1
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Immunol Allergy Clin North Am 2025; 45:205-221. [PMID: 40287169 DOI: 10.1016/j.iac.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Bryushkova EA, Mushenkova NV, Turchaninova MA, Lukyanov DK, Chudakov DM, Serebrovskaya EO. B cell clonality in cancer. Semin Immunol 2024; 72:101874. [PMID: 38508089 DOI: 10.1016/j.smim.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/22/2024]
Abstract
Carcinogenesis in the process of long-term co-evolution of tumor cells and immune environment essentially becomes possible due to incorrect decisions made, remembered, and reproduced by the immune system at the level of clonal populations of antigen-specific T- and B-lymphocytes. Tumor-immunity interaction determines the nature of such errors and, consequently, delineates the possible ways of successful immunotherapeutic intervention. It is generally recognized that tumor-infiltrating B cells (TIL-B) can play both pro-tumor and anti-tumor roles. However, the exact mechanisms that determine the contribution of clonal B cell lineages with different specificities and functions remain largely unclear. This is due to the variability of cancer types, the molecular heterogeneity of tumor cells, and, to a large extent, the individual pattern of each immune response. Further progress requires detailed investigation of the functional properties and phenotypes of clonally heterogeneous B cells in relation to their antigenic specificities, which determine the functionality of both effector B lymphocytes and immunoglobulins produced in the tumor environment. Based on a real understanding of the role of clonal antigen-specific populations of B lymphocytes in the tumor microenvironment, we need to learn how to develop new methods of targeted immunotherapy, as well as adapt existing treatment options to the specific needs of different patients and patient subgroups. In this review, we will cover B cells functional diversity and their multifaceted roles in the tumor environment.
Collapse
Affiliation(s)
- E A Bryushkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N V Mushenkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Unicorn Capital Partners, Moscow, Russia
| | - M A Turchaninova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - D K Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - D M Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - E O Serebrovskaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Current position: Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
3
|
Bemark M, Pitcher MJ, Dionisi C, Spencer J. Gut-associated lymphoid tissue: a microbiota-driven hub of B cell immunity. Trends Immunol 2024; 45:211-223. [PMID: 38402045 PMCID: PMC11227984 DOI: 10.1016/j.it.2024.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
The diverse gut microbiota, which is associated with mucosal health and general wellbeing, maintains gut-associated lymphoid tissues (GALT) in a chronically activated state, including sustainment of germinal centers in a context of high antigenic load. This influences the rules for B cell engagement with antigen and the potential consequences. Recent data have highlighted differences between GALT and other lymphoid tissues. For example, GALT propagates IgA responses against glycans that show signs of having been generated in germinal centers. Other findings suggest that humans are among those species where GALT supports the diversification, propagation, and possibly selection of systemic B cells. Here, we review novel findings that identify GALT as distinctive, and able to support these processes.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, J Waldenströms gata 35, Malmö, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK.
| |
Collapse
|
4
|
Mamidi MK, Huang J, Honjo K, Li R, Tabengwa EM, Neeli I, Randall NL, Ponnuchetty MV, Radic M, Leu CM, Davis RS. FCRL1 immunoregulation in B cell development and malignancy. Front Immunol 2023; 14:1251127. [PMID: 37822931 PMCID: PMC10562807 DOI: 10.3389/fimmu.2023.1251127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Immunotherapeutic targeting of surface regulatory proteins and pharmacologic inhibition of critical signaling pathways has dramatically shifted our approach to the care of individuals with B cell malignancies. This evolution in therapy reflects the central role of the B cell receptor (BCR) signaling complex and its co-receptors in the pathogenesis of B lineage leukemias and lymphomas. Members of the Fc receptor-like gene family (FCRL1-6) encode cell surface receptors with complex tyrosine-based regulation that are preferentially expressed by B cells. Among them, FCRL1 expression peaks on naïve and memory B cells and is unique in terms of its intracellular co-activation potential. Recent studies in human and mouse models indicate that FCRL1 contributes to the formation of the BCR signalosome, modulates B cell signaling, and promotes humoral responses. Progress in understanding its regulatory properties, along with evidence for its over-expression by mature B cell leukemias and lymphomas, collectively imply important yet unmet opportunities for FCRL1 in B cell development and transformation. Here we review recent advances in FCRL1 biology and highlight its emerging significance as a promising biomarker and therapeutic target in B cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- Murali K. Mamidi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Edlue M. Tabengwa
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nar’asha L. Randall
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Manasa V. Ponnuchetty
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang Ming ChiaoTung University, Taipei, Taiwan
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Microbiology, and Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Clin Lab Med 2023; 43:467-483. [PMID: 37481324 DOI: 10.1016/j.cll.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Beckers L, Somers V, Fraussen J. IgD -CD27 - double negative (DN) B cells: Origins and functions in health and disease. Immunol Lett 2023; 255:67-76. [PMID: 36906182 DOI: 10.1016/j.imlet.2023.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Human B cells can be divided into four main subsets based on differential expression of immunoglobulin (Ig)D and CD27. IgD-CD27- double negative (DN) B cells make up a heterogeneous group of B cells that have first been described in relation to aging and systemic lupus erythematosus but have been mostly disregarded in B cell research. Over the last few years, DN B cells have gained a lot of interest because of their involvement in autoimmune and infectious diseases. DN B cells can be divided into different subsets that originate via different developmental processes and have different functional properties. Further research into the origin and function of different DN subsets is needed to better understand the role of these B cells in normal immune responses and how they could be targeted in specific pathologies. In this review, we give an overview of both phenotypic and functional properties of DN B cells and provide insight into the currently proposed origins of DN B cells. Moreover, their involvement in normal aging and different pathologies is discussed.
Collapse
Affiliation(s)
- Lien Beckers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Veerle Somers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Judith Fraussen
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
7
|
Cottignies-Calamarte A, Tudor D, Bomsel M. Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Front Immunol 2023; 14:1037033. [PMID: 36817447 PMCID: PMC9933243 DOI: 10.3389/fimmu.2023.1037033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Recent advances in the development of therapeutic antibodies (Abs) have greatly improved the treatment of otherwise drug-resistant cancers and autoimmune diseases. Antibody activities are mediated by both their Fab and the Fc. However, therapeutic Abs base their protective mechanisms on Fc-mediated effector functions resulting in the activation of innate immune cells by FcRs. Therefore, Fc-bioengineering has been widely used to maximise the efficacy and convenience of therapeutic antibodies. Today, IgG remains the only commercially available therapeutic Abs, at the expense of other isotypes. Indeed, production, sampling, analysis and related in vivo studies are easier to perform with IgG than with IgA due to well-developed tools. However, interest in IgA is growing, despite a shorter serum half-life and a more difficult sampling and purification methods than IgG. Indeed, the paradigm that the effector functions of IgG surpass those of IgA has been experimentally challenged. Firstly, IgA has been shown to bind to its Fc receptor (FcR) on effector cells of innate immunity with greater efficiency than IgG, resulting in more robust IgA-mediated effector functions in vitro and better survival of treated animals. In addition, the two isotypes have been shown to act synergistically. From these results, new therapeutic formats of Abs are currently emerging, in particular chimeric Abs containing two tandemly expressed Fc, one from IgG (Fcγ) and one from IgA (Fcα). By binding both FcγR and FcαR on effector cells, these new chimeras showed improved effector functions in vitro that were translated in vivo. Furthermore, these chimeras retain an IgG-like half-life in the blood, which could improve Ab-based therapies, including in AIDS. This review provides the rationale, based on the biology of IgA and IgG, for the development of Fcγ and Fcα chimeras as therapeutic Abs, offering promising opportunities for HIV-1 infected patients. We will first describe the main features of the IgA- and IgG-specific Fc-mediated signalling pathways and their respective functional differences. We will then summarise the very promising results on Fcγ and Fcα containing chimeras in cancer treatment. Finally, we will discuss the impact of Fcα-Fcγ chimerism in prevention/treatment strategies against infectious diseases such as HIV-1.
Collapse
Affiliation(s)
- Andréa Cottignies-Calamarte
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
8
|
Álvarez-Sierra D, Marín-Sánchez A, Gómez-Brey A, Bello I, Caubet E, Moreno-Llorente P, Petit A, Zafón C, Iglesias C, González Ó, Pujol-Borrell R. Lymphocytic Thyroiditis Transcriptomic Profiles Support the Role of Checkpoint Pathways and B Cells in Pathogenesis. Thyroid 2022; 32:682-693. [PMID: 35403441 PMCID: PMC9360182 DOI: 10.1089/thy.2021.0694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Autoimmune thyroid diseases are the most common types of autoimmune diseases, but their physiopathology is still relatively unexplored. Genotype-tissue expression (GTEx) is a publicly available repository containing RNAseq data, including profiles from thyroid. Approximately 14.8% of these glands were affected by focal lymphocytic thyroiditis and 6.3% were annotated as Hashimoto. We interrogated these data to improve the characterization of infiltrating cells and to identify new molecular pathways active in autoimmune thyroiditis. Materials and Methods: Histological GTEx images of 336 thyroid samples were classified into three categories, that is, non-infiltrated thyroid, small focal infiltrated thyroid, and extensive lymphoid infiltrated thyroid. Differentially expressed genes among these categories were identified and subjected to in silico pathway enrichment analysis accordingly. CIBERSORTx deconvolution was used to characterize infiltrating cells. Results: As expected, most of the transcriptional changes were dependent on tissue infiltration. Upregulated genes in tissues include-in addition to lineage-specific B and T cell genes-a broad representation of inhibitory immune checkpoint receptors expressed by B and T lymphocytes. CIBERSORTx analysis identified 22 types of infiltrating cells showed that T cells predominate 3:1 over B cells in glands with small infiltrates, only by 1.7:1 in those with large infiltrates. Follicular helper and memory CD4 T cells were significantly more abundant in glands with large infiltrates (p < 0.0001), but the most prominent finding in these glands was an almost sixfold increase in the number of naive B cells (p < 0.0001). A predominance of M2 macrophages over M1 and M0 macrophages was observed in the three gland categories (p < 0.001). Conclusions: Analysis of transcriptomic RNA-seq profiles constitutes a rich source of information for the analysis of autoimmune tissues. High-resolution transcriptomic data analysis of thyroid glands indicates the following: (a) in all infiltrated glands, active autoimmune response coexists with suppressor counteracting mechanisms involving several inhibitory checkpoint receptor pairs, (b) glands with small infiltrates contain an unexpected relatively high proportion of B lymphocytes, and (c) in highly infiltrated glands, there is a distinct transcriptomic signature of active tertiary lymphoid organs. These results support the concept that the autoimmune response is amplified in the thyroid tissue.
Collapse
Affiliation(s)
- Daniel Álvarez-Sierra
- Translational Immunology Research Group, Vall d'Hebron Institute of Research (VHIR), Campus Vall d'Hebron, Barcelona, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Ana Marín-Sánchez
- Translational Immunology Research Group, Vall d'Hebron Institute of Research (VHIR), Campus Vall d'Hebron, Barcelona, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Aroa Gómez-Brey
- Department of Transplant Coordination, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Irene Bello
- Department of Thoracic Surgery and Lung Transplantation, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Enric Caubet
- Department of Endocrine Surgery Division, Department of General Surgery, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | | | - Anna Petit
- Department of Histopathology, Hospital Universitari de Bellvitge (HUB), Barcelona, Spain
| | - Carles Zafón
- Department of Endocrinology and Nutrition, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Carmela Iglesias
- Department of Histopathology, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Campus Vall d'Hebron, Barcelona, Spain
| | - Óscar González
- Department of Endocrine Surgery Division, Department of General Surgery, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
- Address correspondence to: Óscar Gónzalez, MD, PhD, Endocrine Surgery Division, Department of General Surgery, Hospital Universitari Vall d'Hebron (HUVH), Passeig de la Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Ricardo Pujol-Borrell
- Translational Immunology Research Group, Vall d'Hebron Institute of Research (VHIR), Campus Vall d'Hebron, Barcelona, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Campus Vall d'Hebron, Barcelona, Spain
- Address correspondence to: Ricardo Pujol-Borrell, MD, PhD, Translational Immunology Research Group, Vall d'Hebron Institute of Oncology (VHIO), Campus Vall d'Hebron, Natzaret 115-117, Barcelona 08035, Spain
| |
Collapse
|
9
|
Chen X, Jia L, Zhang X, Zhang T, Zhang Y. One arrow for two targets: potential co-treatment regimens for lymphoma and HIV. Blood Rev 2022; 55:100965. [DOI: 10.1016/j.blre.2022.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/27/2022]
|
10
|
Sorrentino C, D'Antonio L, Fieni C, Ciummo SL, Di Carlo E. Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Front Immunol 2022; 12:778329. [PMID: 34975867 PMCID: PMC8716410 DOI: 10.3389/fimmu.2021.778329] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide, with a growing impact on public health and clinical management. Immunotherapy has shown promise in the treatment of advanced cancers, but needs to be improved for CRC, since only a limited fraction of patients is eligible for treatment, and most of them develop resistance due to progressive immune exhaustion. Here, we identify the transcriptional, molecular, and cellular traits of the immune exhaustion associated with CRC and determine their relationships with the patient's clinic-pathological profile. Bioinformatic analyses of RNA-sequencing data of 594 CRCs from TCGA PanCancer collection, revealed that, in the wide range of immune exhaustion genes, those coding for PD-L1, LAG3 and T-bet were associated (Cramér's V=0.3) with MSI/dMMR tumors and with a shorter overall survival (log-rank test: p=0.0004, p=0.0014 and p=0.0043, respectively), whereas high levels of expression of EOMES, TRAF1, PD-L1, FCRL4, BTLA and SIGLEC6 were associated with a shorter overall survival (log-rank test: p=0.0003, p=0.0188, p=0.0004, p=0.0303, p=0.0052 and p=0.0033, respectively), independently from the molecular subtype of CRC. Expression levels of PD-L1, PD-1, LAG3, EOMES, T-bet, and TIGIT were significantly correlated with each other and associated with genes coding for CD4+ and CD8+CD3+ T cell markers and NKp46+CD94+EOMES+T-bet+ cell markers, (OR >1.5, p<0.05), which identify a subset of group 1 innate lymphoid cells, namely conventional (c)NK cells. Expression of TRAF1 and BTLA co-occurred with both T cell markers, CD3γ, CD3δ, CD3ε, CD4, and B cell markers, CD19, CD20 and CD79a (OR >2, p<0.05). Expression of TGFβ1 was associated only with CD4 + and CD8+CD3ε+ T cell markers (odds ratio >2, p<0.05). Expression of PD-L2 and IDO1 was associated (OR >1.5, p<0.05) only with cNK cell markers, whereas expression of FCRL4, SIGLEC2 and SIGLEC6 was associated (OR >2.5; p<0.05) with CD19+CD20+CD79a+ B cell markers. Morphometric examination of immunostained CRC tissue sections, obtained from a validation cohort of 53 CRC patients, substantiated the biostatistical findings, showing that the highest percentage of immune exhaustion gene expressing cells were found in tumors from short-term survivors and that functional exhaustion is not confined to T lymphocytes, but also involves B cells, and cNK cells. This concept was strengthened by CYBERSORTx analysis, which revealed the expression of additional immune exhaustion genes, in particular FOXP1, SIRT1, BATF, NR4A1 and TOX, by subpopulations of T, B and NK cells. This study provides novel insight into the immune exhaustion landscape of CRC and emphasizes the need for a customized multi-targeted therapeutic approach to overcome resistance to current immunotherapy.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
11
|
DeLuca JM, Murphy MK, Wang X, Wilson TJ. FCRL1 Regulates B Cell Receptor-Induced ERK Activation through GRB2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2688-2698. [PMID: 34697226 PMCID: PMC8629370 DOI: 10.4049/jimmunol.2100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
Regulation of BCR signaling has important consequences for generating effective Ab responses to pathogens and preventing production of autoreactive B cells during development. Currently defined functions of Fc receptor-like (FCRL) 1 include positive regulation of BCR-induced calcium flux, proliferation, and Ab production; however, the mechanistic basis of FCRL1 signaling and its contributions to B cell development remain undefined. Molecular characterization of FCRL1 signaling shows phosphotyrosine-dependent associations with GRB2, GRAP, SHIP-1, and SOS1, all of which can profoundly influence MAPK signaling. In contrast with previous characterizations of FCRL1 as a strictly activating receptor, we discover a role for FCRL1 in suppressing ERK activation under homeostatic and BCR-stimulated conditions in a GRB2-dependent manner. Our analysis of B cells in Fcrl1 -/- mice shows that ERK suppression by FCRL1 is associated with a restriction in the number of cells surviving splenic maturation in vivo. The capacity of FCRL1 to modulate ERK activation presents a potential for FCRL1 to be a regulator of peripheral B cell tolerance, homeostasis, and activation.
Collapse
Affiliation(s)
- Jenna M DeLuca
- Department of Microbiology, Miami University, Oxford, OH
| | | | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH
| | | |
Collapse
|
12
|
Cancro MP, Tomayko MM. Memory B cells and plasma cells: The differentiative continuum of humoral immunity. Immunol Rev 2021; 303:72-82. [PMID: 34396546 DOI: 10.1111/imr.13016] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
Immunological memory is a composite of lasting antibody titers maintained by plasma cells in conjunction with memory T and B cells. Memory B cells are a critical reservoir for plasma cell generation in the secondary response. Identification of memory B cells requires that they be distinguished from naïve, activated, and germinal center precursors and from plasma cells. Memory B cells are heterogeneous in isotype usage, immunoglobulin mutational content, and phenotypic marker expression. Phenotypic subsets of memory B cells are defined by PD-L2, CD80, and CD73 expression in mice, by CD27 and FCRL4 expression in humans and by T-bet in both mice and humans. These subsets display marked functional heterogeneity, including the ability to rapidly differentiate into plasma cells versus seed germinal centers in the secondary response. Memory B cells are located in the spleen, blood, other lymphoid organs, and barrier tissues, and recent evidence indicates that some memory B cells may be dedicated tissue-resident populations. Open questions about memory B cell longevity, renewal and progenitor-successor relationships with plasma cells are discussed.
Collapse
Affiliation(s)
- Michael P Cancro
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary M Tomayko
- Departments of Dermatology and Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
DiSano KD, Gilli F, Pachner AR. Memory B Cells in Multiple Sclerosis: Emerging Players in Disease Pathogenesis. Front Immunol 2021; 12:676686. [PMID: 34168647 PMCID: PMC8217754 DOI: 10.3389/fimmu.2021.676686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Once thought to be primarily driven by T cells, B cells are emerging as central players in MS immunopathogenesis. Interest in multiple B cell phenotypes in MS expanded following the efficacy of B cell-depleting agents targeting CD20 in relapsing-remitting MS and inflammatory primary progressive MS patients. Interestingly, these therapies primarily target non-antibody secreting cells. Emerging studies seek to explore B cell functions beyond antibody-mediated roles, including cytokine production, antigen presentation, and ectopic follicle-like aggregate formation. Importantly, memory B cells (Bmem) are rising as a key B cell phenotype to investigate in MS due to their antigen-experience, increased lifespan, and rapid response to stimulation. Bmem display diverse effector functions including cytokine production, antigen presentation, and serving as antigen-experienced precursors to antibody-secreting cells. In this review, we explore the cellular and molecular processes involved in Bmem development, Bmem phenotypes, and effector functions. We then examine how these concepts may be applied to the potential role(s) of Bmem in MS pathogenesis. We investigate Bmem both within the periphery and inside the CNS compartment, focusing on Bmem phenotypes and proposed functions in MS and its animal models. Finally, we review how current immunomodulatory therapies, including B cell-directed therapies and other immunomodulatory therapies, modify Bmem and how this knowledge may be harnessed to direct therapeutic strategies in MS.
Collapse
Affiliation(s)
- Krista D. DiSano
- Department of Neurology, Geisel School of Medicine & Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | | | | |
Collapse
|
14
|
CD200R1 and CD200R1L expression is regulated during B cell development in swine and modulates the Ig production in response to the TLR7 ligand imiquimoid. PLoS One 2021; 16:e0251187. [PMID: 33961666 PMCID: PMC8104416 DOI: 10.1371/journal.pone.0251187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The CD200R family comprises a group of paired receptors that can modulate the activation of immune cells. They are expressed both on myeloid cells and lymphocyte subsets. Here we report that the expression of these receptors on porcine B cells is tightly regulated, being mainly expressed on mature cells. The expression of the inhibitory receptors CD200R1 and/or its splicing variant CD200R1X2, either in combination or not with the activating receptor CD200R1L, is upregulated in sIgM+ effector/memory cells, and tends to decline thereafter as these cells progress to plasmablasts or switch the Ig isotype. sIgM+ naïve and primed cells only express, by contrast, the CD200R1X2 receptor. B-1 like cells also express CD200R1 isoforms, either alone or in combination with CD200R1L. Treatment of peripheral blood mononuclear cells with a monoclonal antibody specific for inhibitory receptors, enhances the IgM and IgG production induced by TLR7 stimulation suggesting a modulatory role of B cell functions of these receptors.
Collapse
|
15
|
Tolnay M. Lymphocytes sense antibodies through human FCRL proteins: Emerging roles in mucosal immunity. J Leukoc Biol 2021; 111:477-487. [PMID: 33884658 DOI: 10.1002/jlb.4ru0221-102rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Members of the Fc receptor-like (FCRL) family modulate B and T cell responses, yet their functional roles remain enigmatic. Nevertheless, FCRL3 promoter polymorphism that alters gene expression has been associated with autoimmune disease risk, indicating physiologic importance. Providing essential functional context, human FCRL3, FCRL4, and FCRL5 have recently been identified as secretory IgA (SIgA), dimeric IgA, and IgG receptors, respectively, revealing novel ways lymphocytes can interact with antibodies. FCRL3 and FCRL4 are able to distinguish the mucosal and systemic origin of IgA-containing immune complexes, respectively, with clear implications in guiding mucosal responses. SIgA can signal mucosal breach through FCRL3, driving the functional plasticity of regulatory T cells toward inflammatory to help control invading pathogens. Conversely, recognition of dimeric IgA by FCRL4 on memory B cells located in mucosa-associated lymphoid tissues could promote tolerance to commensals. Memory B cells that accumulate under conditions of chronic antigen presence frequently express FCRL4 and FCRL5, and antibody ligands could provide functional feedback to the cells. FCRL5 apparently recognizes the age of the IgG molecule, using deamidation as a molecular clock, conceivably playing regulatory roles in chronic antibody responses. A framework of FCRL3, FCRL4, and FCRL5 operating as sensors of antibodies in immune complexes is proposed. Sensing the spatial origin and age of immune complexes can shape lymphocyte functional attributes and inform their participation in mucosal immune responses. The potential contributions of FCRL3 and SIgA to the pathogenesis of autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Mate Tolnay
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Booth JS, Toapanta FR. B and T Cell Immunity in Tissues and Across the Ages. Vaccines (Basel) 2021; 9:vaccines9010024. [PMID: 33419014 PMCID: PMC7825307 DOI: 10.3390/vaccines9010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
B and T cells are key components of the adaptive immune system and coordinate multiple facets of immunity including responses to infection, vaccines, allergens, and the environment. In humans, B- and T-cell immunity has been determined using primarily peripheral blood specimens. Conversely, human tissues have scarcely been studied but they host multiple adaptive immune cells capable of mounting immune responses to pathogens and participate in tissue homeostasis. Mucosal tissues, such as the intestines and respiratory track, are constantly bombarded by foreign antigens and contain tissue-resident memory T (TRM) cells that exhibit superior protective capacity to pathogens. Also, tissue-resident memory B (BRM) cells have been identified in mice but whether humans have a similar population remains to be confirmed. Moreover, the immune system evolves throughout the lifespan of humans and undergoes multiple changes in its immunobiology. Recent studies have shown that age-related changes in tissues are not necessarily reflected in peripheral blood specimens, highlighting the importance of tissue localization and subset delineation as essential determinants of functional B and T cells at different life stages. This review describes our current knowledge of the main B- and T-cell subsets in peripheral blood and tissues across age groups.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
17
|
Davis RS. Roles for the FCRL6 Immunoreceptor in Tumor Immunology. Front Immunol 2020; 11:575175. [PMID: 33162991 PMCID: PMC7591390 DOI: 10.3389/fimmu.2020.575175] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 01/12/2023] Open
Abstract
Members of the Fc receptor-like (FCRL1-6) gene family encode transmembrane glycoproteins that are preferentially expressed by B cells and generally repress responses via cytoplasmic tyrosine-based regulation. Given their distribution and function, there is a growing appreciation for their roles in lymphoproliferative disorders and as immunotherapeutic targets. In contrast to FCRL1-5, FCRL6 is distinctly expressed outside the B lineage by cytotoxic T and NK lymphocytes. Its restricted expression by these orchestrators of cell-mediated immunity, along with its inhibitory properties and extracellular interactions with MHCII/HLA-DR, represent a newly appreciated axis with relevance in tolerance and cancer defense. The significance of FCRL6 in this arena has been recently demonstrated by its upregulation in HLA-DR+ tumor samples from melanoma, breast, and lung cancer patients who relapsed following PD-1 blockade. These findings imply a potential mechanistic role for FCRL6 in adaptive evasion to immune checkpoint therapy. Here we review these new developments in the FCRL field and identify new evidence for the prognostic significance of FCRL6 in malignancies that collectively indicate its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Randall S Davis
- Departments of Medicine, Microbiology, and Biochemistry & Molecular Genetics, The Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Li H, Dement-Brown J, Liao PJ, Mazo I, Mills F, Kraus Z, Fitzsimmons S, Tolnay M. Fc receptor-like 4 and 5 define human atypical memory B cells. Int Immunol 2020; 32:755-770. [DOI: 10.1093/intimm/dxaa053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Atypical memory B cells accumulate in chronic infections and autoimmune conditions, and commonly express FCRL4 and FCRL5, respective IgA and IgG receptors. We characterized memory cells from tonsils on the basis of both FCRL4 and FCRL5 expression, defining three subsets with distinct surface proteins and gene expression. Atypical FCRL4+FCRL5+ memory cells had the most discrete surface protein expression and were enriched in cell adhesion pathways, consistent with functioning as tissue-resident cells. Atypical FCRL4−FCRL5+ memory cells expressed transcription factors and immunoglobulin genes that suggest poised differentiation into plasma cells. Accordingly, the FCRL4−FCRL5+ memory subset was enriched in pathways responding to endoplasmic reticulum stress and IFN-γ. We reconstructed ongoing B-cell responses as lineage trees, providing crucial in vivo developmental context. Each memory subset typically maintained its lineage, denoting mechanisms enforcing their phenotypes. Classical FCRL4−FCRL5− memory cells were infrequently detected in lineage trees, suggesting the majority were in a quiescent state. FCRL4−FCRL5+ cells were the most represented memory subset in lineage trees, indicating robust participation in ongoing responses. Together, these differences suggest FCRL4 and FCRL5 are unlikely to be passive markers but rather active drivers of human memory B-cell development and function.
Collapse
Affiliation(s)
- Huifang Li
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Jessica Dement-Brown
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Pei-Jyun Liao
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ilya Mazo
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
- Argentys Informatics LLC, Gaithersburg, MD, USA
| | - Frederick Mills
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Zachary Kraus
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Sean Fitzsimmons
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Mate Tolnay
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
19
|
Liu Y, Goroshko S, Leung LYT, Dong S, Khan S, Campisi P, Propst EJ, Wolter NE, Grunebaum E, Ehrhardt GRA. FCRL4 Is an Fc Receptor for Systemic IgA, but Not Mucosal Secretory IgA. THE JOURNAL OF IMMUNOLOGY 2020; 205:533-538. [DOI: 10.4049/jimmunol.2000293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
|
20
|
Upasani V, Vo HTM, Ung S, Heng S, Laurent D, Choeung R, Duong V, Sorn S, Ly S, Rodenhuis-Zybert IA, Dussart P, Cantaert T. Impaired Antibody-Independent Immune Response of B Cells in Patients With Acute Dengue Infection. Front Immunol 2019; 10:2500. [PMID: 31736948 PMCID: PMC6834554 DOI: 10.3389/fimmu.2019.02500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Dengue is a mosquito-borne viral disease caused by dengue virus (DENV). The disease is endemic to more than 100 countries with 390 million dengue infections per year. Humoral immune responses during primary and secondary DENV infections are well-investigated. However, the impact of DENV infection on B cell subsets and their antibody-independent functions are not well-documented. Through this study, we aimed to define the distribution of B cell subsets in the acute phase of DENV infection and characterize the effect of DENV infection on B cell functions such as differentiation into memory and plasma cells and cytokine production. In our cohort of Cambodian children, we observed decreased percentages of CD24hiCD38hi B cells and CD27− naïve B cells within the CD19 population and increased percentages of CD27+CD38hiCD138+ plasma cells as early as 4 days post appearance of fever in patients with severe dengue compared to patients with mild disease. Lower percentages of CD19+CD24hiCD38hi B cells in DENV-infected patients were associated with decreased concentrations of soluble CD40L in patient plasma and decreased platelet counts in these patients. In addition, CD19+CD24hiCD38hi and CD19+CD27− B cells from DENV-infected patients did not produce IL-10 or TNF-α upon stimulation in vitro, suggesting their contribution to an altered immune response during DENV infection. In addition, CD19+CD27− naïve B cells isolated from dengue patients were refractory to TLR/anti-IgM stimulation in vitro, which correlated to the increased expression of inhibitory Fcγ receptors (FcγR) CD32 and LILRB1 on CD19+CD27− naïve B cells from DENV-infected patients. Collectively, our results indicate that a defective B cell response in dengue patients may contribute to the pathogenesis of dengue during the early phase of infection.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia.,Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sivlin Ung
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sothy Heng
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Denis Laurent
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Rithy Choeung
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Izabela A Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| |
Collapse
|
21
|
The regulators of BCR signaling during B cell activation. BLOOD SCIENCE 2019; 1:119-129. [PMID: 35402811 PMCID: PMC8975005 DOI: 10.1097/bs9.0000000000000026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022] Open
Abstract
B lymphocytes produce antibodies under the stimulation of specific antigens, thereby exerting an immune effect. B cells identify antigens by their surface B cell receptor (BCR), which upon stimulation, directs the cell to activate and differentiate into antibody generating plasma cells. Activation of B cells via their BCRs involves signaling pathways that are tightly controlled by various regulators. In this review, we will discuss three major BCR mediated signaling pathways (the PLC-γ2 pathway, PI3K pathway and MAPK pathway) and related regulators, which were roughly divided into positive, negative and mutual-balanced regulators, and the specific regulators of the specific signaling pathway based on regulatory effects.
Collapse
|
22
|
Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E, Estrada MV, Ericsson-Gonzalez PI, Cote CH, Salgado R, Sanchez V, Dean PT, Opalenik SR, Schreeder DM, Rimm DL, Kim JY, Bordeaux J, Loi S, Horn L, Sanders ME, Ferrell PB, Xu Y, Sosman JA, Davis RS, Balko JM. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight 2018; 3:120360. [PMID: 30568030 PMCID: PMC6338319 DOI: 10.1172/jci.insight.120360] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Immunotherapies targeting the PD-1 pathway produce durable responses in many cancers, but the tumor-intrinsic factors governing response and resistance are largely unknown. MHC-II expression on tumor cells can predict response to anti-PD-1 therapy. We therefore sought to determine how MHC-II expression by tumor cells promotes PD-1 dependency. Using transcriptional profiling of anti-PD-1-treated patients, we identified unique patterns of immune activation in MHC-II+ tumors. In patients and preclinical models, MHC-II+ tumors recruited CD4+ T cells and developed dependency on PD-1 as well as Lag-3 (an MHC-II inhibitory receptor), which was upregulated in MHC-II+ tumors at acquired resistance to anti-PD-1. Finally, we identify enhanced expression of FCRL6, another MHC-II receptor expressed on NK and T cells, in the microenvironment of MHC-II+ tumors. We ascribe this to what we believe to be a novel inhibitory function of FCRL6 engagement, identifying it as an immunotherapy target. These data suggest a MHC-II-mediated context-dependent mechanism of adaptive resistance to PD-1-targeting immunotherapy.
Collapse
Affiliation(s)
| | | | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Monica V. Estrada
- Department of Pathology, University of California, San Diego, San Diego, California, USA
| | - Paula I. Ericsson-Gonzalez
- Department of Pathology Microbiology, and Immunology, and,Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium.,Department of Oncology, University of Melbourne and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | - David L. Rimm
- Departments of Pathology and Medicine, Yale University, New Haven, Connecticut, USA
| | - Ju Young Kim
- Navigate BioPharma Services Inc., a Novartis Company, Carlsbad, California, USA
| | - Jennifer Bordeaux
- Navigate BioPharma Services Inc., a Novartis Company, Carlsbad, California, USA
| | - Sherene Loi
- Department of Oncology, University of Melbourne and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Melinda E. Sanders
- Department of Pathology Microbiology, and Immunology, and,Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey A. Sosman
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Randall S. Davis
- Departments of Medicine, Microbiology, and Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama, USA
| | - Justin M. Balko
- Department of Medicine and,Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E, Estrada MV, Ericsson-Gonzalez PI, Cote CH, Salgado R, Sanchez V, Dean PT, Opalenik SR, Schreeder DM, Rimm DL, Kim JY, Bordeaux J, Loi S, Horn L, Sanders ME, Ferrell PB, Xu Y, Sosman JA, Davis RS, Balko JM. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight 2018. [PMID: 30568030 DOI: 10.1172/jci.insight.120360.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immunotherapies targeting the PD-1 pathway produce durable responses in many cancers, but the tumor-intrinsic factors governing response and resistance are largely unknown. MHC-II expression on tumor cells can predict response to anti-PD-1 therapy. We therefore sought to determine how MHC-II expression by tumor cells promotes PD-1 dependency. Using transcriptional profiling of anti-PD-1-treated patients, we identified unique patterns of immune activation in MHC-II+ tumors. In patients and preclinical models, MHC-II+ tumors recruited CD4+ T cells and developed dependency on PD-1 as well as Lag-3 (an MHC-II inhibitory receptor), which was upregulated in MHC-II+ tumors at acquired resistance to anti-PD-1. Finally, we identify enhanced expression of FCRL6, another MHC-II receptor expressed on NK and T cells, in the microenvironment of MHC-II+ tumors. We ascribe this to what we believe to be a novel inhibitory function of FCRL6 engagement, identifying it as an immunotherapy target. These data suggest a MHC-II-mediated context-dependent mechanism of adaptive resistance to PD-1-targeting immunotherapy.
Collapse
Affiliation(s)
| | | | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Monica V Estrada
- Department of Pathology, University of California, San Diego, San Diego, California, USA
| | - Paula I Ericsson-Gonzalez
- Department of Pathology Microbiology, and Immunology, and.,Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium.,Department of Oncology, University of Melbourne and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | - David L Rimm
- Departments of Pathology and Medicine, Yale University, New Haven, Connecticut, USA
| | - Ju Young Kim
- Navigate BioPharma Services Inc., a Novartis Company, Carlsbad, California, USA
| | - Jennifer Bordeaux
- Navigate BioPharma Services Inc., a Novartis Company, Carlsbad, California, USA
| | - Sherene Loi
- Department of Oncology, University of Melbourne and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Melinda E Sanders
- Department of Pathology Microbiology, and Immunology, and.,Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey A Sosman
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Randall S Davis
- Departments of Medicine, Microbiology, and Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama, USA
| | - Justin M Balko
- Department of Medicine and.,Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Pérez-Mazliah D, Gardner PJ, Schweighoffer E, McLaughlin S, Hosking C, Tumwine I, Davis RS, Potocnik AJ, Tybulewicz VLJ, Langhorne J. Plasmodium-specific atypical memory B cells are short-lived activated B cells. eLife 2018; 7:e39800. [PMID: 30387712 PMCID: PMC6242553 DOI: 10.7554/elife.39800] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
A subset of atypical memory B cells accumulates in malaria and several infections, autoimmune disorders and aging in both humans and mice. It has been suggested these cells are exhausted long-lived memory B cells, and their accumulation may contribute to poor acquisition of long-lasting immunity to certain chronic infections, such as malaria and HIV. Here, we generated an immunoglobulin heavy chain knock-in mouse with a BCR that recognizes MSP1 of the rodent malaria parasite, Plasmodium chabaudi. In combination with a mosquito-initiated P. chabaudi infection, we show that Plasmodium-specific atypical memory B cells are short-lived and disappear upon natural resolution of chronic infection. These cells show features of activation, proliferation, DNA replication, and plasmablasts. Our data demonstrate that Plasmodium-specific atypical memory B cells are not a subset of long-lived memory B cells, but rather short-lived activated cells, and part of a physiologic ongoing B-cell response.
Collapse
Affiliation(s)
| | - Peter J Gardner
- MRC National Institute for Medical ResearchLondonUnited Kingdom
| | | | | | | | | | - Randall S Davis
- Department of MedicineUniversity of Alabama at BirminghamBirminghamUnited States
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamUnited States
- Department of Biochemistry and Molecular GeneticsUniversity of Alabama at BirminghamBirminghamUnited States
| | | | | | | |
Collapse
|
25
|
Zhao Y, Uduman M, Siu JHY, Tull TJ, Sanderson JD, Wu YCB, Zhou JQ, Petrov N, Ellis R, Todd K, Chavele KM, Guesdon W, Vossenkamper A, Jassem W, D'Cruz DP, Fear DJ, John S, Scheel-Toellner D, Hopkins C, Moreno E, Woodman NL, Ciccarelli F, Heck S, Kleinstein SH, Bemark M, Spencer J. Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue. Nat Commun 2018; 9:3857. [PMID: 30242242 PMCID: PMC6155012 DOI: 10.1038/s41467-018-06089-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/17/2018] [Indexed: 01/19/2023] Open
Abstract
Human memory B cells and marginal zone (MZ) B cells share common features such as the expression of CD27 and somatic mutations in their IGHV and BCL6 genes, but the relationship between them is controversial. Here, we show phenotypic progression within lymphoid tissues as MZ B cells emerge from the mature naïve B cell pool via a precursor CD27-CD45RBMEM55+ population distant from memory cells. By imaging mass cytometry, we find that MZ B cells and memory B cells occupy different microanatomical niches in organised gut lymphoid tissues. Both populations disseminate widely between distant lymphoid tissues and blood, and both diversify their IGHV repertoire in gut germinal centres (GC), but nevertheless remain largely clonally separate. MZ B cells are therefore not developmentally contiguous with or analogous to classical memory B cells despite their shared ability to transit through GC, where somatic mutations are acquired.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Mohamed Uduman
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Thomas J Tull
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Jeremy D Sanderson
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Yu-Chang Bryan Wu
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA
| | - Nedyalko Petrov
- Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, SE1 9RT, UK
| | - Richard Ellis
- Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, SE1 9RT, UK
| | - Katrina Todd
- Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, SE1 9RT, UK
| | - Konstantia-Maria Chavele
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - William Guesdon
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Anna Vossenkamper
- Barts & The London School of Medicine and Dentistry, Blizard Institute, Whitechapel, London, E1 2AT, UK
| | - Wayel Jassem
- Liver Transplant Unit, Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9NT, UK
| | - David P D'Cruz
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - David J Fear
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Susan John
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Dagmar Scheel-Toellner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Claire Hopkins
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Estefania Moreno
- Barts & The London School of Medicine and Dentistry, Blizard Institute, Whitechapel, London, E1 2AT, UK
| | - Natalie L Woodman
- School of Cancer Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Francesca Ciccarelli
- School of Cancer Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Susanne Heck
- Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, SE1 9RT, UK
| | - Steven H Kleinstein
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA.
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Mats Bemark
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30, Gothenburg, Sweden.
| | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK.
| |
Collapse
|
26
|
Good-Jacobson KL. Strength in diversity: Phenotypic, functional, and molecular heterogeneity within the memory B cell repertoire. Immunol Rev 2018; 284:67-78. [DOI: 10.1111/imr.12663] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim L. Good-Jacobson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology; Biomedicine Discovery Institute, Monash University; Clayton Vic. Australia
| |
Collapse
|
27
|
Liu Y, McDaniel JR, Khan S, Campisi P, Propst EJ, Holler T, Grunebaum E, Georgiou G, Ippolito GC, Ehrhardt GRA. Antibodies Encoded by FCRL4-Bearing Memory B Cells Preferentially Recognize Commensal Microbial Antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3962-3969. [PMID: 29703863 PMCID: PMC5988966 DOI: 10.4049/jimmunol.1701549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 01/02/2023]
Abstract
FCRL4, a low-affinity IgA Ab receptor with strong immunoregulatory potential, is an identifying feature of a tissue-based population of memory B cells (Bmem). We used two independent approaches to perform a comparative analysis of the Ag receptor repertoires of FCRL4+ and FCRL4- Bmem in human tonsils. We determined that FCRL4+ Bmem displayed lower levels of somatic mutations in their Ag receptors compared with FCRL4- Bmem but had similar frequencies of variable gene family usage. Importantly, Abs with reactivity to commensal microbiota were enriched in FCRL4+ cells, a phenotype not due to polyreactive binding characteristics. Our study links expression of the immunoregulatory FCRL4 molecule with increased recognition of commensal microbial Ags.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonathan R McDaniel
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Paolo Campisi
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; and
| | - Evan J Propst
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; and
| | - Theresa Holler
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; and
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - George Georgiou
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712
| | - Gregory C Ippolito
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| |
Collapse
|
28
|
Rostamzadeh D, Kazemi T, Amirghofran Z, Shabani M. Update on Fc receptor-like (FCRL) family: new immunoregulatory players in health and diseases. Expert Opin Ther Targets 2018; 22:487-502. [PMID: 29737217 DOI: 10.1080/14728222.2018.1472768] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Fc receptor-like (FCRL) molecules, as recently identified members of the immunoglobulin superfamily (IgSF), are preferentially expressed by B-cells. They have variable number of extracellular immunoglobulin-like domains and cytoplasmic activating ITAMs and/or inhibitory ITIMs. FCRL1-5 are dominantly expressed in different stages of B-cells development. But, FCRL6 is preferentially expressed in different subsets of T-cells and NK cells. FCRL1-5 could regulate different features of B-cell evolution such as development, differentiation, activation, antibody secretion and isotype switching. Areas covered: Improved understanding of FCRL expression may grant B-cells and finally its signaling pathways, alone or in cooperation with other signaling molecules, as interesting new targets for diagnostic, monitoring and immunotherapeutic modalities; although further investigations remain to be defined. Recent investigations on different family members of FCRL proteins have substantiated their differential expression on different tissues, malignancies, immune related disease and infectious diseases. Expert opinion: FCRLs restricted expressions in normal B-cells and T-cell subsets accompanied with their overexpression in B-cell malignancies introduce them as logical candidates for the development of antibody- and cell-based immunotherapy approaches in B-cell malignancies, immune-mediated and infectious diseases. FCRLs would be applied as attractive and specific targets for immunodiagnostic approaches, clinical prognosis as well as disease monitoring of relevant patients.
Collapse
Affiliation(s)
- Davood Rostamzadeh
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Tohid Kazemi
- b Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zahra Amirghofran
- c Department of Immunology, Medical School , Shiraz University of Medical Sciences , Shiraz , Iran.,d Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mahdi Shabani
- e Department of Immunology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,f Monoclonal Antibody Research Center , Avicenna Research Institute, ACECR , Tehran , Iran
| |
Collapse
|
29
|
Sennepin A, Real F, Duvivier M, Ganor Y, Henry S, Damotte D, Revol M, Cristofari S, Bomsel M. The Human Penis Is a Genuine Immunological Effector Site. Front Immunol 2017; 8:1732. [PMID: 29312291 PMCID: PMC5735067 DOI: 10.3389/fimmu.2017.01732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/23/2017] [Indexed: 12/28/2022] Open
Abstract
The human penis is a main portal of entry for numerous pathogens, and vaccines able to control resulting infections locally are highly desirable. However, in contrast to the gastrointestinal or vaginal mucosa, the penile immune system and mechanisms inducing a penile immune response remain elusive. In this descriptive study, using multiparametric flow cytometry and immunohistochemistry, we characterized mucosal immune cells such as B, T, and natural killer (NK) cells from the urethra, fossa, and glans of human adult penile tissues. We show that memory B lymphocytes and CD138+ plasma cells are detected in all penile compartments. CD4+ and CD8+ T lymphocytes reside in the epithelium and lamina propria of the penile regions and have mostly a resting memory phenotype. All penile regions contain CD56dim NK cells surface expressing the natural cytotoxicity receptor NKp44 and the antibody-dependent cell cytotoxicity receptor CD16. These cells are also able to spontaneously secrete pro- and anti-inflammatory cytokines, such as IL-17 and IL-22. Finally, CCR10 is the main homing receptor detected in these penile cells although, together with CCR3, CCR6, and CCR9, their expression level differs between penile compartments. Unlike antigen-presenting cells which type differ between penile regions as we reported earlier, urethral, fossa, and glans content in immune B, T, and NK cells is comparable. However, median values per each analysis suggest that the glans, containing higher number and more activated NK cells together with higher number of terminally differentiate effector CD8+ T cells, is a superior effector site than the urethra and the fossa. Thus, the human penis is an immunologically active tissue containing the cellular machinery required to induce and produce a specific and effective response against mucosal pathogens. It can therefore be considered as a classic mucosal effector site, a feature that must be taken into account for the elaboration of efficient strategies, including vaccines, against sexually transmitted infections.
Collapse
Affiliation(s)
- Alexis Sennepin
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Fernando Real
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Marine Duvivier
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Sonia Henry
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Diane Damotte
- Anatomy and Pathological Cytology Service, GH Cochin-Saint Vincent de Paul, Paris, France
| | - Marc Revol
- Plastic Surgery Service, Saint Louis Hospital, Paris, France
| | | | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
30
|
Cheng HD, Stöckmann H, Adamczyk B, McManus CA, Ercan A, Holm IA, Rudd PM, Ackerman ME, Nigrovic PA. High-throughput characterization of the functional impact of IgG Fc glycan aberrancy in juvenile idiopathic arthritis. Glycobiology 2017; 27:1099-1108. [PMID: 28973482 PMCID: PMC5881781 DOI: 10.1093/glycob/cwx082] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 12/19/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) encompasses all forms of chronic idiopathic arthritis that arise before age 16. Previous studies have found JIA to be associated with lower Fc galactosylation of circulating IgG, but the overall spectrum of glycan changes and the net impact on IgG function are unknown. Using ultra performance liquid chromatography (UPLC), we compared IgG glycosylation in 54 subjects with recent-onset untreated JIA with 98 healthy pediatric controls, paired to biophysical profiling of affinity for 20 IgG receptors using a high-throughput multiplexed microsphere assay. Patients with JIA exhibited an increase in hypogalactosylated and hyposialylated IgG glycans, but no change in fucosylation or bisection, together with alteration in the spectrum of IgG ligand binding. Supervised machine learning demonstrated a robust capacity to discriminate JIA subjects from controls using either glycosylation or binding data. The binding signature was driven predominantly by enhanced affinity for Fc receptor like protein 5 (FcRL5), a noncanonical Fc receptor expressed on B cells. Affinity for FcRL5 correlated inversely with galactosylation and sialylation, a relationship confirmed through enzymatic manipulation. These results demonstrate the capacity of combined structural and biophysical IgG phenotyping to define the overall functional impact of IgG glycan changes and implicate FcRL5 as a potential cellular sensor of IgG glycosylation.
Collapse
Affiliation(s)
- Hao D Cheng
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, 03755 NH, USA
| | - Henning Stöckmann
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Barbara Adamczyk
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Ciara A McManus
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Altan Ercan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ingrid A Holm
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
| | - Pauline M Rudd
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Margaret E Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, 03755 NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, 03755 NH, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
31
|
CD11c+ T-bet+ memory B cells: Immune maintenance during chronic infection and inflammation? Cell Immunol 2017; 321:8-17. [PMID: 28838763 DOI: 10.1016/j.cellimm.2017.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 01/30/2023]
Abstract
CD11c+ T-bet+ B cells have now been detected and characterized in different experimental and clinical settings, in both mice and humans. Whether such cells are monolithic, or define subsets of B cells with different functions is not yet known. Our studies have identified CD11c+ IgM+ CD19hi splenic IgM memory B cells that appear at approximately three weeks post-ehrlichial infection, and persist indefinitely, during low-level chronic infection. Although the CD11c+ T-bet+ B cells we have described are distinct, they appear to share many features with similar cells detected under diverse conditions, including viral infections, aging, and autoimmunity. We propose that CD11c+ T-bet+ B cells as a group share characteristics of memory B cells that are maintained under conditions of inflammation and/or low-level chronic antigen stimulation. In some cases, these cells may be advantageous, by providing immunity to re-infection, but in others may be deleterious, by contributing to aged-associated autoimmune responses.
Collapse
|
32
|
Jourdan M, Robert N, Cren M, Thibaut C, Duperray C, Kassambara A, Cogné M, Tarte K, Klein B, Moreaux J. Characterization of human FCRL4-positive B cells. PLoS One 2017. [PMID: 28636654 PMCID: PMC5479562 DOI: 10.1371/journal.pone.0179793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
FCRL4 is an immunoregulatory receptor that belongs to the Fc receptor-like (FCRL) family. In healthy individuals, FCRL4 is specifically expressed by memory B cells (MBCs) localized in sub-epithelial regions of lymphoid tissues. Expansion of FCRL4+ B cells has been observed in blood and other tissues in various infectious and autoimmune disorders. Currently, the mechanisms involved in pathological FCRL4+ B cell generation are actively studied, but they remain elusive. As in vivo FCRL4+ cells are difficult to access and to isolate, here we developed a culture system to generate in vitro FCRL4+ B cells from purified MBCs upon stimulation with soluble CD40 ligand and/or CpG DNA to mimic T-cell dependent and/or T-cell independent activation, respectively. After 4 days of stimulation, FCRL4+ B cells represented 17% of all generated cells. Transcriptomic and phenotypic analyses of in vitro generated FCRL4+ cells demonstrated that they were closely related to FCRL4+ tonsillar MBCs. They strongly expressed inhibitory receptor genes, as observed in exhausted FCRL4+ MBCs from blood samples of HIV-infected individuals with high viremia. In agreement, cell cycle genes were significantly downregulated and the number of cell divisions was two-fold lower in in vitro generated FCRL4+ than FCRL4- cells. Finally, due to their reduced proliferation and differentiation potential, FCRL4+ cells were less prone to differentiate into plasma cells, differently from FCRL4- cells. Our in vitro model could be of major interest for studying the biology of normal and pathological FCRL4+ cells.
Collapse
Affiliation(s)
- Michel Jourdan
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Nicolas Robert
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
| | | | - Coraline Thibaut
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | | | - Alboukadel Kassambara
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
| | - Michel Cogné
- CNRS UMR 7276, Université de Limoges, Limoges, France
| | - Karin Tarte
- Pôle Cellules et Tissus, CHU Rennes, Rennes, France
- INSERM, U917, Rennes, France
| | - Bernard Klein
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
- Université Montpellier 1, UFR Médecine, Montpellier, France
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
- Université Montpellier 1, UFR Médecine, Montpellier, France
- * E-mail:
| |
Collapse
|
33
|
Amara K, Clay E, Yeo L, Ramsköld D, Spengler J, Sippl N, Cameron JA, Israelsson L, Titcombe PJ, Grönwall C, Sahbudin I, Filer A, Raza K, Malmström V, Scheel-Toellner D. B cells expressing the IgA receptor FcRL4 participate in the autoimmune response in patients with rheumatoid arthritis. J Autoimmun 2017; 81:34-43. [PMID: 28343748 PMCID: PMC5473332 DOI: 10.1016/j.jaut.2017.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022]
Abstract
The clinical efficacy of B cell targeting therapies highlights the pathogenic potential of B cells in inflammatory diseases. Expression of Fc Receptor like 4 (FcRL4) identifies a memory B cell subset, which is enriched in the joints of patients with rheumatoid arthritis (RA) and in mucosa-associated lymphoid tissue. The high level of RANKL production by this B cell subset indicates a unique pathogenic role. In addition, recent work has identified a role for FcRL4 as an IgA receptor, suggesting a potential function in mucosal immunity. Here, the contribution of FcRL4+ B cells to the specific autoimmune response in the joints of patients with RA was investigated. Single FcRL4+ and FcRL4- B cells were sorted from synovial fluid and tissue from RA patients and their immunoglobulin genes characterized. Levels of hypermutation in the variable regions in both populations were largely consistent with memory B cells selected by an antigen- and T cell-dependent process. Recombinant antibodies were generated based on the IgH and IgL variable region sequences and investigated for antigen specificity. A significantly larger proportion of the recombinant antibodies generated from individual synovial FcRL4+ B cells showed reactivity towards citrullinated autoantigens. Furthermore, both in analyses based on heavy chain sequences and flow cytometric detection, FcRL4+ B cells have significantly increased usage of the IgA isotype. Their low level of expression of immunoglobulin and plasma cell differentiation genes does not suggest current antibody secretion. We conclude that these activated B cells are a component of the local autoimmune response, and through their RANKL expression, can contribute to joint destruction. Furthermore, their expression of FcRL4 and their enrichment in the IgA isotype points towards a potential role for these cells in the link between mucosal and joint inflammation. Memory B cells expressing the IgA receptor FcRL4 are found in the joints of patients with RA. B cell receptors expressed on synovial FcRL4+ B cells more frequently belong to the IgA class. Among recombinant antibodies cloned from FcRL4+ B cells there is more reactivity with citrullinated proteins. The gene transcription profile of FcRL4+ B cells shows a low level of differentiation to plasma cells. These cells may be involved in the link between mucosal and joint autoimmunity.
Collapse
Affiliation(s)
- Khaled Amara
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Elizabeth Clay
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lorraine Yeo
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniel Ramsköld
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Julia Spengler
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Natalie Sippl
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - James A Cameron
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lena Israelsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Philip J Titcombe
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Caroline Grönwall
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Ilfita Sahbudin
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew Filer
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Karim Raza
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Rheumatology, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham UK
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Dagmar Scheel-Toellner
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
34
|
Spencer J, Sollid LM. The human intestinal B-cell response. Mucosal Immunol 2016; 9:1113-24. [PMID: 27461177 DOI: 10.1038/mi.2016.59] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/10/2016] [Indexed: 02/04/2023]
Abstract
The intestinal immune system is chronically challenged by a huge plethora of antigens derived from the lumen. B-cell responses in organized gut-associated lymphoid tissues and regional lymph nodes that are driven chronically by gut antigens generate the largest population of antibody-producing cells in the body: the gut lamina propria plasma cells. Although animal studies have provided insights into mechanisms that underpin this dynamic process, some very fundamental differences in this system appear to exist between species. Importantly, this prevents extrapolation from mice to humans to inform translational research questions. Therefore, in this review we will describe the structures and mechanisms involved in the propagation, dissemination, and regulation of this immense plasma cell population in man. Uniquely, we will seek our evidence exclusively from studies of human cells and tissues.
Collapse
Affiliation(s)
- J Spencer
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - L M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
35
|
Getahun A, Cambier JC. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Immunol Rev 2016; 268:66-73. [PMID: 26497513 DOI: 10.1111/imr.12336] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptors for immunoglobulin Fc regions play multiple critical roles in the immune system, mediating functions as diverse as phagocytosis, triggering degranulation of basophils and mast cells, promoting immunoglobulin class switching, and preventing excessive activation. Transmembrane signaling associated with these functions is mediated primarily by two amino acid sequence motifs, ITAMs (immunoreceptor tyrosine-based activation motifs) and ITIMs (immunoreceptor tyrosine-based inhibition motifs) that act as the receptors' interface with activating and inhibitory signaling pathways, respectively. While ITAMs mobilize activating tyrosine kinases and their consorts, ITIMs mobilize opposing tyrosine and inositol-lipid phosphatases. In this review, we will discuss our current understanding of signaling by these receptors/motifs and their sometimes blurred lines of function.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
36
|
Abstract
Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| | - Friederike Jönsson
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| |
Collapse
|
37
|
Investigation of the human FCRL1, 2, and 4 gene expressions in patients with rheumatoid arthritis. Rheumatol Int 2016; 36:1149-56. [DOI: 10.1007/s00296-016-3495-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
|
38
|
B cell receptor induced Fc receptor-like 5 expression is mediated by multiple signaling pathways converging on NF-κB and NFAT. Mol Immunol 2016; 73:112-21. [PMID: 27065451 DOI: 10.1016/j.molimm.2016.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 02/07/2023]
Abstract
Fc receptor-like (FCRL) proteins are novel regulators of the B cell response to antigen. Human FCRL5 binds intact IgG and modifies the strength of antigen receptor (BCR) signaling. Altering FCRL5 expression could therefore regulate the B cell response to antigen. In this study, we found that FCRL5 expression is induced specifically upon BCR stimulation and dissected the molecular mechanism. FCRL5 mRNA and cell surface protein expression required prolonged BCR stimulation and de novo protein synthesis. Using chemical inhibitors and activators, we identified roles for several signaling pathways, indicating a complex mechanism. Specifically, the PI3K/AKT, JNK, PKC and IKK2-dependent classical NF-κB pathways were involved in induced FCRL5 expression. Furthermore, induced FCRL5 expression required elevation of intracellular Ca(++) and was partially blocked by cyclosporine A, a calcineurin inhibitor. The importance of the transcription factors NF-κB, NFAT and CREB-binding protein was revealed based on sensitivity to inhibitors. Using reporter gene assays, we showed that the core FCRL5 promoter was sufficient to drive induced gene expression. Mutations of two predicted NF-κB sites or an NFAT site in the core promoter abrogated induced gene expression, suggesting direct regulation of the FCRL5 gene by NF-κB and NFAT. In support, we detected binding of NF-κB and NFAT family proteins to oligonucleotides corresponding to the predicted sites. We propose that the identified intricate mechanism serves to ensure that FCRL5 is expressed on B cells at a precise time following antigen encounter, with potential implications regarding regulation of the B cell response.
Collapse
|
39
|
Liu Y, Bezverbnaya K, Zhao T, Parsons MJ, Shi M, Treanor B, Ehrhardt GRA. Involvement of the HCK and FGR src-family kinases in FCRL4-mediated immune regulation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5851-60. [PMID: 25972488 DOI: 10.4049/jimmunol.1401533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 04/18/2015] [Indexed: 12/26/2022]
Abstract
FCRL4 is an immunoregulatory receptor expressed by a subpopulation of memory B cells. These tissue-based cells express increased levels of the src-family kinases HCK and FGR. In this study, we investigate the roles of these src-family kinases in FCRL4-mediated immunoregulation of B cells in the context of previously unrecognized palmitoylation of the receptor. We observed enhanced phosphorylation of FCRL4 on tyrosine residues in the presence of the HCK p59 or FGR. This phosphorylation was markedly reduced in assays using a palmitoylation-defective mutant of FCRL4. In reporter gene studies, we observe that FCRL4 expression enhances CpG-mediated activation of NF-κB signaling. Surprisingly, using a reporter gene linked to activation of the MAPK substrate Elk-1 in response to Ag receptor ligation, we find that FCRL4 has inhibitory activity in cells coexpressing FGR but an activating function in cells coexpressing HCK p59. We provide evidence that in primary memory B cells, expression of FCRL4 leads to increased expression of IL-10 in the presence of FGR or HCK p59 in response to CpG, but increased levels of IFN-γ only in the context of coexpression of FGR. Our study supports the specific requirement of HCK p59 and FGR src-family kinases for FCRL4-mediated immunomodulatory activity and indicates that palmitoylation serves as an additional level of regulatory control of FCRL4.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Ksenia Bezverbnaya
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Tiantian Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Marion J Parsons
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mengyao Shi
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Bebhinn Treanor
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
40
|
Abstract
Coelomic cavity–derived B-1 and splenic marginal zone (MZ) B lymphocytes play principal roles in frontline host protection at homeostasis and during primary humoral immune responses. Although they share many features that enable rapid and broad-based defense against pathogens, these innate-like subsets have disparate B cell receptor (BCR) signaling features. Members of the Fc receptor–like (FCRL) family are preferentially expressed by B cells and possess tyrosine-based immunoregulatory function. An unusual characteristic of many of these cell surface proteins is the presence of both inhibitory (ITIM) and activating (ITAM-like) motifs in their cytoplasmic tails. In mice, FCRL5 is a discrete marker of splenic MZ and peritoneal B-1 B cells and has both ITIM and ITAM-like sequences. Recent work explored its signaling properties and identified that FCRL5 differentially influences innate-like BCR function. Closer scrutiny of these differences disclosed the ability of FCRL5 to counter-regulate BCR activation by recruiting SHP-1 and Lyn to its cytoplasmic motifs. Furthermore, the disparity in FCRL5 regulation between MZ and B-1 B cells correlated with relative intracellular concentrations of SHP-1. These findings validate and extend our understanding of the unique signaling features in innate-like B cells and provide new insight into the complexity of FCRL modulation.
Collapse
Affiliation(s)
- Randall S Davis
- Departments of Medicine, Microbiology, and Biochemistry and Molecular Genetics, and the Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
41
|
Yeo L, Lom H, Juarez M, Snow M, Buckley CD, Filer A, Raza K, Scheel-Toellner D. Expression of FcRL4 defines a pro-inflammatory, RANKL-producing B cell subset in rheumatoid arthritis. Ann Rheum Dis 2015; 74:928-35. [PMID: 24431391 PMCID: PMC4392201 DOI: 10.1136/annrheumdis-2013-204116] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 12/14/2013] [Accepted: 12/21/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The success of B cell targeting therapies has highlighted the importance of B cells in rheumatoid arthritis pathogenesis. We have previously shown that B cells in the RA synovium are capable of producing pro-inflammatory and bone-destructive cytokines including RANKL. Here we sought to characterise the nature and functional relevance of the RANKL-producing B cell subset in the RA synovium. METHODS Synovial fluid and peripheral blood B cells from patients with RA were analysed by flow cytometry for markers of B cell differentiation and activation and for chemokine receptors. FcRL4(+) and FcRL4(-) B cells sorted from synovial fluid were analysed for cytokine expression using Taqman low-density arrays. Synovial tissue biopsies obtained from patients with RA were analysed by immunofluorescence for CD20, RANKL and FcRL4. FCRL4 mRNA expression was determined in synovial tissue of RA patients and non-inflammatory control subjects by real-time PCR. RESULTS RANKL-producing B cells in RA synovial tissue and fluid were identified as belonging to a distinct subset of B cells defined by expression of the transmembrane protein FcRL4. FcRL4+ B cells express a distinct combination of cytokines and surface proteins indicating a function distinct from that of FcRL4- B cells. Notably, FcRL4+ B cells expressed high levels of TNF-α and RANKL mRNA. CONCLUSIONS We have identified a novel pro-inflammatory B cell population in the RA synovium which is defined by expression of FcRL4 and responsible for RANKL production. This B cell population expresses high levels of CD20, and its removal by rituximab may contribute to the anti-inflammatory effect of this drug.
Collapse
Affiliation(s)
- L Yeo
- Rheumatology Research Group, Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - H Lom
- Rheumatology Research Group, Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - M Juarez
- Rheumatology Research Group, Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - M Snow
- Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK
| | - C D Buckley
- Rheumatology Research Group, Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - A Filer
- Rheumatology Research Group, Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - K Raza
- Rheumatology Research Group, Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - D Scheel-Toellner
- Rheumatology Research Group, Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
Czajkowsky DM, Andersen JT, Fuchs A, Wilson TJ, Mekhaiel D, Colonna M, He J, Shao Z, Mitchell DA, Wu G, Dell A, Haslam S, Lloyd KA, Moore SC, Sandlie I, Blundell PA, Pleass RJ. Developing the IVIG biomimetic, hexa-Fc, for drug and vaccine applications. Sci Rep 2015; 5:9526. [PMID: 25912958 PMCID: PMC5224519 DOI: 10.1038/srep09526] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
The remarkable clinical success of Fc-fusion proteins has driven intense investigation for even more potent replacements. Using quality-by-design (QbD) approaches, we generated hexameric-Fc (hexa-Fc), a ~20 nm oligomeric Fc-based scaffold that we here show binds low-affinity inhibitory receptors (FcRL5, FcγRIIb, and DC-SIGN) with high avidity and specificity, whilst eliminating significant clinical limitations of monomeric Fc-fusions for vaccine and/or cancer therapies, in particular their poor ability to activate complement. Mass spectroscopy of hexa-Fc reveals high-mannose, low-sialic acid content, suggesting that interactions with these receptors are influenced by the mannose-containing Fc. Molecular dynamics (MD) simulations provides insight into the mechanisms of hexa-Fc interaction with these receptors and reveals an unexpected orientation of high-mannose glycans on the human Fc that provides greater accessibility to potential binding partners. Finally, we show that this biosynthetic nanoparticle can be engineered to enhance interactions with the human neonatal Fc receptor (FcRn) without loss of the oligomeric structure, a crucial modification for these molecules in therapy and/or vaccine strategies where a long plasma half-life is critical.
Collapse
Affiliation(s)
- Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Jan Terje Andersen
- Centre for Immune Regulation (CIR) and Department of Immunology, Oslo University Hospital Rikshospitalet, P.O. Box 4956, Oslo N-0424, Norway
| | - Anja Fuchs
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Wilson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Mekhaiel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jianfeng He
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Daniel A Mitchell
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Gang Wu
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7
| | - Katy A Lloyd
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Shona C Moore
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Inger Sandlie
- 1] Centre for Immune Regulation (CIR) and Department of Immunology, Oslo University Hospital Rikshospitalet, P.O. Box 4956, Oslo N-0424, Norway [2] CIR and Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Patricia A Blundell
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Richard J Pleass
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
43
|
Borhis G, Richard Y. Subversion of the B-cell compartment during parasitic, bacterial, and viral infections. BMC Immunol 2015; 16:15. [PMID: 25884828 PMCID: PMC4374497 DOI: 10.1186/s12865-015-0079-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
Recent studies on HIV infection have identified new human B-cell subsets with a potentially important impact on anti-viral immunity. Current work highlights the occurrence of similar B-cell alterations in other viral, bacterial, and parasitic infections, suggesting that common strategies have been developed by pathogens to counteract protective immunity. For this review, we have selected key examples of human infections for which B-cell alterations have been described, to highlight the similarities and differences in the immune responses to a variety of pathogens. We believe that further comparisons between these models will lead to critical progress in the understanding of B-cell mechanisms and will open new target avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Gwenoline Borhis
- INSERM u1016, Cochin Institute, Department of Infection, Immunity and Inflammation, 27 rue du Faubourg St-Jacques, Roussy Bldg., Paris, 75014, France. .,CNRS, Paris, UMR8104, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014, France.
| | - Yolande Richard
- INSERM u1016, Cochin Institute, Department of Infection, Immunity and Inflammation, 27 rue du Faubourg St-Jacques, Roussy Bldg., Paris, 75014, France. .,CNRS, Paris, UMR8104, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014, France.
| |
Collapse
|
44
|
Shabani M, Bayat AA, Jeddi-Tehrani M, Rabbani H, Hojjat-Farsangi M, Ulivieri C, Amirghofran Z, Baldari CT, Shokri F. Ligation of human Fc receptor like-2 by monoclonal antibodies down-regulates B-cell receptor-mediated signalling. Immunology 2014; 143:341-53. [PMID: 24797767 DOI: 10.1111/imm.12311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
B-cell antigen receptor (BCR) signalling and its regulation through negative and positive regulators are critical for balancing B-cell response and function. Human Fc receptor like-2 (FCRL2), a member of the newly identified FCRL family, could influence B-cell signalling due to possession of both immunoreceptor tyrosine-based activation and inhibitory motifs (ITAM and ITIM). Since the natural ligand of FCRL2 has not been identified, we generated FCRL2-specific monoclonal antibodies (mAbs) and employed them to investigate the influence of FCRL2 stimulation on BCR signalling in an FCRL2-expressing B-cell line. Two anti-FCRL2 mAb-producing hybridoma clones (5A7-E7 and 3D8-G8) were selected. None of the mAbs displayed any cross-reactivity with the other members of the FCRL family including recombinant FCRL1, -3, -4 and -5, as tested by FACS and ELISA techniques. Engagement of the FCRL2 by these mAbs resulted in significant inhibition of BCR signalling mediators such as calcium mobilization and phosphorylation of the mitogen-activated protein kinases Erk, p38 and Jnk. These findings indicate that the FCRL2 ITIM motifs are functional and the anti-FCRL2 mAbs may mimic the natural ligand of FCRL2 by induction of inhibitory signals in B cells.
Collapse
Affiliation(s)
- Mahdi Shabani
- Monoclonal Antibody Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran; Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5:520. [PMID: 25368619 PMCID: PMC4202688 DOI: 10.3389/fimmu.2014.00520] [Citation(s) in RCA: 1786] [Impact Index Per Article: 162.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different subclasses have different effector functions, both in terms of triggering FcγR-expressing cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical FcγR and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current review.
Collapse
Affiliation(s)
- Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Gillian Dekkers
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
46
|
Dong C, Ptacek TS, Redden DT, Zhang K, Brown EE, Edberg JC, McGwin G, Alarcón GS, Ramsey-Goldman R, Reveille JD, Vilá LM, Petri M, Qin A, Wu J, Kimberly RP. Fcγ receptor IIIa single-nucleotide polymorphisms and haplotypes affect human IgG binding and are associated with lupus nephritis in African Americans. Arthritis Rheumatol 2014; 66:1291-9. [PMID: 24782186 DOI: 10.1002/art.38337] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/19/2013] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate whether the Fcγ receptor IIIa-66L/R/H (FcγRIIIa-66L/R/H) polymorphism influences net effective receptor function and to assess if the FCGR3A combined genotypes formed by FcγRIIIa-66L/R/H and FcγRIIIa-176F/V, as well as copy number variation (CNV), confer risk of developing systemic lupus erythematosus (SLE) and lupus nephritis. METHODS FcγRIIIa variants, expressed on A20 IIA1.6 cells, were used in flow cytometry-based human IgG-binding assays. Using Pyrosequencing methodology, FCGR3A single-nucleotide polymorphism and CNV genotypes were determined in a cohort of 1,728 SLE patients and 2,404 healthy controls. RESULTS The FcγRIIIa-66L/R/H (rs10127939) polymorphism influenced ligand binding capacity in the presence of the FcγRIIIa-176V (rs396991) allele. There was a trend toward an association of the low-binding FcγRIIIa-176F allele with lupus nephritis among African Americans (P = 0.0609) but not among European Americans (P > 0.10). Nephritis among African American patients with SLE was associated with FcγRIIIa low-binding haplotypes containing the 66L/R/H and 176F variants (P = 0.03) and with low-binding genotype combinations (P = 0.002). No association was observed among European American patients with SLE. The distribution of FCGR3A CNV was not significantly different among controls and SLE patients with or without nephritis. CONCLUSION FcγRIIIa-66L/R/H influences ligand binding. The low-binding haplotypes formed by 66L/R/H and 176F confer enhanced risk of lupus nephritis in African Americans. FCGR3A CNVs are not associated with SLE or lupus nephritis in either African Americans or European Americans.
Collapse
Affiliation(s)
- Chaoling Dong
- Yangzhou University, Yangzhou, China; University of Alabama at, Birmingham
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chiu YK, Lin IY, Su ST, Wang KH, Yang SY, Tsai DY, Hsieh YT, Lin KI. Transcription factor ABF-1 suppresses plasma cell differentiation but facilitates memory B cell formation. THE JOURNAL OF IMMUNOLOGY 2014; 193:2207-17. [PMID: 25070843 DOI: 10.4049/jimmunol.1400411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag-primed B cells that result from an immune response can form either memory B cells or Ab-secreting plasma cells; however, the molecular machinery that controls this cellular fate is poorly understood. In this study, we show that activated B cell factor-1 (ABF-1), which encodes a basic helix-loop-helix transcriptional repressor, participates in this regulation. ABF-1 was prevalently expressed in purified memory B cells and induced by T follicular helper cell-mediated signals. ABF-1 expression declined by the direct repression of B lymphocyte-induced maturation protein-1 during differentiation. Ectopic expression of ABF-1 reduced the formation of Ab-secreting cells in an in vitro differentiation system of human memory B cells. Accordingly, knockdown of ABF-1 potentiates the formation of Ab-secreting cells. A transgenic mouse that expresses inducible ABF-1 in a B cell-specific manner was generated to demonstrate that the formation of germinal center and memory B cells was augmented by induced ABF-1 in an immune response, whereas the Ag-specific plasma cell response was dampened. This effect was associated with the ability of ABF-1 to limit cell proliferation. Together, our results demonstrate that ABF-1 facilitates formation of memory B cells but prevents plasma cell differentiation.
Collapse
Affiliation(s)
- Yi-Kai Chiu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - I-Ying Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; and
| | - Shin-Tang Su
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan-Hsiung Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Immunology, National Taiwan University, Taipei 110, Taiwan
| | - Shii-Yi Yang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Dong-Yan Tsai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; and
| | - Yi-Ting Hsieh
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; and Institute of Immunology, National Taiwan University, Taipei 110, Taiwan
| |
Collapse
|
48
|
Terrier B, Nagata S, Ise T, Rosenzwajg M, Pastan I, Klatzmann D, Saadoun D, Cacoub P. CD21(-/low) marginal zone B cells highly express Fc receptor-like 5 protein and are killed by anti-Fc receptor-like 5 immunotoxins in hepatitis C virus-associated mixed cryoglobulinemia vasculitis. Arthritis Rheumatol 2014; 66:433-43. [PMID: 24504816 DOI: 10.1002/art.38222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/01/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hepatitis C virus (HCV) is associated with B cell lymphoproliferative disorders, including mixed cryoglobulinemia (MC) vasculitis and B cell non-Hodgkin's lymphoma. The expansion of clonal and autoreactive rheumatoid factor-bearing CD21(-/low) marginal zone (MZ) B cells was demonstrated in patients with HCV-associated MC vasculitis. Fc receptor-like (FCRL) proteins comprise a family of immunoregulatory proteins preferentially expressed on B lineage cells. The goal of this study was to investigate the expression of FCRL proteins 1-5 on B cells from patients with HCV-associated MC vasculitis. METHODS Expression of FCRL proteins 1-5 was assessed by flow cytometry on B cells from 15 HCV-infected patients with type II MC (7 of whom had B cell non-Hodgkin's lymphoma), 20 HCV-infected patients without MC, and 20 healthy donors. To evaluate FCRL-5 as an immunotherapy target in HCV-associated MC vasculitis, 2 anti-FCRL-5 recombinant immunotoxins were produced using anti-FCRL-5 monoclonal antibodies and Pseudomonas exotoxin. RESULTS Expression of FCRLs 2, 3, and 5 was markedly increased while expression of FCRL-1 was decreased on clonal CD21(-/low) MZ B cells, as compared with other B cell subsets, from HCV-infected patients and healthy donors. However, there was no difference in the pattern of FCRL expression between HCV-MC patients with lymphoma and those without lymphoma. The anti-FCRL-5 immunotoxins showed specific cytotoxicity against FCRL-5-expressing clonal CD21(-/low) MZ B cells isolated from HCV-infected patients as well as FCRL-5-transfected cell lines. No cytotoxicity against T cells or conventional B cells was observed. CONCLUSION These findings suggest that FCRL-5-targeting therapies could be a specific treatment for HCV-associated MC vasculitis and other FCRL-5-positive autoimmune B cell disorders.
Collapse
Affiliation(s)
- Benjamin Terrier
- UMR CNRS 7211, INSERM U959, Groupe Hospitalier Pitié-Salpetrière, and Université Pierre et Marie Curie, Paris 6, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Parasite-driven dysfunctional adaptive immunity represents an emerging hypothesis to explain the chronic or persistent nature of parasitic infections, as well as the observation that repeated exposure to most parasitic organisms fails to engender sterilizing immunity. This review discusses recent examples from clinical studies and experimental models of parasitic infection that substantiate the role for immune dysfunction in the inefficient generation and maintenance of potent anti-parasitic immunity. Better understanding of the complex interplay between parasites, host adaptive immunity, and relevant negative regulatory circuits will inform efforts to enhance resistance to chronic parasitic infections through vaccination or immunotherapy.
Collapse
Affiliation(s)
- Ryan A Zander
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 ; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 ; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
50
|
Li FJ, Won WJ, Becker EJ, Easlick JL, Tabengwa EM, Li R, Shakhmatov M, Honjo K, Burrows PD, Davis RS. Emerging roles for the FCRL family members in lymphocyte biology and disease. Curr Top Microbiol Immunol 2014; 382:29-50. [PMID: 25116094 DOI: 10.1007/978-3-319-07911-0_2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the extended Fc receptor-like (FCRL) family in humans and mice are preferentially expressed by B cells and possess tyrosine-based immunoregulatory function. Although the majority of these proteins repress B cell receptor-mediated activation, there is an emerging evidence for their bifunctionality and capacity to counter-regulate adaptive and innate signaling pathways. In light of these findings, the recent discovery of ligands for several of these molecules has begun to reveal exciting potential for them in normal lymphocyte biology and is launching a new phase of FCRL investigation. Importantly, these fundamental developments are also setting the stage for defining their altered roles in the pathogenesis of a growing number of immune-mediated diseases. Here we review recent advances in the FCRL field and highlight the significance of these intriguing receptors in normal and perturbed immunobiology.
Collapse
Affiliation(s)
- F J Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|