1
|
He S, Yu J, Cheng P, Liu J, Zhang C, Xu C, Pu K, Zhang Y. Differential Optical Imaging of Antigen Presentation Machinery Using Molecular Optical Reporters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420393. [PMID: 40370186 DOI: 10.1002/adma.202420393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/15/2025] [Indexed: 05/16/2025]
Abstract
Detection of antigen presentation is central to understanding immunological processes and developing therapeutics for cancer, infectious diseases, and allergies. However, methods with the ability to dynamically and noninvasively distinguish between major histocompatibility complex class I (MHC-I) and MHC-II antigen presentations remain lacking. Herein, we develop activatable molecular optical reporters (MORs) for real-time differential imaging of antigen presentations in lymph nodes (LNs). These MORs are engineered to passively target LNs and activated through proteolytic cleavage by key enzymes in the MHC-I and MHC-II pathways, the immunoproteasome (iP) and cathepsin S (CTSS), respectively, triggering their chemiluminescent or fluorescent signals. Coupled with minimized signal crosstalk and high sensitivity, MORs delineate the subtle differences in the antigen presentation machinery across various disease models, including cancer and bacterial or viral infection, a feat unattainable for existing imaging methods. After systemic administration, MORs also allow real-time visualization of antigen presentation in the tumor microenvironment. Besides, MORs are validated to have potential for preclinical application in immunotherapeutics screening and clinical application in tissue biopsy. Thus, our study not only presents the first example of real-time, in vivo differential imaging of antigen presentation pathways but also opens new avenues for optical probes in immune contexture analysis.
Collapse
Affiliation(s)
- Shasha He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Yu
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Hammond EM, Olsen KJ, Ram S, Tran GVV, Hall LS, Bradley JE, Lund FE, Samuels DS, Baumgarth N. Antigen-Specific CD4 T Cell and B Cell Responses to Borrelia burgdorferi. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:994-1005. [PMID: 37556156 PMCID: PMC10530202 DOI: 10.4049/jimmunol.2200890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Long-lived T-dependent B cell responses fail to develop during persistent infection of mice with Borrelia burgdorferi, the causative agent of Lyme disease, raising questions about the induction and/or functionality of anti-B. burgdorferi adaptive immune responses. Yet, a lack of reagents has limited investigations into B. burgdorferi-specific T and B cells. We attempted two approaches to track B. burgdorferi-induced CD4 T cells. First, a B. burgdorferi mutant was generated with an influenza hemagglutinin (HA) peptide, HA111-119, inserted into the B. burgdorferi arthritis-related protein (Arp) locus. Although this B. burgdorferi arp::HA strain remained infectious, peptide-specific TCR transgenic CD4 T cells in vitro, or adoptively transferred into B. burgdorferi arp::HA-infected BALB/c mice, did not clonally expand above those of recipients infected with the parental B. burgdorferi strain or a B. burgdorferi mutant containing an irrelevant peptide. Some expansion, however, occurred in B. burgdorferi arp::HA-infected BALB/c SCID mice. Second, a (to our knowledge) newly identified I-Ab-restricted CD4 T cell epitope, Arp152-166, was used to generate Arp MHC class II tetramers. Flow cytometry showed small numbers of Arp-specific CD4 T cells emerging in mice infected with B. burgdorferi but not with Arp-deficient Borrelia afzelii. Although up to 30% of Arp-specific CD4 T cells were ICOS+PD-1+CXCR5+BCL6+ T follicular helper cells, their numbers declined after day 12, before germinal centers (GCs) are prominent. Although some Arp-specific B cells, identified using fluorochrome-labeled rArp proteins, had the phenotype of GC B cells, their frequencies did not correlate with anti-Arp serum IgG. The data suggest a failure not in the induction, but in the maintenance of GC T follicular helper and/or B cells to B. burgdorferi.
Collapse
Affiliation(s)
- Elizabeth M. Hammond
- Graduate Group in Immunology, University of California Davis
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Kimberly J. Olsen
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Shivneel Ram
- Center for Immunology and Infectious Diseases, University of California Davis
| | - Giang Vu Vi Tran
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana
| | - John E. Bradley
- Department of Microbiology, University of Alabama, Birmingham
| | - Frances E. Lund
- Department of Microbiology, University of Alabama, Birmingham
| | | | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
- Department of Molecular Microbiology and Immunology and Department of Molecular and Comparative Pathobiology, Johns Hopkins University
| |
Collapse
|
3
|
Hammond EM, Baumgarth N. CD4 T cell responses in persistent Borrelia burgdorferi infection. Curr Opin Immunol 2022; 77:102187. [PMID: 35550259 DOI: 10.1016/j.coi.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022]
Abstract
Infection of mice with Borrelia burgdorferi (Bb), a tick-transmitted spirochete and the pathogen that causes Lyme disease in humans, triggers CD4 T cell activation in secondary lymphoid tissues, from which they disseminate into various infected tissues. Despite their activation and the appearance of CD4 T cell-dependent antibody responses, Bb establishes persistent infection in natural Bb reservoir hosts in the absence of overt disease, raising the question of the effectiveness of the anti-Bb T cell responses. Reviewing the existing literature, we propose that CD4 T cells might constitute a host cell target of Bb-mediated immune evasion, rendering these cells ineffective in orchestrating effective inflammatory responses and in supporting highly functional Bb-specific antibody induction. Supporting the induction of more effective CD4 T cell responses may help overcome Bb persistence.
Collapse
Affiliation(s)
- Elizabeth M Hammond
- Graduate Group in Immunology, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Center for Immunology and Infectious Diseases, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Center for Immunology and Infectious Diseases, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Sugata K, Matsunaga Y, Yamashita Y, Nakatsugawa M, Guo T, Halabelian L, Ohashi Y, Saso K, Rahman MA, Anczurowski M, Wang CH, Murata K, Saijo H, Kagoya Y, Ly D, Burt BD, Butler MO, Mak TW, Hirano N. Affinity-matured HLA class II dimers for robust staining of antigen-specific CD4 + T cells. Nat Biotechnol 2021; 39:958-967. [PMID: 33649568 DOI: 10.1038/s41587-021-00836-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2021] [Indexed: 01/08/2023]
Abstract
Peptide-major histocompatibility complex (pMHC) multimers enable the detection of antigen-specific T cells in studies ranging from vaccine efficacy to cancer immunotherapy. However, this technology is unreliable when applied to pMHC class II for the detection of CD4+ T cells. Here, using a combination of molecular biological and immunological techniques, we cloned sequences encoding human leukocyte antigen (HLA)-DP, HLA-DQ and HLA-DR molecules with enhanced CD4 binding affinity (with a Kd of 8.9 ± 1.1 µM between CD4 and affinity-matured HLA-DP4) and produced affinity-matured class II dimers that stain antigen-specific T cells better than conventional multimers in both in vitro and ex vivo analyses. Using a comprehensive library of dimers for HLA-DP4, which is the most frequent HLA allele in many ancestry groups, we mapped 103 HLA-DP4-restricted epitopes derived from diverse tumor-associated antigens and cloned the cognate T-cell antigen receptor (TCR) genes from in vitro-stimulated CD4+ T cells. The availability of affinity-matured class II dimers across HLA-DP, HLA-DQ and HLA-DR alleles will aid in the investigation of human CD4+ T-cell responses.
Collapse
Affiliation(s)
- Kenji Sugata
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yukiko Matsunaga
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Yota Ohashi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhammed A Rahman
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kenji Murata
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hiroshi Saijo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dalam Ly
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian D Burt
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tak W Mak
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Pastore G, Carraro M, Pettini E, Nolfi E, Medaglini D, Ciabattini A. Optimized Protocol for the Detection of Multifunctional Epitope-Specific CD4 + T Cells Combining MHC-II Tetramer and Intracellular Cytokine Staining Technologies. Front Immunol 2019; 10:2304. [PMID: 31649661 PMCID: PMC6794358 DOI: 10.3389/fimmu.2019.02304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Analysis of multifunctional CD4+ T cells is fundamental for characterizing the immune responses to vaccination or infection. Major histocompatibility complex (MHC)/peptide tetramers represent a powerful technology for the detection of antigen-specific T cells by specific binding to their T-cell receptor, and their combination with functional assays is fundamental for characterizing the antigen-specific immune response. Here we optimized a protocol for the detection of multiple intracellular cytokines within epitope-specific CD4+ T cells identified by the MHC class II tetramer technology. The optimal procedure for assessing the functional activity of tetramer-binding CD4+ T cells was based on the simultaneous intracellular staining with both MHC tetramers and cytokine-specific antibodies upon in vitro restimulation of cells with the vaccine antigen. The protocol was selected among procedures that differently combine the steps of cellular restimulation and tetramer staining with intracellular cytokine labeling. This method can be applied to better understand the complex functional profile of CD4+ T-cell responses upon vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Danilova L, Anagnostou V, Caushi JX, Sidhom JW, Guo H, Chan HY, Suri P, Tam A, Zhang J, Asmar ME, Marrone KA, Naidoo J, Brahmer JR, Forde PM, Baras AS, Cope L, Velculescu VE, Pardoll DM, Housseau F, Smith KN. The Mutation-Associated Neoantigen Functional Expansion of Specific T Cells (MANAFEST) Assay: A Sensitive Platform for Monitoring Antitumor Immunity. Cancer Immunol Res 2018; 6:888-899. [PMID: 29895573 DOI: 10.1158/2326-6066.cir-18-0129] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/12/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Mutation-associated neoantigens (MANA) are a target of antitumor T-cell immunity. Sensitive, simple, and standardized assays are needed to assess the repertoire of functional MANA-specific T cells in oncology. Assays analyzing in vitro cytokine production such as ELISpot and intracellular cytokine staining have been useful but have limited sensitivity in assessing tumor-specific T-cell responses and do not analyze antigen-specific T-cell repertoires. The FEST (Functional Expansion of Specific T cells) assay described herein integrates T-cell receptor sequencing of short-term, peptide-stimulated cultures with a bioinformatic platform to identify antigen-specific clonotypic amplifications. This assay can be adapted for all types of antigens, including MANAs via tumor exome-guided prediction of MANAs. Following in vitro identification by the MANAFEST assay, the MANA-specific CDR3 sequence can be used as a molecular barcode to detect and monitor the dynamics of these clonotypes in blood, tumor, and normal tissue of patients receiving immunotherapy. MANAFEST is compatible with high-throughput routine clinical and lab practices. Cancer Immunol Res; 6(8); 888-99. ©2018 AACR.
Collapse
Affiliation(s)
- Ludmila Danilova
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Valsamo Anagnostou
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Justina X Caushi
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John-William Sidhom
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haidan Guo
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hok Yee Chan
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Prerna Suri
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada Tam
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiajia Zhang
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Margueritta El Asmar
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristen A Marrone
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jarushka Naidoo
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie R Brahmer
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M Forde
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander S Baras
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leslie Cope
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victor E Velculescu
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Franck Housseau
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kellie N Smith
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Pieper J, Dubnovitsky A, Gerstner C, James EA, Rieck M, Kozhukh G, Tandre K, Pellegrino S, Gebe JA, Rönnblom L, Sandalova T, Kwok WW, Klareskog L, Buckner JH, Achour A, Malmström V. Memory T cells specific to citrullinated α-enolase are enriched in the rheumatic joint. J Autoimmun 2018; 92:47-56. [PMID: 29853344 DOI: 10.1016/j.jaut.2018.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/29/2022]
Abstract
ACPA-positive rheumatoid arthritis (RA) is associated with distinct HLA-DR alleles and immune responses to many citrullinated self-antigens. Herein we investigated the T cell epitope confined within α-enolase326-340 in the context of HLA-DRB1*04:01 and assessed the corresponding CD4+ T cells in both the circulation and in the rheumatic joint. Comparative crystallographic analyses were performed for the native and citrullinated α-enolase326-340 peptides in complex with HLA-DRB1*04:01. HLA-tetramers assembled with either the native or citrullinated peptide were used for ex vivo and in vitro assessment of α-enolase-specific T cells in peripheral blood, synovial fluid and synovial tissue by flow cytometry. The native and modified peptides take a completely conserved structural conformation within the peptide-binding cleft of HLA-DRB1*04:01. The citrulline residue-327 was located N-terminally, protruding towards TCRs. The frequencies of T cells recognizing native eno326-340 were similar in synovial fluid and peripheral blood, while in contrast, the frequency of T cells recognizing cit-eno326-340 was significantly elevated in synovial fluid compared to peripheral blood (3.6-fold, p = 0.0150). Additionally, citrulline-specific T cells with a memory phenotype were also significantly increased (1.6-fold, p = 0.0052) in synovial fluid compared to peripheral blood. The native T cell epitope confined within α-enolase326-340 does not appear to lead to complete negative selection of cognate CD4+ T cells. In RA patient samples, only T cells recognizing the citrullinated version of α-enolase326-340 were found at elevated frequencies implicating that neo-antigen formation is critical for breach of tolerance.
Collapse
Affiliation(s)
- Jennifer Pieper
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anatoly Dubnovitsky
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Gerstner
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eddie A James
- Tetramer Core, BRI at Virginia Mason, Seattle, WA, USA
| | - Mary Rieck
- Translational Research Program, BRI at Virginia Mason, Seattle, WA, USA
| | - Genadiy Kozhukh
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Tandre
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Pellegrino
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - John A Gebe
- Translational Research Program, BRI at Virginia Mason, Seattle, WA, USA
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - William W Kwok
- Translational Research Program, BRI at Virginia Mason, Seattle, WA, USA
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jane H Buckner
- Translational Research Program, BRI at Virginia Mason, Seattle, WA, USA
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Kovalchuka L, Cvetkova S, Trofimova J, Eglite J, Gintere S, Lucenko I, Oczko-Grzesik B, Viksna L, Krumina A. Immunogenetic Markers Definition in Latvian Patients with Lyme Borreliosis and Lyme Neuroborreliosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13121194. [PMID: 27916969 PMCID: PMC5201335 DOI: 10.3390/ijerph13121194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022]
Abstract
The aim of this study was to determine the human leukocyte antigen (HLA)-DRB1 alleles in two groups of patients in Latvia: patients with Lyme borreliosis and patients with Lyme neuroborreliosis. The study included 216 patients with Lyme borreliosis, 29 patients with Lyme neuroborreliosis and 282 control persons. All surveyed persons were residents of Latvia. The HLA-DR genotyping was performed by polymerase chain reaction- sequence specific primer (PCR-SSP). The predisposition to the Lyme borreliosis is associated with the HLA-DRB1*07, -DRB1*17(03), -DRB1*04, -DRB1*15(02) alleles. The allele -DRB1*11(05), -DRB1*14(06) and -DRB1*13(06) were significantly more frequent in controls. In-group with Lyme neuroborreliosis differences were found for the -DRB1*07 and -DRB1*04 alleles, but only HLA-DRB1*07 allele was statistically significant after Bonferroni correction and associated with Lyme neuroborreliosis in Latvian patients.
Collapse
Affiliation(s)
- Lilija Kovalchuka
- Institute of Food Safety, Animal Health and Environment BIOR, Riga LV-1076, Latvia.
| | - Svetlana Cvetkova
- Institute of Food Safety, Animal Health and Environment BIOR, Riga LV-1076, Latvia.
| | - Julija Trofimova
- Institute of Food Safety, Animal Health and Environment BIOR, Riga LV-1076, Latvia.
| | - Jelena Eglite
- Laboratory of Clinical Immunology and Immunogenetic, Riga Stradiņš University, Riga LV-1067, Latvia.
| | - Sandra Gintere
- Department of Family Medicine, Riga Stradiņš University, Riga LV-1067, Latvia.
| | - Irina Lucenko
- Centre for Disease Prevention and Control of Latvia, Riga LV-1005, Latvia.
| | - Barbara Oczko-Grzesik
- Department of Infectious Diseases, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Ludmila Viksna
- Department of Infectology and Dermatology, Riga Stradiņš University, Riga LV-1006, Latvia.
| | - Angelika Krumina
- Institute of Food Safety, Animal Health and Environment BIOR, Riga LV-1076, Latvia.
- Department of Infectology and Dermatology, Riga Stradiņš University, Riga LV-1006, Latvia.
| |
Collapse
|
9
|
Holland CJ, Dolton G, Scurr M, Ladell K, Schauenburg AJ, Miners K, Madura F, Sewell AK, Price DA, Cole DK, Godkin AJ. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide-MHC Class II Multimers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5827-36. [PMID: 26553072 PMCID: PMC4671089 DOI: 10.4049/jimmunol.1402787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
Fluorochrome-conjugated peptide-MHC (pMHC) class I multimers are staple components of the immunologist's toolbox, enabling reliable quantification and analysis of Ag-specific CD8(+) T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4(+) T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II-bound peptides, can enhance TCR-pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4(+) T cells, highlighting an unappreciated feature of TCR-pMHC-II interactions.
Collapse
Affiliation(s)
- Christopher J Holland
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Martin Scurr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Andrea J Schauenburg
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Kelly Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Florian Madura
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Andrew J Godkin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and Department of Integrated Medicine, University Hospital of Wales, Cardiff CF14 4XW, Wales, United Kingdom
| |
Collapse
|
10
|
Massilamany C, Krishnan B, Reddy J. Major Histocompatibility Complex Class II Dextramers: New Tools for the Detection of antigen-Specific, CD4 T Cells in Basic and Clinical Research. Scand J Immunol 2015; 82:399-408. [PMID: 26207337 PMCID: PMC4610346 DOI: 10.1111/sji.12344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
The advent of major histocompatibility complex (MHC) tetramer technology has been a major contribution to T cell immunology, because tetramer reagents permit detection of antigen-specific T cells at the single-cell level in heterogeneous populations by flow cytometry. However, unlike MHC class I tetramers, the utility of MHC class II tetramers has been less frequently reported. MHC class II tetramers can be used successfully to enumerate the frequencies of antigen-specific CD4 T cells in cells activated in vitro, but their use for ex vivo analyses continues to be a problem, due in part to their activation dependency for binding with T cells. To circumvent this problem, we recently reported the creation of a new generation of reagents called MHC class II dextramers, which were found to be superior to their counterparts. In this review, we discuss the utility of class II dextramers vis-a-vis tetramers, with respect to their specificity and sensitivity, including potential applications and limitations.
Collapse
Affiliation(s)
- C Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - B Krishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - J Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
11
|
Han WGH, Helm K, Poelen MMC, Otten HG, van Els CACM. Ex vivo peptide-MHC II tetramer analysis reveals distinct end-differentiation patterns of human pertussis-specific CD4(+) T cells following clinical infection. Clin Immunol 2015; 157:205-15. [PMID: 25728491 DOI: 10.1016/j.clim.2015.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/08/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Pertussis is occurring in highly vaccinated populations, suggesting insufficient protective memory CD4(+) T cells to Bordetella (B.) pertussis. P.69 Pertactin (P.69 Prn) is an important virulence factor of B. pertussis, and P.69 Prn7-24 is an immunodominant CD4(+) T cell epitope in mice and broadly recognized in humans. P.69 Prn7-24 peptide-MHC II tetramers (DRB4*0101/IVKT) were designed to ex vivo interrogate the presence and differentiation state of P.69 Prn7-24 specific CD4(+) T cells in six symptomatic pertussis cases. Cases with relatively more CD45RA(-)CCR7(+) central memory CD4(+)DRB4*0101/IVKT(+) T cells secreted Th1 cytokines, while cases with more CD45RA(-)CCR7(-) effector memory CD4(+)DRB4*0101/IVKT(+) T cells secreted both Th1 and Th2 cytokines upon peptide stimulation. CD45RA(+)CCR7(-) terminal differentiation pattern was associated with low or non-functionality based on cytokine secretion. This study provides proof of principle for further peptide-MHC II tetramer guided approaches in the elucidation of limited immunological memory to B. pertussis and the resurgence of pertussis.
Collapse
Affiliation(s)
- Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martien M C Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
12
|
Lyme disease: A rigorous review of diagnostic criteria and treatment. J Autoimmun 2015; 57:82-115. [DOI: 10.1016/j.jaut.2014.09.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/07/2023]
|
13
|
Characterization of T cell phenotype and function in a double transgenic (collagen-specific TCR/HLA-DR1) humanized model of arthritis. Arthritis Res Ther 2014; 16:R7. [PMID: 24405551 PMCID: PMC3978884 DOI: 10.1186/ar4433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022] Open
Abstract
Introduction T cells orchestrate joint inflammation in rheumatoid arthritis (RA), yet they are difficult to study due to the small numbers of antigen-specific cells. The goal of this study was to characterize a new humanized model of autoimmune arthritis and to describe the phenotypic and functional changes that occur in autoimmune T cells following the induction of pathological events. Methods We developed a double transgenic mouse containing both the HLA-DR1 transgene and an HLA-DR1-restricted collagen-specific TCR in order to obtain large numbers of antigen-specific T cells that can be used for immunologic studies. Results In vitro, CII-specific T cells from this mouse proliferated vigorously in response to the CII immunodominant peptide A2 and the cells altered their phenotype to become predominately CD62Llow and CD44high “activated” T cells. The response was accompanied by the production of Th1, Th2, and Th17-type cytokines. Following immunization with bovine CII/CFA, these mice develop an accelerated arthritis compared to single transgenic HLA-DR1 mice. On the other hand, when the mice were treated orally with the analog peptide A12, (a suppressive analog of collagen we have previously described), arthritis was significantly suppressed, despite the fact that >90% of the CD4+ T cells express the TCR Tg. In GALT tissues taken from the A12-treated mice, IL-2, IFN-γ, and IL-17 production to the autoimmune collagen determinant dropped while high levels of IL-10 and IL-4 were produced. Conclusions We have developed a humanized model of autoimmune arthritis that will be useful for the study of T cell directed therapies as well as T cell mediated mechanisms of autoimmune diseases.
Collapse
|
14
|
Borchers S, Ogonek J, Varanasi PR, Tischer S, Bremm M, Eiz-Vesper B, Koehl U, Weissinger EM. Multimer monitoring of CMV-specific T cells in research and in clinical applications. Diagn Microbiol Infect Dis 2013; 78:201-12. [PMID: 24331953 DOI: 10.1016/j.diagmicrobio.2013.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Multimer monitoring has become a standard technique for detection of antigen-specific T cells. The term "multimer" refers to a group of reagents based on the multimerisation of molecules in order to raise avidity and thus stabilize binding to their ligand. Multimers for detection of antigen-specific T-cell responses are based on major histocompatibility complex class I peptide complexes. Multimer staining enables fast and direct visualization of antigen-specific T cells; thus, it is widely applied to assess antiviral immunity, e.g., monitor patients in vaccination trials or confirm purity of cell products for adoptive transfer. Assessment of T-cell immunity against persistent pathogens like cytomegalovirus (CMV) is of major importance in immunosuppressed patients. Recent advancements of multimers facilitate reversible labeling and allow isolation of epitope-specific T cells for adoptive transfer. Here, we give an overview on the different multimers and their applications, with an emphasis on CMV-specific T-cell responses.
Collapse
Affiliation(s)
- Sylvia Borchers
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; German Centre for Infection Research (DZIF), Partnerside Hannover-Braunschweig, Germany.
| | - Justyna Ogonek
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
| | - Pavankumar R Varanasi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; German Centre for Infection Research (DZIF), Partnerside Hannover-Braunschweig, Germany.
| | - Sabine Tischer
- Institute of Transfusion Medicine, MHH, Hannover, Germany.
| | - Melanie Bremm
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | - Britta Eiz-Vesper
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; Institute of Transfusion Medicine, MHH, Hannover, Germany.
| | - Ulrike Koehl
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; Institute for Cellular Therapeutics, MHH, Hannover, Germany.
| | - Eva M Weissinger
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover, Germany; German Centre for Infection Research (DZIF), Partnerside Hannover-Braunschweig, Germany.
| |
Collapse
|
15
|
Olsen I, Lundin KE, Sollid LM. Increased frequency of intestinal CD4+ T cells reactive with mycobacteria in patients with Crohn's disease. Scand J Gastroenterol 2013; 48:1278-85. [PMID: 24131402 PMCID: PMC3821379 DOI: 10.3109/00365521.2013.837952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of this study was to assess the frequency of mycobacteria and Escherichia coli reactive T cells in intestinal biopsies from patients with Crohn's disease (CD) and ulcerative colitis (UC). MATERIALS AND METHODS The biopsies were obtained by colonoscopy from adult patients with active CD (n = 5) and active UC (n = 4). The number of CD4+ T cell clones expanded and screened from each patient varied from 383 to 3972 giving a total of 16639 individual clones. The T cell clones were tested for responses to Mycobacterium avium subspecies paratuberculosis (MAP) and E. coli. The cytokine profile of 42 individual T cell clones from four CD patients was assessed. RESULTS The frequency of mycobacteria reactive T cell clones in CD patients ranged from 0.17 to 1.63% and was higher (p = 0.038) than the frequency of E. coli reactive T cells ranging from 0 to 0.18%. No or very low numbers of mycobacteria reactive clones were detected in three UC patients while the fourth UC patient had a frequency similar to what was observed in CD patients. The frequencies of E. coli reactive T cell clones in UC patients ranged from 0 to 0.52%. T cell clones (n = 42) from CD patients all produced IL-17 and/or IFN-γ. Several clones were also able to produce IL-10. CONCLUSIONS The high frequency of intestinal tissue resident T cells reactive to mycobacteria suggests that an adaptive immune response have taken place and argues that these bacteria may contribute to the chronic inflammation in CD.
Collapse
Affiliation(s)
- Ingrid Olsen
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway,Norwegian Veterinary Institute, Section for Immunology, Oslo, Norway
| | - Knut E Lundin
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway,Center for Immune Regulation and Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway,Centre for Immune Regulation and Department of Immunology, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Bodd M, Ráki M, Bergseng E, Jahnsen J, Lundin KEA, Sollid LM. Direct cloning and tetramer staining to measure the frequency of intestinal gluten-reactive T cells in celiac disease. Eur J Immunol 2013; 43:2605-12. [DOI: 10.1002/eji.201343382] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/28/2013] [Accepted: 06/11/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Michael Bodd
- Department of Immunology; Centre for Immune Regulation; Oslo University Hospital-Rikshospitalet; Oslo Norway
| | - Melinda Ráki
- Department of Immunology; Centre for Immune Regulation; Oslo University Hospital-Rikshospitalet; Oslo Norway
- Department of Pathology; Oslo University Hospital-Rikshospitalet; Oslo Norway
| | - Elin Bergseng
- Department of Immunology; Centre for Immune Regulation; Oslo University Hospital-Rikshospitalet; Oslo Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology; Oslo University Hospital-Ullevål; Oslo Norway
| | - Knut E. A. Lundin
- Department of Immunology; Centre for Immune Regulation; Oslo University Hospital-Rikshospitalet; Oslo Norway
- Department of Transplantation Medicine; Oslo University Hospital-Rikshospitalet; Oslo Norway
| | - Ludvig M. Sollid
- Department of Immunology; Centre for Immune Regulation; Oslo University Hospital-Rikshospitalet; Oslo Norway
- Department of Immunology; Centre for Immune Regulation; University of Oslo; Oslo Norway
| |
Collapse
|
17
|
Lyme disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Huang Y, Huang Y, Fang Y, Wang J, Li Y, Wang N, Zhang J, Gao M, Huang L, Yang F, Wang C, Lin S, Yao Y, Ren L, Chen Y, Du X, Xie D, Wu R, Zhang K, Jiang L, Yu X, Lai X. Relatively low level of antigen-specific monocytes detected in blood from untreated tuberculosis patients using CD4+ T-cell receptor tetramers. PLoS Pathog 2012; 8:e1003036. [PMID: 23209409 PMCID: PMC3510242 DOI: 10.1371/journal.ppat.1003036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022] Open
Abstract
The in vivo kinetics of antigen-presenting cells (APCs) in patients with advanced and convalescent tuberculosis (TB) is not well characterized. In order to target Mycobacterium tuberculosis (MTB) peptides- and HLA-DR-holding monocytes and macrophages, 2 MTB peptide-specific CD4+ T-cell receptor (TCR) tetramers eu and hu were successfully constructed. Peripheral blood (PBL) samples from inpatients with advanced pulmonary TB (PTB) were analyzed using flow cytometry, and the percentages of tetramer-bound CD14+ monocytes ranged from 0.26–1.44% and 0.21–0.95%, respectively; significantly higher than those measured in PBL samples obtained from non-TB patients, healthy donors, and umbilical cords. These tetramers were also able to specifically detect macrophages in situ via immunofluorescent staining. The results of the continuous time-point tracking of the tetramer-positive rates in PBL samples from active PTB outpatients undergoing treatment show that the median percentages were at first low before treatment, increased to their highest levels during the first month, and then began to decrease during the second month until finally reaching and maintaining a relatively low level after 3–6 months. These results suggest that there is a relatively low level of MTB-specific monocytes in advanced and untreated patients. Further experiments show that MTB induces apoptosis in CD14+ cells, and the percentage of apoptotic monocytes dramatically decreases after treatment. Therefore, the relatively low level of MTB-specific monocytes is probably related to the apoptosis or necrosis of APCs due to live bacteria and their growth. The bactericidal effects of anti-TB drugs, as well as other unknown factors, would induce a peak value during the first month of treatment, and a relatively low level would be subsequently reached and maintained until all of the involved factors reached equilibrium. These tetramers have diagnostic potential and can provide valuable insights into the mechanisms of antigen presentation and its relationship with TB infection and latent TB infection. Mycobacterium tuberculosis (MTB) is one of the most dangerous pathogens in the world. It is estimated that one-third of the world population contracts the bacteria during their lives. Approximately 5–10% of infected individuals will eventually develop an active form of the disease. Cellular immunity plays an important role in immunity against tuberculosis (TB); however, the host's defense mechanisms are not completely understood. Here, we developed a novel tool: MTB antigen-specific tetrameric CD4+ T-cell receptor (TCR) complexes that can detect MTB peptide-specific antigen presenting cells (APCs) in blood and local tissues. We found that a relatively low level of antigen-specific monocytes (i.e., APCs) was detected in peripheral blood (PBL) samples from untreated TB patients, and then increased to their peak levels during the first month after treatment, which probably had something to do with the decrease in APC apoptosis. Our research provides a new method for tracking dynamic changes in APCs that are associated with TB infection and latent TB infection, and an additional tool for the studies of TB immunity and its pathogenesis.
Collapse
Affiliation(s)
- Yuhong Huang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yimin Fang
- Guangzhou Chest Hospital, Guangzhou, China
| | - Juan Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Nan Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Zhang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ming Gao
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lirong Huang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fangfang Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cong Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuxian Lin
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanan Yao
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liangliang Ren
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Chen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuanjing Du
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dan Xie
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rongshun Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kouxing Zhang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lifang Jiang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (Lifang Jiang); (Xinbing Yu); (Xiaomin Lai)
| | - Xinbing Yu
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (Lifang Jiang); (Xinbing Yu); (Xiaomin Lai)
| | - Xiaomin Lai
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education; Key Laboratory of Functional Molecules from Marine Microorganisms, Department of Education of Guangdong Province; Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (Lifang Jiang); (Xinbing Yu); (Xiaomin Lai)
| |
Collapse
|
19
|
Kovalchuka L, Eglite J, Lucenko I, Zalite M, Viksna L, Krumiņa A. Associations of HLA DR and DQ molecules with Lyme borreliosis in Latvian patients. BMC Res Notes 2012; 5:438. [PMID: 22892251 PMCID: PMC3470953 DOI: 10.1186/1756-0500-5-438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 07/05/2012] [Indexed: 11/17/2022] Open
Abstract
Background Many autoimmune diseases are associated with variants of HLA genes such as those encoding the MHC complex. This correlation is not absolute, but may help in understanding of the molecular mechanism of disease. The purpose of this study was to determine HLA-DR,-DQ alleles in Latvian patients with Lyme borreliosis and control (healthy) persons. Case patients and control subjects were similar in age, gender and ethnic heritage and differed only as regards the presence of Borrelia burgdorferi infection. The study included 25 patients with clinical stage – erythema migrans and 30 control (healthy) persons. HLA genotyping was performed by PCR with sequence-specific primers. Results The results show difference in HLA-DRB1 alleles distribution between patients and control subjects. The frequencies of HLA-DRB1 *04 (OR 11.24; p < 0.007) and HLA-DRB1 *17 (03) (OR 8.05; p < 0.033) were increased in the Lyme disease patients. And the frequency of allele DRB1*13 (OR 0.12; p < 0.017) was lower in Borreliosis patients and higher in control group. But, significant differences in frequencies of HLA-DQ alleles we did not detect. Conclusions HLA predisposition to Lyme borreliosis appears not to be limited to HLA molecules, but some HLA-DR alleles also have a significant influence, and, may have implications in our understanding of pathogenesis of this disease. In particular, HLA-DRB1*04 and DRB1 *17 (03) may contribute to the Lyme borreliosis development in Latvian population
Collapse
Affiliation(s)
- Lilija Kovalchuka
- Riga Stradiņš University, Clinical Immunology and Immunogenetic laboratory, Kronvalda Str 9, Riga, Latvia.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
MHC class II tetramers have emerged as an important tool for characterization of the specificity and phenotype of CD4 T cell immune responses, useful in a large variety of disease and vaccine studies. Issues of specific T cell frequency, biodistribution, and avidity, coupled with the large genetic diversity of potential class II restriction elements, require targeted experimental design. Translational opportunities for immune disease monitoring are driving the rapid development of HLA class II tetramer use in clinical applications, together with innovations in tetramer production and epitope discovery.
Collapse
|
21
|
Wen F, Sethi DK, Wucherpfennig KW, Zhao H. Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display. Protein Eng Des Sel 2011; 24:701-9. [PMID: 21752831 PMCID: PMC3160208 DOI: 10.1093/protein/gzr035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/26/2011] [Accepted: 06/19/2011] [Indexed: 11/14/2022] Open
Abstract
Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterodimeric DR2 molecules with or without a covalently bound human myelin basic protein (MBP) peptide, which is amenable to directed evolution of DR2-MBP variants with improved T cell receptor (TCR)-binding affinity. This study represents the first example of functional display of human pMHCII complexes on insect cell surface. In the process of developing this pMHCII engineering system, we have also explored the potential of using yeast surface display for the same application. Our data suggest that yeast display is a useful system for analysis and engineering of peptide binding of MHCII proteins, but not suitable for directed evolution of pMHC complexes that bind with low affinity to self-reactive TCRs.
Collapse
Affiliation(s)
- Fei Wen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Dhruv K. Sethi
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Biochemistry, Chemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
22
|
Steere AC, Drouin EE, Glickstein LJ. Relationship between immunity to Borrelia burgdorferi outer-surface protein A (OspA) and Lyme arthritis. Clin Infect Dis 2011; 52 Suppl 3:s259-65. [PMID: 21217173 DOI: 10.1093/cid/ciq117] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antibiotic-refractory Lyme arthritis may result from Borrelia burgdorferi-induced autoimmunity in affected joints. Such patients usually have certain HLA-DRB1 molecules that bind an epitope of B. burgdorferi outer-surface protein A (OspA₁₆₃₋₁₇₅), and cellular and humoral immune responses to OspA are greater in patients with antibiotic-refractory arthritis than in those with antibiotic-responsive arthritis. Recent work in a mouse model suggests that, during B. burgdorferi infection, OspA in genetically susceptible individuals stimulates a particularly strong T(H)1 response, which may be one of several factors that can help set the stage for a putative autoimmune response in affected joints. However, vaccination with OspA did not induce arthritis in this mouse model, and case and control comparisons in human vaccine trials did not show an increased frequency of arthritis among OspA-vaccinated individuals. Thus, a vaccine-induced immune response to OspA does not replicate the sequence of events needed in the natural infection to induce antibiotic-refractory Lyme arthritis.
Collapse
Affiliation(s)
- Allen C Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | | | | |
Collapse
|
23
|
Fierabracci A. The potential of multimer technologies in type 1 diabetes prediction strategies. Diabetes Metab Res Rev 2011; 27:216-229. [PMID: 21309048 DOI: 10.1002/dmrr.1165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type 1 diabetes is an autoimmune disease which occurs in (human leukocyte antigen) genetically predisposed individuals as a consequence of the organ-specific immune destruction of the insulin-producing β cells in the islets of Langherans within the pancreas. Type 1 diabetes is the result of a breakdown in immune regulation that leads to expansion of autoreactive CD4+ and CD8+ T cells, autoantibody-producing B lymphocytes and activation of the innate immune system. Islet-related autoantibodies revealed themselves to be good predictors of future onset of the disease, although they are not directly pathogenetic; T cells instead play a dominant role in disease initiation and progression. In this review, we first discuss the approaches that several laboratories attempted to measure human islet autoantigen-specific T-cell function in type 1 diabetes. T-cell assays could be used in combination with standardized autoantibody screenings to improve predictive strategies. They could also help to monitor in long-term follow-up the efficacy of tolerogenic immunotherapeutic strategies when established at the onset of the disease, and help to predict the recurrence of disease. Although some recent developments based on enzyme-linked immunosorbent spot and immunoblotting techniques have been able to distinguish with good sensitivity and specificity patients from controls, T-cell results, as revealed by international workshops, were indeed largely inconclusive. Nowadays, novel technologies have been exploited that could contribute to answering the tantalizing question of identifying autoreactive T cells. We particularly focus on and discuss MHC multimer tools and emphasize the advantages they can offer but also their weaknesses when used in combination with other T-cell assays. Copyright © 2011 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Research Laboratories, Ospedale Pediatrico Bambino Gesù, Research Institute (IRCCS), Piazza S. Onofrio 4, Rome, Italy.
| |
Collapse
|
24
|
Use of HLA-DR*08032/E7 and HLA-DR*0818/E7 tetramers in tracking of epitope-specific CD4+ T cells in active and convalescent tuberculosis patients compared with control donors. Immunobiology 2011; 216:947-60. [PMID: 21281984 DOI: 10.1016/j.imbio.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 01/02/2011] [Accepted: 01/04/2011] [Indexed: 11/22/2022]
Abstract
Comparative tracking of tetramer-positive and epitope-specific CD4(+) T cells in blood and other tissues from tuberculosis (TB) patients during TB development and treatment using control donor samples is not well characterized. In this study, a novel HLA-DR-restricted peptide E7 from the ESAT-6 protein of Mycobacterium tuberculosis (MTB) was used to prepare modified HLA-DR*08032/E7 tetramer (tetramer 1) and HLA-DR*0818/E7 tetramer (tetramer 2) to monitor a series of samples from TB patients and control donors. Tetramer staining showed that (1) by direct staining of single sample and flow cytometric analyses, detection of tetramer-positive CD4(+) T cells ranged from 0.1% to 8.8% (median 0.67% in tetramer 1 and 0.5% in tetramer 2), 0.1 to 10.7% (0.74% and 0.71%), 0.02 to 2.2% (0.25% and 0.25%), 0.02 to 0.48% (0.2% and 0.2%) and most at under 0-0.2% (0.2% and 0.16%) in the initial pulmonary TB (PTB) patients' blood, pleural fluid (PLF) of initial tuberculous pleuritis patients, non-TB patients' blood, healthy donors' blood and umbilical cord blood, respectively; significantly higher levels of CD4(+) T cells were detected in samples of TB patients than in three control donor groups; (2) by direct staining of time point TB samples and flow cytometric analyses, along with TB symptom amendment at day 60, tetramer-positive CD4(+) T cells began to decrease, until after 90-120 days, reached and kept at a relatively low even normal level about at 0.03-0.3%; (3) by enrichment approach, at least 10-fold increased memory tetramer-positive CD4(+) T cells were seen; (4) by in situ staining, tetramer-positive, IFN-γ-producing and/or TNF-α-producing CD4(+) T cells in the lymph node and lung granuloma and cavernous tissues of TB patients could be determined. Therefore, by further increasing the sample size tested to confirm the specificity and sensitivity of tetrameric molecules, it should be possible to develop them for use as research and diagnostic reagents.
Collapse
|
25
|
Song Q, Han Q, Bradshaw EM, Kent SC, Raddassi K, Nilsson B, Nepom GT, Hafler DA, Love JC. On-chip activation and subsequent detection of individual antigen-specific T cells. Anal Chem 2010; 82:473-7. [PMID: 20000848 DOI: 10.1021/ac9024363] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The frequencies of antigen-specific CD4+ T cells in samples of human tissue have been difficult to determine accurately ex vivo, particularly for autoimmune diseases such as multiple sclerosis or type 1 diabetes. Conventional approaches involve the expansion of primary T cells in vitro to increase the numbers of cells, and a subsequent assessment of the frequencies of antigen-specific T cells in the expanded population by limiting dilution or by using fluorescently labeled tetramers of peptide-loaded major histocompatibility complex (MHC) receptors. Here we describe an alternative approach that uses arrays of subnanoliter wells coated with recombinant peptide-loaded MHC class II monomers to isolate and stimulate individual CD4+ T cells in an antigen-specific manner. In these experiments, activation was monitored using microengraving to capture two cytokines (IFNgamma and IL-17) released from single cells. This new method should enable direct enumeration of antigen-specific CD4+ T cells ex vivo from clinical samples.
Collapse
Affiliation(s)
- Qing Song
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Iliopoulou BP, Guerau-de-Arellano M, Huber BT. HLA-DR alleles determine responsiveness to Borrelia burgdorferi antigens in a mouse model of self-perpetuating arthritis. ACTA ACUST UNITED AC 2010; 60:3831-40. [PMID: 19950279 DOI: 10.1002/art.25005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Arthritis is a prominent manifestation of Lyme disease, which is caused by infection with Borrelia burgdorferi (Bb). Chronic Lyme arthritis persisting even after antibiotic treatment is linked to HLA-DRB1*0401 (DR4) and related alleles. In contrast, patients whose Lyme arthritis resolves within 3 months postinfection show an increased frequency of HLA-DRB1*1101 (DR11). The aim of this study was to analyze the underlying mechanism by which HLA-DR alleles confer genetic susceptibility or resistance to antibiotic-refractory Lyme arthritis. METHODS We generated DR11-transgenic (DR11-Tg) mice on a murine MHCII-/- background and compared their immune response to Bb antigens with the response of DR4-Tg mice after immunization with Bb outer surface protein A (OspA) or infection with live Bb. RESULTS T cells from OspA-immunized and Bb-infected DR11-Tg mice had defective production of interferon-gamma as compared with those from DR4-Tg mice. In contrast, DR11-Tg mice developed higher titers of anti-OspA and anti-Bb antibodies, respectively, than did DR4-Tg mice. Consistent with this observation, we found that the Bb-infected DR11-Tg mice had a decreased spirochetal burden as compared with the DR4-Tg mice, as measured by quantitative polymerase chain reaction. CONCLUSION This study provides direct evidence that in the presence of HLA-DR11, the immune response against Bb antigens is directed toward a protective antibody response. In contrast, an inflammatory Th1 response is induced in the presence of DR4. These observations offer an explanation for the differential genetic susceptibility of DR4+ and DR11+ individuals to the development of chronic Lyme arthritis and, eventually, the progression to antibiotic-refractory Lyme arthritis.
Collapse
|
27
|
Wei H, Wang R, Yuan Z, Chen CY, Huang D, Halliday L, Zhong W, Zeng G, Shen Y, Shen L, Wang Y, Chen ZW. DR*W201/P65 tetramer visualization of epitope-specific CD4 T-cell during M. tuberculosis infection and its resting memory pool after BCG vaccination. PLoS One 2009; 4:e6905. [PMID: 19730727 PMCID: PMC2731856 DOI: 10.1371/journal.pone.0006905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/07/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In vivo kinetics and frequencies of epitope-specific CD4 T cells in lymphoid compartments during M. tuberculosis infection and their resting memory pool after BCG vaccination remain unknown. METHODOLOGY/FINDINGS Macaque DR*W201 tetramer loaded with Ag85B peptide 65 was developed to directly measure epitope-specific CD4 T cells in blood and tissues form macaques after M. tuberculosis infection or BCG vaccination via direct staining and tetramer-enriched approach. The tetramer-based enrichment approach showed that P65 epitope-specific CD4 T cells emerged at mean frequencies of approximately 500 and approximately 4500 per 10(7) PBL at days 28 and 42, respectively, and at day 63 increased further to approximately 22,000/10(7) PBL after M. tuberculosis infection. Direct tetramer staining showed that the tetramer-bound P65-specific T cells constituted about 0.2-0.3% of CD4 T cells in PBL, lymph nodes, spleens, and lungs at day 63 post-infection. 10-fold expansion of these tetramer-bound epitope-specific CD4 T cells was seen after the P65 peptide stimulation of PBL and tissue lymphocytes. The tetramer-based enrichment approach detected BCG-elicited resting memory P65-specific CD4 T cells at a mean frequency of 2,700 per 10(7) PBL. SIGNIFICANCE Our work represents the first elucidation of in vivo kinetics and frequencies for tetramer-bound epitope-specific CD4 T cells in the blood, lymphoid tissues and lungs over times after M. tuberculosis infection, and BCG immunization.
Collapse
Affiliation(s)
- Huiyong Wei
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Richard Wang
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Zhuqing Yuan
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Crystal Y. Chen
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Dan Huang
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Lisa Halliday
- Biological Resource Laboratory, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Weihua Zhong
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Gucheng Zeng
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Yun Shen
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Ling Shen
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Yunqi Wang
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
| | - Zheng W. Chen
- Department of Immunology & Microbiology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago (UIC), Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
Lyme borreliosis is due to infection with the tick-borne spirochete Borrelia burgdorferi, and is associated with persistent infection unless treated with antibiotics. The persistent nature of infection by B. burgdorferi can lead to development of chronic disease, as found in patients infected before recognition of the effectiveness of antibiotic therapy. Much speculation has surrounded the possibility that autoimmune mechanisms are involved in chronic symptoms. In most cases, involvement of autoimmunity in Lyme disease has not received experimental support. The exception is in a small group of patients with chronic arthritis whose abnormal joint symptoms persist after apparent elimination of the bacteria. In this review, the evidence supporting autoimmune mechanisms in Lyme disease will be discussed.
Collapse
Affiliation(s)
- Devin D Bolz
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
29
|
Geiger R, Duhen T, Lanzavecchia A, Sallusto F. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med 2009; 206:1525-34. [PMID: 19564353 PMCID: PMC2715094 DOI: 10.1084/jem.20090504] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/05/2009] [Indexed: 11/08/2022] Open
Abstract
The enormous diversity of the naive T cell repertoire is instrumental in generating an immune response to virtually any foreign antigen that can be processed into peptides that bind to MHC molecules. The low frequency of antigen-specific naive T cells, their high activation threshold, and the constrains of antigen-processing and presentation have hampered analysis of naive repertoires to complex protein antigens. In this study, libraries of polyclonally expanded naive T cells were used to determine frequency and antigen dose-response of human naive CD4(+) T cells specific for a variety of antigens and to isolate antigen-specific T cell clones. In the naive repertoire, T cells specific for primary antigens, such as KLH and Bacillus anthracis protective antigen, and for recall antigens, such as tetanus toxoid, cytomegalovirus, and Mycobacterium tuberculosis purified protein derivative, were detected at frequencies ranging from 5 to 170 cells per 10(6) naive T cells. Antigen concentrations required for half-maximal response (EC50) varied over several orders of magnitude for different naive T cells. In contrast, in the memory repertoire, T cells specific for primary antigens were not detected, whereas T cells specific for recall antigens were detected at high frequencies and displayed EC50 values in the low range of antigen concentrations. The method described may find applications for evaluation of vaccine candidates, for testing antigenicity of therapeutic proteins, drugs, and chemicals, and for generation of antigen-specific T cell clones for adoptive cellular immunotherapy.
Collapse
Affiliation(s)
- Rebekka Geiger
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | | | | | | |
Collapse
|
30
|
Ball R, Shadomy SV, Meyer A, Huber BT, Leffell MS, Zachary A, Belotto M, Hilton E, Bryant-Genevier M, Schriefer ME, Miller FW, Braun MM. HLA type and immune response to Borrelia burgdorferi outer surface protein a in people in whom arthritis developed after Lyme disease vaccination. ARTHRITIS AND RHEUMATISM 2009; 60:1179-86. [PMID: 19333928 PMCID: PMC2750908 DOI: 10.1002/art.24418] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate whether persons with treatment-resistant Lyme arthritis-associated HLA alleles might develop arthritis as a result of an autoimmune reaction triggered by Borrelia burgdorferi outer surface protein A (OspA), the Lyme disease vaccine antigen. METHODS Persons in whom inflammatory arthritis had developed after Lyme disease vaccine (cases) were compared with 3 control groups: 1) inflammatory arthritis but not Lyme disease vaccine (arthritis controls), 2) Lyme disease vaccine but not inflammatory arthritis (vaccine controls), and 3) neither Lyme disease vaccine nor inflammatory arthritis (normal controls). HLA-DRB1 allele typing, Western blotting for Lyme antigen, and T cell reactivity testing were performed. RESULTS Twenty-seven cases were matched with 162 controls (54 in each control group). Odds ratios (ORs) for the presence of 1 or 2 treatment-resistant Lyme arthritis alleles were 0.8 (95% confidence interval [95% CI] 0.3-2.1), 1.6 (95% CI 0.5-4.4), and 1.75 (95% CI 0.6-5.3) in cases versus arthritis controls, vaccine controls, and normal controls, respectively. There were no significant differences in the frequency of DRB1 alleles. T cell response to OspA was similar between cases and vaccine controls, as measured using the stimulation index (OR 1.6 [95% CI 0.5-5.1]) or change in uptake of tritiated thymidine (counts per minute) (OR 0.7 [95% CI 0.2-2.3]), but cases were less likely to have IgG antibodies to OspA (OR 0.3 [95% CI 0.1-0.8]). Cases were sampled closer to the time of vaccination (median 3.59 years versus 5.48 years), and fewer cases had received 3 doses of vaccine (37% versus 93%). CONCLUSION Treatment-resistant Lyme arthritis alleles were not found more commonly in persons who developed arthritis after Lyme disease vaccination, and immune responses to OspA were not significantly more common in arthritis cases. These results suggest that Lyme disease vaccine is not a major factor in the development of arthritis in these cases.
Collapse
Affiliation(s)
- Robert Ball
- Center for Biologics Evaluation and Research, FDA, Rockville, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
MacLeod MKL, Clambey ET, Kappler JW, Marrack P. CD4 memory T cells: what are they and what can they do? Semin Immunol 2009; 21:53-61. [PMID: 19269850 PMCID: PMC2679806 DOI: 10.1016/j.smim.2009.02.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/04/2009] [Indexed: 11/29/2022]
Abstract
Immunological memory provides the basis for successful vaccines. It is important to understand the properties of memory cells. There is much known about the phenotype and functions of memory CD8 T cells, less about memory B cells, while CD4 memory T cells have proved difficult to study. Differences in the types of memory CD4 cells studied and the difficulties of tracking the small number of cells have led to conflicting and unclear results. Here we discuss the different systems used to study CD4 memory cells and ask whether, and in what circumstances, memory CD4 cells could provide protection against infections.
Collapse
Affiliation(s)
- Megan K L MacLeod
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Autoimmunity occurs when the immune system recognizes and attacks host tissue. In addition to genetic factors, environmental triggers (in particular viruses, bacteria and other infectious pathogens) are thought to play a major role in the development of autoimmune diseases. In this review, we (i) describe the ways in which an infectious agent can initiate or exacerbate autoimmunity; (ii) discuss the evidence linking certain infectious agents to autoimmune diseases in humans; and (iii) describe the animal models used to study the link between infection and autoimmunity.
Collapse
Affiliation(s)
- A M Ercolini
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
33
|
Mix H, Weiler-Normann C, Thimme R, Ahlenstiel G, Shin EC, Herkel J, David CS, Lohse AW, Rehermann B. Identification of CD4 T-cell epitopes in soluble liver antigen/liver pancreas autoantigen in autoimmune hepatitis. Gastroenterology 2008; 135:2107-18. [PMID: 18773898 PMCID: PMC2708941 DOI: 10.1053/j.gastro.2008.07.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with autoantibodies and liver-infiltrating lymphocytes. Although autoantibodies are tested routinely to diagnose and classify AIH, liver-infiltrating lymphocytes are regarded as the primary factor for disease pathogenesis. The purpose of this study was to identify and characterize autoantigenic peptides within human AIH-specific soluble liver antigen/liver pancreas antigen (SLA/LP) that are targeted by CD4(+) T cells and restricted by the disease susceptibility gene HLA-DRB1*0301. METHODS HLA-DRB1*0301 transgenic mice were immunized with SLA/LP. Antibody and T-cell responses were analyzed with SLA/LP-overlapping peptides in enzyme immunoassay, proliferation, and enzyme-linked immunospot (ELISpot) assays. Minimal optimal T-cell epitopes were identified, characterized with cloned T-cell hybridomas, and confirmed in tetramer and ELISpot assays with AIH patients' peripheral blood mononuclear cells. RESULTS All mice developed SLA/LP-specific IgG1/IgG2a antibodies against the same SLA/LP peptides as human beings. T cells targeted several peptides within SLA/LP, 2 of which were DR3-restricted and one overlapped the sequence recognized by human autoantibodies. Minimal optimal epitopes were mapped, DRB1*0301/epitope-tetramers were generated, and the frequency and function of HLA-DRB1*0301-restricted autoantigen-specific T cells in AIH patients were analyzed with tetramer and interferon-gamma ELISpot assays. CONCLUSIONS This study identified T-cell epitopes within SLA/LP, restricted by the disease susceptibility gene DRB1*0301 and in close proximity to the human autoantibody epitope. These results and the generated reagents now provide the opportunity to directly monitor autoreactive T cells in AIH patients in clinical studies.
Collapse
Affiliation(s)
- Heiko Mix
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892
| | - Christina Weiler-Normann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892
- I. Medizinische Klinik, Universitätsklinikum Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Robert Thimme
- Abteilung Innere Medizin II, Medizinische Universitätsklinik, 79106 Freiburg, Germany
| | - Golo Ahlenstiel
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892
| | - Eui-Cheol Shin
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892
| | - Johannes Herkel
- I. Medizinische Klinik, Universitätsklinikum Hamburg Eppendorf, 20246 Hamburg, Germany
- I. Medizinische Klinik, Johannes Gutenberg Universität, 55101 Mainz, Germany
| | - Chella S. David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Ansgar W. Lohse
- I. Medizinische Klinik, Universitätsklinikum Hamburg Eppendorf, 20246 Hamburg, Germany
- I. Medizinische Klinik, Johannes Gutenberg Universität, 55101 Mainz, Germany
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892
| |
Collapse
|
34
|
Kawamura K, Yao K, Shukaliak-Quandt JA, Huh J, Baig M, Quigley L, Ito N, Necker A, McFarland HF, Muraro PA, Martin R, Ito K. Different development of myelin basic protein agonist- and antagonist-specific human TCR transgenic T cells in the thymus and periphery. THE JOURNAL OF IMMUNOLOGY 2008; 181:5462-72. [PMID: 18832703 DOI: 10.4049/jimmunol.181.8.5462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelin basic protein (MBP)-specific T cells are thought to play a role in the development of multiple sclerosis. MBP residues 111-129 compose an immunodominant epitope cluster restricted by HLA-DRB1*0401. The sequence of residues 111-129 of MBP (MBP(111-129)) differs in humans (MBP122:Arg) and mice (MBP122:Lys) at aa 122. We previously found that approximately 50% of human MBP(111-129) (MBP122:Arg)-specific T cell clones, including MS2-3C8 can proliferate in response to mouse MBP(111-129) (MBP122:Lys). However, the other half of T cell clones, including HD4-1C2, cannot proliferate in response to MBP(111-129) (MBP122:Lys). We found that MBP(111-129) (MBP122:Lys) is an antagonist for HD4-1C2 TCR, therefore, MS2-3C8 and HD4-1C2 TCRs are agonist- and antagonist-specific TCRs in mice, respectively. Therefore, we examined the development of HD4-1C2 TCR and MS2-3C8 TCR transgenic (Tg) T cells in the thymus and periphery. We found that dual TCR expression exclusively facilitates the development of MBP(111-129) TCR Tg T cells in the periphery of HD4-1C2 TCR/HLA-DRB1*0401 Tg mice although it is not required for their development in the thymus. We also found that MS2-3C8 TCR Tg CD8(+) T cells develop along with MS2-3C8 TCR Tg CD4(+) T cells, and that dual TCR expression was crucial for the development of MS2-3C8 TCR Tg CD4(+) and CD8(+) T cells in the thymus and periphery, respectively. These results suggest that thymic and peripheral development of MBP-specific T cells are different; however, dual TCR expression can facilitate their development.
Collapse
Affiliation(s)
- Kazuyuki Kawamura
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cecconi V, Moro M, Del Mare S, Dellabona P, Casorati G. Use of MHC class II tetramers to investigate CD4+T cell responses: Problems and solutions. Cytometry A 2008; 73:1010-8. [DOI: 10.1002/cyto.a.20603] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Malavige GN, Jones L, Black AP, Ogg GS. Varicella zoster virus glycoprotein E-specific CD4+ T cells show evidence of recent activation and effector differentiation, consistent with frequent exposure to replicative cycle antigens in healthy immune donors. Clin Exp Immunol 2008; 152:522-31. [PMID: 18363743 PMCID: PMC2453195 DOI: 10.1111/j.1365-2249.2008.03633.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2008] [Indexed: 12/23/2022] Open
Abstract
Varicella zoster viru (VZV)-specific T cell responses are believed to be vital in recovery from primary VZV infection and also in the prevention of viral reactivation. While glycoprotein E (gE) is the most abundant and one of the most immunogenic proteins of the virus, there are no data addressing potential T cell epitopes within gE, nor the phenotype of specific T cells. Using interferon gamma enzyme-linked immunospot assays and intracellular cytokine assays, we identified gE-specific immune responses in 20 adult healthy immune donors which were found to be dominated by the CD4+ subset of T cells. We characterized three immune dominant epitopes within gE restricted through DRB1*1501, DRB1*07 and DRB4*01, and used DRB1*1501 class II tetrameric complexes to determine the ex vivo frequency and phenotype of specific T cells. In healthy immune donors, the cells were largely positive for CCR7, CD28 and CD27, but expressed variable CD62L and low levels of cutaneous lymphocyte associated antigen with evidence of recent activation. In summary, we show that circulating gE-specific CD4+ T cells are detected at a relatively high frequency in healthy immune donors and show evidence of recent activation and mixed central and effector memory phenotype. These data would be compatible with frequent exposure to replicative cycle antigens in healthy donors and are consistent with a role for gE-specific CD4+ T cells in the control of viral replication.
Collapse
Affiliation(s)
- G N Malavige
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
37
|
Sieling PA, Hill PJ, Dobos KM, Brookman K, Kuhlman AM, Fabri M, Krutzik SR, Rea TH, Heaslip DG, Belisle JT, Modlin RL. Conserved mycobacterial lipoglycoproteins activate TLR2 but also require glycosylation for MHC class II-restricted T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5833-42. [PMID: 18424702 PMCID: PMC2710377 DOI: 10.4049/jimmunol.180.9.5833] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) T cell clones derived from a leprosy lesion and patient blood were used to monitor the isolation and identification of an Ag associated with the self-limited form of the disease. Biochemical purification and genetic analysis identified the T cell Ag as a conserved mycobacterial lipoglycoprotein LprG. LprG-mediated activation of CD4(+) T cells required specific MHC class II restriction molecules and intracellular processing. Although LprG activated TLR2, this alone was not sufficient to stimulate or inhibit T cell activation. A striking finding was that the carbohydrate moieties of LprG were required for optimal T cell activation, because recombinant LprG produced in Escherichia coli, or recombinant LprG produced in Mycobacterium smegmatis and digested by alpha-mannosidase, did not activate T cells. This study demonstrates that the universe of bacterial T cell Ags includes lipoglycoproteins, which act as TLR2 ligands but also require glycosylation for MHC class II-restricted T cell activation in vivo.
Collapse
Affiliation(s)
- Peter A. Sieling
- Division of Dermatology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Preston J. Hill
- Dept. of Microbiology, Immunology, and Pathology, College of Veterinarian Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, 80523, USA
| | - Karen M. Dobos
- Dept. of Microbiology, Immunology, and Pathology, College of Veterinarian Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, 80523, USA
| | - Kerry Brookman
- Dept. of Microbiology, Immunology, and Pathology, College of Veterinarian Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, 80523, USA
| | - Andrew M. Kuhlman
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Mario Fabri
- Division of Dermatology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Stephan R. Krutzik
- Division of Dermatology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Thomas H. Rea
- Section of Dermatology, Keck School of Medicine at USC, Los Angeles, CA 90033, USA
| | - Darragh G. Heaslip
- Dept. of Microbiology, Immunology, and Pathology, College of Veterinarian Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, 80523, USA
| | - John T Belisle
- Dept. of Microbiology, Immunology, and Pathology, College of Veterinarian Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, 80523, USA
| | - Robert L. Modlin
- Division of Dermatology, UCLA School of Medicine, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Vollers SS, Stern LJ. Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology 2008; 123:305-13. [PMID: 18251991 DOI: 10.1111/j.1365-2567.2007.02801.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The use of major histocompatibility complex (MHC) tetramers in the detection and analysis of antigen-specific T cells has become more widespread since its introduction 11 years ago. Early challenges in the application of tetramer staining to CD4+ T cells centred around difficulties in the expression of various class II MHC allelic variants and the detection of low-frequency T cells in mixed populations. As many of the technical obstacles to class II MHC tetramer staining have been overcome, the focus has returned to uncertainties concerning how oligomer valency and T-cell receptor/MHC affinity affect tetramer binding. Such issues have become more important with an increase in the number of studies relying on direct ex vivo analysis of antigen-specific CD4+ T cells. In this review we discuss which problems in class II MHC tetramer staining have been solved to date, and which matters remain to be considered.
Collapse
Affiliation(s)
- Sabrina S Vollers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
39
|
Steere AC. Lyme disease vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Kannian P, Drouin EE, Glickstein L, Kwok WW, Nepom GT, Steere AC. Decline in the frequencies of Borrelia burgdorferi OspA161 175-specific T cells after antibiotic therapy in HLA-DRB1*0401-positive patients with antibiotic-responsive or antibiotic-refractory lyme arthritis. THE JOURNAL OF IMMUNOLOGY 2007; 179:6336-42. [PMID: 17947711 DOI: 10.4049/jimmunol.179.9.6336] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synovitis in patients with antibiotic-refractory Lyme arthritis persists for months to several years after antibiotic therapy. This course, which may result from infection-induced autoimmunity, is associated with T cell recognition of Borrelia burgdorferi outer surface protein A (OspA(161-175)) and with HLA-DR molecules that bind this epitope, including the DRB1*0401 molecule. In this study, we used tetramer reagents to determine the frequencies of OspA(161-175)-specific T cells in samples of PBMC and synovial fluid mononuclear cells (SFMC) from 13 DRB1*0401-positive patients with antibiotic-responsive or antibiotic-refractory arthritis. Initially, three of the six patients (50%) with antibiotic-responsive arthritis and four of the seven patients (57%) with antibiotic-refractory arthritis had frequencies of OspA(161-175)-specific CD4(+) T cells in peripheral blood above the cutoff value of 4 per 10(5) cells. Among the five patients with concomitant PBMC and SFMC, four (80%) had OspA tetramer-positive cells at both sites, but the mean frequency of such cells was 16 times higher in SFMC, reaching levels as high as 1,177 per 10(5) cells. In the two patients in each patient group in whom serial samples were available, the frequencies of OspA(161-175)-specific T cells declined to low or undetectable levels during or soon after antibiotic therapy, months before the resolution of synovitis in the two patients with antibiotic-refractory arthritis. Thus, the majority of patients with Lyme arthritis initially have increased frequencies of OspA(161-175)-specific T cells. However, the marked decline in the frequency of such cells with antibiotic therapy suggests that persistent synovitis in the refractory group is not perpetuated by these cells.
Collapse
Affiliation(s)
- Priya Kannian
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
41
|
Höhn H, Kortsik C, Zehbe I, Hitzler WE, Kayser K, Freitag K, Neukirch C, Andersen P, Doherty TM, Maeurer M. MHC class II tetramer guided detection of Mycobacterium tuberculosis-specific CD4+ T cells in peripheral blood from patients with pulmonary tuberculosis. Scand J Immunol 2007; 65:467-78. [PMID: 17444958 DOI: 10.1111/j.1365-3083.2007.01924.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Novel diagnostic tools are needed to diagnose latent infection and to provide biologically meaningful surrogate markers to define cellular immune responses against Mycobacterium tuberculosis (MTB). Interferon gamma-based assays have recently been developed in addition to the more than 100-year-old tuberculin skin test (TST) for the immune diagnosis of MTB in blood. The advent of soluble MHC/peptide tetramer molecules allows to objectively enumerate antigen-specific T cells. We identified novel MHC class II-restricted MTB epitopes and used HLA-DR4 tetrameric complexes to visualize ex vivo CD4(+) T cells directed against the antigens Ag85B and the 19-kDa lipoprotein, shared between MTB and other Mycobacterium species, and CD4(+) T cells which recognize the MTB-associated ESAT-6 antigen. MTB-reactive CD4(+) T cells reside predominantly in the CD45RA(+) CD28(+) and CD45(-) CD28(+) T-cell subset and recognize naturally processed and presented MTB epitopes. HLA-DR4-restricted, Ag85B or ESAT-6-specific CD4(+) T cells show similar dynamics over time in peripheral blood mononuclear cells (PBMC) when compared with CD8(+) T cells directed against the corresponding HLA-A2-presented MTB epitopes in patients with pulmonary MTB infection and subsequent successful therapy. This was not found to be true for T-cell responses directed against the 19-kDa lipoprotein. The dissection of the cellular immune response in M. tuberculosis infection will enable novel strategies for monitoring MTB vaccine candidates and to gauge CD4(+) T cells directed against MTB.
Collapse
Affiliation(s)
- H Höhn
- Department of Medical Microbiology, University of Mainz, Hochhaus Augustusplatz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ráki M, Fallang LE, Brottveit M, Bergseng E, Quarsten H, Lundin KEA, Sollid LM. Tetramer visualization of gut-homing gluten-specific T cells in the peripheral blood of celiac disease patients. Proc Natl Acad Sci U S A 2007; 104:2831-6. [PMID: 17307878 PMCID: PMC1800789 DOI: 10.1073/pnas.0608610104] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Indexed: 02/07/2023] Open
Abstract
Tetramers of MHC-peptide complexes are used for detection and characterization of antigen-specific T cell responses, but they require knowledge about both antigenic peptide and the MHC restriction element. The successful application of these reagents in human diseases involving CD4+ T cells is limited. Celiac disease, an intestinal inflammation driven by mucosal CD4+ T cells recognizing wheat gluten peptides in the context of disease-associated HLA-DQ molecules, is an ideal model to test the potential clinical use of these reagents. We investigated whether gluten-specific T cells can be detected in the peripheral blood of celiac disease patients using DQ2 tetramers. Nine DQ2+ patients and six control individuals on a gluten-free diet were recruited to the study. Participants consumed 160 g of gluten-containing bread daily for 3 days. After bread-challenge, gluten-specific T cells were detectable in the peripheral blood of celiac patients but not controls both directly by tetramer staining and indirectly by enzyme-linked immunospot. These T cells expressed the beta(7) integrin indicative of gut-homing properties. Most of the cells had a memory phenotype, but many other phenotypic markers showed a heterogeneous pattern. Tetramer staining of gluten-specific T cells has the potential to be used for diagnosis of celiac disease.
Collapse
Affiliation(s)
- Melinda Ráki
- Institute of Immunology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, 0027 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ghosh S, Huber BT. Clonal diversification in OspA-specific antibodies from peripheral circulation of a chronic Lyme arthritis patient. J Immunol Methods 2007; 321:121-34. [PMID: 17307198 PMCID: PMC1899465 DOI: 10.1016/j.jim.2007.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 01/10/2007] [Indexed: 11/18/2022]
Abstract
Chronic, antibiotic treatment-resistant Lyme arthritis develops in a subset of patients following infection with the tick-borne spirochete Borrelia burgdorferi and persists after apparent microbial clearance. IgG responses to Outer Surface Protein (Osp) A, an abundant spirochetal lipoprotein, correlate with both severity and duration of joint inflammation. Characterization of this OspA-directed antibody response is, therefore, important for understanding some of the mechanisms that sustain persistent pathology. Such analyses in Lyme arthritis patients have been previously hampered by relatively small amounts of clinical blood samples, as well as the general intractability and low success rates of B-cell immortalization procedures. Here we describe a robust method for generation of OspA-specific monoclonal antibody fragments from archival cell samples employing a three-step procedure -- isolation of single OspA-specific B-cells, their ex vivo clonal expansion and production of expressed immunoglobulins as single chain variable region fragments (scFvs). Interestingly, two of three scFvs generated from a single patient were of a common clonal origin, additional somatic mutations in the downstream member resulting in a concomitant modulation of antigen binding affinity. Computational docking of OspA into corresponding Fv domains, generated by molecular modeling, reveals subtle binding site differences which could account for the observed alteration in ligand binding. Besides their utility as standards in routine diagnostic assays, being the first described OspA-specific human monoclonal reagents, these scFvs are useful tools for analysis of the anti-OspA repertoire in patients and for identification of putative human mimics of the bacterial protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/chemistry
- Antibodies, Bacterial/genetics
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Vaccines/chemistry
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Borrelia burgdorferi/immunology
- Cell Separation
- Cells, Cultured
- Chronic Disease
- Cloning, Molecular
- Computer Simulation
- DNA Mutational Analysis
- Flow Cytometry
- Humans
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/blood
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/genetics
- Lipoproteins/chemistry
- Lipoproteins/genetics
- Lipoproteins/immunology
- Lyme Disease/immunology
- Lyme Disease/metabolism
- Lyme Disease/microbiology
- Lyme Disease/therapy
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Conformation
- Recombinant Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Treatment Failure
Collapse
Affiliation(s)
| | - Brigitte T. Huber
- Corresponding author: Brigitte T. Huber, Department of Pathology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, Phone: 617-636-3989, Fax: 617-636-0449,
| |
Collapse
|
44
|
Steere AC, Angelis SM. Therapy for Lyme arthritis: strategies for the treatment of antibiotic-refractory arthritis. ACTA ACUST UNITED AC 2006; 54:3079-86. [PMID: 17009226 DOI: 10.1002/art.22131] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Allen C Steere
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
45
|
Veldman C, Eming R, Wolff-Franke S, Sonderstrup G, Kwok WW, Hertl M. Detection of low avidity desmoglein 3-reactive T cells in pemphigus vulgaris using HLA-DR beta 1*0402 tetramers. Clin Immunol 2006; 122:330-7. [PMID: 17113829 DOI: 10.1016/j.clim.2006.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/14/2006] [Accepted: 09/23/2006] [Indexed: 11/21/2022]
Abstract
In the present study, we developed a HLA class II tetramer-based detection system utilizing DRB1*0402 tetramers loaded with recently identified immunodominant peptides of desmoglein 3 (Dsg3), the major autoantigen of pemphigus vulgaris (PV). Initial experiments demonstrated staining of a Dsg3-reactive T cell hybridoma which was derived from HLA-DR0402-transgenic mice with loaded PE-labeled DRbeta1*0402 tetramers. However, staining of autoreactive T cell clones (TCC) derived from PV patients resulted only in positive staining by addition of exogenous peptides to the staining reactions. There was a dose-dependent specific binding of TCC to the tetramers with the agonistic Dsg3 peptide which was not altered by exogenous unrelated Dsg3 peptide. Noteworthy, the TCC did not stain with HLA-DR4 tetramers complexed with unrelated Dsg3 peptides. The findings of this study suggest that HLA class II tetramers may provide a highly specific approach to monitor ex vivo the T cellular autoimmune response against Dsg3 in patients with PV.
Collapse
Affiliation(s)
- Christian Veldman
- Department of Dermatology and Allergology, University of Marburg, Deutschhausstrasse 9, D-35033 Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Ghosh S, Seward R, Costello CE, Stollar BD, Huber BT. Autoantibodies from synovial lesions in chronic, antibiotic treatment-resistant Lyme arthritis bind cytokeratin-10. THE JOURNAL OF IMMUNOLOGY 2006; 177:2486-94. [PMID: 16888010 DOI: 10.4049/jimmunol.177.4.2486] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the causative agent of Lyme disease is definitively known to be the tick-borne spirochete, Borrelia burgdorferi, the etiology of chronic joint inflammation that ensues in a subset of patients remains less well understood. Persistence of arthritis after apparent eradication of the spirochete suggests an autoimmune reaction downstream of the original bacterial infection. We have generated recombinant Ab probes from synovial lesions within affected arthritic joints in an attempt to recapitulate disease-relevant Ag-binding specificities at the site of injury. Using this panel of intra-articular probes, as well as Ab fragments derived from patient peripheral blood, we have identified cytokeratin 10, present in synovial microvascular endothelium, as a target ligand and a putative autoantigen in chronic, antibiotic treatment-resistant Lyme arthritis. Furthermore, there is cross-reactivity between cytokeratin 10 and a prominent B. burgdorferi Ag, outer surface protein A. Release of the self protein in the context of inflammation-induced tissue injury and the resulting in situ response to it could set in motion a feed-forward loop, which amplifies the inflammatory process, thereby rendering it chronic and self-perpetuating, even in the absence of the inciting pathogen.
Collapse
Affiliation(s)
- Srimoyee Ghosh
- Department of Pathology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
47
|
Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, Bosio C, Dow S. Efficient Immunization and Cross-Priming by Vaccine Adjuvants Containing TLR3 or TLR9 Agonists Complexed to Cationic Liposomes. THE JOURNAL OF IMMUNOLOGY 2006; 176:7335-45. [PMID: 16751377 DOI: 10.4049/jimmunol.176.12.7335] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complexing TLR9 agonists such as plasmid DNA to cationic liposomes markedly potentiates their ability to activate innate immunity. We therefore reasoned that liposomes complexed with DNA or other TLR agonists could be used as effective vaccine adjuvants. To test this hypothesis, the vaccine adjuvant effects of liposomes complexed to TLR agonists were assessed in mice. We found that liposomes complexed to nucleic acids (liposome-Ag-nucleic acid complexes; LANAC) were particularly effective adjuvants for eliciting CD4(+) and CD8(+) T cell responses against peptide and protein Ags. Notably, LANAC containing TLR3 or TLR9 agonists effectively cross-primed CD8(+) T cell responses against even low doses of protein Ags, and this effect was independent of CD4(+) T cell help. Ag-specific CD8(+) T cells elicited by LANAC adjuvants were functionally active and persisted for long periods of time in tissues. In a therapeutic tumor vaccine model, immunization with the melanoma peptide trp2 and LANAC adjuvant controlled the growth of established B16 melanoma tumors. In a prophylactic vaccine model, immunization with the Mycobacterium tuberculosis protein ESAT-6 with LANAC adjuvant elicited significant protective immunity against aerosol challenge with virulent M. tuberculosis. These results suggest that certain TLR agonists can be combined with cationic liposomes to produce uniquely effective vaccine adjuvants capable of eliciting strong T cell responses against protein and peptide Ags.
Collapse
Affiliation(s)
- Karen Zaks
- Department of Microbiology, Immunology, and Pathology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Steere AC, Klitz W, Drouin EE, Falk BA, Kwok WW, Nepom GT, Baxter-Lowe LA. Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide. ACTA ACUST UNITED AC 2006; 203:961-71. [PMID: 16585267 PMCID: PMC3212725 DOI: 10.1084/jem.20052471] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An association has previously been shown between antibiotic-refractory Lyme arthritis, the human histocompatibility leukocyte antigen (HLA)–DR4 molecule, and T cell recognition of an epitope of Borrelia burgdorferi outer-surface protein A (OspA163–175). We studied the frequencies of HLA-DRB1-DQA1-DQB1 haplotypes in 121 patients with antibiotic-refractory or antibiotic-responsive Lyme arthritis and correlated these frequencies with in vitro binding of the OspA163–175 peptide to 14 DRB molecules. Among the 121 patients, the frequencies of HLA-DRB1-DQA1-DQB1 haplotypes were similar to those in control subjects. However, when stratified by antibiotic response, the frequencies of DRB1 alleles in the 71 patients with antibiotic-refractory arthritis differed significantly from those in the 50 antibiotic-responsive patients (log likelihood test, P = 0.006; exact test, P = 0.008; effect size, Wn = 0.38). 7 of the 14 DRB molecules (DRB1*0401, 0101, 0404, 0405, DRB5*0101, DRB1*0402, and 0102) showed strong to weak binding of OspA163–175, whereas the other seven showed negligible or no binding of the peptide. Altogether, 79% of the antibiotic-refractory patients had at least one of the seven known OspA peptide–binding DR molecules compared with 46% of the antibiotic-responsive patients (odds ratio = 4.4; P < 0.001). We conclude that binding of a single spirochetal peptide to certain DRB molecules is a marker for antibiotic-refractory Lyme arthritis and might play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Allen C Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Parra-López C, Calvo-Calle JM, Cameron TO, Vargas LE, Salazar LM, Patarroyo ME, Nardin E, Stern LJ. Major histocompatibility complex and T cell interactions of a universal T cell epitope from Plasmodium falciparum circumsporozoite protein. J Biol Chem 2006; 281:14907-17. [PMID: 16565072 DOI: 10.1074/jbc.m511571200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 20-residue sequence from the C-terminal region of the circumsporozoite protein of the malaria parasite Plasmodium falciparum is considered a universal helper T cell epitope because it is immunogenic in individuals of many major histocompatibility complex (MHC) haplotypes. Subunit vaccines containing T* and the major B cell epitope of the circumsporozoite protein induce high antibody titers to the malaria parasite and significant T cell responses in humans. In this study we have evaluated the specificity of the T* sequence with regard to its binding to the human class II MHC protein DR4 (HLA-DRB1*0401), its interactions with antigen receptors on T cells, and the effect of natural variants of this sequence on its immunogenicity. Computational approaches identified multiple potential DR4-binding epitopes within T*, and experimental binding studies confirmed the following two tight binding epitopes: one located toward the N terminus (the T*-1 epitope) and one at the C terminus (the T*-5 epitope). Immunization of a human DR4 volunteer with a peptide-based vaccine containing the T* sequence elicited CD4+ T cells that recognize each of these epitopes. Here we present an analysis of the immunodominant N-terminal epitope T*-1. T*-1 residues important for interaction with DR4 and with antigen receptors on T*-specific T cells were mapped. MHC tetramers carrying DR4/T*-1 MHC-peptide complexes stained and efficiently stimulated these cells in vitro. T*-1 overlaps a region of the protein that has been described as highly polymorphic; however, the particular T*-1 residues required for anchoring to DR4 were highly conserved in Plasmodium sequences described to date.
Collapse
Affiliation(s)
- Carlos Parra-López
- Fundación Instituto de Inmunología de Colombia, Grupo Funcional Inmunología, Carrera 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Babesia bovis causes an acute and often fatal infection in adult cattle, which if resolved, leads to a state of persistent infection in otherwise clinically healthy cattle. Persistently infected cattle are generally resistant to reinfection with related parasite strains, and this resistance in the face of infection is termed concomitant immunity. Young animals are generally more resistant than adults to B. bovis infection, which is dependent on the spleen. Despite the discovery of B. bovis over a century ago, there are still no safe and effective vaccines that protect cattle against this most virulent of babesial pathogens. Immunodominant antigens identified by serological reactivity and dominant T-cell antigens have failed to protect cattle against challenge. This review describes the innate and acquired immune mechanisms that define resistance in young calves and correlate with the development of concomitant immunity in older cattle following recovery from clinical disease. The first sections will discuss the innate immune responses by peripheral blood- and spleen-derived macrophages in cattle induced by B. bovis merozoites and their products that limit parasite replication, and comparison of natural killer cell responses in the spleens of young (resistant) and adult (susceptible) cattle. Later sections will describe a proteomic approach to discover novel antigens, especially those recognized by immune CD4+ T lymphocytes. Because immunodominant antigens have failed to stimulate protective immunity, identification of subdominant antigens may prove to be important for effective vaccines. Identification of CD4+ T-cell immunogenic proteins and their epitopes, together with the MHC class II restricting elements, now makes possible the development of MHC class II tetramers and application of this technology to both quantify antigen-specific lymphocytes during infection and discover novel antigenic epitopes. Finally, with the imminent completion of the B. bovis genome-sequencing project, strategies using combined genomic and proteomic approaches to identify novel vaccine candidates will be reviewed. The availability of an annotated B. bovis genome will, for the first time, enable identification of non-immunodominant proteins that may stimulate protective immunity.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | |
Collapse
|