1
|
Gao Q, Zhou Y, Chen Y, Hu W, Jin W, Zhou C, Yuan H, Li J, Lin Z, Lin W. Role of iron in brain development, aging, and neurodegenerative diseases. Ann Med 2025; 57:2472871. [PMID: 40038870 PMCID: PMC11884104 DOI: 10.1080/07853890.2025.2472871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
It is now understood that iron crosses the blood-brain barrier via a complex metabolic regulatory network and participates in diverse critical biological processes within the central nervous system, including oxygen transport, energy metabolism, and the synthesis and catabolism of myelin and neurotransmitters. During brain development, iron is distributed throughout the brain, playing a pivotal role in key processes such as neuronal development, myelination, and neurotransmitter synthesis. In physiological aging, iron can selectively accumulate in specific brain regions, impacting cognitive function and leading to intracellular redox imbalance, mitochondrial dysfunction, and lipid peroxidation, thereby accelerating aging and associated pathologies. Furthermore, brain iron accumulation may be a primary contributor to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Comprehending the role of iron in brain development, aging, and neurodegenerative diseases, utilizing iron-sensitive Magnetic Resonance Imaging (MRI) technology for timely detection or prediction of abnormal neurological states, and implementing appropriate interventions may be instrumental in preserving normal central nervous system function.
Collapse
Affiliation(s)
- Qiqi Gao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Hu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Jin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunting Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Yuan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshun Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Stanley ME, Phillips III RK, Feng J, Shi G, Kant S, Sellke NC, Sodha NR, Ehsan A, Sellke FW. The Role of Preoperative Chronic Hypertension in Neurocognitive Decline after Cardiac Surgery: A Retrospective Cohort Study. Braz J Cardiovasc Surg 2025; 40:e20230470. [PMID: 39937691 PMCID: PMC11813188 DOI: 10.21470/1678-9741-2023-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/03/2024] [Indexed: 02/14/2025] Open
Abstract
INTRODUCTION Patients frequently experience transient postoperative neurocognitive decline (NCD) after cardiac surgery with cardiopulmonary bypass. The goal of this study is to describe preoperative high blood pressure as a risk factor for NCD and use genomic expression to uncover its contribution to the pathophysiology of NCD. METHODS This is a retrospective analysis of cohort study at a single academic center. Patients undergoing cardiac surgery with the use of cardiopulmonary bypass were administered the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) preoperatively, at postoperative day four, and four weeks postoperatively. Electronic medical records were reviewed for all recorded blood pressure from the year preceding surgery and intraoperative blood pressures. Blood samples were collected six hours preoperatively and six hours postoperatively to assess messenger ribonucleic acid expression. RESULTS Eighty-seven patients completed postoperative day four testing, of whom thirty-seven experienced NCD (42.5%). Chronically elevated systolic blood pressure over the year preceding surgery was correlated with greater negative change in RBANS score at postoperative day four (P=0.03). Upon genomic analysis, macrophage markers were upregulated preoperatively, and anti-inflammatory and neuroprotective genes were downregulated postoperatively among patients who had a mean systolic blood pressure ≥ 130 mmHg. CONCLUSION Chronic exposure to elevated preoperative systolic blood pressure may increase the risk of NCD. The contributing role of preoperative hypertension in NCD may be partly explained by reduced attenuation of oxidative stress, increased inflammation, and reduced neuroprotection and heme metabolism postoperatively. This must be considered when assessing patient risks for cardiac surgery.
Collapse
Affiliation(s)
- Madigan E. Stanley
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert
Medical School of Brown University, Providence, Rhode Island, United States of
America
| | - Ronald K. Phillips III
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert
Medical School of Brown University, Providence, Rhode Island, United States of
America
| | - Jun Feng
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert
Medical School of Brown University, Providence, Rhode Island, United States of
America
| | - Guangbin Shi
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert
Medical School of Brown University, Providence, Rhode Island, United States of
America
| | - Shawn Kant
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert
Medical School of Brown University, Providence, Rhode Island, United States of
America
| | - Nicholas C. Sellke
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert
Medical School of Brown University, Providence, Rhode Island, United States of
America
| | - Neel R. Sodha
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert
Medical School of Brown University, Providence, Rhode Island, United States of
America
| | - Afshin Ehsan
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert
Medical School of Brown University, Providence, Rhode Island, United States of
America
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert
Medical School of Brown University, Providence, Rhode Island, United States of
America
| |
Collapse
|
3
|
Zhou Y, Zeng L, Cai L, Zheng W, Liu X, Xiao Y, Jin X, Bai Y, Lai M, Li H, Jiang H, Hu S, Pan Y, Zhang J, Shao C. Cellular senescence-associated gene IFI16 promotes HMOX1-dependent evasion of ferroptosis and radioresistance in glioblastoma. Nat Commun 2025; 16:1212. [PMID: 39890789 PMCID: PMC11785807 DOI: 10.1038/s41467-025-56456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
Glioblastoma multiforme (GBM) remains a therapeutic challenge due to its aggressive nature and recurrence. This study establishes a radioresistant GBM cell model through repeated irradiation and observes a cellular senescence-like phenotype in these cells. Comprehensive genomic and transcriptomic analyses identify IFI16 as a central regulator of this phenotype and contributes to radioresistance. IFI16 activates HMOX1 transcription thereby attenuating ferroptosis by reducing lipid peroxidation, ROS production, and intracellular Fe2+ content following irradiation. Furthermore, IFI16 interacts with the transcription factors JUND and SP1 through its pyrin domain, robustly facilitating HMOX1 expression, further inhibiting ferroptosis and enhancing radioresistance in GBM. Notably, glyburide, a sulfonylurea compound, effectively disrupts IFI16 function and enhances ferroptosis and radiosensitivity. By targeting the pyrin domain of IFI16, glyburide emerges as a potential therapeutic agent against GBM radioresistance. These findings underscore the central role of IFI16 in GBM radioresistance and offer promising avenues to improve GBM treatment.
Collapse
Affiliation(s)
- Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Zeng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linbo Cai
- Department of Neuro-Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuqi Xiao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoya Jin
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyao Lai
- Department of Neuro-Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Hainan Li
- Department of Neuro-Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Hua Jiang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Songling Hu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zhang Z, Fang Y, He Y, Farag MA, Zeng M, Sun Y, Peng S, Jiang S, Zhang X, Chen K, Xu M, Han Z, Zhang J. Bifidobacterium animalis Probio-M8 improves sarcopenia physical performance by mitigating creatine restrictions imposed by microbial metabolites. NPJ Biofilms Microbiomes 2024; 10:144. [PMID: 39632843 PMCID: PMC11618631 DOI: 10.1038/s41522-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Sarcopenia is a major health challenge due to an aging population. Probiotics may improve muscle function through gut-muscle axis, but their efficacy and mechanisms in treating sarcopenia remain unclear. This study investigated the impact of Bifidobacterium animalis subsp. lactis Probio-M8 (Probio-M8) on old mice and sarcopenia patients. We analyzed 43 subjects, including gut microbiome, fecal metabolome, and serum metabolome, using a multi-omics approach to assess whether Probio-M8 can improve sarcopenia by modulating gut microbial metabolites. Probio-M8 significantly improved muscle function in aged mice and enhanced physical performance in sarcopenia patients. It reduced pathogenic gut species and increased beneficial metabolites such as indole-3-lactic acid, acetoacetic acid, and creatine. Mediating effect analyses revealed that Probio-M8 effectively reduced n-dodecanoyl-L-homoserine lactone level in gut concurrent with increased creatine circulation, to significantly enhance host physical properties. These findings provide new insights into probiotics as a potential treatment for sarcopenia by modulating gut microbiota metabolism.
Collapse
Affiliation(s)
- Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Yajing Fang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Yangli He
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Min Zeng
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yukai Sun
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Siqi Peng
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Xian Zhang
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kaining Chen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Meng Xu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Zhe Han
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China.
- One Health Institute, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
5
|
Soladogun AS, Zhang L. The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis. Antioxidants (Basel) 2024; 13:1441. [PMID: 39765770 PMCID: PMC11672823 DOI: 10.3390/antiox13121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Heme, a complex iron-containing molecule, is traditionally recognized for its pivotal role in oxygen transport and cellular respiration. However, emerging research has illuminated its multifaceted functions in the nervous system, extending beyond its canonical roles. This review delves into the diverse roles of heme in the nervous system, highlighting its involvement in neural development, neurotransmission, and neuroprotection. We discuss the molecular mechanisms by which heme modulates neuronal activity and synaptic plasticity, emphasizing its influence on ion channels and neurotransmitter receptors. Additionally, the review explores the potential neuroprotective properties of heme, examining its role in mitigating oxidative stress, including mitochondrial oxidative stress, and its implications in neurodegenerative diseases. Furthermore, we address the pathological consequences of heme dysregulation, linking it to conditions such as Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. By providing a comprehensive overview of heme's multifunctional roles in the nervous system, this review underscores its significance as a potential therapeutic target and diagnostic biomarker for various neurological disorders.
Collapse
Affiliation(s)
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
6
|
LeVine SM. The Azalea Hypothesis of Alzheimer Disease: A Functional Iron Deficiency Promotes Neurodegeneration. Neuroscientist 2024; 30:525-544. [PMID: 37599439 PMCID: PMC10876915 DOI: 10.1177/10738584231191743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Chlorosis in azaleas is characterized by an interveinal yellowing of leaves that is typically caused by a deficiency of iron. This condition is usually due to the inability of cells to properly acquire iron as a consequence of unfavorable conditions, such as an elevated pH, rather than insufficient iron levels. The causes and effects of chlorosis were found to have similarities with those pertaining to a recently presented hypothesis that describes a pathogenic process in Alzheimer disease. This hypothesis states that iron becomes sequestered (e.g., by amyloid β and tau), causing a functional deficiency of iron that disrupts biochemical processes leading to neurodegeneration. Additional mechanisms that contribute to iron becoming unavailable include iron-containing structures not undergoing proper recycling (e.g., disrupted mitophagy and altered ferritinophagy) and failure to successfully translocate iron from one compartment to another (e.g., due to impaired lysosomal acidification). Other contributors to a functional deficiency of iron in patients with Alzheimer disease include altered metabolism of heme or altered production of iron-containing proteins and their partners (e.g., subunits, upstream proteins). A review of the evidence supporting this hypothesis is presented. Also, parallels between the mechanisms underlying a functional iron-deficient state in Alzheimer disease and those occurring for chlorosis in plants are discussed. Finally, a model describing the generation of a functional iron deficiency in Alzheimer disease is put forward.
Collapse
Affiliation(s)
- Steven M. LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, US
| |
Collapse
|
7
|
Patnaik PK, Nady N, Barlit H, Gülhan A, Labunskyy VM. Lifespan regulation by targeting heme signaling in yeast. GeroScience 2024; 46:5235-5245. [PMID: 38809391 PMCID: PMC11335709 DOI: 10.1007/s11357-024-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Heme is an essential prosthetic group that serves as a co-factor and a signaling molecule. Heme levels decline with age, and its deficiency is associated with multiple hallmarks of aging, including anemia, mitochondrial dysfunction, and oxidative stress. Dysregulation of heme homeostasis has been also implicated in aging in model organisms suggesting that heme may play an evolutionarily conserved role in controlling lifespan. However, the underlying mechanisms and whether heme homeostasis can be targeted to promote healthy aging remain unclear. Here, we used Saccharomyces cerevisiae as a model to investigate the role of heme in aging. For this, we have engineered a heme auxotrophic yeast strain expressing a plasma membrane-bound heme permease from Caenorhabditis elegans (ceHRG-4). This system can be used to control intracellular heme levels independently of the biosynthetic enzymes by manipulating heme concentration in the media. We observed that heme supplementation leads to a significant extension of yeast replicative lifespan. Our findings revealed that the effect of heme on lifespan is independent of the Hap4 transcription factor. Surprisingly, heme-supplemented cells had impaired growth on YPG medium, which requires mitochondrial respiration to be used, suggesting that these cells are respiratory deficient. Together, our results demonstrate that heme homeostasis is fundamentally important for aging biology, and manipulating heme levels can be used as a promising therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Praveen K Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Nour Nady
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Ali Gülhan
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Vyacheslav M Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
8
|
Kumar A, Ye C, Nkansah A, Decoville T, Fogo GM, Sajjakulnukit P, Reynolds MB, Zhang L, Quaye O, Seo YA, Sanderson TH, Lyssiotis CA, Chang CH. Iron regulates the quiescence of naive CD4 T cells by controlling mitochondria and cellular metabolism. Proc Natl Acad Sci U S A 2024; 121:e2318420121. [PMID: 38621136 PMCID: PMC11047099 DOI: 10.1073/pnas.2318420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Chenxian Ye
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Afia Nkansah
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Thomas Decoville
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Garrett M. Fogo
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
| | - Peter Sajjakulnukit
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Li Zhang
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Young-Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI48109
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
9
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
10
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Fu W, Wang S, Ouyang Q, Luo C. A multilayer microfluidic system for studies of the dynamic responses of cellular proteins to oxygen switches at the single-cell level. Integr Biol (Camb) 2024; 16:zyae011. [PMID: 38900168 DOI: 10.1093/intbio/zyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Oxygen levels vary in the environment. Oxygen availability has a major effect on almost all organisms, and oxygen is far more than a substrate for energy production. However, less is known about related biological processes under hypoxic conditions and about the adaptations to changing oxygen concentrations. The yeast Saccharomyces cerevisiae can adapt its metabolism for growth under different oxygen concentrations and can grow even under anaerobic conditions. Therefore, we developed a microfluidic device that can generate serial, accurately controlled oxygen concentrations for single-cell studies of multiple yeast strains. This device can construct a broad range of oxygen concentrations, [O2] through on-chip gas-mixing channels from two gases fed to the inlets. Gas diffusion through thin polydimethylsiloxane (PDMS) can lead to the equilibration of [O2] in the medium in the cell culture layer under gas cover regions within 2 min. Here, we established six different and stable [O2] varying between ~0.1 and 20.9% in the corresponding layers of the device designed for multiple parallel single-cell culture of four different yeast strains. Using this device, the dynamic responses of different yeast transcription factors and metabolism-related proteins were studied when the [O2] decreased from 20.9% to serial hypoxic concentrations. We showed that different hypoxic conditions induced varying degrees of transcription factor responses and changes in respiratory metabolism levels. This device can also be used in studies of the aging and physiology of yeast under different oxygen conditions and can provide new insights into the relationship between oxygen and organisms. Integration, innovation and insight: Most living cells are sensitive to the oxygen concentration because they depend on oxygen for survival and proper cellular functions. Here, a composite microfluidic device was designed for yeast single-cell studies at a series of accurately controlled oxygen concentrations. Using this device, we studied the dynamic responses of various transcription factors and proteins to changes in the oxygen concentration. This study is the first to examine protein dynamics and temporal behaviors under different hypoxic conditions at the single yeast cell level, which may provide insights into the processes involved in yeast and even mammalian cells. This device also provides a base model that can be extended to oxygen-related biology and can acquire more information about the complex networks of organisms.
Collapse
Affiliation(s)
- Wei Fu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shujing Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qi Ouyang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
- Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
12
|
Patnaik PK, Nady N, Barlit H, Gülhan A, Labunskyy VM. Lifespan regulation by targeting heme signaling in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576446. [PMID: 38293148 PMCID: PMC10827197 DOI: 10.1101/2024.01.20.576446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Heme is an essential prosthetic group that serves as a co-factor and a signaling molecule. Heme levels decline with age, and its deficiency is associated with multiple hallmarks of aging, including anemia, mitochondrial dysfunction, and oxidative stress. Dysregulation of heme homeostasis has been also implicated in aging in model organisms suggesting that heme may play an evolutionarily conserved role in controlling lifespan. However, the underlying mechanisms and whether heme homeostasis can be targeted to promote healthy aging remain unclear. Here we used Saccharomyces cerevisiae as a model to investigate the role of heme in aging. For this, we have engineered a heme auxotrophic yeast strain expressing a plasma membrane-bound heme permease from Caenorhabditis elegans (ceHRG-4). This system can be used to control intracellular heme levels independently of the biosynthetic enzymes by manipulating heme concentration in the media. We observed that heme supplementation leads to significant lifespan extension in yeast. Our findings revealed that the effect of heme on lifespan is independent of the Hap4 transcription factor. Surprisingly, heme-supplemented cells had impaired growth on YPG medium, which requires mitochondrial respiration to be used, suggesting that these cells are respiratory deficient. Together, our results demonstrate that heme homeostasis is fundamentally important for aging biology and manipulating heme levels can be used as a promising therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Praveen K. Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Nour Nady
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ali Gülhan
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vyacheslav M. Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Yang P, Huang Y, Zhu Y, Wang Q, Guo Y, Li L. Plasma exosomes proteome profiling discovers protein markers associated with the therapeutic effect of Chaihu-Longgu-Muli decoction on temporal lobe epilepsy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116928. [PMID: 37479071 DOI: 10.1016/j.jep.2023.116928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) uses Chaihu-Longgu-Muli decoction (CLMD) to alleviate disease, clear away heat, calm the mind, and temper excitation. It has been widely used for the therapy of neuropsychiatric disorders including epilepsy, dementia, anxiety, insomnia, and depression for several centuries in China. AIM OF THE STUDY This study aims to analyze differentially expressed proteins (DEPs) in the plasma exosomes of patients with temporal lobe epilepsy (TLE) and after the Chaihu-Longgu-Muli Decoction (CLMD) therapy and to explore the biomarkers of TLE and the potential targets of CLMD in treating TLE. MATERIALS AND METHODS The plasma exosomes of normal people and patients with TLE before the treatment of oxcarbazepine (OXC) and combined treatment of OXC and CLMD (OXC.CLMD) were harvested. The exosomes were separated from plasma through ultracentrifugation and then identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and flow cytometry. The DEPs were analyzed by proteomics and then subjected to gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The protein level of key genes was detected using Western blot. A lithium chloride-pilocarpine-induced epilepsy rat model was established and treated with OXC alone, OXC. CLMD, and CLMD alone (low dose and high dose). Neuronal injury in the hippocampal dentate gyrus and ribosomal protein L6 (RPL6) expression in the brain tissues were detected using H&E staining, Nissl staining, and Western blot. RESULTS The proteomic analysis showed several DEPs were present among plasma exosomes in the four groups; DEPs were enriched in epilepsy-related function and pathway. Four key proteins were screened, including RPL6, Nucleolin (NCL), Apolipoprotein A1 (APOA1), and Lactate Dehydrogenase A (LDHA). Among them, RPL6, NCL, and LDHA protein levels were downregulated and APOA1 protein level was upregulated in the plasma exosomes of TLE patients. After OXC and OXC. CLMD treatment, the protein level of RPL6, NCL, and LDHA was increased, and the APOA1 protein level was decreased. Moreover, the RPL6 protein level was further elevated after OXC. CLMD treatment than that after OXC treatment. In the TLE rat model, neuronal degeneration and necrosis in the hippocampal dentate gyrus increased and RPL6 expression level decreased. After the treatment with OXC, OXC. CLMD, and CLMD alone, the degeneration and necrosis of neurons decreased, and the RPL6 expression level was increased; RPL6 upregulation was remarkably obvious after CLMD treatment. CONCLUSIONS RPL6, NCL, LDHA and APOA1 are the DEPs in the plasma exosomes of patients with TLE before and after therapy. RPL6 might be a potential biomarker of CLMD in treating TLE.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Yahui Huang
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Yong Zhu
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Qiang Wang
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Liang Li
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
14
|
Azbarova AV, Knorre DA. Role of Mitochondrial DNA in Yeast Replicative Aging. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1997-2006. [PMID: 38462446 DOI: 10.1134/s0006297923120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 03/12/2024]
Abstract
Despite the diverse manifestations of aging across different species, some common aging features and underlying mechanisms are shared. In particular, mitochondria appear to be among the most vulnerable systems in both metazoa and fungi. In this review, we discuss how mitochondrial dysfunction is related to replicative aging in the simplest eukaryotic model, the baker's yeast Saccharomyces cerevisiae. We discuss a chain of events that starts from asymmetric distribution of mitochondria between mother and daughter cells. With age, yeast mother cells start to experience a decrease in mitochondrial transmembrane potential and, consequently, a decrease in mitochondrial protein import efficiency. This induces mitochondrial protein precursors in the cytoplasm, the loss of mitochondrial DNA (mtDNA), and at the later stages - cell death. Interestingly, yeast strains without mtDNA can have either increased or decreased lifespan compared to the parental strains with mtDNA. The direction of the effect depends on their ability to activate compensatory mechanisms preventing or mitigating negative consequences of mitochondrial dysfunction. The central role of mitochondria in yeast aging and death indicates that it is one of the most complex and, therefore, deregulation-prone systems in eukaryotic cells.
Collapse
Affiliation(s)
- Aglaia V Azbarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
15
|
Afsar A, Chen M, Xuan Z, Zhang L. A glance through the effects of CD4 + T cells, CD8 + T cells, and cytokines on Alzheimer's disease. Comput Struct Biotechnol J 2023; 21:5662-5675. [PMID: 38053545 PMCID: PMC10694609 DOI: 10.1016/j.csbj.2023.10.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Unfortunately, despite numerous studies, an effective treatment for AD has not yet been established. There is remarkable evidence indicating that the innate immune mechanism and adaptive immune response play significant roles in the pathogenesis of AD. Several studies have reported changes in CD8+ and CD4+ T cells in AD patients. This mini-review article discusses the potential contribution of CD4+ and CD8+ T cells reactivity to amyloid β (Aβ) protein in individuals with AD. Moreover, this mini-review examines the potential associations between T cells, heme oxygenase (HO), and impaired mitochondria in the context of AD. While current mathematical models of AD have not extensively addressed the inclusion of CD4+ and CD8+ T cells, there exist models that can be extended to consider AD as an autoimmune disease involving these T cell types. Additionally, the mini-review covers recent research that has investigated the utilization of machine learning models, considering the impact of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
16
|
Bilska B, Damulewicz M, Abaquita TAL, Pyza E. Changes in heme oxygenase level during development affect the adult life of Drosophila melanogaster. Front Cell Neurosci 2023; 17:1239101. [PMID: 37876913 PMCID: PMC10591093 DOI: 10.3389/fncel.2023.1239101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Heme oxygenase (HO) has been shown to control various cellular processes in both mammals and Drosophila melanogaster. Here, we investigated how changes in HO levels in neurons and glial cells during development affect adult flies, by using the TARGET Drosophila system to manipulate the expression of the ho gene. The obtained data showed differences in adult survival, maximum lifespan, climbing, locomotor activity, and sleep, which depended on the level of HO (after ho up-regulation or downregulation), the timing of expression (chronic or at specific developmental stages), cell types (neurons or glia), sex (males or females), and age of flies. In addition to ho, the effects of changing the mRNA level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master regulator of HO), were also examined to compare with those observed after changing ho expression. We showed that HO levels in neurons and glia must be maintained at an appropriate physiological level during development to ensure the well-being of adults. We also found that the downregulation of ho in either neurons or glia in the brain is compensated by ho expressed in the retina.
Collapse
Affiliation(s)
| | | | | | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
17
|
Di Pierro E, Perrone M, Franco M, Granata F, Duca L, Lattuada D, De Luca G, Graziadei G. Mitochondrial DNA Copy Number Drives the Penetrance of Acute Intermittent Porphyria. Life (Basel) 2023; 13:1923. [PMID: 37763326 PMCID: PMC10532762 DOI: 10.3390/life13091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
No published study has investigated the mitochondrial count in patients suffering from acute intermittent porphyria (AIP). In order to determine whether mitochondrial content can influence the pathogenesis of porphyria, we measured the mitochondrial DNA (mtDNA) copy number in the peripheral blood cells of 34 patients and 37 healthy individuals. We found that all AIP patients had a low number of mitochondria, likely as a result of a protective mechanism against an inherited heme synthesis deficiency. Furthermore, we identified a close correlation between disease penetrance and decreases in the mitochondrial content and serum levels of PERM1, a marker of mitochondrial biogenesis. In a healthy individual, mitochondrial count is usually modulated to fit its ability to respond to various environmental stressors and bioenergetic demands. In AIP patients, coincidentally, the phenotype only manifests in response to endogenous and exogenous triggers factors. Therefore, these new findings suggest that a deficiency in mitochondrial proliferation could affect the individual responsiveness to stimuli, providing a new explanation for the variability in the clinical manifestations of porphyria. However, the metabolic and/or genetic factors responsible for this impairment remain to be identified. In conclusion, both mtDNA copy number per cell and mitochondrial biogenesis seem to play a role in either inhibiting or promoting disease expression. They could serve as two novel biomarkers for porphyria.
Collapse
Affiliation(s)
- Elena Di Pierro
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Miriana Perrone
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Milena Franco
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Granata
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Lorena Duca
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Debora Lattuada
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Giacomo De Luca
- School of Internal Medicine, University of Milan, 20122 Milan, Italy;
| | - Giovanna Graziadei
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| |
Collapse
|
18
|
Dey C, Roy M, Dey A, Ghosh Dey S. Heme-Aβ in SDS micellar environment: Active site environment and reactivity. J Inorg Biochem 2023; 246:112271. [PMID: 37301164 DOI: 10.1016/j.jinorgbio.2023.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/13/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disorder that causes brain cell death. Oxidative stress derived from the accumulation of redox cofactors like heme in amyloid plaques originating from amyloid β (Aβ) peptides has been implicated in the pathogenesis of AD. In the past our group has studied the interactions and reactivities of heme with soluble oligomeric and aggregated forms of Aβ. In this manuscript we report the interaction of heme with Aβ that remains membrane bound using membrane mimetic SDS (sodium dodecyl sulfate) micellar medium. Employing different spectroscopic techniques viz. circular dichroism (CD), absorption (UV-Vis), electron paramagnetic resonance (EPR) and resonance Raman (rR) we find that Aβ binds heme using one of its three His (preferentially His13) in SDS micellar medium. We also find that Arg5 is an essential distal residue responsible for higher peroxidase activity of heme bound Aβ in this membrane mimetic environment than free heme. This peroxidase activity exerted by even membrane bound heme-Aβ can potentially be more detrimental as the active site remains close to membranes and can hence oxidise the lipid bilayer of the neuronal cell, which can induce cell apoptosis. Thus, heme-Aβ in solution as well as in membrane-bound form are detrimental.
Collapse
Affiliation(s)
- Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
19
|
Nozawa N, Noguchi M, Shinno K, Saito T, Asada A, Ishii T, Takahashi K, Ishizuka M, Ando K. 5-Aminolevulinic acid bypasses mitochondrial complex I deficiency and corrects physiological dysfunctions in Drosophila. Hum Mol Genet 2023; 32:2611-2622. [PMID: 37364055 PMCID: PMC10407699 DOI: 10.1093/hmg/ddad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/15/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Complex I (CI) deficiency in mitochondrial oxidative phosphorylation (OXPHOS) is the most common cause of mitochondrial diseases, and limited evidence-based treatment options exist. Although CI provides the most electrons to OXPHOS, complex II (CII) is another entry point of electrons. Enhancement of this pathway may compensate for a loss of CI; however, the effects of boosting CII activity on CI deficiency are unclear at the animal level. 5-Aminolevulinic acid (5-ALA) is a crucial precursor of heme, which is essential for CII, complex III, complex IV (CIV) and cytochrome c activities. Here, we show that feeding a combination of 5-ALA hydrochloride and sodium ferrous citrate (5-ALA-HCl + SFC) increases ATP production and suppresses defective phenotypes in Drosophila with CI deficiency. Knockdown of sicily, a Drosophila homolog of the critical CI assembly protein NDUFAF6, caused CI deficiency, accumulation of lactate and pyruvate and detrimental phenotypes such as abnormal neuromuscular junction development, locomotor dysfunctions and premature death. 5-ALA-HCl + SFC feeding increased ATP levels without recovery of CI activity. The activities of CII and CIV were upregulated, and accumulation of lactate and pyruvate was suppressed. 5-ALA-HCl + SFC feeding improved neuromuscular junction development and locomotor functions in sicily-knockdown flies. These results suggest that 5-ALA-HCl + SFC shifts metabolic programs to cope with CI deficiency. Bullet outline 5-Aminolevulinic acid (5-ALA-HCl + SFC) increases ATP production in flies with complex I deficiency.5-ALA-HCl + SFC increases the activities of complexes II and IV.5-ALA-HCl + SFC corrects metabolic abnormalities and suppresses the detrimental phenotypes caused by complex I deficiency.
Collapse
Affiliation(s)
- Naoko Nozawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd, Tokyo 106-6020, Japan
| | - Marie Noguchi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kanako Shinno
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Akiko Asada
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takuya Ishii
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd, Tokyo 106-6020, Japan
- Medical- Engineering Collaboration and Innovation Office, National Cancer Center Hospital East, 6-5-1 Kashinoha, Kashiwa, Chiba 277-8577, Japan
| | - Kiwamu Takahashi
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd, Tokyo 106-6020, Japan
| | - Masahiro Ishizuka
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd, Tokyo 106-6020, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
20
|
Jia D, Wang F, Yu H. Systemic alterations of tricarboxylic acid cycle enzymes in Alzheimer's disease. Front Neurosci 2023; 17:1206688. [PMID: 37575300 PMCID: PMC10413568 DOI: 10.3389/fnins.2023.1206688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Mitochondrial dysfunction, especially tricarboxylic acid (TCA) cycle arrest, is strongly associated with Alzheimer's disease (AD), however, its systemic alterations in the central and peripheral of AD patients are not well defined. Here, we performed an integrated analysis of AD brain and peripheral blood cells transcriptomics to reveal the expression levels of nine TCA cycle enzymes involving 35 genes. The results showed that TCA cycle related genes were consistently down-regulated in the AD brain, whereas 11 genes were increased and 16 genes were decreased in the peripheral system. Pearson analysis of the TCA cycle genes with Aβ, Tau and mini-mental state examination (MMSE) revealed several significant correlated genes, including pyruvate dehydrogenase complex subunit (PDHB), isocitrate dehydrogenase subunits (IDH3B, IDH3G), 2-oxoglutarate dehydrogenase complex subunit (DLD), succinyl-CoA synthetase subunit (SUCLA2), malate dehydrogenase subunit (MDH1). In addition, SUCLA2, MDH1, and PDHB were also uniformly down-regulated in peripheral blood cells, suggesting that they may be candidate biomarkers for the early diagnosis of AD. Taken together, TCA cycle enzymes were systemically altered in AD progression, PDHB, SUCLA2, and MDH1 may be potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Dongdong Jia
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Fangzhou Wang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Haitao Yu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Afsar A, Chacon Castro MDC, Soladogun AS, Zhang L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:7258. [PMID: 37108421 PMCID: PMC10138573 DOI: 10.3390/ijms24087258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (Aβ) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood-brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance.Additionally, recent studies have shown an association between altered heme metabolism and AD. Unfortunately, decades of research and drug development have not produced any effective treatments for AD. Therefore, understanding the cellular and molecular mechanisms underlying AD pathology and identifying potential therapeutic targets are crucial for AD drug development. This review discusses the most common alterations associated with AD and promising therapeutic targets for AD drug discovery. Furthermore, it highlights the role of heme in AD development and summarizes mathematical models of AD, including a stochastic mathematical model of AD and mathematical models of the effect of Aβ on AD. We also summarize the potential treatment strategies that these models can offer in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
22
|
Pal I, Dey SG. The Role of Heme and Copper in Alzheimer's Disease and Type 2 Diabetes Mellitus. JACS AU 2023; 3:657-681. [PMID: 37006768 PMCID: PMC10052274 DOI: 10.1021/jacsau.2c00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/19/2023]
Abstract
Beyond the well-explored proposition of protein aggregation or amyloidosis as the central event in amyloidogenic diseases like Alzheimer's Disease (AD), and Type 2 Diabetes Mellitus (T2Dm); there are alternative hypotheses, now becoming increasingly evident, which suggest that the small biomolecules like redox noninnocent metals (Fe, Cu, Zn, etc.) and cofactors (Heme) have a definite influence in the onset and extent of such degenerative maladies. Dyshomeostasis of these components remains as one of the common features in both AD and T2Dm etiology. Recent advances in this course reveal that the metal/cofactor-peptide interactions and covalent binding can alarmingly enhance and modify the toxic reactivities, oxidize vital biomolecules, significantly contribute to the oxidative stress leading to cell apoptosis, and may precede the amyloid fibrils formation by altering their native folds. This perspective highlights this aspect of amyloidogenic pathology which revolves around the impact of the metals and cofactors in the pathogenic courses of AD and T2Dm including the active site environments, altered reactivities, and the probable mechanisms involving some highly reactive intermediates as well. It also discusses some in vitro metal chelation or heme sequestration strategies which might serve as a possible remedy. These findings might open up a new paradigm in our conventional understanding of amyloidogenic diseases. Moreover, the interaction of the active sites with small molecules elucidates potential biochemical reactivities that can inspire designing of drug candidates for such pathologies.
Collapse
Affiliation(s)
- Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
23
|
Kwami Edem Kukuia K, Boakye Burns F, Kofi Adutwum-Ofosu K, Appiah F, Kwabena Amponsah S, Begyinah R, Efua Koomson A, Yaw Takyi F, Amatey Tagoe T, Amoateng P. Increased BDNF and hippocampal dendritic spine density are associated with the rapid antidepressant-like effect of iron-citalopram and iron-imipramine combinations in mice. Neuroscience 2023; 519:90-106. [PMID: 36948482 DOI: 10.1016/j.neuroscience.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Iron supplementation previously demonstrated antidepressant-like effects in post-partum rats. The present study evaluates the possible synergistic antidepressant effect of sub-therapeutic dose of iron co-administered with citalopram or imipramine in female Institute of Cancer Research mice. Depression-like symptoms were induced in the forced swim (FST), tail suspension (TST), and open space swim (OSST) tests while open field test (OFT) was used to assess locomotor activity. Mice (n=8) received iron (0.8- 7.2 mg/kg), citalopram (3-30 mg/kg), imipramine (3-30 mg/kg), desferrioxamine (50 mg/kg) or saline in the single treatment phase of each model and subsequently a sub-therapeutic dose of iron co-administered with citalopram or imipramine. Assessment of serum BDNF and dendritic spine density was done using ELISA and Golgi staining techniques respectively. Iron, citalopram and imipramine, unlike desferrioxamine, reduced immobility score in the TST, FST and OSST without affecting locomotor activity, suggesting antidepressant-like effect. Sub-therapeutic dose of iron in combination with citalopram or imipramine further enhanced the antidepressant-like effect, producing a more rapid effect when compared to the iron, citalopram or imipramine alone. Iron, citalopram and imipramine or their combinations increased serum BDNF concentration, hippocampal neuronal count and dendritic spine densities. Our study provides experimental evidence that iron has antidepressant-like effect and sub-therapeutic dose of iron combined with citalopram or imipramine produces more rapid antidepressant-like effect. We further show that iron alone or its combination with citalopram or imipramine attenuates the neuronal loss associated with depressive conditions, increases dendritic spines density and BDNF levels. These finding suggest iron-induced neuronal plasticity in the mice brain.
Collapse
Affiliation(s)
- Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Frederick Boakye Burns
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| | - Kevin Kofi Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Frimpong Appiah
- Department of Community Health and Medicine, School of Food and Health Sciences, Anglican University College of Technology, Nkoranza, Ghana.
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Richard Begyinah
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| | - Awo Efua Koomson
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Ferka Yaw Takyi
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| | - Thomas Amatey Tagoe
- Department of Physiology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Patrick Amoateng
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| |
Collapse
|
24
|
Slusarczyk P, Mandal PK, Zurawska G, Niklewicz M, Chouhan K, Mahadeva R, Jończy A, Macias M, Szybinska A, Cybulska-Lubak M, Krawczyk O, Herman S, Mikula M, Serwa R, Lenartowicz M, Pokrzywa W, Mleczko-Sanecka K. Impaired iron recycling from erythrocytes is an early hallmark of aging. eLife 2023; 12:79196. [PMID: 36719185 PMCID: PMC9931393 DOI: 10.7554/elife.79196] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Aging affects iron homeostasis, as evidenced by tissue iron loading and anemia in the elderly. Iron needs in mammals are met primarily by iron recycling from senescent red blood cells (RBCs), a task chiefly accomplished by splenic red pulp macrophages (RPMs) via erythrophagocytosis. Given that RPMs continuously process iron, their cellular functions might be susceptible to age-dependent decline, a possibility that has been unexplored to date. Here, we found that 10- to 11-month-old female mice exhibit iron loading in RPMs, largely attributable to a drop in iron exporter ferroportin, which diminishes their erythrophagocytosis capacity and lysosomal activity. Furthermore, we identified a loss of RPMs during aging, underlain by the combination of proteotoxic stress and iron-dependent cell death resembling ferroptosis. These impairments lead to the retention of senescent hemolytic RBCs in the spleen, and the formation of undegradable iron- and heme-rich extracellular protein aggregates, likely derived from ferroptotic RPMs. We further found that feeding mice an iron-reduced diet alleviates iron accumulation in RPMs, enhances their ability to clear erythrocytes, and reduces damage. Consequently, this diet ameliorates hemolysis of splenic RBCs and reduces the burden of protein aggregates, mildly increasing serum iron availability in aging mice. Taken together, we identified RPM collapse as an early hallmark of aging and demonstrated that dietary iron reduction improves iron turnover efficacy.
Collapse
Affiliation(s)
- Patryk Slusarczyk
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Gabriela Zurawska
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Marta Niklewicz
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Komal Chouhan
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Aneta Jończy
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Matylda Macias
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | | | - Olga Krawczyk
- Maria Sklodowska-Curie National Research Institute of OncologyWarsawPoland
| | - Sylwia Herman
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian UniversityCracowPoland
| | - Michal Mikula
- Maria Sklodowska-Curie National Research Institute of OncologyWarsawPoland
| | - Remigiusz Serwa
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda Unit, IMol Polish Academy of SciencesWarsawPoland
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian UniversityCracowPoland
| | - Wojciech Pokrzywa
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | |
Collapse
|
25
|
Li X, Li X, Xiang C, Ye F. Lead exposure represses mitochondrial metabolism by activation of heme-binding protein BACH1 in differentiated SH-SY5Y cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158665. [PMID: 36096218 DOI: 10.1016/j.scitotenv.2022.158665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Exposure to lead (Pb), a known toxin causing developmental neurotoxicity, can impair neurogenesis and oxidative phosphorylation (OXPHOS), but the mechanism is not clarified. In the current study, we aim to explore the effects of Pb on the differentiation of SH-SY5Y cells and investigate the role of heme and heme-binding protein BACH1 during differentiation. We found that Pb exposure caused a shift from OXPHOS to glycolysis, resulting in neurogenesis impairment by decreasing neurite growth and downregulation of PSD95 and Synapsin-1 in differentiated SH-SY5Y cells. Heme reduction mediated this mitochondria metabolism repression caused by Pb depending on BACH1 activation. Hemin supplement alleviated Pb-induced OXPHOS damage and adenosine triphosphate (ATP) reduction in differentiated SH-SY5Y cells, and further protected for Pb-induced damage of synapse. Heme binding factor BACH1 was negatively regulated by heme content and BACH1 knockout rescued the Pb-induced transcription and expression decline of genes related to OXPHOS and abrogated Pb-induced growth inhibition of axon promotion and synapse formation. Collectively, the present study demonstrates that heme deficiency mediates OXPHOS damage caused by Pb through BACH1 activation, resulting in neurogenesis impairment.
Collapse
Affiliation(s)
- Xiaoyi Li
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Xintong Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Cui Xiang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fang Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
26
|
Nath AK, Roy M, Dey C, Dey A, Dey SG. Spin state dependent peroxidase activity of heme bound amyloid β peptides relevant to Alzheimer's disease. Chem Sci 2022; 13:14305-14319. [PMID: 36545147 PMCID: PMC9749105 DOI: 10.1039/d2sc05008k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The colocalization of heme rich deposits in the senile plaque of Aβ in the cerebral cortex of the Alzheimer's disease (AD) brain along with altered heme homeostasis and heme deficiency symptoms in AD patients has invoked the association of heme in AD pathology. Heme bound Aβ complexes, depending on the concentration of the complex or peptide to heme ratio, exhibit an equilibrium between a high-spin mono-His bound peroxidase-type active site and a low-spin bis-His bound cytochrome b type active site. The high-spin heme-Aβ complex shows higher peroxidase activity than free heme, where compound I is the reactive oxidant. It is also capable of oxidizing neurotransmitters like serotonin in the presence of peroxide, owing to the formation of compound I. The low-spin bis-His heme-Aβ complex on the other hand shows enhanced peroxidase activity relative to high-spin heme-Aβ. It reacts with H2O2 to produce two stable intermediates, compound 0 and compound I, which are characterized by absorption, EPR and resonance Raman spectroscopy. The stability of compound I of low-spin heme-Aβ is accountable for its enhanced peroxidase activity and oxidation of the neurotransmitter serotonin. The effect of the second sphere Tyr10 residue of Aβ on the formation and stability of the intermediates of low-spin heme-Aβ has also been investigated. The higher stability of compound I for low-spin heme-Aβ is likely due to H-bonding interactions involving Tyr10 in the distal pocket.
Collapse
Affiliation(s)
- Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
27
|
Suprihadi A, Pustimbara A, Ogura SI. 5-aminolevulinic acid and sodium ferrous citrate decreased cell viability of gastric cancer cells by enhanced ROS generation through improving COX activity. Photodiagnosis Photodyn Ther 2022; 40:103055. [PMID: 35934181 DOI: 10.1016/j.pdpdt.2022.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial dysfunctions are related to cancer development.. 5-aminolevulinic acid (ALA) is used for photodynamic therapy (PDT). In this PDT, protoporphyrin IX (PpIX), which is converted from ALA, can generate reactive oxygen species (ROS) that kill the cancer cell. ALA is also reported to promote cytochrome c oxidase (COX) activity, which can generate ROS itself. Therefore, this study focused on the effect of ALA during PDT. In addition, in the previous study, sodium ferrous citrate (SFC) is reported to increase COX activity. So, this study also aims to improve the COX activity by the addition of SFC that can promote ROS generation, which has a cytotoxic effect. METHODS In this study, we used ALA and SFC, then evaluated the effects of the treatment on the human gastric cancer cell line MKN45, including the induction of cell death. RESULTS This study showed that treatment with ALA and SFC increases intracellular heme and heme proteins. Moreover, COX activity was promoted, resulting in the production of intracellular reactive oxygen species (ROS), which eventually reduced the cell viability in human gastric cancer cell line MKN45. CONCLUSION Our study can detect ROS generation with ALA and SFC. Furthermore, we found this generation of ROS has a cytotoxic effect. Therefore, this phenomenon contributes to the effect of PDT.
Collapse
Affiliation(s)
- Arif Suprihadi
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Anantya Pustimbara
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Shun-Ichiro Ogura
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
28
|
Zheng R, Yan Y, Pu J, Zhang B. Physiological and Pathological Functions of Neuronal Hemoglobin: A Key Underappreciated Protein in Parkinson's Disease. Int J Mol Sci 2022; 23:9088. [PMID: 36012351 PMCID: PMC9408843 DOI: 10.3390/ijms23169088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of Hemoglobin (Hb) is not restricted to erythrocytes but is also present in neurons. Hb is selectively enriched in vulnerable mesencephalic dopaminergic neurons of Parkinson's disease (PD) instead of resistant neurons. Controversial results of neuronal Hb levels have been reported in postmortem brains of PD patients: although neuronal Hb levels may decline in PD patients, elderly men with higher Hb levels have an increased risk of developing PD. α-synuclein, a key protein involved in PD pathology, interacts directly with Hb protein and forms complexes in erythrocytes and brains of monkeys and humans. These complexes increase in erythrocytes and striatal cytoplasm, while they decrease in striatal mitochondria with aging. Besides, the colocalization of serine 129-phosphorylated (Pser129) α-synuclein and Hb β chains have been found in the brains of PD patients. Several underlying molecular mechanisms involving mitochondrial homeostasis, α-synuclein accumulation, iron metabolism, and hormone-regulated signaling pathways have been investigated to assess the relationship between neuronal Hb and PD development. The formation of fibrils with neuronal Hb in various neurodegenerative diseases may indicate a common fibrillization pathway and a widespread target that could be applied in neurodegeneration therapy.
Collapse
Affiliation(s)
| | | | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
29
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
30
|
Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev 2022; 75:101573. [PMID: 35085834 DOI: 10.1016/j.arr.2022.101573] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states, e.g., in the aging process and age-related diseases. IDO1 enzyme catabolizes L-tryptophan (L-Trp) into kynurenine (KYN) thus stimulating the KYN pathway. The depletion of L-Trp inhibits the proliferation of immune cells in inflamed tissues and it also reduces serotonin synthesis predisposing to psychiatric disorders. Interestingly, IDO1 protein contains two immunoreceptor tyrosine-based inhibitory motifs (ITIM) which trigger suppressive signaling through the binding of PI3K p110 and SHP-1 proteins. This immunosuppressive activity is not dependent on the catalytic activity of IDO1. KYN and its metabolite, kynurenic acid (KYNA), are potent activators of the aryl hydrocarbon receptor (AhR) which can enhance immunosuppression. IDO1-KYN-AhR signaling counteracts excessive pro-inflammatory responses in acute inflammation but in chronic inflammatory states it has many harmful effects. A chronic low-grade inflammation is associated with the aging process, a state called inflammaging. There is substantial evidence that the activation of the IDO1-KYN-AhR pathway robustly increases with the aging process. The activation of IDO1-KYN-AhR signaling does not only suppress the functions of effector immune cells, probably promoting immunosenescence, but it also impairs autophagy, induces cellular senescence, and remodels the extracellular matrix as well as enhancing the development of osteoporosis and vascular diseases. I will review the function of IDO1-KYN-AhR signaling and discuss its activation with aging as an enhancer of the aging process.
Collapse
|
31
|
Yang L, Wu C, Parker E, Li Y, Dong Y, Tucker L, Brann DW, Lin HW, Zhang Q. Non-invasive photobiomodulation treatment in an Alzheimer Disease-like transgenic rat model. Theranostics 2022; 12:2205-2231. [PMID: 35265207 PMCID: PMC8899582 DOI: 10.7150/thno.70756] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, causing neuronal degeneration and cognitive deficits that significantly impair independence and quality of life for those affected and their families. Though AD is a major neurodegenerative disease with vast avenues of investigation, there is no effective treatment to cure AD or slow disease progression. The present work evaluated the therapeutic effect of long-term photobiomodulation (PBM) treatment with continuous-wave low-level laser on AD and its underlying mechanism. Methods: PBM was implemented for 2 min, 3 times per week for 16 months in 2-month-old transgenic AD rats. A battery of behavioral tests was performed to measure the effect of PBM treatment on cognitive dysfunction in AD rats. The effects of PBM therapy on typical AD pathologies, including amyloid plaques, intracellular neurofibrillary tangles, neuronal loss, neuronal injury, neuronal apoptosis, and neurodegeneration, were then assessed. The underlying mechanisms were measured using immunofluorescence staining, western blotting analysis, mass spectrometry, primary cortical and hippocampal cell cultures, and related assay kits. Results: PBM treatment significantly improved the typical AD pathologies of memory loss, amyloid plaques, tau hyperphosphorylation, neuronal degeneration, spine damage, and synaptic loss. PBM treatment had several mechanistic effects which may explain these beneficial effects, including 1) regulation of glial cell polarization and inhibition of neuroinflammation, 2) preservation of mitochondrial dynamics by regulating fission and fusion proteins, and 3) suppression of oxidative damage to DNA, proteins, and lipids. Furthermore, PBM enhanced recruitment of microglia surrounding amyloid plaques by improving the expression of microglial IL-3Rα and astrocytic IL-3, which implies a potential role of PBM in improving Aβ clearance. Finally, our results implicate neuronal hemoglobin in mediating the neuroprotective effect of PBM, as Hbα knockdown abolished the neuroprotective effect of PBM treatment. Conclusion: Collectively, our data supports the potential use of PBM treatment to prevent or slow the progression of AD and provides new insights into the molecular mechanisms of PBM therapy.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
- Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Chongyun Wu
- Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Emily Parker
- Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Yong Li
- Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Yan Dong
- Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Lorelei Tucker
- Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Darrell W. Brann
- Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| |
Collapse
|
32
|
Fleischhacker AS, Sarkar A, Liu L, Ragsdale SW. Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Crit Rev Biochem Mol Biol 2022; 57:16-47. [PMID: 34517731 PMCID: PMC8966953 DOI: 10.1080/10409238.2021.1961674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heme is an essential biomolecule and cofactor involved in a myriad of biological processes. In this review, we focus on how heme binding to heme regulatory motifs (HRMs), catalytic sites, and gas signaling molecules as well as how changes in the heme redox state regulate protein structure, function, and degradation. We also relate these heme-dependent changes to the affected metabolic processes. We center our discussion on two HRM-containing proteins: human heme oxygenase-2, a protein that binds and degrades heme (releasing Fe2+ and CO) in its catalytic core and binds Fe3+-heme at HRMs located within an unstructured region of the enzyme, and the transcriptional regulator Rev-erbβ, a protein that binds Fe3+-heme at an HRM and is involved in CO sensing. We will discuss these and other proteins as they relate to cellular heme composition, homeostasis, and trafficking. In addition, we will discuss the HRM-containing family of proteins and how the stability and activity of these proteins are regulated in a dependent manner through the HRMs. Then, after reviewing CO-mediated protein regulation of heme proteins, we turn our attention to the involvement of heme, HRMs, and CO in circadian rhythms. In sum, we stress the importance of understanding the various roles of heme and the distribution of the different heme pools as they relate to the heme redox state, CO, and heme binding affinities.
Collapse
Affiliation(s)
- Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anindita Sarkar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Rethinking IRPs/IRE system in neurodegenerative disorders: Looking beyond iron metabolism. Ageing Res Rev 2022; 73:101511. [PMID: 34767973 DOI: 10.1016/j.arr.2021.101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Iron regulatory proteins (IRPs) and iron regulatory element (IRE) systems are well known in the progression of neurodegenerative disorders by regulating iron related proteins. IRPs are also regulated by iron homeostasis. However, an increasing number of studies have suggested a close relationship between the IRPs/IRE system and non-iron-related neurodegenerative disorders. In this paper, we reviewed that the IRPs/IRE system is not only controlled by iron ions, but also regulated by such factors as post-translational modification, oxygen, nitric oxide (NO), heme, interleukin-1 (IL-1), and metal ions. In addition, by regulating the transcription of non-iron related proteins, the IRPs/IRE system functioned in oxidative metabolism, cell cycle regulation, abnormal proteins aggregation, and neuroinflammation. Finally, by emphasizing the multiple regulations of IRPs/IRE system and its potential relationship with non-iron metabolic neurodegenerative disorders, we provided new strategies for disease treatment targeting IRPs/IRE system.
Collapse
|
34
|
Complex response to physiological and drug-induced hepatic heme demand in monoallelic ALAS1 mice. Mol Genet Metab Rep 2021; 29:100818. [PMID: 34900592 PMCID: PMC8639769 DOI: 10.1016/j.ymgmr.2021.100818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023] Open
Abstract
Regulation of 5-aminolevulinate synthase 1 (ALAS1) for nonerythroid heme is critical for respiration, cell signaling mechanisms and steroid/drug metabolism. ALAS1 is induced in some genetic disorders but unlike other genes in the heme pathway, a gene variant of ALAS1 associated with inherited disease has not been reported. BALB/c mice carrying a null ALAS1 allele caused by a βGEO insert were developed and used to determine the consequences of heme demand of a semi gene copy number. Homozygous disruption of ALAS1 (−/−) was lethal for embryo development post day 6.5 but expression in heterozygotes (+/−) was sufficient for the number of offspring and survival. In both wild type (WT +/+) and +/− mice expression of ALAS1 RNA was greatest in liver and harderian gland and much lower in kidney, lung, heart, brain and spleen. The effects of one WT ALAS1 allele in +/− mice on mRNA levels in liver and harderian gland were less marked compared to brain and other organs that were examined. Many other genes were up-regulated by heterozygosity in liver and brain but to a minimal extent. Hepatic heme oxygenase 1 (HMOX1) mRNA expression was significantly lower in +/− mice but not in brain. No elevated translation of WT allele ALAS1 mRNA was detected in +/− liver as a compensatory mechanism for the disabled allele. Fasting induced ALAS1 mRNA in both WT and +/− mice but only in +/− was this manifest as increased ALAS1 protein. The hepatic protoporphyria-inducing drug 4-ethyl-DDC caused induction of hepatic ALAS1 mRNA and protein levels in both WT and +/− mice but markedly less in the mice with only one intact allele. The findings illustrate the complex response of ALAS1 expression for heme demand but limited evidence that upregulation of a wild type allele can compensate for a null allele.
Collapse
Key Words
- 4-ethyl-DDC, 4-ethyl-3,5-diethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine
- AIP, acute intermittent porphyria
- ALAS1, aminolevulinate synthase 1
- Aminolevulinic acid synthase 1
- Compensation, complex regulation
- FECH, ferrochetalase
- HMOX1, heme oxygenase 1
- Hepatic response
- PCR, polymerase chain reaction
- Semi null mice
- WT, wild type
Collapse
|
35
|
Nozawa N, Noguchi M, Shinno K, Tajima M, Aizawa S, Saito T, Asada A, Ishii T, Ishizuka M, Iijima KM, Ando K. 5-Aminolevulinic acid and sodium ferrous citrate ameliorate muscle aging and extend healthspan in Drosophila. FEBS Open Bio 2021; 12:295-305. [PMID: 34854258 PMCID: PMC8727951 DOI: 10.1002/2211-5463.13338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Declines in mitochondrial functions are associated with aging. The combination of 5‐aminolevulinic acid (5‐ALA) and sodium ferrous citrate (SFC) improves mitochondrial functions in cultured cells. In this study, we investigated the effects of dietary supplementation with 5‐ALA and SFC (5‐ALA/SFC) on the healthspan and life span of Drosophila
melanogaster. Adult Drosophila fruit flies were fed cornmeal food containing various concentrations of 5‐ALA/SFC. Locomotor functions, life span, muscle architecture, and age‐associated changes in mitochondrial function were analyzed. We found that feeding 5‐ALA/SFC mitigated age‐associated declines in locomotor functions and extended organismal life span. Moreover, 5‐ALA/SFC preserved muscle architecture and maintained the mitochondrial membrane potential in aged animals. Since 5‐ALA phosphate/SFC is used as a human dietary supplement, our results suggest that it could be used to slow the age‐related declines in muscle functions, prevent age‐associated clinical conditions such as frailty, and extend healthspan and life span.
Collapse
Affiliation(s)
- Naoko Nozawa
- Graduate School of Science, Tokyo Metropolitan University, Japan.,Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd., Tokyo, Japan
| | - Marie Noguchi
- Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Kanako Shinno
- Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Maki Tajima
- Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Shingo Aizawa
- Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Taro Saito
- Graduate School of Science, Tokyo Metropolitan University, Japan.,Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Japan
| | - Akiko Asada
- Graduate School of Science, Tokyo Metropolitan University, Japan.,Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Japan
| | - Takuya Ishii
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd., Tokyo, Japan
| | - Masahiro Ishizuka
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd., Tokyo, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Kanae Ando
- Graduate School of Science, Tokyo Metropolitan University, Japan.,Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Japan
| |
Collapse
|
36
|
Gout J, Meuris F, Desbois A, Dorlet P. In vitro coordination of Fe-protoheme with amyloid β is non-specific and exhibits multiple equilibria. J Inorg Biochem 2021; 227:111664. [PMID: 34955310 DOI: 10.1016/j.jinorgbio.2021.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
In addition to copper and zinc, heme is thought to play a role in Alzheimer's disease and its metabolism is strongly affected during the course of this disease. Amyloid β, the peptide associated with Alzheimer's disease, was shown to bind heme in vitro with potential catalytic activity linked to oxidative stress. To date, there is no direct determination of the structure of this complex. In this work, we studied the binding mode of heme to amyloid β in different conditions of pH and redox state by using isotopically labelled peptide in combination with advanced magnetic and vibrational spectroscopic methods. Our results show that the interaction between heme and amyloid β leads to a variety of species in equilibrium. The formation of these species seems to depend on many factors suggesting that the binding site is neither very strong nor highly specific. In addition, our data do not support the currently accepted model where a water molecule is bound to the ferric heme as sixth ligand. They also exclude structural models mimicking a peroxidatic site in the amyloid β-Fe-protoheme complexes.
Collapse
Affiliation(s)
- Jérôme Gout
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France
| | - Floriane Meuris
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France
| | - Alain Desbois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France.
| | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France.
| |
Collapse
|
37
|
Aiello A, Accardi G, Aprile S, Caldarella R, Carru C, Ciaccio M, De Vivo I, Gambino CM, Ligotti ME, Vasto S, Zinellu A, Caruso C, Bono F, Candore G. Age and Gender-related Variations of Molecular and Phenotypic Parameters in A Cohort of Sicilian Population: from Young to Centenarians. Aging Dis 2021; 12:1773-1793. [PMID: 34631220 PMCID: PMC8460304 DOI: 10.14336/ad.2021.0226] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
People are living longer, but lifespan increase does not coincide with a boost in health-span. Thus, improving the quality of life of older people is a priority. Centenarians reach extreme longevity in a relatively good health status, escaping or delaying fatal or strongly invalidating diseases. Therefore, studying processes involved in longevity is important to explain the biological mechanisms of health and well-being, since knowledge born from this approach can provide valuable information on how to slow aging. We performed the present study in a well characterized very homogeneous sample of 173 people from Western Sicily, to update existing literature on some phenotypic aspects of aging and longevity and to propose a range of values for older people. We classified 5 age groups, from young adults to centenarians, to understand the age and gender-related variations of the different parameters under study. We collected anamnestic data and performed anthropometric, bioimpedance, molecular, haematological, oxidative, and hematochemical tests, adopting a multidimensional analysis approach. An important evidence of the present study is that there are differences related to both age and gender in several biomarkers. Indeed, gender differences seem to be still poorly considered and inadequately investigated in aging as well as in other medical studies. Moreover, we often observed comparable parameters between young and centenarians rather than non-agenarians and centenarians, hypothesizing a sort of slowdown, almost followed by a reversal trend, in the decay of systemic deterioration. The study of centenarians provides important indications on how to slow aging, with benefits for those who are more vulnerable to disease and disability. The identification of the factors that predispose to a long and healthy life is of enormous interest for translational medicine in an aging world.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Stefano Aprile
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
- Unit of Transfusion Medicine, San Giovanni di Dio Hospital, Agrigento, Italy.
| | - Rosalia Caldarella
- Department of Laboratory Medicine, “P. Giaccone” University Hospital, Palermo, Italy.
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - Marcello Ciaccio
- Department of Laboratory Medicine, “P. Giaccone” University Hospital, Palermo, Italy.
- Unit of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Caterina Maria Gambino
- Unit of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Filippa Bono
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy.
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| |
Collapse
|
38
|
Feng MW, Adams PD. A new mechanistic insight into fate decisions during yeast cell aging process. Mech Ageing Dev 2021; 198:111542. [PMID: 34273382 DOI: 10.1016/j.mad.2021.111542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Despite massive technological advances in mammalian models in recent years, studies in yeast still have the power to inform on the basic mechanisms of aging. Illustrating this, in Nan Hao's recent article published in the journal Science, he and his lab use microfluidics and fluorescent imaging technology to analyze the dynamics and interactions of aging mechanisms within yeast cells. They focused in on the Sir2 gene and the heme activator protein and, through the manipulation of these two molecular aging pathways, were able to determine that yeast cells can undergo one of three modes of aging, with one of them having a significantly longer lifespan than the others. These findings provide unexpected insights into mechanisms of aging, apparently as regulated fate-decision process, and open up avenues for future research.
Collapse
Affiliation(s)
- Morgan W Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, United States
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, United States.
| |
Collapse
|
39
|
Iron supplementation regulates the progression of high fat diet induced obesity and hepatic steatosis via mitochondrial signaling pathways. Sci Rep 2021; 11:10753. [PMID: 34031430 PMCID: PMC8144192 DOI: 10.1038/s41598-021-89673-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/23/2021] [Indexed: 12/04/2022] Open
Abstract
Disruption of iron metabolism is closely related to metabolic diseases. Iron deficiency is frequently associated with obesity and hepatic steatosis. However, the effects of iron supplementation on obesity and energy metabolism remain unclear. Here we show that a high-fat diet supplemented with iron reduces body weight gain and hepatic lipid accumulation in mice. Iron supplementation was found to reduce mitochondrial morphological abnormalities and upregulate gene transcription involved in mitochondrial function and beta oxidation in the liver and skeletal muscle. In both these tissues, iron supplementation increased the expression of genes involved in heme or iron–sulfur (Fe–S) cluster synthesis. Heme and Fe–S cluster, which are iron prosthetic groups contained in electron transport chain complex subunits, are essential for mitochondrial respiration. The findings of this study demonstrated that iron regulates mitochondrial signaling pathways—gene transcription of mitochondrial component molecules synthesis and their energy metabolism. Overall, the study elucidates the molecular basis underlying the relationship between iron supplementation and obesity and hepatic steatosis progression, and the role of iron as a signaling molecule.
Collapse
|
40
|
Martinez MDC, Cerbino GN, Granata BX, Batlle A, Parera VE, Rossetti MV. Clinical, biochemical, and genetic characterization of acute hepatic porphyrias in a cohort of Argentine patients. Mol Genet Genomic Med 2021; 9:e1059. [PMID: 33764674 PMCID: PMC8172188 DOI: 10.1002/mgg3.1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute Hepatic Porphyrias (AHPs) are characterized by an acute neuroabdominal syndrome including both neuropsychiatric symptoms and neurodegenerative changes. Two main hypotheses explain the pathogenesis of nervous system dysfunction: (a) the ROS generation by autooxidation of 5-aminolevulinic acid accumulated in liver and brain; (b) liver heme deficiency and in neural tissues that generate an oxidative status, a component of the neurodegenerative process. METHODS We review results obtained from Acute Intermittent Porphyria (AIP) and Variegate Porphyria (VP) families studied at clinical, biochemical, and molecular level at the CIPYP in Argentina. The relationship between the porphyric attack and oxidative stress was also evaluated in AHP patients and controls, to identify a marker of neurological dysfunction. RESULTS We studied 116 AIP families and 30 VP families, 609 and 132 individuals, respectively. Genotype/phenotype relation was studied. Oxidative stress parameters and plasma homocysteine levels were measured in 20 healthy volunteers, 22 AIP and 12 VP individuals. CONCLUSION No significant difference in oxidative stress parameters and homocysteine levels between the analyzed groups were found.
Collapse
Affiliation(s)
- María Del Carmen Martinez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Gabriela Nora Cerbino
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| | - Bárbara Xoana Granata
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| | - Victoria Estela Parera
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| | - María Victoria Rossetti
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
41
|
Siracusa R, Schaufler A, Calabrese V, Fuller PM, Otterbein LE. Carbon Monoxide: from Poison to Clinical Trials. Trends Pharmacol Sci 2021; 42:329-339. [PMID: 33781582 DOI: 10.1016/j.tips.2021.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Every cell has a highly sophisticated system for regulating heme levels, which is particularly important with regard to turnover. Heme degradation generates CO and while CO has long been viewed as a metabolic waste product, and at higher concentrations cellularly lethal, we now know that CO is an indispensable gasotransmitter that participates in fundamental physiological processes necessary for survival. Irrefutable preclinical data have resulted in concerted efforts to develop CO as a safe and effective therapeutic agent, but against this notion lies dogma that CO is a poison, especially to the brain. The emergence of this debate is discussed here highlighting the neuroprotective properties of CO through its role on the central circadian clock and ongoing strategies being developed for CO administration for clinical use.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy, 98166
| | - Alexa Schaufler
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Patrick M Fuller
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA; Department of Neurological Surgery, University of California Davis Health, Sacramento, CA 95817, USA
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| |
Collapse
|
42
|
Aksan A, Farrag K, Aksan S, Schroeder O, Stein J. Flipside of the Coin: Iron Deficiency and Colorectal Cancer. Front Immunol 2021; 12:635899. [PMID: 33777027 PMCID: PMC7991591 DOI: 10.3389/fimmu.2021.635899] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency, with or without anemia, is the most frequent hematological manifestation in individuals with cancer, and is especially common in patients with colorectal cancer. Iron is a vital micronutrient that plays an essential role in many biological functions, in the context of which it has been found to be intimately linked to cancer biology. To date, however, whereas a large number of studies have comprehensively investigated and reviewed the effects of excess iron on cancer initiation and progression, potential interrelations of iron deficiency with cancer have been largely neglected and are not well-defined. Emerging evidence indicates that reduced iron intake and low systemic iron levels are associated with the pathogenesis of colorectal cancer, suggesting that optimal iron intake must be carefully balanced to avoid both iron deficiency and iron excess. Since iron is vital in the maintenance of immunological functions, insufficient iron availability may enhance oncogenicity by impairing immunosurveillance for neoplastic changes and potentially altering the tumor immune microenvironment. Data from clinical studies support these concepts, showing that iron deficiency is associated with inferior outcomes and reduced response to therapy in patients with colorectal cancer. Here, we elucidate cancer-related effects of iron deficiency, examine preclinical and clinical evidence of its role in tumorigenesis, cancer progression and treatment response. and highlight the importance of adequate iron supplementation to limit these outcomes.
Collapse
Affiliation(s)
- Aysegül Aksan
- Institute of Nutritional Science, Justus-Liebig University, Giessen, Germany
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
| | - Karima Farrag
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
- DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Sami Aksan
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
- DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Oliver Schroeder
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
- DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Jürgen Stein
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
- DGD Kliniken Sachsenhausen, Frankfurt, Germany
| |
Collapse
|
43
|
Vidal C, Zhang L. An Analysis of the Neurological and Molecular Alterations Underlying the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10030546. [PMID: 33806317 PMCID: PMC7998384 DOI: 10.3390/cells10030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid beta (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Unfortunately, despite decades of studies being performed on these histological alterations, there is no effective treatment or cure for AD. Identifying the molecular characteristics of the disease is imperative to understanding the pathogenesis of AD. Furthermore, uncovering the key causative alterations of AD can be valuable in developing models for AD treatment. Several alterations have been implicated in driving this disease, including blood–brain barrier dysfunction, hypoxia, mitochondrial dysfunction, oxidative stress, glucose hypometabolism, and altered heme homeostasis. Although these alterations have all been associated with the progression of AD, the root cause of AD has not been identified. Intriguingly, recent studies have pinpointed dysfunctional heme metabolism as a culprit of the development of AD. Heme has been shown to be central in neuronal function, mitochondrial respiration, and oxidative stress. Therefore, dysregulation of heme homeostasis may play a pivotal role in the manifestation of AD and its various alterations. This review will discuss the most common neurological and molecular alterations associated with AD and point out the critical role heme plays in the development of this disease.
Collapse
Affiliation(s)
| | - Li Zhang
- Correspondence: ; Tel.: +1-972-883-5757
| |
Collapse
|
44
|
Liu L, Dumbrepatil AB, Fleischhacker AS, Marsh ENG, Ragsdale SW. Heme oxygenase-2 is post-translationally regulated by heme occupancy in the catalytic site. J Biol Chem 2020; 295:17227-17240. [PMID: 33051205 PMCID: PMC7863905 DOI: 10.1074/jbc.ra120.014919] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
Heme oxygenase-2 (HO2) and -1 (HO1) catalyze heme degradation to biliverdin, CO, and iron, forming an essential link in the heme metabolism network. Tight regulation of the cellular levels and catalytic activities of HO1 and HO2 is important for maintaining heme homeostasis. HO1 expression is transcriptionally regulated; however, HO2 expression is constitutive. How the cellular levels and activity of HO2 are regulated remains unclear. Here, we elucidate the mechanism of post-translational regulation of cellular HO2 levels by heme. We find that, under heme-deficient conditions, HO2 is destabilized and targeted for degradation, suggesting that heme plays a direct role in HO2 regulation. HO2 has three heme binding sites: one at its catalytic site and the others at its two heme regulatory motifs (HRMs). We report that, in contrast to other HRM-containing proteins, the cellular protein level and degradation rate of HO2 are independent of heme binding to the HRMs. Rather, under heme deficiency, loss of heme binding to the catalytic site destabilizes HO2. Consistently, an HO2 catalytic site variant that is unable to bind heme exhibits a constant low protein level and an enhanced protein degradation rate compared with the WT HO2. Finally, HO2 is degraded by the lysosome through chaperone-mediated autophagy, distinct from other HRM-containing proteins and HO1, which are degraded by the proteasome. These results reveal a novel aspect of HO2 regulation and deepen our understanding of HO2's role in maintaining heme homeostasis, paving the way for future investigation into HO2's pathophysiological role in heme deficiency response.
Collapse
Affiliation(s)
- Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Arti B Dumbrepatil
- Department of Chemistry, College of Literature, Science and Arts, University of Michigan, Ann Arbor, Michigan, USA
| | | | - E Neil G Marsh
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Chemistry, College of Literature, Science and Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
45
|
Napoli E, McLennan YA, Schneider A, Tassone F, Hagerman RJ, Giulivi C. Characterization of the Metabolic, Clinical and Neuropsychological Phenotype of Female Carriers of the Premutation in the X-Linked FMR1 Gene. Front Mol Biosci 2020; 7:578640. [PMID: 33195422 PMCID: PMC7642626 DOI: 10.3389/fmolb.2020.578640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The X-linked FMR1 premutation (PM) is characterized by a 55-200 CGG triplet expansion in the 5'-untranslated region (UTR). Carriers of the PM were originally thought to be asymptomatic; however, they may present general neuropsychiatric manifestations including learning disabilities, depression and anxiety, among others. With age, both sexes may also develop the neurodegenerative disease fragile X-associated tremor/ataxia syndrome (FXTAS). Among carriers, females are at higher risk for developing immune disorders, hypertension, seizures, endocrine disorders and chronic pain, among others. Some female carriers younger than 40 years old may develop fragile X-associated primary ovarian insufficiency (FXPOI). To date, no studies have addressed the metabolic footprint - that includes mitochondrial metabolism - of female carriers and its link to clinical/cognitive manifestations. To this end, we performed a comprehensive biochemical assessment of 42 female carriers (24-70 years old) compared to sex-matched non-carriers. By applying a multivariable correlation matrix, a generalized bioenergetics impairment was correlated with diagnoses of the PM, FXTAS and its severity, FXPOI and anxiety. Intellectual deficits were strongly correlated with both mitochondrial dysfunction and with CGG repeat length. A combined multi-omics approach identified a down-regulation of RNA and mRNA metabolism, translation, carbon and protein metabolism, unfolded protein response, and up-regulation of glycolysis and antioxidant response. The suboptimal activation of the unfolded protein response (UPR) and endoplasmic-reticulum-associated protein degradation (ERAD) response challenges and further compromises the PM genetic background to withstand other, more severe forms of stress. Mechanistically, some of the deficits were linked to an altered protein expression due to decreased protein translation, but others seemed secondary to oxidative stress originated from the accumulation of either toxic mRNA or RAN-derived protein products or as a result of a direct toxicity of accumulated metabolites from deficiencies in critical enzymes.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | | | - Andrea Schneider
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States
| | - Flora Tassone
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
46
|
Zheng YQ, Jin MF, Suo GH, Wu YJ, Sun YX, Ni H. Proteomics for Studying the Effects of Ketogenic Diet Against Lithium Chloride/Pilocarpine Induced Epilepsy in Rats. Front Neurosci 2020; 14:562853. [PMID: 33132826 PMCID: PMC7550537 DOI: 10.3389/fnins.2020.562853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ketogenic diet (KD) demonstrates antiepileptogenic and neuroprotective efficacy, but the precise mechanisms are unclear. Here we explored the mechanism through systematic proteomics analysis of the lithium chloride-pilocarpine rat model. Sprague-Dawley rats (postnatal day 21, P21) were randomly divided into control (Ctr), seizure (SE), and KD treatment after seizure (SE + KD) groups. Tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectroscopy (LC-MS/MS) were utilized to assess changes in protein abundance in the hippocampus. A total of 5,564 proteins were identified, of which 110 showed a significant change in abundance between the SE and Ctr groups (18 upregulated and 92 downregulated), 278 between SE + KD and SE groups (218 upregulated and 60 downregulated), and 180 between Ctr and SE + KD groups (121 upregulated and 59 downregulated) (all p < 0.05). Seventy-nine proteins showing a significant change in abundance between SE and Ctr groups were reciprocally regulated in the SD + KD group compared to the SE group (i.e., the seizure-induced change was reversed by KD). Of these, five (dystrobrevin, centromere protein V, oxysterol-binding protein, tetraspanin-2, and progesterone receptor membrane component 2) were verified by parallel reaction monitoring. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that proteins of the synaptic vesicle cycle pathway were enriched both among proteins differing in abundance between SE and Ctr groups as well as between SE + KD and SE groups. This comprehensive proteomics analyze of KD-treated epilepsy by quantitative proteomics revealed novel molecular mechanisms of KD antiepileptogenic efficacy and potential treatment targets.
Collapse
Affiliation(s)
- Yu-Qin Zheng
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Mei-Fang Jin
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Gui-Hai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - You-Jia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu-Xiao Sun
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
47
|
Li Y, Jiang Y, Paxman J, O'Laughlin R, Klepin S, Zhu Y, Pillus L, Tsimring LS, Hasty J, Hao N. A programmable fate decision landscape underlies single-cell aging in yeast. Science 2020; 369:325-329. [PMID: 32675375 DOI: 10.1126/science.aax9552] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/24/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Chromatin instability and mitochondrial decline are conserved processes that contribute to cellular aging. Although both processes have been explored individually in the context of their distinct signaling pathways, the mechanism that determines which process dominates during aging of individual cells is unknown. We show that interactions between the chromatin silencing and mitochondrial pathways lead to an epigenetic landscape of yeast replicative aging with multiple equilibrium states that represent different types of terminal states of aging. The structure of the landscape drives single-cell differentiation toward one of these states during aging, whereby the fate is determined quite early and is insensitive to intracellular noise. Guided by a quantitative model of the aging landscape, we genetically engineered a long-lived equilibrium state characterized by an extended life span.
Collapse
Affiliation(s)
- Yang Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yanfei Jiang
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Julie Paxman
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard O'Laughlin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen Klepin
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuelian Zhu
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Lev S Tsimring
- BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA. .,BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
48
|
Timmers PRHJ, Wilson JF, Joshi PK, Deelen J. Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. Nat Commun 2020; 11:3570. [PMID: 32678081 PMCID: PMC7366647 DOI: 10.1038/s41467-020-17312-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Ageing phenotypes, such as years lived in good health (healthspan), total years lived (lifespan), and survival until an exceptional old age (longevity), are of interest to us all but require exceptionally large sample sizes to study genetically. Here we combine existing genome-wide association summary statistics for healthspan, parental lifespan, and longevity in a multivariate framework, increasing statistical power, and identify 10 genomic loci which influence all three phenotypes, of which five (near FOXO3, SLC4A7, LINC02513, ZW10, and FGD6) have not been reported previously at genome-wide significance. The majority of these 10 loci are associated with cardiovascular disease and some affect the expression of genes known to change their activity with age. In total, we implicate 78 genes, and find these to be enriched for ageing pathways previously highlighted in model organisms, such as the response to DNA damage, apoptosis, and homeostasis. Finally, we identify a pathway worthy of further study: haem metabolism.
Collapse
Affiliation(s)
- Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
49
|
Martinez-Guzman O, Willoughby MM, Saini A, Dietz JV, Bohovych I, Medlock AE, Khalimonchuk O, Reddi AR. Mitochondrial-nuclear heme trafficking in budding yeast is regulated by GTPases that control mitochondrial dynamics and ER contact sites. J Cell Sci 2020; 133:jcs.237917. [PMID: 32265272 DOI: 10.1242/jcs.237917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Heme is a cofactor and signaling molecule that is essential for much of aerobic life. All heme-dependent processes in eukaryotes require that heme is trafficked from its site of synthesis in the mitochondria to hemoproteins located throughout the cell. However, the mechanisms governing the mobilization of heme out of the mitochondria, and the spatio-temporal dynamics of these processes, are poorly understood. Here, using genetically encoded fluorescent heme sensors, we developed a live-cell assay to monitor heme distribution dynamics between the mitochondrial inner membrane, where heme is synthesized, and the mitochondrial matrix, cytosol and nucleus. Surprisingly, heme trafficking to the nucleus is ∼25% faster than to the cytosol or mitochondrial matrix, which have nearly identical heme trafficking dynamics, potentially supporting a role for heme as a mitochondrial-nuclear retrograde signal. Moreover, we discovered that the heme synthetic enzyme 5-aminolevulinic acid synthase (ALAS, also known as Hem1 in yeast), and GTPases in control of the mitochondrial dynamics machinery (Mgm1 and Dnm1) and ER contact sites (Gem1), regulate the flow of heme between the mitochondria and nucleus. Overall, our results indicate that there are parallel pathways for the distribution of bioavailable heme.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Osiris Martinez-Guzman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Arushi Saini
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jonathan V Dietz
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Iryna Bohovych
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia and Augusta University-University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA.,Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA .,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
50
|
Coburger I, Yang K, Bernert A, Wiesel E, Sahoo N, Swain SM, Hoshi T, Schönherr R, Heinemann SH. Impact of intracellular hemin on N-type inactivation of voltage-gated K + channels. Pflugers Arch 2020; 472:551-560. [PMID: 32388729 PMCID: PMC7239824 DOI: 10.1007/s00424-020-02386-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022]
Abstract
N-type inactivation of voltage-gated K+ channels is conferred by the N-terminal “ball” domains of select pore-forming α subunits or of auxiliary β subunits, and influences electrical cellular excitability. Here, we show that hemin impairs inactivation of K+ channels formed by Kv3.4 α subunits as well as that induced by the subunits Kvβ1.1, Kvβ1.2, and Kvβ3.1 when coexpressed with α subunits of the Kv1 subfamily. In Kvβ1.1, hemin interacts with cysteine and histidine residues in the N terminus (C7 and H10) with high affinity (EC50 100 nM). Similarly, rapid inactivation of Kv4.2 channels induced by the dipeptidyl peptidase-like protein DPP6a is also sensitive to hemin, and the DPP6a mutation C13S eliminates this dependence. The results suggest a common mechanism for a dynamic regulation of Kv channel inactivation by heme/hemin in N-terminal ball domains of Kv α and auxiliary β subunits. Free intracellular heme therefore has the potential to regulate cellular excitability via modulation of Kv channel inactivation.
Collapse
Affiliation(s)
- Ina Coburger
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Kefan Yang
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Alisa Bernert
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Eric Wiesel
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Nirakar Sahoo
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany.,Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA
| | - Sandip M Swain
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany.,Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, 27710, USA
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA, 19104-6085, USA
| | - Roland Schönherr
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany.
| |
Collapse
|