis on virus-like particle technology. Expert Rev Vaccines 2021; 20:1483-1498. [PMID: 34148481 DOI: 10.1080/14760584.2021.1945447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Zika virus disease received little attention until its recent explosive emergence around the globe. The devastating consequences of this pandemic include congenital Zika syndrome (CZS) and the neurological autoimmune disorder Guillain-Barré syndrome. These potential outcomes prompted massive efforts to understand the course of Zika infection and to develop therapeutic and prophylactic strategies for treatment and prevention of disease.Area covered: Preclinical and clinical data demonstrate that a safe and efficacious vaccine for protection against Zika virus infection is possible in the near future. Nevertheless, significant knowledge gaps regarding the outcome of a mass vaccination strategy exist and must be addressed. Zika virus circulates in flavivirus-endemic regions, an ideal Zika vaccine should avoid the potential of antibody-dependent enhancement from exposure to dengue virus. Prevention of CZS is the primary goal for immunization, and the vaccine must provide protection against intrauterine transmission for use during pregnancy and in women of childbearing age. Ideally, a vaccine should also prevent sexual transmission of the virus through mucosal protection.Expert opinion: This review describes current vaccine approaches against Zika virus with particular attention to the application of virus-like particle (VLP) technology as a strategy for solving the challenges of Zika virus immunization.
Collapse
Affiliation(s)
- Velasco Cimica
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | | | - Sujatha Rashid
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | | |
Collapse
|
19
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
20
|
A Novel Antigenic Site Spanning Domains I and III of the Zika Virus Envelope Glycoprotein Is the Target of Strongly Neutralizing Human Monoclonal Antibodies. J Virol 2021; 95:JVI.02423-20. [PMID: 33597214 PMCID: PMC8104094 DOI: 10.1128/jvi.02423-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
People infected with Zika virus develop durable neutralizing antibodies that prevent repeat infections. In the current study, we characterize a ZIKV-neutralizing human monoclonal antibody isolated from a patient after recovery. Our studies establish a novel site on the viral envelope that is targeted by human neutralizing antibodies. Our results are relevant to understanding how antibodies block infection and to guiding the design and evaluation of candidate vaccines. Zika virus (ZIKV), a mosquito-transmitted flavivirus, caused a large epidemic in Latin America between 2015 and 2017. Effective ZIKV vaccines and treatments are urgently needed to prevent future epidemics and severe disease sequelae. People infected with ZIKV develop strongly neutralizing antibodies linked to viral clearance and durable protective immunity. To understand the mechanisms of protective immunity and to support the development of ZIKV vaccines, we characterize here a strongly neutralizing antibody, B11F, isolated from a patient who recovered from ZIKV. Our results indicate that B11F targets a complex epitope on the virus that spans domains I and III of the envelope glycoprotein. While previous studies point to quaternary epitopes centered on domain II of the ZIKV E glycoprotein as targets of strongly neutralizing and protective human antibodies, we uncover a new site spanning domains I and III as a target of strongly neutralizing human antibodies. IMPORTANCE People infected with Zika virus develop durable neutralizing antibodies that prevent repeat infections. In the current study, we characterize a ZIKV-neutralizing human monoclonal antibody isolated from a patient after recovery. Our studies establish a novel site on the viral envelope that is targeted by human neutralizing antibodies. Our results are relevant to understanding how antibodies block infection and to guiding the design and evaluation of candidate vaccines.
Collapse
|
21
|
Vang L, Morello CS, Mendy J, Thompson D, Manayani D, Guenther B, Julander J, Sanford D, Jain A, Patel A, Shabram P, Smith J, Alexander J. Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Negl Trop Dis 2021; 15:e0009195. [PMID: 33711018 PMCID: PMC7990201 DOI: 10.1371/journal.pntd.0009195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/24/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Zika virus (ZIKV), a mosquito-borne flavivirus, is a re-emerging virus that constitutes a public health threat due to its recent global spread, recurrent outbreaks, and infections that are associated with neurological abnormalities in developing fetuses and Guillain-Barré syndrome in adults. To date, there are no approved vaccines against ZIKV infection. Various preclinical and clinical development programs are currently ongoing in an effort to bring forward a vaccine for ZIKV. Methodology/Principle findings We have developed a ZIKV vaccine candidate based on Virus-Like-Particles (VLPs) produced in HEK293 mammalian cells using the prM (a precursor to M protein) and envelope (E) structural protein genes from ZIKV. Transient transfection of cells via plasmid and electroporation produced VLPs which were subsequently purified by column chromatography yielding approximately 2mg/L. Initially, immunogenicity and efficacy were evaluated in AG129 mice using a dose titration of VLP with and without Alhydrogel 2% (alum) adjuvant. We found that VLP with and without alum elicited ZIKV-specific serum neutralizing antibodies (nAbs) and that titers correlated with protection. A follow-up immunogenicity and efficacy study in rhesus macaques was performed using VLP formulated with alum. Multiple neutralization assay methods were performed on immune sera including a plaque reduction neutralization test, a microneutralization assay, and a Zika virus Renilla luciferase neutralization assay. All of these assays indicate that following immunization, VLP induces high titer nAbs which correlate with protection against ZIKV challenge. Conclusions/Significance These studies confirm that ZIKV VLPs could be efficiently generated and purified. Upon VLP immunization, in both mice and NHPs, nAb was induced that correlate with protection against ZIKV challenge. These studies support translational efforts in developing a ZIKV VLP vaccine for evaluation in human clinical trials. Zika virus (ZIKV) is a significant global health threat particularly due to the speed in which epidemics can occur. The resulting infections have been demonstrated to harm a developing fetus and, in some adults, be a co-factor for the development of Guillain-Barré syndrome. ZIKV is typically spread by the Aedes mosquito, but sexual transmission is also possible. We sought to develop a ZIKV prophylactic vaccine based on surface glycoproteins of the virus that would be devoid of any viral genetic material. This Virus-Like-Particle (VLP) was generated in vitro following introduction of plasmid DNA encoding Zika structural protein (prM-E) genes into mammalian cells. The aluminum-adjuvanted VLP induced nAbs in mice and nonhuman primates and protected against ZIKV challenge in vivo. These studies support the evaluation of this VLP candidate vaccine in human clinical trials.
Collapse
Affiliation(s)
- Lo Vang
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- * E-mail:
| | | | - Jason Mendy
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Danielle Thompson
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Darly Manayani
- PaxVax Inc., San Diego, California, United States of America (PaxVax was acquired by Emergent BioSolutions Inc. Oct 2018)
| | - Ben Guenther
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Justin Julander
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Daniel Sanford
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
| | - Amit Jain
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Amish Patel
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Paul Shabram
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Jonathan Smith
- PaxVax Inc., San Diego, California, United States of America (PaxVax was acquired by Emergent BioSolutions Inc. Oct 2018)
| | - Jeff Alexander
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- PaxVax Inc., San Diego, California, United States of America (PaxVax was acquired by Emergent BioSolutions Inc. Oct 2018)
| |
Collapse
|
22
|
Ramamurthy D, Nundalall T, Cingo S, Mungra N, Karaan M, Naran K, Barth S. Recent advances in immunotherapies against infectious diseases. IMMUNOTHERAPY ADVANCES 2021; 1:ltaa007. [PMID: 38626281 PMCID: PMC7717302 DOI: 10.1093/immadv/ltaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapies are disease management strategies that target or manipulate components of the immune system. Infectious diseases pose a significant threat to human health as evidenced by countries continuing to grapple with several emerging and re-emerging diseases, the most recent global health threat being the SARS-CoV2 pandemic. As such, various immunotherapeutic approaches are increasingly being investigated as alternative therapies for infectious diseases, resulting in significant advances towards the uncovering of pathogen-host immunity interactions. Novel and innovative therapeutic strategies are necessary to overcome the challenges typically faced by existing infectious disease prevention and control methods such as lack of adequate efficacy, drug toxicity, and the emergence of drug resistance. As evidenced by recent developments and success of pharmaceuticals such as monoclonal antibodies (mAbs), immunotherapies already show abundant promise to overcome such limitations while also advancing the frontiers of medicine. In this review, we summarize some of the most notable inroads made to combat infectious disease, over mainly the last 5 years, through the use of immunotherapies such as vaccines, mAb-based therapies, T-cell-based therapies, manipulation of cytokine levels, and checkpoint inhibition. While its most general applications are founded in cancer treatment, advances made towards the curative treatment of human immunodeficiency virus, tuberculosis, malaria, zika virus and, most recently COVID-19, reinforce the role of immunotherapeutic strategies in the broader field of disease control. Ultimately, the comprehensive specificity, safety, and cost of immunotherapeutics will impact its widespread implementation.
Collapse
Affiliation(s)
- Dharanidharan Ramamurthy
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sanele Cingo
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neelakshi Mungra
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Maryam Karaan
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
Sevvana M, Rogers TF, Miller AS, Long F, Klose T, Beutler N, Lai YC, Parren M, Walker LM, Buda G, Burton DR, Rossmann MG, Kuhn RJ. Structural Basis of Zika Virus Specific Neutralization in Subsequent Flavivirus Infections. Viruses 2020; 12:v12121346. [PMID: 33255202 PMCID: PMC7760643 DOI: 10.3390/v12121346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV), a mosquito-borne human flavivirus that causes microcephaly and other neurological disorders, has been a recent focus for the development of flavivirus vaccines and therapeutics. We report here a 4.0 Å resolution structure of the mature ZIKV in complex with ADI-30056, a ZIKV-specific human monoclonal antibody (hMAb) isolated from a ZIKV infected donor with a prior dengue virus infection. The structure shows that the hMAb interactions span across the E protein dimers on the virus surface, inhibiting conformational changes required for the formation of infectious fusogenic trimers similar to the hMAb, ZIKV-117. Structure-based functional analysis, and structure and sequence comparisons, identified ZIKV residues essential for neutralization and crucial for the evolution of highly potent E protein crosslinking Abs in ZIKV. Thus, this epitope, ZIKV’s “Achilles heel”, defined by the contacts between ZIKV and ADI-30056, could be a suitable target for the design of therapeutic antibodies.
Collapse
Affiliation(s)
- Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.S.); (A.S.M.); (F.L.); (T.K.); (G.B.); (M.G.R.)
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (T.F.R.); (N.B.); (Y.-C.L.); (M.P.); (D.R.B.)
| | - Andrew S. Miller
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.S.); (A.S.M.); (F.L.); (T.K.); (G.B.); (M.G.R.)
| | - Feng Long
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.S.); (A.S.M.); (F.L.); (T.K.); (G.B.); (M.G.R.)
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.S.); (A.S.M.); (F.L.); (T.K.); (G.B.); (M.G.R.)
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (T.F.R.); (N.B.); (Y.-C.L.); (M.P.); (D.R.B.)
| | - Yen-Chung Lai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (T.F.R.); (N.B.); (Y.-C.L.); (M.P.); (D.R.B.)
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (T.F.R.); (N.B.); (Y.-C.L.); (M.P.); (D.R.B.)
| | | | - Geeta Buda
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.S.); (A.S.M.); (F.L.); (T.K.); (G.B.); (M.G.R.)
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (T.F.R.); (N.B.); (Y.-C.L.); (M.P.); (D.R.B.)
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.S.); (A.S.M.); (F.L.); (T.K.); (G.B.); (M.G.R.)
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.S.); (A.S.M.); (F.L.); (T.K.); (G.B.); (M.G.R.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
24
|
Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV, Rosen LE, McCallum M, Bowen J, Minola A, Jaconi S, Zatta F, De Marco A, Guarino B, Bianchi S, Lauron EJ, Tucker H, Zhou J, Peter A, Havenar-Daughton C, Wojcechowskyj JA, Case JB, Chen RE, Kaiser H, Montiel-Ruiz M, Meury M, Czudnochowski N, Spreafico R, Dillen J, Ng C, Sprugasci N, Culap K, Benigni F, Abdelnabi R, Foo SYC, Schmid MA, Cameroni E, Riva A, Gabrieli A, Galli M, Pizzuto MS, Neyts J, Diamond MS, Virgin HW, Snell G, Corti D, Fink K, Veesler D. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 2020; 370:950-957. [PMID: 32972994 PMCID: PMC7857395 DOI: 10.1126/science.abe3354] [Citation(s) in RCA: 438] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022]
Abstract
Efficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo-electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Antibody cocktails that include S2M11, S2E12, or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.
Collapse
MESH Headings
- Amino Acid Motifs/immunology
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Betacoronavirus/immunology
- CHO Cells
- COVID-19
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Cricetinae
- Cricetulus
- Cryoelectron Microscopy
- HEK293 Cells
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/immunology
- Microscopy, Electron
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Protein Domains/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/antagonists & inhibitors
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Martina Beltramello
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Dora Pinto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Ha V Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrea Minola
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Anna De Marco
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Siro Bianchi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Alessia Peter
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - James Brett Case
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rita E Chen
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | - Josh Dillen
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Cindy Ng
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Nicole Sprugasci
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Culap
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Michael A Schmid
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Agostino Riva
- III Division of Infectious Diseases, Luigi Sacco University Hospital, University of Milan, Italy
| | - Arianna Gabrieli
- III Division of Infectious Diseases, Luigi Sacco University Hospital, University of Milan, Italy
| | - Massimo Galli
- III Division of Infectious Diseases, Luigi Sacco University Hospital, University of Milan, Italy
| | - Matteo S Pizzuto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- Washington University School of Medicine, St. Louis, MO, USA
- UTSouthwestern Medical Center, Dallas, TX, USA
| | | | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Fink
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Silva IBB, da Silva AS, Cunha MS, Cabral AD, de Oliveira KCA, Gaspari ED, Prudencio CR. Zika virus serological diagnosis: commercial tests and monoclonal antibodies as tools. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200019. [PMID: 33281886 PMCID: PMC7685096 DOI: 10.1590/1678-9199-jvatitd-2020-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV), an emerging arthropod-borne virus (arbovirus) of the Flaviviridae family, is a current issue worldwide, particularly because of the congenital and neurological syndromes associated with infection by this virus. As the initial clinical symptoms of all diseases caused by this group are very similar, clinical diagnosis is difficult. Furthermore, laboratory diagnostic efforts have failed to identify specific and accurate tests for each virus of the Flaviviridae family due to the cross-reactivity of these viruses in serum samples. This situation has resulted in underreporting of the diseases caused by flaviviruses. However, many companies developed commercial diagnostic tests after the recent ZIKV outbreak. Moreover, health regulatory agencies have approved different commercial tests to extend the monitoring of ZIKV infections. Considering that a specific and sensitive diagnostic method for estimating risk and evaluating ZIKV propagation is still needed, this review aims to provide an update of the main commercially approved serological diagnostics test by the US Food and Drug Administration (FDA) and Brazilian National Health Surveillance Agency (ANVISA). Additionally, we present the technologies used for monoclonal antibody production as a tool for the development of diagnostic tests and applications of these antibodies in detecting ZIKV infections worldwide.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | | | | - Elizabeth De Gaspari
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carlos Roberto Prudencio
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
26
|
de Oliveira TM, van Beek L, Shilliday F, Debreczeni JÉ, Phillips C. Cryo-EM: The Resolution Revolution and Drug Discovery. SLAS DISCOVERY 2020; 26:17-31. [PMID: 33016175 DOI: 10.1177/2472555220960401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) has been elevated to the mainstream of structural biology propelled by technological advancements in numerous fronts, including imaging analysis and the development of direct electron detectors. The drug discovery field has watched with (initial) skepticism and wonder at the progression of the technique and how it revolutionized the molecular understanding of previously intractable targets. This article critically assesses how cryo-EM has impacted drug discovery in diverse therapeutic areas. Targets that have been brought into the realm of structure-based drug design by cryo-EM and are thus reviewed here include membrane proteins like the GABAA receptor, several TRP channels, and G protein-coupled receptors, and multiprotein complexes like the ribosomes, the proteasome, and eIF2B. We will describe these studies highlighting the achievements, challenges, and caveats.
Collapse
Affiliation(s)
| | - Lotte van Beek
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Fiona Shilliday
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Judit É Debreczeni
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Chris Phillips
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| |
Collapse
|
27
|
Pomés A, Mueller GA, Chruszcz M. Structural Aspects of the Allergen-Antibody Interaction. Front Immunol 2020; 11:2067. [PMID: 32983155 PMCID: PMC7492603 DOI: 10.3389/fimmu.2020.02067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
The development of allergic disease involves the production of IgE antibodies upon allergen exposure in a process called sensitization. IgE binds to receptors on the surface of mast cells and basophils, and subsequent allergen exposure leads to cross-linking of IgE antibodies and release of cell mediators that cause allergy symptoms. Although this process is quite well-understood, very little is known about the epitopes on the allergen recognized by IgE, despite the importance of the allergen-antibody interaction for the allergic response to occur. This review discusses efforts to analyze allergen-antibody interactions, from the original epitope mapping studies using linear peptides or recombinant allergen fragments, to more sophisticated technologies, such as X-ray crystallography and nuclear magnetic resonance. These state-of-the-art approaches, combined with site-directed mutagenesis, have led to the identification of conformational IgE epitopes. The first structures of an allergen (egg lysozyme) in complex with Fab fragments from IgG antibodies were determined in the 1980s. Since then, IgG has been used as surrogate for IgE, due to the difficulty of obtaining monoclonal IgE antibodies. Technical developments including phage display libraries have contributed to progress in epitope mapping thanks to the isolation of IgE antibody constructs from combinatorial libraries made from peripheral blood mononuclear cells of allergic donors. Most recently, single B cell antibody sequencing and human hybridomas are new breakthrough technologies for finally obtaining human IgE monoclonal antibodies, ideal for epitope mapping. The information on antigenic determinants will facilitate the design of hypoallergens for immunotherapy and the investigation of the fundamental mechanisms of the IgE response.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
28
|
Mapping the diverse structural landscape of the flavivirus antibody repertoire. Curr Opin Virol 2020; 45:51-64. [PMID: 32801077 DOI: 10.1016/j.coviro.2020.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Flaviviruses are emerging arthropod-borne RNA viruses, causing a broad spectrum of life-threatening disease symptoms such as encephalitis and hemorrhagic fever. Successful vaccines exist against yellow fever virus, Japanese encephalitis virus and tick-borne encephalitis virus. However, vaccine development against other flaviviruses like dengue virus is not straightforward. This is partly because of the high sequence conservation and immunological cross-reactivity among flavivirus envelope glycoproteins leading to antibody mediated enhancement of disease. A comprehensive analyses of the structural landscape of humoral immune response against flaviviruses is crucial for antigen design. Here, we compare the available structural data of several flavivirus antibody complexes with a major focus on Zika virus and dengue virus and discuss the mapped epitopes, the stoichiometry of antibody binding and mechanisms of neutralization.
Collapse
|
29
|
Integrated pipeline for the accelerated discovery of antiviral antibody therapeutics. Nat Biomed Eng 2020; 4:1030-1043. [PMID: 32747832 PMCID: PMC7655621 DOI: 10.1038/s41551-020-0594-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
The emergence and re-emergence of highly virulent viral pathogens with pandemic potential creates an urgent need for the accelerated discovery of antiviral therapeutics. Antiviral human monoclonal antibodies (mAbs) are promising candidates to prevent or treat severe viral diseases, but their long development timeframes limit their rapid deployment and use. Here, we report the development of an integrated sequence of technologies, including single-cell mRNA sequence analysis, bioinformatics, synthetic biology and high-throughput functional analysis, that enabled the rapid discovery of highly potent antiviral human mAbs, whose activity we validated in vivo. In a 78-day study modelling the deployment of a rapid response to an outbreak, we isolated more than 100 human mAbs specific for the Zika virus, assessed their function, identified 29 of those as having broadly neutralizing activity, and verified the therapeutic potency of the lead candidates in mice and non-human primate models of infection via the delivery of an antibody-encoding mRNA formulation and of the respective IgG antibody. The pipeline provides a roadmap for rapid antibody-discovery programs against viral pathogens of global concern.
Collapse
|
30
|
Tyagi A, Ahmed T, Shi J, Bhushan S. A complex between the Zika virion and the Fab of a broadly cross-reactive neutralizing monoclonal antibody revealed by cryo-EM and single particle analysis at 4.1 Å resolution. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100028. [PMID: 32647830 PMCID: PMC7337043 DOI: 10.1016/j.yjsbx.2020.100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) recently emerged as a major public health concern because it can cause fetal microcephaly and neurological disease such as the Guillain-Barré syndrome. A particularly potent class of broadly neutralizing antibodies (nAbs) targets a quaternary epitope located at the interface of two envelope proteins monomers, exposed at the surface of the mature virion. This “E-dimer-dependent epitope” (EDE), comprises the fusion loop of one monomer at the tip of domain II of E and a portion of the domains I and III of the adjacent monomer. Since this epitope largely overlaps with the binding site of the precursor membrane protein (prM) during Zika virion maturation, its molecular surface is evolutionary conserved in flaviviruses such as Dengue and Zika viruses, and can elicit antibodies that broadly neutralize various ZIKV strains. Here, we present a cryo-EM reconstruction at 4.1 Å resolution of the virion bound to the antigen binding fragment (Fab) of an antibody that targets this mutationally-constrained quaternary epitope. The Fab incompletely covers the surface of the virion as it does not bind next to its 5-fold icosahedral axes. The structure reveals details of the binding mode of this potent neutralizing class of antibodies and can inform the design of immunogens and vaccines targeting this conserved epitope.
Collapse
Affiliation(s)
- Anu Tyagi
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Tofayel Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jian Shi
- Center for Bio-Imaging Sciences, National University of Singapore, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore
- Nanyang Institute of Structural Biology, Experimental Medicine Building, 59 Nanyang Drive, 636921, Singapore
- Corresponding author at: School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
31
|
Glucose-Regulated Protein 78 Interacts with Zika Virus Envelope Protein and Contributes to a Productive Infection. Viruses 2020; 12:v12050524. [PMID: 32397571 PMCID: PMC7290722 DOI: 10.3390/v12050524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV; Flaviviridae) is a mosquito-borne flavivirus shown to cause fetal abnormalities collectively known as congenital Zika syndrome and Guillain-Barré syndrome in recent outbreaks. Currently, there is no specific treatment or vaccine available, and more effort is needed to identify cellular factors in the viral life cycle. Here, we investigated interactors of ZIKV envelope (E) protein by combining protein pull-down with mass spectrometry. We found that E interacts with the endoplasmic reticulum (ER) resident chaperone, glucose regulated protein 78 (GRP78). Although other flaviviruses are known to co-opt ER resident proteins, including GRP78, to enhance viral infectivity, the role ER proteins play during the ZIKV life cycle is yet to be elucidated. We showed that GRP78 levels increased during ZIKV infection and localised to sites coincident with ZIKV E staining. Depletion of GRP78 using specific siRNAs significantly reduced reporter-virus luciferase readings, viral protein synthesis, and viral titres. Additionally, GRP78 depletion reduced the ability of ZIKV to disrupt host cell translation and altered the localisation of viral replication factories, though there was no effect on viral RNA synthesis. In summary, we showed GRP78 is a vital host-factor during ZIKV infection, which may be involved in the coordination of viral replication factories.
Collapse
|
32
|
Lee CYP, Carissimo G, Chen Z, Lum FM, Abu Bakar F, Rajarethinam R, Teo TH, Torres-Ruesta A, Renia L, Ng LF. Type I interferon shapes the quantity and quality of the anti-Zika virus antibody response. Clin Transl Immunology 2020; 9:e1126. [PMID: 32346479 PMCID: PMC7184064 DOI: 10.1002/cti2.1126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives Zika virus (ZIKV) is a mosquito-borne flavivirus that re-emerged in 2015. The association between ZIKV and neurological complications initiated the development of relevant animal models to understand the mechanisms underlying ZIKV-induced pathologies. Transient inhibition of the type I interferon (IFN) pathway through the use of an IFNAR1-blocking antibody, MAR1-5A3, could efficiently permit active virus replication in immunocompetent animals. Type I IFN signalling is involved in the regulation of humoral responses, and thus, it is crucial to investigate the potential effects of type I IFN blockade towards B-cell responses. Methods In this study, comparative analysis was conducted using serum samples collected from ZIKV-infected wild-type (WT) animals either administered with or without MAR1-5A3. Results Serological assays revealed a more robust ZIKV-specific IgG response and subtype switching upon inhibition of type I IFN due to the abundance of antigen availability. This observation was corroborated by an increase in germinal centres, plasma cells and germinal centre B cells. Interestingly, although both groups of animals recognised different B-cell linear epitopes in the E and NS1 regions, there was no difference in neutralising capacity. Further characterisation of these epitopes in the E protein revealed a detrimental role of antibodies that were generated in the absence of type I IFN. Conclusion This study highlights the role of type I IFN in shaping the anti-ZIKV antibody response to generate beneficial antibodies and will help guide development of better vaccine candidates triggering efficient neutralising antibodies and avoiding detrimental ones.
Collapse
Affiliation(s)
- Cheryl Yi-Pin Lee
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,NUS Graduate School for Integrative Sciences and Engineering National University of Singapore Singapore
| | - Guillaume Carissimo
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore
| | - Zheyuan Chen
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,School of Medicine Dentistry & Biomedical Sciences Queen's University Belfast Belfast UK
| | - Fok-Moon Lum
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,School of Biological Sciences Nanyang Technological University Singapore Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology Agency of Science, Technology and Research (ASTAR) Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,Present address: Institut Pasteur Unite de Pathogenie Microbienne Moleculaire Paris France
| | - Anthony Torres-Ruesta
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Laurent Renia
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore
| | - Lisa Fp Ng
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore Singapore.,Institute of Infection and Global Health University of Liverpool Liverpool UK
| |
Collapse
|
33
|
Henderson EA, Tam CC, Cheng LW, Ngono AE, Nguyen AV, Shresta S, McGee M, Padgett H, Grill LK, Martchenko Shilman M. Investigation of the immunogenicity of Zika glycan loop. Virol J 2020; 17:43. [PMID: 32234060 PMCID: PMC7110905 DOI: 10.1186/s12985-020-01313-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
Background Zika virus (ZIKV) is a major human pathogen and member of the Flavivirus genus. Previous studies have identified neutralizing antibodies from Zika patients that bind to quaternary epitopes across neighboring envelope (E) proteins, called E dimer epitopes (EDE). An asparagine-linked glycan on the “glycan loop” (GL) of the ZIKV envelope protein protects the functionally important “fusion loop” on the opposite E subunit in the dimer, and EDE antibodies have been shown to bind to both of these loops. Human EDE antibodies have been divided into two subclasses based on how they bind to the glycan loop region: EDE1 antibodies do not require glycosylation for binding, while EDE2 antibodies strongly rely on the glycan for binding. Methods ZIKV GL was expressed on tobacco mosaic virus nanoparticles. Mice were immunized with GL or full-length monomeric E and the immune response was analyzed by testing the ability of sera and monoclonal antibodies to bind to GL and to neutralize ZIKV in in vitro cellular assay. Results We report here the existence of ZIKV moderately neutralizing antibodies that bind to E monomers through epitopes that include the glycan loop. We show that sera from human Zika patients contain antibodies capable of binding to the unglycosylated glycan loop in the absence of the rest of the envelope protein. Furthermore, mice were inoculated with recombinant E monomers and produced neutralizing antibodies that either recognize unglycosylated glycan loop or require glycan for their binding to monomeric E. We demonstrate that both types of antibodies neutralize ZIKV to some extent in a cellular virus neutralization assay. Conclusions Analogous to the existing EDE antibody nomenclature, we propose a new classification for antibodies that bind to E monomer epitopes (EME): EME1 and EME2 for those that do not require and those that do require glycan for binding to E, respectively.
Collapse
Affiliation(s)
- Elizabeth A Henderson
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, United States Department of Agriculture (USDA), Albany, CA, 94710, USA
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, United States Department of Agriculture (USDA), Albany, CA, 94710, USA
| | - Annie Elong Ngono
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Anh-Viet Nguyen
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Matt McGee
- Novici Biotech LLC, Vacaville, CA, 95688, USA
| | - Hal Padgett
- Novici Biotech LLC, Vacaville, CA, 95688, USA
| | - Laurence K Grill
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA.
| | | |
Collapse
|
34
|
Luo S, Zhao W, Ma X, Zhang P, Liu B, Zhang L, Wang W, Wang Y, Fu Y, Allain JP, Li T, Li C. A high infectious simian adenovirus type 23 vector based vaccine efficiently protects common marmosets against Zika virus infection. PLoS Negl Trop Dis 2020; 14:e0008027. [PMID: 32049958 PMCID: PMC7015313 DOI: 10.1371/journal.pntd.0008027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) has spread in many countries or territories causing severe neurologic complications with potential fatal outcomes. The small primate common marmosets are susceptible to ZIKV, mimicking key features of human infection. Here, a novel simian adenovirus type 23 vector-based vaccine expressing ZIKV pre-membrane-envelope proteins (Sad23L-prM-E) was produced in high infectious titer. Due to determination of immunogenicity in mice, a single-dose of 3×108 PFU Sad23L-prM-E vaccine was intramuscularly inoculated to marmosets. This vaccine raised antibody titers of 104.07 E-specific and 103.13 neutralizing antibody (NAb), as well as robust specific IFN-γ secreting T-cell response (1,219 SFCs/106 cells) to E peptides. The vaccinated marmosets, upon challenge with a high dose of ZIKV (105 PFU) six weeks post prime immunization, reduced viremia by more than 100 folds, and the low level of detectable viral RNA (<103 copies/ml) in blood, saliva, urine and feces was promptly eliminated when the secondary NAb (titer >103.66) and T-cell response (>726 SFCs/106 PBMCs) were acquired 1–2 weeks post exposure to ZIKV, while non-vaccinated control marmosets developed long-term high titer of ZIKV (105.73 copies/ml) (P<0.05). No significant pathological lesions were observed in marmoset tissues. Sad23L-prM-E vaccine was detectable in spleen, liver and PBMCs at least 4 months post challenge. In conclusion, a prime immunization with Sad23L-prM-E vaccine was able to protect marmosets against ZIKV infection when exposed to a high dose of ZIKV. This Sad23L-prM-E vaccine is a promising vaccine candidate for prevention of ZIKV infection in humans. Zika virus (ZIKV) is a member of the Flaviviridaefamily) and causes severe neurologic diseases. The development of safe and effective vaccine is urgent need. In this study, we constructed a novel simian adenovirus type 23 vector-based vaccine expressing ZIKV pre-membrane-envelope proteins (Sad23L-prM-E). By vaccinating the common marmosets with prime immunization of vaccine, and upon challenge with a high dose of ZIKV to the vaccinated marmosets, the immune response and protective efficacy of vaccine were extensively evaluated. The data suggested that Sad23L-prM-E vaccine could protect marmosets against a high dose of ZIKV challenge, which provided a promising vaccine for preventing ZIKV infection in humans.
Collapse
Affiliation(s)
- Shengxue Luo
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Laboratory of Biosafety, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaorui Ma
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bochao Liu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yuanzhan Wang
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Jean-Pierre Allain
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Emeritus professor, University of Cambridge, Cambridge, United Kingdom
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- * E-mail: (TL); (CL)
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- * E-mail: (TL); (CL)
| |
Collapse
|
35
|
Qu P, Zhang C, Li M, Ma W, Xiong P, Liu Q, Zou G, Lavillette D, Yin F, Jin X, Huang Z. A new class of broadly neutralizing antibodies that target the glycan loop of Zika virus envelope protein. Cell Discov 2020; 6:5. [PMID: 32025335 PMCID: PMC6997156 DOI: 10.1038/s41421-019-0140-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/16/2019] [Indexed: 01/23/2023] Open
Abstract
Zika virus (ZIKV) infection poses a serious threat to human health. However, no licensed vaccine or therapeutic drug is currently available for ZIKV. We have previously shown that recombinant ZIKV E80 protein induced potent neutralizing antibody response and protected mice from lethal viral challenge. In the present study, we isolated five ZIKV neutralizing monoclonal antibodies (mAbs) from E80-immunized mice. These five mAbs specifically bound and neutralized Asian-lineage ZIKV strains. Epitope mapping revealed that all of the five mAbs recognized a novel linear epitope located on the glycan loop of E protein domain I. Sequence alignment revealed that the epitope was extremely conserved in ZIKV but highly variable between ZIKV and other flaviviruses. Thus, these five mAbs form a new class of anti-ZIKV antibodies exhibiting broad-spectrum neutralization on Asian-lineage ZIKV. A representative of this mAb class, 5F8, was found to exert inhibitory function in vitro primarily at the early stage of the post-attachment viral entry process. Importantly, mAb 5F8 was able to confer full protection in a mouse model of ZIKV lethal infection. Our results have strong implications for developing anti-ZIKV vaccines and therapeutic mAbs.
Collapse
Affiliation(s)
- Panke Qu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Chao Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Min Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Weimin Ma
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Pei Xiong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Qingwei Liu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Gang Zou
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, 571101 China
- Key Laboratory of Translation Medicine Tropical Diseases, Department of Ministry of Education, Hainan Medical University, Haikou, Hainan, 571101 China
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Zhong Huang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
36
|
Buchman A, Gamez S, Li M, Antoshechkin I, Li HH, Wang HW, Chen CH, Klein MJ, Duchemin JB, Crowe JE, Paradkar PN, Akbari OS. Broad dengue neutralization in mosquitoes expressing an engineered antibody. PLoS Pathog 2020; 16:e1008103. [PMID: 31945137 PMCID: PMC6964813 DOI: 10.1371/journal.ppat.1008103] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV. These mosquitoes express a gene encoding an engineered single-chain variable fragment derived from a broadly neutralizing DENV human monoclonal antibody and have significantly reduced viral infection, dissemination, and transmission rates for all four major antigenically distinct DENV serotypes. Importantly, this is the first engineered approach that targets all DENV serotypes, which is crucial for effective disease suppression. These results provide a compelling route for developing effective genetic-based DENV control strategies, which could be extended to curtail other arboviruses.
Collapse
Affiliation(s)
- Anna Buchman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Stephanie Gamez
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Ming Li
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Hsing-Han Li
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-Wei Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Melissa J. Klein
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Prasad N. Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
- Tata Institute for Genetics and Society-UCSD, La Jolla, California, United States of America
| |
Collapse
|
37
|
Development of a Dengue Vaccine and Its Use in Pregnant Women. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Disease Resurgence, Production Capability Issues and Safety Concerns in the Context of an Aging Population: Is There a Need for a New Yellow Fever Vaccine? Vaccines (Basel) 2019; 7:vaccines7040179. [PMID: 31717289 PMCID: PMC6963298 DOI: 10.3390/vaccines7040179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Yellow fever is a potentially fatal, mosquito-borne viral disease that appears to be experiencing a resurgence in endemic areas in Africa and South America and spreading to non-endemic areas despite an effective vaccine. This trend has increased the level of concern about the disease and the potential for importation to areas in Asia with ecological conditions that can sustain yellow fever virus transmission. In this article, we provide a broad overview of yellow fever burden of disease, natural history, treatment, vaccine, prevention and control initiatives, and vaccine and therapeutic agent development efforts.
Collapse
|
39
|
Giraldo-García AM, Castaño-Osorio JC. Effects of Flavivirus Cross-Reactivity (Zika and Dengue) on the Development of Vaccines for Use in Pregnancy. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00191-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Sarkar S, Heise MT. Mouse Models as Resources for Studying Infectious Diseases. Clin Ther 2019; 41:1912-1922. [PMID: 31540729 PMCID: PMC7112552 DOI: 10.1016/j.clinthera.2019.08.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
Mouse models are important tools both for studying the pathogenesis of infectious diseases and for the preclinical evaluation of vaccines and therapies against a wide variety of human pathogens. The use of genetically defined inbred mouse strains, humanized mice, and gene knockout mice has allowed the research community to explore how pathogens cause disease, define the role of specific host genes in either controlling or promoting disease, and identify potential targets for the prevention or treatment of a wide range of infectious agents. This review discusses several of the most commonly used mouse model systems, as well as new resources such as the Collaborative Cross as models for studying infectious diseases.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Slon-Campos JL, Dejnirattisai W, Jagger BW, López-Camacho C, Wongwiwat W, Durnell LA, Winkler ES, Chen RE, Reyes-Sandoval A, Rey FA, Diamond MS, Mongkolsapaya J, Screaton GR. A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nat Immunol 2019; 20:1291-1298. [PMID: 31477918 PMCID: PMC6839414 DOI: 10.1038/s41590-019-0477-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/22/2019] [Indexed: 11/08/2022]
Abstract
Infections with dengue virus (DENV) and Zika virus (ZIKV) can induce cross-reactive antibody responses. Two immunodominant epitopes-one to precursor membrane protein and one to the fusion loop epitope on envelope (E) protein-are recognized by cross-reactive antibodies1-3 that are not only poorly neutralizing, but can also promote increased viral replication and disease severity via Fcγ receptor-mediated infection of myeloid cells-a process termed antibody-dependent enhancement (ADE)1,4,5. ADE is a significant concern for both ZIKV and DENV vaccines as the induction of poorly neutralizing cross-reactive antibodies may prime an individual for ADE on natural infection. In this report, we describe the design and production of covalently stabilized ZIKV E dimers, which lack precursor membrane protein and do not expose the immunodominant fusion loop epitope. Immunization of mice with ZIKV E dimers induces dimer-specific antibodies, which protect against ZIKV challenge during pregnancy. Importantly, the ZIKV E-dimer-induced response does not cross-react with DENV or induce ADE of DENV infection.
Collapse
Affiliation(s)
- Jose Luis Slon-Campos
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Brett W Jagger
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - César López-Camacho
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wiyada Wongwiwat
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lorellin A Durnell
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Felix A Rey
- Unité de Virologie Structurale, Département de Virologie, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3569, Paris, France
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | | |
Collapse
|
42
|
Niu X, Zhao L, Qu L, Yao Z, Zhang F, Yan Q, Zhang S, Liang R, Chen P, Luo J, Xu W, Lv H, Liu X, Lei H, Yi C, Li P, Wang Q, Wang Y, Yu L, Zhang X, Bryan LA, Davidson E, Doranz JB, Feng L, Pan W, Zhang F, Chen L. Convalescent patient-derived monoclonal antibodies targeting different epitopes of E protein confer protection against Zika virus in a neonatal mouse model. Emerg Microbes Infect 2019; 8:749-759. [PMID: 31130109 PMCID: PMC6542155 DOI: 10.1080/22221751.2019.1614885] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Zika virus (ZIKV) outbreak and its link to microcephaly triggered a public health concern. To examine antibody response in a patient infected with ZIKV, we used single-cell PCR to clone 31 heavy and light chain-paired monoclonal antibodies (mAbs) that bind to ZIKV envelope (E) proteins isolated from memory B cells of a ZIKV-infected patient. Three mAbs (7B3, 1C11, and 6A6) that showed the most potent and broad neutralization activities against the African, Asian, and American strains were selected for further analysis. mAb 7B3 showed an IC50 value of 11.6 ng/mL against the circulating American strain GZ02. Epitope mapping revealed that mAbs 7B3 and 1C11 targeted residue K394 of the lateral ridge (LR) epitope of the EDIII domain, but 7B3 has a broader LR epitope footprint and recognizes residues T335, G337, E370, and N371 as well. mAb 6A6 recognized residues D67, K118, and K251 of the EDII domain. Interestingly, although the patient was seronegative for DENV infection, mAb 1C11, originating from the VH3-23 and VK1-5 germline pair, neutralized both ZIKV and DENV1. Administration of the mAbs 7B3, 1C11, and 6A6 protected neonatal SCID mice infected with a lethal dose of ZIKV. This study provides potential therapeutic antibody candidates and insights into the antibody response after ZIKV infection.
Collapse
Affiliation(s)
- Xuefeng Niu
- a State Key Lab of Respiratory Disease , the First Affiliated Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Lingzhai Zhao
- b Guangzhou 8th People's Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Linbing Qu
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China
| | - Zhipeng Yao
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China.,d Institute of Physical Science and Information Technology , Anhui University , Hefei , People's Republic of China
| | - Fan Zhang
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China.,d Institute of Physical Science and Information Technology , Anhui University , Hefei , People's Republic of China
| | - Qihong Yan
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China.,e University of Chinese Academy of Science , Beijing , People's Republic of China
| | - Shengnan Zhang
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China
| | - Renshan Liang
- a State Key Lab of Respiratory Disease , the First Affiliated Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Peihai Chen
- d Institute of Physical Science and Information Technology , Anhui University , Hefei , People's Republic of China
| | - Jia Luo
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China
| | - Wei Xu
- b Guangzhou 8th People's Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Huibin Lv
- a State Key Lab of Respiratory Disease , the First Affiliated Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Xinglong Liu
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China
| | - Hui Lei
- a State Key Lab of Respiratory Disease , the First Affiliated Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Changhua Yi
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China
| | - Pingchao Li
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China
| | - Qian Wang
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China
| | - Yang Wang
- a State Key Lab of Respiratory Disease , the First Affiliated Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Lei Yu
- b Guangzhou 8th People's Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Xiaoyan Zhang
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China.,e University of Chinese Academy of Science , Beijing , People's Republic of China
| | | | | | | | - Liqiang Feng
- c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China
| | - Weiqi Pan
- a State Key Lab of Respiratory Disease , the First Affiliated Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Fuchun Zhang
- b Guangzhou 8th People's Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Ling Chen
- a State Key Lab of Respiratory Disease , the First Affiliated Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China.,b Guangzhou 8th People's Hospital of Guangzhou Medical University , Guangzhou , People's Republic of China.,c Guangdong Laboratory of Computational Biomedicine, Chinese Academy of Sciences , Guangzhou Institutes of Biomedicine and Health , Guangzhou , People's Republic of China
| |
Collapse
|
43
|
Stass R, Ng WM, Kim YC, Huiskonen JT. Structures of enveloped virions determined by cryogenic electron microscopy and tomography. Adv Virus Res 2019; 105:35-71. [PMID: 31522708 PMCID: PMC7112279 DOI: 10.1016/bs.aivir.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enveloped viruses enclose their genomes inside a lipid bilayer which is decorated by membrane proteins that mediate virus entry. These viruses display a wide range of sizes, morphologies and symmetries. Spherical viruses are often isometric and their envelope proteins follow icosahedral symmetry. Filamentous and pleomorphic viruses lack such global symmetry but their surface proteins may display locally ordered assemblies. Determining the structures of enveloped viruses, including the envelope proteins and their protein-protein interactions on the viral surface, is of paramount importance. These structures can reveal how the virions are assembled and released by budding from the infected host cell, how the progeny virions infect new cells by membrane fusion, and how antibodies bind surface epitopes to block infection. In this chapter, we discuss the uses of cryogenic electron microscopy (cryo-EM) in elucidating structures of enveloped virions. Starting from a detailed outline of data collection and processing strategies, we highlight how cryo-EM has been successfully utilized to provide unique insights into enveloped virus entry, assembly, and neutralization.
Collapse
Affiliation(s)
- Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Weng M Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Young Chan Kim
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Helsinki Institute of Life Science HiLIFE and Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
44
|
ZIKV Envelope Domain-Specific Antibodies: Production, Purification and Characterization. Viruses 2019; 11:v11080748. [PMID: 31412626 PMCID: PMC6723789 DOI: 10.3390/v11080748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/02/2022] Open
Abstract
Infection with Zika virus (ZIKV) came first to public attention after it was found to be associated with congenital microcephaly during the outbreak in Brazil (2015–2016). Diagnosis of ZIKV suffers from extensive cross-reactivity with other Flaviviruses, which are circulating in many ZIKV epidemic areas. Due to the fatal outcome of ZIKV infection during pregnancy, detailed knowledge about neutralizing and non-neutralizing epitopes is crucial for the development of robust detection systems of protective antibodies. Therefore, additional information about ZIKV immunogenicity and antibody response is required. In this project, we report the production, purification and characterization of six different polyclonal antibodies against ZIKV envelope (E) protein. The produced antibodies bind to isolated ZIKV E protein as well as to the surface of ZIKV particles, interestingly without being potently neutralizing. Surface plasmon resonance measurement showed that these antibodies bind with high affinity to ZIKV E protein. Epitope mapping revealed that the epitopes are distributed among the three ZIKV E domains with seven binding sites. These identified binding sites overlap only partially with the previously described epitopes recognized by neutralizing antibodies, which is in accordance with their lack of potent neutralizing activity. Additionally, these antibodies showed neither cross-reactivity nor potent neutralizing activity against West Nile virus, a related flavivirus. The gained set of data helps to extend our understanding about the distribution of neutralizing and non-/weak-neutralizing epitopes in ZIKV E protein, and provides a rationale for ZIKV vaccine design and development of robust detection assays for neutralizing antibodies.
Collapse
|
45
|
Lin HH, Yang SP, Tsai MJ, Lin GC, Wu HC, Wu SC. Dengue and Zika Virus Domain III-Flagellin Fusion and Glycan-Masking E Antigen for Prime-Boost Immunization. Theranostics 2019; 9:4811-4826. [PMID: 31367259 PMCID: PMC6643441 DOI: 10.7150/thno.35919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022] Open
Abstract
The viral E proteins of dengue virus (DENV) and Zika virus (ZIKV) are the major viral proteins involved in receptor binding and fusion, and for the induction of protective antibodies against viral infections. DIII of the E proteins is an independent domain and stretches out on the virion surface that can elicit type-specific neutralizing antibodies. For recombinant DIII vaccine development, prime-boost immunizations can provide an advantage of eliciting more type-specific neutralizing antibodies by recalling DIII antigens after DIII booster to improve protection. Methods: The DIII of the E genes of DENV and ZIKV were fused with bacterial fliC gene for the expression of flagellin-DIII (FliC-DIII) fusion proteins. Prime-boost immunization strategies by the second-dose booster of four DENV serotype or ZIKV FliC-DIII fusion proteins were used to investigate the induction of neutralizing antibodies and protection against viral infections. Cross-reactive non-neutralizing antibodies in each group of antisera were also examined using in vitro antibody-dependent enhancement (ADE) assay. A series of glycan-masking E antigens were finally constructed for prime-boost immunizations to abolish the elicitation of cross-reactive non-neutralizing antibodies for ADE activity. Results: We showed that inclusion of a bivalent live-attenuated vaccine with a FliC-DIII booster is superior in eliciting neutralization titers and protection in vivo against all four-serotype DENVs. We also demonstrated that recombinant adenovirus vectors encoding four-serotype DENV prMEs with a FliC-DIII prime-boost scheme is capable of eliciting good antibody responses. In contract, recombinant adenovirus vector of ZIKV prME gene priming, followed by ZIKV FliC-DIII booster did not improve vaccine efficacy. The glycan-masking mutation on the ZIKV E protein ij loop (E-248NHT), but not on DENV2 E protein ij loop (E-242NHT), resulted in abolishing the elicitation of cross-reactive antibodies for DENV and ZIKV infection enhancements. Conclusions: Our findings can provide useful information for designing novel immunogens and vaccination strategies in an attempt to develop a safe and efficacious DENV or ZIKV vaccine.
Collapse
|
46
|
Collins MH. Serologic Tools and Strategies to Support Intervention Trials to Combat Zika Virus Infection and Disease. Trop Med Infect Dis 2019; 4:E68. [PMID: 31010134 PMCID: PMC6632022 DOI: 10.3390/tropicalmed4020068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
Zika virus is an emerging mosquito-borne flavivirus that recently caused a large epidemic in Latin America characterized by novel disease phenotypes, including Guillain-Barré syndrome, sexual transmission, and congenital anomalies, such as microcephaly. This epidemic, which was declared an international public health emergency by the World Health Organization, has highlighted shortcomings in our current understanding of, and preparation for, emerging infectious diseases in general, as well as challenges that are specific to Zika virus infection. Vaccine development for Zika virus has been a high priority of the public health response, and several candidates have shown promise in pre-clinical and early phase clinical trials. The optimal selection and implementation of imperfect serologic assays are among the crucial issues that must be addressed in order to advance Zika vaccine development. Here, I review key considerations for how best to incorporate into Zika vaccine trials the existing serologic tools, as well as those on the horizon. Beyond that, this discussion is relevant to other intervention strategies to combat Zika and likely other emerging infectious diseases.
Collapse
Affiliation(s)
- Matthew H Collins
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA 30030, USA.
| |
Collapse
|