1
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
2
|
Kirschberg M, Syed AS, Dönmez HG, Heuser S, Wilbrand-Hennes A, Alonso A, Hufbauer M, Akgül B. Novel Insights Into Cellular Changes in HPV8-E7 Positive Keratinocytes: A Transcriptomic and Proteomic Analysis. Front Microbiol 2021; 12:672201. [PMID: 34552568 PMCID: PMC8450583 DOI: 10.3389/fmicb.2021.672201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus type 8 (HPV8) is associated with the development of non-melanoma skin cancer. In the past we already delved into the mechanisms involved in keratinocyte invasion, showing that the viral E7 oncoprotein is a key player that drives invasion of basal keratinocytes controlled by the extracellular protein fibronectin. To unravel further downstream effects in E7 expressing keratinocytes we now aimed at characterizing gene and protein/phosphoprotein alterations to narrow down on key cellular targets of HPV8-E7. We now show that gene expression of GADD34 and GDF15 are strongly activated in the presence of E7 in primary human keratinocytes. Further analyses of fibronectin-associated factors led to the identification of the Src kinase family members Fyn and Lyn being aberrantly activated in the presence of HPV8-E7. Phospho-proteomics further revealed that E7 not only targets cell polarity and cytoskeletal organization, but also deregulates the phosphorylation status of nuclear proteins involved in DNA damage repair and replication. Many of these differentially phosphorylated proteins turned out to be targets of Fyn and Lyn. Taken together, by using unbiased experimental approaches we have now arrived at a deeper understanding on how fibronectin may affect the signaling cascades in HPV8 positive keratinocytes, which may be key for skin tumorigenesis and that may also aid in the development of novel therapeutic approaches for betaHPV-mediated cancers.
Collapse
Affiliation(s)
- Matthias Kirschberg
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Adnan Shahzad Syed
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Hanife Güler Dönmez
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany.,Department of Biology, Hacettepe University, Ankara, Turkey
| | - Sandra Heuser
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Astrid Wilbrand-Hennes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Angel Alonso
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Hufbauer
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Vadlamudi Y, Dey DK, Kang SC. Emerging Multi-cancer Regulatory Role of ESRP1: Orchestration of Alternative Splicing to Control EMT. Curr Cancer Drug Targets 2021; 20:654-665. [PMID: 32564755 DOI: 10.2174/1568009620666200621153831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
RNA binding proteins (RBPs) associate with nascent and mature RNAs to perform biological functions such as alternative splicing and RNA stability. Having unique RNA recognition binding motifs, RBPs form complexes with RNA in a sequence- and structure-based manner. Aberrant expressions of several RBPs have been identified in tumorigenesis and cancer progression. These uncontrolled RBPs affect several mechanisms, including cell proliferation, tumor growth, invasion, metastasis and chemoresistance. Epithelial splicing regulatory protein 1 (ESRP1) is a member of the hnRNP family of proteins that play a crucial role in regulating numerous cellular processes, including alternative splicing and translation of multiple genes during organogenesis. Abnormal expression of ESRP1 alters the cell morphology, and leads to cell proliferation and tumor growth during cancer progression. ESRP1 mediated alternative splicing of target genes, including CD44, FGFR, PTBP1, LYN, ENAH, SPAG1 and ZMYND8, results in cancer progression. In addition, ESRP1 also regulates circularization and biogenesis of circular RNAs such as circUHRF1, circNOL10 and circANKS1B, whose expressions have been identified as key factors in various cancers. This multi-functional protein is also involved in imposing stability of target mRNAs such as cyclin A2, and thereby cell cycle regulation. The scope of this review is to examine recent scientific data, outcomes of the up- and down-regulated proteins, and the role of ESRP1 in various cancers. We conclude by summarizing ESRP1 dysregulation and its consequences on target genes in various human cancers. Collectively, the consequences of ESRP1 mediated splicing in cancer cells suggest the role of ESRP1 in cell proliferation and chemoresistance via apoptosis and autophagy modulation, which could, therefore, be potential targets for cancer therapeutics.
Collapse
Affiliation(s)
| | - Debasish K Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk-38453, Korea
| | - Sun C Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk-38453, Korea
| |
Collapse
|
4
|
Constitutive activation of Lyn kinase enhances BCR responsiveness, but not the development of CLL in Eµ-TCL1 mice. Blood Adv 2020; 4:6106-6116. [PMID: 33351104 DOI: 10.1182/bloodadvances.2020002584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/17/2020] [Indexed: 01/02/2023] Open
Abstract
The treatment of chronic lymphocytic leukemia (CLL) has been improved dramatically by inhibitors targeting B-cell receptor (BCR)-associated kinases. The tyrosine kinase Lyn is a key modulator of BCR signaling and shows increased expression and activity in CLL. To evaluate the functional relevance of Lyn for CLL, we generated a conditional knockin mouse model harboring a gain-of-function mutation of the Lyn gene (LynY508F), which was specifically expressed in the B-cell lineage (Lynup-B). Kinase activity profiling revealed an enhanced responsiveness to BCR stimulation in Lynup-B B cells. When crossing Lynup-B mice with Eµ-TCL1 mice (TCL1tg/wt), a transgenic mouse model for CLL, the resulting TCL1tg/wt Lynup-B mice showed no significant change of hepatomegaly, splenomegaly, bone marrow infiltration, or overall survival when compared with TCL1tg/wt mice. Our data also suggested that TCL1 expression has partially masked the effect of the Lynup-B mutation, because the BCR response was only slightly increased in TCL1tg/wt Lynup-B compared with TCL1tg/wt. In contrast, TCL1tg/wt Lynup-B were protected at various degrees against spontaneous apoptosis in vitro and upon treatment with kinase inhibitors targeting the BCR. Collectively, and consistent with our previous data in a Lyn-deficient CLL model, these data lend further suggest that an increased activation of Lyn kinase in B cells does not appear to be a major driver of leukemia progression and the level of increased BCR responsiveness induced by Lynup-B is insufficient to induce clear changes to CLL pathogenesis in vivo.
Collapse
|
5
|
Monticolo F, Palomba E, Chiusano ML. Identification of Novel Potential Genes Involved in Cancer by Integrated Comparative Analyses. Int J Mol Sci 2020; 21:ijms21249560. [PMID: 33334055 PMCID: PMC7765469 DOI: 10.3390/ijms21249560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The main hallmarks of cancer diseases are the evasion of programmed cell death, uncontrolled cell division, and the ability to invade adjacent tissues. The explosion of omics technologies offers challenging opportunities to identify molecular agents and processes that may play relevant roles in cancer. They can support comparative investigations, in one or multiple experiments, exploiting evidence from one or multiple species. Here, we analyzed gene expression data from induction of programmed cell death and stress response in Homo sapiens and compared the results with Saccharomyces cerevisiae gene expression during the response to cell death. The aim was to identify conserved candidate genes associated with Homo sapiens cell death, favored by crosslinks based on orthology relationships between the two species. We identified differentially-expressed genes, pathways that are significantly dysregulated across treatments, and characterized genes among those involved in induced cell death. We investigated on co-expression patterns and identified novel genes that were not expected to be associated with death pathways, that have a conserved pattern of expression between the two species. Finally, we analyzed the resulting list by HumanNet and identified new genes predicted to be involved in cancer. The data integration and the comparative approach between distantly-related reference species that were here exploited pave the way to novel discoveries in cancer therapy and also contribute to detect conserved genes potentially involved in programmed cell death.
Collapse
Affiliation(s)
- Francesco Monticolo
- Department of Agricultural Sciences, Università Degli Studi di Napoli Federico II, 80055 Naples, Italy;
| | - Emanuela Palomba
- Department of RIMAR, Stazione Zoologica “Anton Dohrn”, 80122 Naples, Italy;
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università Degli Studi di Napoli Federico II, 80055 Naples, Italy;
- Department of RIMAR, Stazione Zoologica “Anton Dohrn”, 80122 Naples, Italy;
- Correspondence:
| |
Collapse
|
6
|
Liang X, He X, Li Y, Wang J, Wu D, Yuan X, Wang X, Li G. Lyn regulates epithelial-mesenchymal transition in CS-exposed model through Smad2/3 signaling. Respir Res 2019; 20:201. [PMID: 31477108 PMCID: PMC6720409 DOI: 10.1186/s12931-019-1166-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is progressive and not fully reversible. Cigarette smoking is one of the most commonly and important risk factors for COPD, which contributes to airway remodeling, the outstanding pathological changes in COPD. One potential mechanism which might be important for airway remodeling is the process called epithelial-mesenchymal transition (EMT). However, the underlying molecular mechanisms of EMT in CS-induced COPD are still poorly understood. METHODS Two Gene Expression Omnibus (GEO) datasets (GSE108134 and GSE5058) were combined to identify the key genes involved in COPD. Then, single-gene analysis of Lyn was performed. Lyn expression was confirmed in patients with COPD. 16HBE cells were treated with cigarette smoking extracts (CSE). Wild type (WT) C57BL/6 J mice and Lyn+/+ transgenic mice were exposed to CSE to establish CS-exposed model. Pathological changes were observed by hematoxylin-eosin staining. The expression levels of EMT markers were examined by using western blot and immunofluorescence. The expression and phosphorylation levels of Lyn and Smad2/3 were detected as well. RESULTS The gain of mesenchymal markers vimentin and α-SMA with a concomitant loss of E-cadherin was observed in both in vivo and in vitro studies. Meanwhile, cigarette smoking extracts (CSE) induced EMT in 16HBE cells in a time- and dose- dependent manner. Furthermore, by analyzing GEO datasets and using molecular methods, we explored a kinase, Lyn, its expression correlated with the expression of E-cadherin, vimentin and α-SMA in CS-exposed model. Moreover, we found that EMT induced by CSE was regulated by activated Lyn through phosphorylation of Smad2/3. CONCLUSIONS In summary, we found that Lyn regulates epithelial-mesenchymal transition in CS-exposed model through Smad2/3 signaling. As a kinase, Lyn is "druggable", and might provide a therapeutic opportunity for targeting EMT. Therefore, our research might provide a new method to treat COPD by targeting Lyn kinase specifically.
Collapse
Affiliation(s)
- Xiaobo Liang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Xiang He
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Affiliated Hospital of Fudan University, Shanghai, 200032 China
| | - Junyi Wang
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| | - Dehong Wu
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Guoping Li
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| |
Collapse
|
7
|
Song P, Yang S, Hua H, Zhang H, Kong Q, Wang J, Luo T, Jiang Y. The regulatory protein GADD34 inhibits TRAIL-induced apoptosis via TRAF6/ERK-dependent stabilization of myeloid cell leukemia 1 in liver cancer cells. J Biol Chem 2019; 294:5945-5955. [PMID: 30782845 DOI: 10.1074/jbc.ra118.006029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/09/2019] [Indexed: 02/05/2023] Open
Abstract
GADD34 (growth arrest and DNA damage-inducible gene 34) plays a critical role in responses to DNA damage and endoplasmic reticulum stress. GADD34 has opposing effects on different stimuli-induced cell apoptosis events, but the reason for this is unclear. Here, using immunoblotting analyses and various molecular genetic approaches in HepG2 and SMMC-7721 cells, we demonstrate that GADD34 protects hepatocellular carcinoma (HCC) cells from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by stabilizing a BCL-2 family member, myeloid cell leukemia 1 (MCL-1). We found that GADD34 knockdown decreased MCL-1 levels and that GADD34 overexpression up-regulated MCL-1 expression in HCC cells. GADD34 did not affect MCL-1 transcription but enhanced MCL-1 protein stability. The proteasome inhibitor MG132 abrogated GADD34 depletion-induced MCL-1 down-regulation, suggesting that GADD34 inhibits the proteasomal degradation of MCL-1. Furthermore, GADD34 overexpression promoted extracellular signal-regulated kinase (ERK) phosphorylation through a signaling axis that consists of the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β-activated kinase 1 (MAP3K7)-binding protein 1 (TAB1), which mediated the up-regulation of MCL-1 by GADD34. Of note, TRAIL up-regulated both GADD34 and MCL-1 levels, and knockdown of GADD34 and TRAF6 suppressed the induction of MCL-1 by TRAIL. Correspondingly, GADD34 knockdown potentiated TRAIL-induced apoptosis, and MCL-1 overexpression rescued TRAIL-treated and GADD34-depleted HCC cells from cell death. Taken together, these findings suggest that GADD34 inhibits TRAIL-induced HCC cell apoptosis through TRAF6- and ERK-mediated stabilization of MCL-1.
Collapse
Affiliation(s)
- Peiying Song
- From the State Key Laboratory of Biotherapy, Section of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041
| | - Songpeng Yang
- From the State Key Laboratory of Biotherapy, Section of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041
| | - Hui Hua
- the Laboratory of Stem Cell Biology, West China Hospital, Chengdu 610041
| | - Hongying Zhang
- From the State Key Laboratory of Biotherapy, Section of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041
| | - Qingbin Kong
- From the State Key Laboratory of Biotherapy, Section of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041
| | - Jiao Wang
- the School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075
| | - Ting Luo
- the Cancer Center, West China Hospital, Chengdu 610041, China
| | - Yangfu Jiang
- From the State Key Laboratory of Biotherapy, Section of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041.
| |
Collapse
|
8
|
Manna I, Bandyopadhyay M. Engineered Nickel Oxide Nanoparticle Causes Substantial Physicochemical Perturbation in Plants. Front Chem 2017; 5:92. [PMID: 29167790 PMCID: PMC5682307 DOI: 10.3389/fchem.2017.00092] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/24/2017] [Indexed: 01/24/2023] Open
Abstract
Concentration of engineered nickel oxide nanoparticle (NiO-NP) in nature is on the rise, owing to large scale industrial uses, which have accreted the scope of its exposure to plants, the primary producers of the ecosystem. Though an essential micronutrient for the animal system, supported by numerous studies confirming its toxicity at higher dosages, nickel oxide is graded as a human carcinogen by WHO. A few studies do depict toxicity and bioaccumulation of nickel in plants; however, interaction of NiO-NP with plants is not well-elucidated. It is known that exposure to NiO-NP can incite stress response, leading to cytotoxicity and growth retardation in some plants, but a defined work on the intricate physicochemical cellular responses and genotoxic challenges is wanting. The present study was planned to explore cytotoxicity of NiO-NP in the model plant, Allium cepa L., its internalization in the tissue and concomitant furore created in the antioxidant enzyme system of the plant. The prospect of the NiO-NP causing genotoxicity was also investigated. Detailed assessments biochemical profiles and genotoxicity potential of NiO-NP on A. cepa L. was performed and extended to four of its closest economically important relatives, Allium sativum L., Allium schoenoprasum L., Allium porrum L., and Allium fistulosum L. Growing root tips were treated with seven different concentrations of NiO-NP suspension (10-500 mg L-1), with deionised distilled water as negative control and 0.4 mM EMS solution as positive control. Study of genotoxic endpoints, like, mitotic indices (MI), chromosomal aberrations (CAs), and chromosome breaks confirmed NiO-NP induced genotoxicity in plants, even at a very low dose (10 mg L-1). That NiO-NP also perturbs biochemical homeostasis, disrupting normal physiology of the cell, was confirmed through changes in state of lipid peroxidation malonaldehyde (MDA), as well as, in oxidation marker enzymes, like catalase (CAT), super oxide dismutase (SOD), and guiacol peroxidase (POD) activities. It was evident that increase in NiO-NP concentration led to decrease in MIs in all the study materials, concomitant with a spike of stress-alleviating, antioxidant enzymes-CAT, POD, SOD, and significant increase in MDA formation. Hence, it can be confirmed that NiO-NP should be treated as an environmental hazard.
Collapse
Affiliation(s)
| | - Maumita Bandyopadhyay
- Department of Botany, Center of Advanced Study, UCSTA, University of Calcutta, Kolkata, India
| |
Collapse
|
9
|
Goh CW, Lee IC, Sundaram JR, George SE, Yusoff P, Brush MH, Sze NSK, Shenolikar S. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J Biol Chem 2017; 293:163-176. [PMID: 29109149 DOI: 10.1074/jbc.m117.814111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Indexed: 12/28/2022] Open
Abstract
Oxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34, the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34-/- cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Catherine Wenhui Goh
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore
| | - Irene Chengjie Lee
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jeyapriya Rajameenakshi Sundaram
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Simi Elizabeth George
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Permeen Yusoff
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Matthew Hayden Brush
- Ontology Development group, Oregon Health and Science University, Portland, Oregon 97239
| | - Newman Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Shirish Shenolikar
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Psychiatry and Behavioral Sciences and Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
| |
Collapse
|
10
|
Yim JH, Yun JM, Kim JY, Nam SY, Kim CS. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells. Int J Radiat Biol 2017; 93:1197-1206. [DOI: 10.1080/09553002.2017.1350302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ji-Hye Yim
- Department of Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Seoul, Korea
| | - Jung Mi Yun
- Department of Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Seoul, Korea
| | - Ji Young Kim
- Department of Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Seoul, Korea
| | - Seon Young Nam
- Department of Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Seoul, Korea
| | - Cha Soon Kim
- Department of Molecular Biology Radiation Epidemiology Team, KHNP Radiation Health Institute, Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
11
|
Morii M, Kubota S, Honda T, Yuki R, Morinaga T, Kuga T, Tomonaga T, Yamaguchi N, Yamaguchi N. Src Acts as an Effector for Ku70-dependent Suppression of Apoptosis through Phosphorylation of Ku70 at Tyr-530. J Biol Chem 2016; 292:1648-1665. [PMID: 27998981 DOI: 10.1074/jbc.m116.753202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
Src-family tyrosine kinases are widely expressed in many cell types and participate in a variety of signal transduction pathways. Despite the significance of Src in suppression of apoptosis, its mechanism remains poorly understood. Here we show that Src acts as an effector for Ku70-dependent suppression of apoptosis. Inhibition of endogenous Src activity promotes UV-induced apoptosis, which is impaired by Ku70 knockdown. Src phosphorylates Ku70 at Tyr-530, being close to the possible acetylation sites involved in promotion of apoptosis. Src-mediated phosphorylation of Ku70 at Tyr-530 decreases acetylation of Ku70, whereas Src inhibition augments acetylation of Ku70. Importantly, knockdown-rescue experiments with stable Ku70 knockdown cells show that the nonphosphorylatable Y530F mutant of Ku70 reduces the ability of Ku70 to suppress apoptosis accompanied by augmentation of Ku70 acetylation. Our results reveal that Src plays a protective role against hyperactive apoptotic cell death by reducing apoptotic susceptibility through phosphorylation of Ku70 at Tyr-530.
Collapse
Affiliation(s)
- Mariko Morii
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Sho Kubota
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takuya Honda
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Ryuzaburo Yuki
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takao Morinaga
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takahisa Kuga
- the Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- the Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Noritaka Yamaguchi
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naoto Yamaguchi
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| |
Collapse
|
12
|
Lee E, Kim HJ, Lee M, Jin SH, Hong SH, Ahn S, Kim SO, Shin DW, Lee ST, Noh M. Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol 2016; 310:185-194. [PMID: 27664576 DOI: 10.1016/j.taap.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023]
Abstract
Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200μM formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, l-cystathionine and l-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response.
Collapse
Affiliation(s)
- Eunyoung Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoung-June Kim
- Basic Research and Innovation Division, AmorePacific Corporation R&D Center, Yongin, Gyeounggi-do 17074, Republic of Korea
| | - Moonyoung Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hee Jin
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Hyun Hong
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seyeon Ahn
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sae On Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Wook Shin
- Basic Research and Innovation Division, AmorePacific Corporation R&D Center, Yongin, Gyeounggi-do 17074, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
Nishio N, Isobe KI. GADD34-deficient mice develop obesity, nonalcoholic fatty liver disease, hepatic carcinoma and insulin resistance. Sci Rep 2015; 5:13519. [PMID: 26316333 PMCID: PMC4551985 DOI: 10.1038/srep13519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/15/2015] [Indexed: 01/04/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing in parallel with the prevalence of obesity. DNA damage-inducible protein 34 (GADD34/Ppp1r15a), originally isolated from UV-inducible transcripts in Chinese hamster ovary (CHO) cells, dephosphorylates several kinases that function in important signaling cascades, including dephosphorylation of eIF2α. We examined the effects of GADD34 on natural life span by using GADD34-deficient mice. Here we observed for the first time that with age GADD34-deficient mice become obese, developing fatty liver followed by liver cirrhosis, hepatocellular carcinoma, and insulin resistance. We found that myofibroblasts and immune cells infiltrated the portal veins of aged GADD34-deficient mouse livers. A high-fat diet (HFD) induced a higher level of steatosis in young GADD34-deficient mice compared with WT mice. Differentiation into fat is dependent on insulin signaling. Insulin signaling in young GADD34-deficient mice was higher than that in WT mice, which explained the higher fat differentiation of mouse embryonic fibroblasts (MEFs) observed in GADD34-deficient mice. Through aging or a HFD, insulin signaling in GADD34-deficient liver converted to be down regulated compared with WT mice. We found that a HFD or palmitate treatment converted insulin signaling by up-regulating TNF-α and JNK.
Collapse
Affiliation(s)
- Naomi Nishio
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550
| | - Ken-ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550.,Department of Food Science and Nutrition, Nagoya woman's university, 3-40 Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-0003 Japan
| |
Collapse
|
14
|
Sun C, Wang Z, Song W, Chen B, Zhang J, Dai X, Wang L, Wu J, Lan Q, Huang Q, Dong J. Alteration of DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells. Oncol Lett 2015; 10:1769-1774. [PMID: 26622748 DOI: 10.3892/ol.2015.3411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 05/07/2015] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to investigate the alteration of the DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells (GSLCs), and also aimed to explore potential targets for overcoming glioblastoma radioresistance. Serum-free medium was used to isolate and culture GSLCs. Cell growth was detected using a cell counting kit-8 assay and cell sorting analysis was performed by flow cytometry. X-ray irradiation was produced by a Siemens-Primus linear accelerator. Reverse transcription-quantitative polymerase chain reaction (qPCR)was performed to investigate target genes. SPSS 15.0 was used for all statistical analyses. Human glioblastoma U251 and U87 cells were cultured in serum-free medium supplemented with epidermal growth factor and fibroblast growth factor 2, which constitutes tumor sphere medium, and demonstrated sphere formation, with significantly increased the proportion of CD133+ and Nestin+ cells, which are referred to as GSLCs. The present data revealed that treatment with 10 Gy X-ray radiation alters the expression profile of DNA damage-associated genes in GSLCs. The expression levels of 12 genes demonstrated a ≥2-fold increase in the irradiated U87 GSLCs compared with the untreated U87 GSLCs. Three genes, consisting of XPA, RAD50 and PPP1R15A, were selected from the 12 genes by gene functional searching and qPCR confirmatory studies, as these genes were considered to be potential targets for overcoming radioresistance. The expression of XPA, RAD50 and PPP1R15A is significantly increased in U87 and U251 radiation resistant GSLCs, indicating three potential targets for overcoming the radioresistance of GSLCs.
Collapse
Affiliation(s)
- Chao Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Zhongyong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wuchao Song
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Baomin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jinshi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xingliang Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jinding Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
15
|
Ito S, Tanaka Y, Oshino R, Aiba K, Thanasegaran S, Nishio N, Isobe KI. GADD34 inhibits activation-induced apoptosis of macrophages through enhancement of autophagy. Sci Rep 2015; 5:8327. [PMID: 25659802 PMCID: PMC4321179 DOI: 10.1038/srep08327] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/15/2015] [Indexed: 11/09/2022] Open
Abstract
Autophagy is a common physiological function in all eukaryotes. The process is induced by depletion of nutrients including amino acids. GADD34 is expressed following DNA damage, ER stresses and amino acid deprivation. Here, we investigated the effects of GADD34 on autophagy and cell activation in macrophages. The deprivation of tyrosine and cysteine markedly induced the expression of GADD34 in macrophages. LPS stimulation combined with tyrosine/cysteine-deprivation initially activated macrophages, but then shifted to cell death in late phase of stimulation. When LPS stimulation was combined with tyrosine/cysteine-deprivation, a deficiency of GADD34 enhanced cell activation signaling such as Src-family, Erk1/2, p38 MAPK and Akt. In the late phase of stimulation, a deficiency of GADD34 increased apoptosis more than that in wild-type macrophages. Further we found that mTOR-S6K signaling was highly enhanced in GADD34-deficient macrophages compared with wild-type cells when cells were treated by LPS combined with tyrosine/cysteine-deprivation. LC3-II was increased by LPS stimulation combined with tyrosine/cysteine-deprivation. Defective GADD34 reduced LC3-II and autophagosome formation induced by LPS-stimulation and tyrosine/cysteine-deprivation compared with that seen in wild-type macrophages. These results indicates that GADD34 enhances autophagy and suppresses apoptosis stimulated by LPS combined with amino acid deprivation through regulation of mTOR signaling pathway in macrophages.
Collapse
Affiliation(s)
- Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuriko Tanaka
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Reina Oshino
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Keiko Aiba
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Suganya Thanasegaran
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Naomi Nishio
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Ken-ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
16
|
Fukumoto Y, Kuki K, Morii M, Miura T, Honda T, Ishibashi K, Hasegawa H, Kubota S, Ide Y, Yamaguchi N, Nakayama Y, Yamaguchi N. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks. Biochem Biophys Res Commun 2014; 452:542-7. [DOI: 10.1016/j.bbrc.2014.08.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 11/30/2022]
|
17
|
Saini S, Majid S, Shahryari V, Tabatabai ZL, Arora S, Yamamura S, Tanaka Y, Dahiya R, Deng G. Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer. Mol Cancer Ther 2014; 13:1952-63. [PMID: 24817628 DOI: 10.1158/1535-7163.mct-14-0017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic studies suggest that deletions at chromosome (chr) 5q region (particularly chr5q14-q23) are frequent in prostate cancer, implicating this region in prostate carcinogenesis. However, the genes within this region are largely unknown. Here, we report for the first time the widespread attenuation of miR-3607, an miRNA gene located at chr5q14 region, in prostate cancer. Expression analyses of miR-3607 in a clinical cohort of prostate cancer specimens showed that miR-3607 is significantly attenuated and low miR-3607 expression is correlated with tumor progression and poor survival outcome in prostate cancer. Our analyses suggest that miR-3607 expression may be a clinically significant parameter with an associated diagnostic potential. We examined the functional significance of miR-3607 in prostate cancer cell lines and found that miR-3607 overexpression led to significantly decreased proliferation, apoptosis induction, and decreased invasiveness. Furthermore, our results suggest that miR-3607 directly represses oncogenic SRC family kinases LYN and SRC in prostate cancer. In view of our results, we propose that miR-3607 plays a tumor-suppressive role in prostate cancer by regulating SRC kinases that in turn regulates prostate carcinogenesis. To our knowledge, this is the first report that: (i) identifies a novel role for miR-3607 located in a frequently deleted region of prostate cancer and (ii) defines novel miRNA-mediated regulation of SRC kinases in prostate cancer. Because SRC kinases play a central role in prostate cancer progression and metastasis and are attractive targets, this study has potential implications in the design of better therapeutic modalities for prostate cancer management.
Collapse
Affiliation(s)
- Sharanjot Saini
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Varahram Shahryari
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Z Laura Tabatabai
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Sumit Arora
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Soichiro Yamamura
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Guoren Deng
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| |
Collapse
|
18
|
Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, Okamoto A, Yamaguchi N, Iwama A, Nakayama Y, Yamaguchi N. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem 2014; 289:12313-29. [PMID: 24634213 DOI: 10.1074/jbc.m113.533752] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage checkpoint arrests cell cycle progression to allow time for repair. Once DNA repair is completed, checkpoint signaling is terminated. Currently little is known about the mechanism by which checkpoint signaling is terminated, and the disappearance of DNA lesions is considered to induce the end of checkpoint signaling; however, here we show that the termination of checkpoint signaling is an active process promoted by Src family tyrosine kinases. Inhibition of Src activity delays recovery from the G2 phase DNA damage checkpoint following DNA repair. Src activity is required for the termination of checkpoint signaling, and inhibition of Src activity induces persistent activation of ataxia telangiectasia mutated (ATM)- and Rad3-related (ATR) and Chk1 kinases. Src-dependent nuclear protein tyrosine phosphorylation and v-Src expression suppress the ATR-mediated Chk1 and Rad17 phosphorylation induced by DNA double strand breaks or DNA replication stress. Thus, Src family kinases promote checkpoint recovery through termination of ATR- and Chk1-dependent G2 DNA damage checkpoint. These results suggest a model according to which Src family kinases send a termination signal between the completion of DNA repair and the initiation of checkpoint termination.
Collapse
Affiliation(s)
- Yasunori Fukumoto
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Linking stress granulopoiesis to protein synthesis through GADD34. Immunol Cell Biol 2014; 92:102-4. [PMID: 24418816 DOI: 10.1038/icb.2013.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Loss of GADD34 induces early age‐dependent deviation to the myeloid lineage. Immunol Cell Biol 2013; 92:170-80. [DOI: 10.1038/icb.2013.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 01/27/2023]
|
21
|
Zhou W, Jeyaraman K, Yusoff P, Shenolikar S. Phosphorylation at tyrosine 262 promotes GADD34 protein turnover. J Biol Chem 2013; 288:33146-55. [PMID: 24092754 DOI: 10.1074/jbc.m113.504407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, metabolic and environmental stress increases the phosphorylation of the eukaryotic translational initiation factor, eIF2α, and attenuates global protein synthesis. Subsequent transcriptional activation of GADD34 assembles an eIF2α phosphatase that feeds back to restore mRNA translation. Active proteasomal degradation of GADD34 protein then reestablishes the sensitivity of cells to subsequent bouts of stress. Mass spectrometry established GADD34 phosphorylation on multiple serines, threonines, and tyrosines. Phosphorylation at tyrosine 262 enhanced the rate of the GADD34 protein turnover. Substrate-trapping studies identified TC-PTP (PTPN2) as a potential GADD34 phosphatase, recognizing phosphotyrosine 262. Reduced GADD34 protein levels in TC-PTP-null MEFs following ER stress emphasized the importance of TC-PTP in determining the cellular levels of GADD34 protein. The susceptibility of TC-PTP-null MEFs to ER stress-induced apoptosis was significantly ameliorated by ectopic expression of GADD34. The data suggested that GADD34 phosphorylation on tyrosine 262 modulates endoplasmic reticulum stress signaling and cell fate.
Collapse
Affiliation(s)
- Wei Zhou
- From the Signature Research Programs in Cardiovascular and Metabolic Disorders and
| | | | | | | |
Collapse
|
22
|
MBNL142 and MBNL143 gene isoforms, overexpressed in DM1-patient muscle, encode for nuclear proteins interacting with Src family kinases. Cell Death Dis 2013; 4:e770. [PMID: 23949219 PMCID: PMC3763452 DOI: 10.1038/cddis.2013.291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/19/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type-1 (DM1) is the most prevalent form of muscular dystrophy in adults. This disorder is an RNA-dominant disease, caused by expansion of a CTG repeat in the DMPK gene that leads to a misregulation in the alternative splicing of pre-mRNAs. The longer muscleblind-like-1 (MBNL1) transcripts containing exon 5 and the respective protein isoforms (MBNL142-43) were found to be overexpressed in DM1 muscle and localized exclusively in the nuclei. In vitro assays showed that MBNL142-43 bind the Src-homology 3 domain of Src family kinases (SFKs) via their proline-rich motifs, enhancing the SFK activity. Notably, this association was also confirmed in DM1 muscle and myotubes. The recovery, mediated by an siRNA target to Ex5-MBNL142-43, succeeded in reducing the nuclear localization of both Lyn and MBNL142-43 proteins and in decreasing the level of tyrosine phosphorylated proteins. Our results suggest an additional molecular mechanism in the DM1 pathogenesis, based on an altered phosphotyrosine signalling pathway.
Collapse
|
23
|
Liu WM, Huang P, Kar N, Burgett M, Muller-Greven G, Nowacki AS, Distelhorst CW, Lathia JD, Rich JN, Kappes JC, Gladson CL. Lyn facilitates glioblastoma cell survival under conditions of nutrient deprivation by promoting autophagy. PLoS One 2013; 8:e70804. [PMID: 23936469 PMCID: PMC3732228 DOI: 10.1371/journal.pone.0070804] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Members of the Src family kinases (SFK) can modulate diverse cellular processes, including division, death and survival, but their role in autophagy has been minimally explored. Here, we investigated the roles of Lyn, a SFK, in promoting the survival of human glioblastoma tumor (GBM) cells in vitro and in vivo using lentiviral vector-mediated expression of constitutively-active Lyn (CA-Lyn) or dominant-negative Lyn (DN-Lyn). Expression of either CA-Lyn or DN-Lyn had no effect on the survival of U87 GBM cells grown under nutrient-rich conditions. In contrast, under nutrient-deprived conditions (absence of supplementation with L-glutamine, which is essential for growth of GBM cells, and FBS) CA-Lyn expression enhanced survival and promoted autophagy as well as inhibiting cell death and promoting proliferation. Expression of DN-Lyn promoted cell death. In the nutrient-deprived GBM cells, CA-Lyn expression enhanced AMPK activity and reduced the levels of pS6 kinase whereas DN-Lyn enhanced the levels of pS6 kinase. Similar results were obtained in vitro using another cultured GBM cell line and primary glioma stem cells. On propagation of the transduced GBM cells in the brains of nude mice, the CA-Lyn xenografts formed larger tumors than control cells and autophagosomes were detectable in the tumor cells. The DN-Lyn xenografts formed smaller tumors and contained more apoptotic cells. Our findings suggest that on nutrient deprivation in vitro Lyn acts to enhance the survival of GBM cells by promoting autophagy and proliferation as well as inhibiting cell death, and Lyn promotes the same effects in vivo in xenograft tumors. As the levels of Lyn protein or its activity are elevated in several cancers these findings may be of broad relevance to cancer biology.
Collapse
Affiliation(s)
- Wei Michael Liu
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ping Huang
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Niladri Kar
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Monica Burgett
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Gaelle Muller-Greven
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Amy S. Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Clark W. Distelhorst
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Justin D. Lathia
- Department of Stem Cell Biology and Regenerative Medicine, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Candece L. Gladson
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Piao JL, Cui ZG, Furusawa Y, Ahmed K, Rehman MU, Tabuchi Y, Kadowaki M, Kondo T. The molecular mechanisms and gene expression profiling for shikonin-induced apoptotic and necroptotic cell death in U937 cells. Chem Biol Interact 2013; 205:119-27. [PMID: 23811387 DOI: 10.1016/j.cbi.2013.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 01/01/2023]
Abstract
Shikonin (SHK), a natural naphthoquinone derived from the Chinese medical herb Lithospermum erythrorhizon, induces both apoptosis and necroptosis in several cancer cell lines. However, the detailed molecular mechanisms involved in the initiation of cell death are still unclear. In the present study, caspase-dependent apoptosis was induced by SHK treatment at 1μM after 6h in U937 cells, with increase in DNA fragmentation, generation of intracellular reactive oxygen species (ROS), fraction of cells with low mitochondrial membrane potential (MMP), and in the expression of BH3 only proteins Noxa and tBid. Interestingly, caspase-independent cell death was also detected with SHK treatment at 10μM, observed as increase in SYTOX® Green staining and release of lactate dehydrogenase (LDH). Necrostatin-1 (Nec-1) completely inhibited the SHK-induced leakage of LDH and SYTOX® Green staining. Cell permeable exogenous glutathione (GSH) completely inhibited 1μM SHK-induced apoptosis and converted 10μM SHK-induced necroptosis to apoptosis. Gene expression profiling revealed that 353 genes were found to be significantly regulated by 1μM and 85 genes by 10μM of SHK treatment, respectively. Among these genes, the transcription factor 3 (ATF3) and DNA-damage-inducible transcript 3 (DDIT3) were highly expressed at 1μM of SHK treatment, while tumor necrosis factor (TNF) expression mainly increased at 10μM treatment. These findings provide novel information for the molecular mechanism of SHK-induced apoptosis and necroptosis.
Collapse
Affiliation(s)
- Jin-Lan Piao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Comparative analysis of clastogen-induced chromosome aberrations observed with light microscopy and by means of atomic force microscopy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 753:29-35. [DOI: 10.1016/j.mrgentox.2012.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/12/2012] [Accepted: 12/15/2012] [Indexed: 11/22/2022]
|
26
|
Watzlawik JO, Warrington AE, Rodriguez M. PDGF is required for remyelination-promoting IgM stimulation of oligodendrocyte progenitor cell proliferation. PLoS One 2013; 8:e55149. [PMID: 23383310 PMCID: PMC3562326 DOI: 10.1371/journal.pone.0055149] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/27/2012] [Indexed: 12/13/2022] Open
Abstract
Background Promotion of remyelination is a major goal in treating demyelinating diseases such as multiple sclerosis (MS). The recombinant human monoclonal IgM, rHIgM22, targets myelin and oligodendrocytes (OLs) and promotes remyelination in animal models of MS. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC) proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs. It is also unknown whether astrocytes or microglia play a functional role in IgM-mediated lesion repair. Methods We assessed the effect of rHIgM22 on cell proliferation in mixed CNS glial and OPC cultures by tritiated-thymidine uptake and by double-label immunocytochemistry using the proliferation marker, Ki-67. Antibody-mediated signaling events, OPC differentiation and OPC survival were investigated and quantified by Western blots. Results rHIgM22 stimulates OPC proliferation in mixed glial cultures but not in purified OPCs. There is no proliferative response in astrocytes or microglia. rHIgM22 activates PDGFαR in OPCs in mixed glial cultures. Blocking PDGFR-kinase inhibits rHIgM22-mediated OPC proliferation in mixed glia. We confirm in isolated OPCs that rHIgM22-mediated anti-apoptotic signaling and inhibition of OPC differentiation requires PDGF and FGF-2. We observed no IgM-mediated effect in mature OLs in the absence of PDGF and FGF-2. Conclusion Stimulation of OPC proliferation by rHIgM22 depends on co-stimulatory astrocytic and/or microglial factors. We demonstrate that rHIgM22-mediated activation of PDGFαR is required for stimulation of OPC proliferation. We propose that rHIgM22 lowers the PDGF threshold required for OPC proliferation and protection, which can result in remyelination of CNS lesions.
Collapse
Affiliation(s)
- Jens O. Watzlawik
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Arthur E. Warrington
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moses Rodriguez
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
27
|
Karlisch C, Harati K, Chromik AM, Bulut D, Klein-Hitpass L, Goertz O, Hirsch T, Lehnhardt M, Uhl W, Daigeler A. Effects of TRAIL and taurolidine on apoptosis and proliferation in human rhabdomyosarcoma, leiomyosarcoma and epithelioid cell sarcoma. Int J Oncol 2013; 42:945-56. [PMID: 23338823 DOI: 10.3892/ijo.2013.1772] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/07/2012] [Indexed: 11/05/2022] Open
Abstract
Soft tissue sarcomas (STS) are a heterogeneous group of malignant tumours representing 1% of all malignancies in adults. Therapy for STS should be individualised and multimodal, but complete surgical resection with clear margins remains the mainstay of therapy. Disseminated soft tissue sarcoma still represents a therapeutic dilemma. Commonly used chemotherapeutic agents such as doxorubicin and ifosfamide have proven to be effective in fewer than 30% in these cases. Therefore, we tested the apoptotic and anti-proliferative in vitro effects of TNF-related apoptosis-inducing ligand (TRAIL) and taurolidine (TRD) on rhabdomyosarcoma (A-204), leiomyosarcoma (SK-LMS-1) and epithelioid cell sarcoma (VA-ES-BJ) cell lines. Viability, apoptosis and necrosis were quantified by FACS analysis (propidium iodide/Annexin V staining). Gene expression was analysed by DNA microarrays and the results validated for selected genes by rtPCR. Protein level changes were documented by western blot analysis. Cell proliferation was analysed by BrdU ELISA assay. The single substances TRAIL and TRD significantly induced apoptotic cell death and decreased proliferation in rhabdomyosarcoma and epithelioid cell sarcoma cells. The combined use of TRAIL and TRD resulted in a synergistic apoptotic effect in all three cell lines, especially in rhabdomyosarcoma cells leaving 18% viable cells after 48 h of incubation (p<0.05). Analysis of the differentially regulated genes revealed that TRD and TRAIL influence apoptotic pathways, including the TNF-receptor associated and the mitochondrial pathway. Microarray analysis revealed remarkable expression changes in a variety of genes, which are involved in different apoptotic pathways and cross talk to other pathways at multiple levels. This in vitro study demonstrates that TRAIL and TRD synergise in inducing apoptosis and inhibiting proliferation in different human STS cell lines. Effects on gene expression differ relevantly in the sarcoma entities. These results provide experimental support for in vivo trials assessing the effect of TRAIL and TRD in STS and sustain the approach of individualized therapy.
Collapse
Affiliation(s)
- C Karlisch
- Department of Gynecology and Obstetrics, Marienhospital Witten, Ruhr-University, D-58452 Witten, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dalton LE, Healey E, Irving J, Marciniak SJ. Phosphoproteins in stress-induced disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:189-221. [PMID: 22340719 DOI: 10.1016/b978-0-12-396456-4.00003-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integrated stress response (ISR) is an evolutionarily conserved homeostatic program activated by specific pathological states. These include amino acid deprivation, viral infection, iron deficiency, and the misfolding of proteins within the endoplasmic reticulum (ER), the so-called ER stress. Although apparently disparate, each of these stresses induces phosphorylation of a translation initiation factor, eIF2α, to attenuate new protein translation while simultaneously triggering a transcriptional program. This is achieved by four homologous stress-sensing kinases: GCN2, PKR, HRI, and PERK. In addition to these kinases, mammals possess two specific eIF2α phosphatases, GADD34 and CReP, which play crucial roles in the recovery of protein synthesis following the initial insult. They are not only important in embryonic development but also appear to play important roles in disease, particularly cancer. In this chapter, we discuss each of the eIF2α kinases, in turn, with particular emphasis on their regulation and the new insights provided by recent structural studies. We also discuss the potential for developing novel drug therapies that target the ISR.
Collapse
Affiliation(s)
- Lucy E Dalton
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
29
|
Watzlawik J, Holicky E, Edberg DD, Marks DL, Warrington AE, Wright BR, Pagano RE, Rodriguez M. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 2010; 58:1782-93. [PMID: 20645409 PMCID: PMC2967300 DOI: 10.1002/glia.21048] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Human remyelination promoting IgM mAbs target oligodendrocytes (OLs) and function in animal models of multiple sclerosis (MS). However, their mechanism of action is unknown. This study seeks to identify the cellular mechanism of action of a recombinant human IgM on OL survival. METHODS Binding of rHIgM22 to the surface of rat OLs was studied by co-localization with various markers. RHIgM22-mediated effects on apoptotic signaling in OLs, differentiation markers, and signaling molecules were detected by Western blotting and immunoprecipitation. RESULTS RHIgM22 co-localized with integrin β3 but not other integrin β-chains in OLs. Downstream of integrin β3 we identified Src family kinase (SFK) Lyn as a key player of rHIgM22-mediated actions in OLs. Lyn immunoprecipitated in a complex together with integrin αvβ3 and PDGFαR. Lyn expression was 9-fold up-regulated and Lyn activation was 3-fold higher inrHIgM22-treated OL cultures compared with controls. RHIgM22 inhibited apoptotic signaling by greater than 10-fold reduction of caspase-3 and capsase-9 cleavage and reduced by 4-fold expression of differentiation markers MBP and MOG in OLs. SFK inhibitors PP2 and SU6656 inhibited Lyn activity and restored caspase-cleavage in OLs. A human IgM that did not promote remyelination and medium wereused as controls. CONCLUSIONS rHIgM22 prevented apoptotic signaling andinhibited OL differentiation by Lyn implying thatIgM-mediated remyelination is due toprotection of OPC and OLs rather than promotion of OPC differentiation.
Collapse
Affiliation(s)
- J Watzlawik
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | - E Holicky
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | - DD Edberg
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | - DL Marks
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | - AE Warrington
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | - BR Wright
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | - RE Pagano
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | - M Rodriguez
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| |
Collapse
|
30
|
Thomas SE, Dalton LE, Daly ML, Malzer E, Marciniak SJ. Diabetes as a disease of endoplasmic reticulum stress. Diabetes Metab Res Rev 2010; 26:611-21. [PMID: 20922715 DOI: 10.1002/dmrr.1132] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/17/2010] [Accepted: 09/06/2010] [Indexed: 01/19/2023]
Abstract
Endoplasmic reticulum (ER) stress is an integral part of life for all professional secretory cells, but it has been studied to greatest depth in the pancreatic β-cell. This reflects both the crucial role played by ER stress in the pathogenesis of diabetes and also the exquisite vulnerability of these cells to ER dysfunction. The adaptive cellular response to ER stress, the unfolded protein response, comprises mechanisms to both regulate new protein translation and a transcriptional program to allow adaptation to the stress. The core of this response is a triad of stress-sensing proteins: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6. All three regulate portions of the transcriptional unfolded protein response, while PERK also attenuates protein synthesis during ER stress and IRE1 interacts directly with the c-Jun amino-terminal kinase stress kinase pathway. In this review we shall discuss these processes in detail, with emphasis given to their impact on diabetes and how recent findings indicate that ER stress may be responsible for the loss of β-cell mass in the disease.
Collapse
Affiliation(s)
- Sally E Thomas
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
31
|
Kalcheva VP, Dragoeva AP, Kalchev KN, Enchev DD. Cytotoxic and genotoxic effects of Br-containing oxaphosphole on Allium cepa L. root tip cells and mouse bone marrow cells. Genet Mol Biol 2009; 32:389-93. [PMID: 21637696 PMCID: PMC3036913 DOI: 10.1590/s1415-47572009000200028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 12/05/2008] [Indexed: 11/22/2022] Open
Abstract
The continuous production and release of chemicals into the environment has led to the need to assess their genotoxicity. Numerous organophosphorus compounds with different structures have been synthesized in recent years, and several oxaphosphole derivatives are known to possess biological activity. Such chemical compounds may influence proliferating cells and cause disturbances of the genetic material. In this study, we examined the cytotoxicity and genotoxicity of 4-bromo-N,N-diethyl-5,5-dimethyl-2,5-dihydro-1,2-oxaphosphol-2-amine 2-oxide (Br-oxph). In A. cepa cells, Br-oxph (10-9 M, 10 -6 M and 10 -3 M) reduced the mitotic index 48 h after treatment with the two highest concentrations, with no significant effect at earlier intervals. Mitotic cells showed abnormalities 24 h and 48 h after treatment with the two lowest concentrations but there were no consistent changes in interphase cells. Bone marrow cells from mice treated with Br-oxph (2.82 x 10 -3 μg/kg) also showed a reduced mitotic index after 48 h and a greater percentage of cells with aberrations (principally chromatid and isochromatid breaks). These findings indicate the cytotoxicity and genotoxicity of Br-oxph in the two systems studied.
Collapse
Affiliation(s)
- Vanya P Kalcheva
- Faculty of Natural Sciences, University of Shumen, Shumen Bulgaria
| | | | | | | |
Collapse
|
32
|
Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity. Exp Cell Res 2008; 314:3392-404. [PMID: 18817770 DOI: 10.1016/j.yexcr.2008.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/23/2008] [Accepted: 08/25/2008] [Indexed: 01/23/2023]
Abstract
Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification.
Collapse
|
33
|
Chudakova DA, Zeidan YH, Wheeler BW, Yu J, Novgorodov SA, Kindy MS, Hannun YA, Gudz TI. Integrin-associated Lyn kinase promotes cell survival by suppressing acid sphingomyelinase activity. J Biol Chem 2008; 283:28806-16. [PMID: 18682390 DOI: 10.1074/jbc.m803301200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrins govern cellular adhesion and transmit signals leading to activation of intracellular signaling pathways aimed to prevent apoptosis. Herein we report that attachment of oligodendrocytes (OLs) to fibronectin via alpha(v)beta(3) integrin receptors rendered the cells more resistant to apoptosis than the cells attached to laminin via alpha(6)beta(1) integrins. Investigation of molecular mechanisms involved in alpha(v)beta(3) integrin-mediated cell survival revealed that ligation of the integrin with fibronectin results in higher expression of activated Lyn kinase. Both in OLs and in the mouse brain, Lyn selectively associates with alpha(v)beta(3) integrin, not with alpha(v)beta(5) integrin, leading to suppression of acid sphingomyelinase activity and preventing ceramide-mediated apoptosis. In OLs, knockdown of Lyn with small interfering RNA resulted in OL apoptosis with concomitant accumulation of C(16)-ceramide due to activation of acid sphingomyelinase (ASMase) and sphingomyelin hydrolysis. Knocking down ASMase partially protected OLs from apoptosis. In the brain, ischemia/reperfusion (IR) triggered rearrangements in the alpha(v)beta(3) integrin-Lyn kinase complex leading to disruption of Lyn kinase-mediated suppression of ASMase activity. Thus, co-immunoprecipitation studies revealed an increased association of alpha(v)beta(3) integrin-Lyn kinase complex with ionotropic glutamate receptor subunits, GluR2 and GluR4, after cerebral IR. Sphingolipid analysis of the brain demonstrated significant accumulation of ceramide and sphingomyelin hydrolysis. The data suggest a novel mechanism for regulation of ASMase activity during cell adhesion in which Lyn acts as a key upstream kinase that may play a critical role in cerebral IR injury.
Collapse
Affiliation(s)
- Daria A Chudakova
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hori T, Kondo T, Tabuchi Y, Takasaki I, Zhao QL, Kanamori M, Yasuda T, Kimura T. Molecular mechanism of apoptosis and gene expressions in human lymphoma U937 cells treated with anisomycin. Chem Biol Interact 2007; 172:125-40. [PMID: 18241849 DOI: 10.1016/j.cbi.2007.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 12/11/2022]
Abstract
Anisomycin is known as a potent apoptosis inducer by activating JNK/SAPK and inhibiting protein synthesis during translation. However, only few details are known about the mechanism of apoptosis induced by this compound. The present study was undertaken to further elucidate the molecular mechanism of apoptosis and the changes of gene expression elicited by anisomycin using DNA microarrays and computational gene-expression analysis tools in human lymphoma U937 cells. Anisomycin was found to induce apoptosis in time- and concentration-dependent manner as confirmed by phosphatidylserine externalization and DNA fragmentation analysis. Furthermore, anisomycin-treated cells also showed caspase-8 activation, mitochondrial membrane potential collapse, Bid activation, caspase-3 cleavage and cytochrome c release into the cytosol. In the gene-expression analysis, six gene clusters were detected. From clusters I and II, three significant genetic networks were identified. Interestingly, many bZIP family transcription factors were observed in the up-regulated genetic networks. Moreover, the expression of protein-synthesis-related genes, such as EIF4 family proteins and ribosomal proteins, were inhibited. This finding could explain the reason why anisomycin inhibits the protein synthesis at the translation steps. These results provide novel information for understanding the molecular mechanism of apoptosis induced by anisomycin.
Collapse
Affiliation(s)
- Takeshi Hori
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lelong DC, Bieche I, Perez E, Bigot K, Leemput J, Laurendeau I, Vidaud M, Jais JP, Menasche M, Abitbol M. Novel mouse model of monocular amaurosis fugax. Stroke 2007; 38:3237-44. [PMID: 17975099 DOI: 10.1161/strokeaha.107.499319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Retinal ischemia is a major cause of visual impairment and is associated with a high risk of subsequent ischemic stroke. The retina and its projections are easily accessible for experimental procedures and functional evaluation. We created and characterized a mouse model of global and transient retinal ischemia and provide a comprehensive chronologic profile of some genes that display altered expression during ischemia. METHODS Ischemia and reperfusion were assessed by observing flat-mounted retinas after systemic fluorescein injection. The temporal pattern of gene expression modulation was evaluated by quantitative reverse transcription-polymerase chain reaction from the occurrence of unilateral 30-minute pterygopalatine artery occlusion until 4 weeks after reperfusion. Electroretinograms evaluated functional sequelae 4 weeks after the ischemic episode and were correlated with histologic lesions. RESULTS This model is the first to reproduce the features of transient monocular amaurosis fugax resulting from ophthalmic artery occlusion. The histologic structure was roughly conserved, but functional lesions affected ganglion cells, inner nuclear layer cells, and photoreceptor cells. We observed an early and strong upregulation of c-fos, c-jun, Cox-2, Hsp70, and Gadd34 gene expression and a late decrease in Hsp70 transcript levels. CONCLUSIONS A murine model of transient retinal ischemia was successfully developed that exhibited the characteristic upregulation of immediate-early genes and persistent functional deficits. The model should prove useful for investigating mechanisms of injury in genetically altered mice and for testing novel neuroprotective drugs.
Collapse
Affiliation(s)
- Dominique Claude Lelong
- Centre de Recherche Thérapeutique en Ophtalmologie-CERTO, Faculté de Médecine Paris-Descartes, Site Necker, 156 rue de Vaugirard, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nahreini P, Yan XD, Andreatta CP, Prasad KN, Toribara NW. Identifying altered gene expression in neuroblastoma cells preceding apoptosis. J Cancer Res Clin Oncol 2007; 134:411-9. [PMID: 17786477 DOI: 10.1007/s00432-007-0303-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 08/16/2007] [Indexed: 01/28/2023]
Abstract
PURPOSE Concomitant differentiation and partial inhibition of proteasome trigger cell death in a neuroblastoma cell line (NBP2). Neither induction of differentiation nor partial inhibition of proteasome alone affects the viability of NBP2 cells. We wanted to identify genes whose expression alters under concomitant conditions and may account for cell death. METHODS We used gel electrophoresis to analyze total genomic DNA for the detection of DNA fragmentation. Affymetrix Murine Genome U74A version 2 microarray was used to screen for approximately 6,000 functionally characterized genes and approximately 6,000 expressed sequence tags (ESTs). Real time PCR (RT-PCR) was performed to provide an accurate assessment of changes in gene expression. RESULTS Concomitant differentiation and partial inhibition of proteasome trigger apoptosis, characterized by genomic DNA fragmentation in NBP2 cells. We found that the expression of 41 genes changed 2.5-fold or more primarily under concomitant conditions midway through apoptosis. Based on real time PCR, the expression of galectin-3, glycosylated 96, a leucine zipper protein (LRG-21), and endothelial cell activated protein C receptor (EPCR) increased between 50-500-fold, whereas the expression of Polo serine/threonine kinase, N-myc, and Histone H2A.1 decreased ranging from 8 to 37 fold. Altered expression of galectin-3, EPCR, and LRG-21 was detected as early as 2-8 h post simultaneous conditions. CONCLUSION We identified new genes that might be involved in apoptotic events in neuroblastoma cells.
Collapse
Affiliation(s)
- Piruz Nahreini
- Department of Gastroenterology and Hepatology, School of Medicine, University of Colorado Health Sciences Center (UCHSC), Denver Health Medical Center (DHMC), Unit 7, Room 208, 777 Bannock St., Box-4000, Denver, CO 80204, USA.
| | | | | | | | | |
Collapse
|
37
|
Kannan S, Audet A, Knittel J, Mullegama S, Gao GF, Wu M. Src kinase Lyn is crucial for Pseudomonas aeruginosa internalization into lung cells. Eur J Immunol 2006; 36:1739-52. [PMID: 16791881 DOI: 10.1002/eji.200635973] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lyn is an important B cell signaling kinase of the Src tyrosine kinase family with a broad range of functions from cytoskeletal changes to induction of apoptosis. However, the role of Lyn in infectious diseases is not clear. Here, we demonstrate that Lyn activation by phosphorylation significantly impacted invasion of an alveolar epithelial cell line, primary lung cells, and rat lungs by Pseudomonas aeruginosa (PA), a common opportunistic lung pathogen affecting individuals with deficient lung immunity. Our results indicate that activation of Lyn and its interaction with rafts and TLR2, played an important role in the initial stages of PA interaction with host cells. The role of Lyn was further evaluated using the pharmacologic Src-specific inhibitor PP2, a dominant negative mutant, and finally confirmed with Lyn-deficient (Lyn(-/-)) bone marrow-derived mast cells. Inhibition of Lyn's function by above approaches prevented PA internalization. Moreover, blocking of Lyn also affected downstream events: induction of inflammatory cytokines and apoptosis. This report brings out a new role of Lyn in infectious diseases and indicates potential new targets for prevention and treatment of infections.
Collapse
Affiliation(s)
- Shibichakravarthy Kannan
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 558203, USA
| | | | | | | | | | | |
Collapse
|
38
|
Pace A, Tapia JA, Garcia-Marin LJ, Jensen RT. The Src family kinase, Lyn, is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors which stimulate its association with numerous other signaling molecules. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:356-365. [PMID: 16713446 DOI: 10.1016/j.bbamcr.2006.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/16/2022]
Abstract
Src family kinases (SFK) play a central signaling role for growth factors, cytokines, G-protein-coupled receptors and other stimuli. SFKs play important roles in pancreatic acinar cell secretion, endocytosis, growth, cytoskeletal integrity and apoptosis, although little is known of the specific SFKs involved. In this study we demonstrate the SFK, Lyn, is present in rat pancreatic acini and investigate its activation/signaling. Ca(2+)-mobilizing agents, cAMP-mobilizing agents and pancreatic growth factors activated Lyn. CCK, a physiological regulator of pancreatic function, rapidly activated Lyn. The specific SFK inhibitor, PP2, decreased Lyn activation; however, the inactive analogue, PP3, had no effect. Inhibition of CCK-stimulated changes in [Ca(2+)](i) decreased Lyn activation by 55%; GFX, a PKC inhibitor by 36%; and the combination by 95%. CCK activation of Lyn required stimulation of high and low affinity CCK(A) receptor states. CCK stimulated an association of Lyn with PKC-delta, Shc, p125(FAK) and PYK2 as well as with their autophosphorylated forms, but not with Cbl, p85, p130(CAS) or ERK 1/2. These results show Lyn is activated by diverse pancreatic stimulants. CCK's activation of Lyn is likely an important mediator of its ability to cause tyrosine phosphorylation of numerous important cellular mediators such as p125(FAK), PYK2, PKC-delta and Shc, which play central roles in CCK's effects on acinar cell function.
Collapse
Affiliation(s)
- Andrea Pace
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | |
Collapse
|
39
|
Bhattacharjee RN, Park KS, Uematsu S, Okada K, Hoshino K, Takeda K, Takeuchi O, Akira S, Iida T, Honda T. Escherichia coliverotoxin 1 mediates apoptosis in human HCT116 colon cancer cells by inducing overexpression of the GADD family of genes and S phase arrest. FEBS Lett 2005; 579:6604-10. [PMID: 16297916 DOI: 10.1016/j.febslet.2005.10.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 09/29/2005] [Accepted: 10/27/2005] [Indexed: 10/25/2022]
Abstract
The Escherichia coli verotoxin 1 (VT1) inhibits protein synthesis, cell proliferation, and damages endothelial cell in the hemolytic uremic syndrome. VT1 can specifically bind and act on endothelial cells as well as on many tumor cells because these cells express its high affinity receptor, globotriaosylceramide. This indicates that VT1 may have both antiangiogenic and antineoplastic activities. We investigated this potential of VT1 by incubating several colon cancer cell lines with VT1 for different time periods and found that HCT116 cells were especially sensitive to VT1. A combination of morphological studies, flow cytometry, DNA laddering and annexin V staining confirmed that VT1 irreversibly arrests these cells in S phase within 24 h and prolonged incubation triggers DNA fragmentation. Concomitant to the activation of the S phase checkpoint, increased levels of mRNA and proteins of growth arrest and DNA damage-inducible gene family that include GADD34, GADD45alpha, and GADD45beta was observed. Interestingly, no significant changes in expression of key cell cycle related proteins such as cdk2, cdk4, p21, p27, and p53 was found during the S phase arrest and apoptosis. We therefore suggest that GADD proteins might play an important role in VT1 induced S phase arrest and programmed cell death in HCT116 cells.
Collapse
Affiliation(s)
- Rabindra N Bhattacharjee
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bhattacharjee RN, Park KS, Okada K, Kumagai Y, Uematsu S, Takeuchi O, Akira S, Iida T, Honda T. Microarray analysis identifies apoptosis regulatory gene expression in HCT116 cells infected with thermostable direct hemolysin-deletion mutant of Vibrio parahaemolyticus. Biochem Biophys Res Commun 2005; 335:328-34. [PMID: 16061205 DOI: 10.1016/j.bbrc.2005.07.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
The thermostable direct hemolysin (TDH) is considered as a major virulence factor of Vibrio parahaemolyticus. We observed this potential in several human cancer cell lines by using the TDH-producing wild-type (RIMD2210633) as well as tdh-deletion mutant of V. parahaemolyticus and found that the deletion of tdh did not affect cytotoxicity to any of the cell lines tested. DNA fragmentation and annexin V staining showed that both wild-type and tdh-mutant trigger apoptosis in these cells. To understand the molecular basis of cell death in the absence of TDH, gene expression profile of human colon cancer cell line HCT116 infected with tdh-deletion mutant was carried out using human cDNA microarrays consisting of 33,000 known genes. In infected cells, differentially expressed genes including genes for early growth response, growth arrest and DNA damage, and activating transcription factor that affect programmed cell death pathways were detected. Interestingly, mutant strains having a deletion in type III secretion system 1 (TTSS1) failed to elicit DNA fragmentation in HCT116 cells. Our results strongly suggest that apoptosis requires functional TTSS1 and TTSS1-dependent translocation factor(s) to be associated with the host cell death, and thus pathogenesis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Rabindra N Bhattacharjee
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
McCaig D, Imai H, Gallagher L, Graham DI, Harland J, Moira Brown S, Mhairi Macrae I. Evolution of GADD34 expression after focal cerebral ischaemia. Brain Res 2005; 1034:51-61. [PMID: 15713259 DOI: 10.1016/j.brainres.2004.11.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/20/2022]
Abstract
GADD34, a stress response protein associated with cell rescue, DNA repair and apoptosis, is expressed in the ischaemic brain. The C-terminal region of GADD34 has homology with the Herpes Simplex Virus protein, ICP34.5, which overcomes the protein synthesis block after viral infection by actively dephosphorylating eukaryotic translation initiation factor 2alpha (eIF2alpha). The carboxy terminus of GADD34 is also capable of dephosphorylating eIF2alpha and therefore has the capacity to restore the protein synthesis shutoff associated with ischaemia. This study examines the distribution and time course of GADD34 expression after focal cerebral ischaemia. Focal ischaemia or sham procedure was carried out on Sprague-Dawley rats with survival times of 4, 12, 24 h, 7 and 30 days. Brains were processed for histology and immunohistochemistry. Ischaemic damage was mapped onto line diagrams and GADD34 positive cells counted in selected regions of cortex and caudate. GADD34 immunopositive cells (mainly neurones), expressed as cells/mm2, were present in ischaemic brains at 4 h (e.g., peri-infarct cortex 20 +/- 5; contralateral cortex 3 +/- 1, P < 0.05). Of the time points examined, numbers of GADD34 positive cells were highest 24 h after ischaemia (peri-infarct cortex 31 +/- 7.3, contralateral cortex 0.1 +/- 0.1, P < 0.05). Immunopositive cells, following a similar time course, were identified within the peri-infarct zone in the caudate nucleus and in ipsilateral cingulate cortex (possibly as a consequence of cortical spreading depression). GADD34 positive cells did not co-localise with a marker of irreversible cell death (TUNEL). Taken together, GADD34 positive cells in key neuroanatomical locations pertinent to the evolving ischaemic lesion, the lack of co-localisation with TUNEL and the protein's known effects on restoring protein synthesis, repairing DNA and involvement in ischaemic pre-conditioning suggests that it has the potential to influence cell survival in ischaemically compromised tissue.
Collapse
Affiliation(s)
- David McCaig
- Wellcome Surgical Institute, Division of Clinical Neuroscience, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Su ZZ, Emdad L, Sarkar D, Randolph A, Valerie K, Yacoub A, Dent P, Fisher PB. Potential molecular mechanism for rodent tumorigenesis: mutational generation of Progression Elevated Gene-3 (PEG-3). Oncogene 2005; 24:2247-55. [PMID: 15674324 DOI: 10.1038/sj.onc.1208420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progression Elevated Gene-3 (PEG-3) was cloned using subtraction hybridization as an upregulated transcript associated with transformation and tumor progression of rat embryo fibroblast cells. PEG-3 is a unique gene facilitating tumor progression by modulating multiple pathways in transformed cells, including genomic stability, angiogenesis and invasion. PEG-3 originates from mutation in the growth arrest and DNA damage inducible gene GADD34. A one base deletion in rat GADD34 results in a frame-shift and premature appearance of a stop-codon resulting in a C-terminally truncated molecule that is PEG-3. We now document that mutation in the GADD34 gene is a frequent event during transformation and/or immortalization of rodent cells. Sequencing of the GADD34 gene in a number of independent rat tumor cell lines revealed that in a majority of these the GADD34 gene is mutated to either PEG-3 or a PEG-3-like gene with similar C-terminal truncations. An important function of GADD34 is to inhibit cell growth, predominantly by apoptosis, and we demonstrate that PEG-3 or C-terminal truncations of human GADD34 resembling PEG-3 prevent growth inhibition by both human and rat GADD34. Phosphorylation of p53 by GADD34 is one mechanism by which it inhibits growth and PEG-3 could prevent GADD34-induced p53 phosphorylation. In contrast, PEG-3 was unable to block other GADD34-induced changes, including eIF2 alpha dephosphorylation, indicating that its effects on GADD34 may be related more to its effect on cell growth rather than a global inhibitor of all GADD34 functions. We hypothesize that mutational generation of PEG-3 or a similar molecule is a critical event during rodent carcinogenesis. The inherent property of PEG-3 to function as a dominant negative of the growth inhibitory property of GADD34 might rescue cells from DNA damage-induced apoptosis leading to growth independence and tumorigenesis.
Collapse
Affiliation(s)
- Zao-zhong Su
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cheng G, Feng Z, He B. Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. J Virol 2005; 79:1379-88. [PMID: 15650164 PMCID: PMC544103 DOI: 10.1128/jvi.79.3.1379-1388.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gamma(1)34.5 protein of herpes simplex virus (HSV) plays a crucial role in virus infection. Although the double-stranded RNA-dependent protein kinase (PKR) is activated during HSV infection, the gamma(1)34.5 protein inhibits the activity of PKR by mediating dephosphorylation of the translation initiation factor eIF-2alpha. Here we show that HSV infection also induces phosphorylation of an endoplasmic reticulum (ER) resident kinase PERK, a hallmark of ER stress response. The virus-induced phosphorylation of PERK is blocked by cycloheximide but not by phosphonoacetic acid, suggesting that the accumulation of viral proteins in the ER is essential. Notably, the maximal phosphorylation of PERK is delayed in PKR+/+ cells compared to that seen in PKR-/- cells. Further analysis indicates that hyperphosphorylation of eIF-2alpha caused by HSV is greater in PKR+/+ cells than in PKR-/- cells. However, expression of the gamma(1)34.5 protein suppresses the ER stress response caused by virus, dithiothreitol, and thapsigargin as measured by global protein synthesis. Interestingly, the expression of GADD34 stimulated by HSV infection parallels the status of eIF-2alpha phosphorylation. Together, these observations suggest that regulation of eIF-2alpha phosphorylation by the gamma(1)34.5 protein is an efficient way to antagonize the inhibitory activity of PKR as well as PERK during productive infection.
Collapse
Affiliation(s)
- Guofeng Cheng
- Department of Microbiology and Immunology (M/C 790), College of Medicine, The University of Illinois at Chicago, 835 South Wolcott Ave., Chicago, IL 60612, USA
| | | | | |
Collapse
|
44
|
Prakash O, Swamy OR, Peng X, Tang ZY, Li L, Larson JE, Cohen JC, Gill J, Farr G, Wang S, Samaniego F. Activation of Src kinase Lyn by the Kaposi sarcoma-associated herpesvirus K1 protein: implications for lymphomagenesis. Blood 2005; 105:3987-94. [PMID: 15665117 PMCID: PMC1895082 DOI: 10.1182/blood-2004-07-2781] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The K1 gene of Kaposi sarcoma-associated herpesvirus (KSHV) encodes a transmembrane glycoprotein bearing a functional immunoreceptor tyrosine-based activation motif (ITAM). Previously, we reported that the K1 protein induced plasmablastic lymphomas in K1 transgenic mice, and that these lymphomas showed enhanced Lyn kinase activity. Here, we report that systemic administration of the nuclear factor kappa B (NF-kappaB) inhibitor Bay 11-7085 or an anti-vascular endothelial growth factor (VEGF) antibody significantly reduced K1 lymphoma growth in nude mice. Furthermore, in KVL-1 cells, a cell line derived from a K1 lymphoma, inhibition of Lyn kinase activity by the Src kinase inhibitor PP2 decreased VEGF induction, NF-kappaB activity, and the cell proliferation index by 50% to 75%. In contrast, human B-cell lymphoma BJAB cells expressing K1, but not the ITAM sequence-deleted mutant K1, showed a marked increase in Lyn kinase activity with concomitant VEGF induction and NF-kappaB activation, indicating that ITAM sequences were required for the Lyn kinase-mediated activation of these factors. Our results suggested that K1-mediated constitutive Lyn kinase activation in K1 lymphoma cells is crucial for the production of VEGF and NF-kappaB activation, both strongly implicated in the development of KSHV-induced lymphoproliferative disorders.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Cell Transformation, Neoplastic
- Cells, Cultured
- Enzyme Activation
- Gene Expression Regulation, Neoplastic
- Herpesvirus 8, Human
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/pathology
- Leukemia, B-Cell/virology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Mice
- Mice, Transgenic
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Promoter Regions, Genetic/genetics
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/immunology
- Vascular Endothelial Growth Factor A/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Om Prakash
- Laboratory of Molecular Oncology, Ochsner Clinic Foundation, 1516 Jefferson Highway, New Orleans, LA 70121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yagi A, Hasegawa Y, Xiao H, Haneda M, Kojima E, Nishikimi A, Hasegawa T, Shimokata K, Isobe KI. GADD34 induces p53 phosphorylation and p21/WAF1 transcription. J Cell Biochem 2004; 90:1242-9. [PMID: 14635196 DOI: 10.1002/jcb.10711] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, others and we have shown that one of the functions of GADD34 is a recovery from a shutoff of protein synthesis induced by endoplasmic reticulum stress. GADD34 has been shown to induce growth arrest and apoptosis. Main protein of apoptosis is p53, especially phosphorylation of p53. And one of the main proteins of growth arrest is p21/WAF1. Here we analyzed the effects of GADD34 on p53 phosphorylation and p21/WAF1 transcription. Transfected Myc-tagged p53 was dose-dependently phosphorylated at Ser15 by increasing the amount of GADD34. Transfection of GADD34 also induced the endogenous phosphorylation of p53 and enhanced p21 protein expression. Transfection of GADD34 induced p21/WAF1 promoter activity. This activity was dependent on p53, because GADD34 transfection to p53-deficient cells produced only a slight increase of p21/WAF1 promoter activity. The p21/WAF1 promoter activity was greatly enhanced by the transfection of p53. Both GADD34 and p53 transfection induced much higher p21/WAF1 promoter activity. The promoter activity of p21/WAF1 was very low in GADD34 deficient MEF. The transfection of GADD34 increased the p21/WAF1 promoter activity in GADD34 deficient MEF.
Collapse
Affiliation(s)
- Ayako Yagi
- Department of Basic Gerontology, National Institute for Longevity Sciences, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dai Y, Rahmani M, Corey SJ, Dent P, Grant S. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem 2004; 279:34227-34239. [PMID: 15175350 DOI: 10.1074/jbc.m402290200] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The relationship between the Src kinase Lyn and Bcl-2 expression was examined in chronic myelogenous leukemia cells (K562 and LAMA84) displaying a Bcr/Abl-independent form of imatinib mesylate resistance. K562-R and LAMA-R cells that were markedly resistant to induction of mitochondrial dysfunction (e.g. loss of mitochondrial membrane potential, Bax translocation, cytochrome c, and apoptosis-inducing factor release) and apoptosis by imatinib mesylate exhibited a pronounced reduction in expression of Bcr/Abl, Bcl-x(L), and STAT5 but a striking increase in levels of activated Lyn. Whereas basal expression of Bcl-2 protein was very low in parental cells, imatinib-resistant cells displayed a marked increase in Bcl-2 mRNA and/or protein levels. Treatment of LAMA-R cells with the Src kinase inhibitor PP2 significantly reduced Lyn activation as well as Bcl-2 mRNA and protein levels. Transient or stable transfection of LAMA84 or K562 cells with a constitutively active Lyn (Y508F), but not with a kinase-dead mutant (K275D), significantly increased Bcl-2 protein expression and protected cells from lethality of imatinib mesylate. Ectopic expression of Bcl-2 protected K562 and LAMA84 cells from imatinib mesylate- and PP2-mediated lethality. Conversely, interference with Bcl-2 function by co-administration of the small molecule Bcl-2 inhibitor HA14-1 or down-regulation of Bcl-2 expression by small interfering RNA or antisense strategies significantly increased mitochondrial dysfunction and apoptosis induced by imatinib mesylate and the topoisomerase inhibitor VP-16 in LAMA-R cells. In marked contrast, these interventions had little effect in parental LAMA84 cells that display low basal levels of Bcl-2. Together, these findings indicate that activation of Lyn in leukemia cells displaying a Bcr/Abl-independent form of imatinib mesylate resistance plays a functional role in Bcl-2 up-regulation and provide a theoretical basis for the development of therapeutic strategies targeting Bcl-2 in such a setting.
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Medical College of Virginia, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
47
|
Dai Y, Rahmani M, Pei XY, Dent P, Grant S. Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood 2004; 104:509-518. [PMID: 15039284 DOI: 10.1182/blood-2003-12-4121] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interactions between the cyclin-dependent kinase (CDK) inhibitor flavopiridol and the proteasome inhibitor bortezomib were examined in Bcr/Abl(+) human leukemia cells. Coexposure of K562 or LAMA84 cells to subtoxic concentration of flavopiridol (150-200 nM) and bortezomib (5-8 nM) resulted in a synergistic increase in mitochondrial dysfunction and apoptosis. These events were associated with a marked diminution in nuclear factor kappaB (NF-kappaB)/DNA binding activity; enhanced phosphorylation of SEK1/MKK4 (stress-activated protein kinase/extracellular signal-related kinase 1/mitogen-activated protein kinase kinase 4), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK); down-regulation of Bcr/Abl; and a marked reduction in signal transducer and activator of transcription 3 (STAT3) and STAT5 activity. In imatinib mesylate-resistant K562 cells displaying increased Bcr/Abl expression, bortezomib/flavopiridol treatment markedly increased apoptosis in association with down-regulation of Bcr/Abl and BclxL, and diminished phosphorylation of Lyn, Hck, CrkL, and Akt. Parallel studies were performed in imatinib mesylate-resistant LAMA84 cells exhibiting reduced expression of Bcr/Abl but a marked increase in expression/activation of Lyn and Hck. Flavopiridol/bortezomib effectively induced apoptosis in these cells in association with Lyn and Hck inactivation. The capacity of flavopiridol to promote bortezomib-mediated Bcr/Abl down-regulation and apoptosis was mimicked by the positive transcription elongation factor-b (P-TEFb) inhibitor DRB (5,6-dichloro 1-beta-d-ribofuranosylbenzinida-sole). Finally, the bortezomib/flavopiridol regimen also potently induced apoptosis in Bcr/Abl(-) human leukemia cells. Collectively, these findings suggest that a strategy combining flavopiridol and bortezomib warrants further examination in chronic myelogenous leukemia and related hematologic malignancies.
Collapse
Affiliation(s)
- Yun Dai
- Division of Hematology/Oncology, Virginia Commonwealth University/Medical College of Virginia, MCV Station Box 230, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
48
|
Goldenberg-Furmanov M, Stein I, Pikarsky E, Rubin H, Kasem S, Wygoda M, Weinstein I, Reuveni H, Ben-Sasson SA. LynIs a Target Gene for Prostate Cancer. Cancer Res 2004; 64:1058-66. [PMID: 14871838 DOI: 10.1158/0008-5472.can-03-2420] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Src-related protein kinase Lyn plays an important role in B-cell activation. However, several lines of evidence suggest that it is also involved in the control of cellular proliferation and the inhibition of apoptosis. We have discovered that Lyn is expressed in normal prostate epithelia, in 95% of primary human prostate cancer (PC) specimens examined, and in all of the PC cell lines that we assayed. Moreover, Lyn knockout mice display abnormal prostate gland morphogenesis, which suggests that Lyn plays an important role in prostate epithelium development and implies that Lyn is a candidate target for specific therapy for PC. Using a drug-design strategy to construct sequence-based peptide inhibitors, a Lyn-specific inhibitor, KRX-123, targeting a unique interaction site within Lyn, was synthesized. KRX-123 was found to inhibit cellular proliferation in three hormone-refractory PC cell lines, DU145, PC3, and TSU-Pr1 with IC(50) values of 2-4 micro M. In vivo, tumor volume of DU145 explants in nude mice was significantly reduced after once-a-week injections of KRX-123, at a dose of 10 mg/kg, for a period of 5 weeks. Histological analyses of the treated tumors indicated extensive apoptosis. Thus, we suggest that Lyn inhibition may serve as a prime target for the treatment of hormone-refractory PC.
Collapse
Affiliation(s)
- Mirela Goldenberg-Furmanov
- Department of Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schneider A, Fischer A, Weber D, von Ahsen O, Scheek S, Krüger C, Rossner M, Klaussner B, Faucheron N, Kammandel B, Goetz B, Herrmann O, Bach A, Schwaninger M. Restriction-mediated differential display (RMDD) identifies pip92 as a pro-apoptotic gene product induced during focal cerebral ischemia. J Cereb Blood Flow Metab 2004; 24:224-36. [PMID: 14747749 DOI: 10.1097/01.wcb.0000104960.26014.7a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies of gene expression changes after cerebral ischemia can provide novel insight into ischemic pathophysiology. Here we describe application of restriction-mediated differential display to screening for differentially expressed genes after focal cerebral ischemia. This method combines the nonredundant generation of biotin-labeled fragment sets with the excellent resolution of direct blotting electrophoresis, reliable fragment recovery, and a novel clone selection strategy. Using the filament model in mouse with 90 minutes MCA occlusion followed by 2, 6, and 20 hours reperfusion, we have compared gene expression in sham-operated animals to both the ipsi- and contralateral forebrain hemisphere of ischemic mice. Our screening method has resulted in the identification of 70 genes differentially regulated after transient middle cerebral artery occlusion (MCAO), several of which represent unknown clones. We have identified many of the previously published regulated genes, lending high credibility to our method. Surprisingly, we detected a high degree of correspondent regulation of genes in the nonischemic hemisphere. A high percentage of genes coding for proteins in the respiratory chain was found to be up-regulated after ischemia, potentially representing a new mechanism involved in counteracting energy failure or radical generation in cerebral ischemia. One particularly interesting gene, whose upregulation by ischemia has not been described before, is pip92; this gene shows a rapid and long-lasting induction after cerebral ischemia. Here we demonstrate that pip92 induces cell death in primary neurons and displays several hallmarks of pro-apoptotic activity upon overexpression, supporting the notion that we have identified a novel pathophysiological player in cerebral ischemia. In summary, restriction-mediated differential display has proven its suitability for screening complex samples such as brain to reliably identify regulated genes, which can uncover novel pathophysiological mechanisms.
Collapse
Affiliation(s)
- Armin Schneider
- Department of Molecular Neurology, Axaron Bioscience AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cheng G, Yang K, He B. Dephosphorylation of eIF-2alpha mediated by the gamma(1)34.5 protein of herpes simplex virus type 1 is required for viral response to interferon but is not sufficient for efficient viral replication. J Virol 2003; 77:10154-61. [PMID: 12941928 PMCID: PMC224583 DOI: 10.1128/jvi.77.18.10154-10161.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gamma(1)34.5 protein of herpes simplex virus type 1 (HSV-1) functions to block the shutoff of protein synthesis involving double-stranded RNA-dependent protein kinase (PKR). In this process, the gamma(1)34.5 protein recruits cellular protein phosphatase 1 (PP1) to form a high-molecular-weight complex that dephosphorylates eIF-2alpha. Here we show that the gamma(1)34.5 protein is capable of mediating eIF-2alpha dephosphorylation without any other viral proteins. While deletion of amino acids 1 to 52 from the gamma(1)34.5 protein has no effect on eIF-2alpha dephosphorylation, further truncations up to amino acid 146 dramatically reduce the activity of the gamma(1)34.5 protein. An additional truncation up to amino acid 188 is deleterious, indicating that the carboxyl-terminal domain alone is not functional. Like wild-type HSV-1, the gamma(1)34.5 mutant with a truncation of amino acids 1 to 52 is resistant to interferon, and resistance to interferon is coupled to eIF-2alpha dephosphorylation. Intriguingly, this mutant exhibits a similar growth defect seen for the gamma(1)34.5 null mutant in infected cells. Restoration of the wild-type gamma(1)34.5 gene in the recombinant completely reverses the phenotype. These results indicate that eIF-2alpha dephosphorylation mediated by the gamma(1)34.5 protein is required for HSV response to interferon but is not sufficient for viral replication. Additional functions or activities of the gamma(1)34.5 protein contribute to efficient viral infection.
Collapse
Affiliation(s)
- Guofeng Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | |
Collapse
|