1
|
Gewalt T, Dmitrieva AM, Elsner F, Zhao X, Sieber DD, Kocak IG, Yang Q, Orschel CV, Eckert NM, Goebel B, Nill M, Peter F, Hartmann A, Beleggia F, Odenthal M, Reinhardt HC, Ullrich RT, Graw F, Meder L. TAT-CRE inhalation enables tumor induction corresponding to adenoviral Cre-recombinase in a lung cancer mouse model. Commun Biol 2025; 8:741. [PMID: 40360735 PMCID: PMC12075843 DOI: 10.1038/s42003-025-08146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Cre-recombinase inducible model systems are extensively used in cancer research to manipulate gene expression in specific tissues and induce autochthonous tumor growth. These systems often involve the cross-breeding of genetically engineered organisms containing loxP-flanked alleles with those expressing Cre-recombinase. This approach, while effective, has the challenge of requiring high numbers of animals due to breeding requirements. Other frequently used tumor induction methods in cancer research involve the direct application of viral Cre-recombinase vectors. This approach presents the challenge of the accessibility of facilities that meet the necessary safety level. In this context, we perform a comprehensive comparison between TAT-CRE (biosafety level S1) and adenoviral Cre-recombinase induced (biosafety level S2) lung adenocarcinomas driven by KrasG12D expression and Trp53 depletion. We use in vivo lung tumor monitoring via computed tomography, single-cell RNA sequencing, immunohistochemistry and flow cytometry to elucidate similarities and differences between TAT-CRE and adenoviral Cre-recombinase induced lung adenocarcinomas. TAT-CRE induced lung tumors present differences in micro-vessels and macrophages but with corresponding tumor onset and growth characteristics compared to adenoviral-Cre recombinase induced lung tumors. Taken together, TAT-CRE is a valuable genetic engineering safety level S1 alternative for cancer induction and may be implemented in other cancer models than lung cancer.
Collapse
Affiliation(s)
- Tabea Gewalt
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna M Dmitrieva
- Chair of Experimental Medicine I, Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix Elsner
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Xinlei Zhao
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Dimitri Sieber
- Chair of Experimental Medicine I, Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ilayda Gülsen Kocak
- Chair of Experimental Medicine I, Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Qian Yang
- Chair of Experimental Medicine I, Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claudia Viktoria Orschel
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Naja Maria Eckert
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bianca Goebel
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marieke Nill
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Franziska Peter
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Filippo Beleggia
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, German Cancer Consortium (DKTK), Essen, Germany
| | - Roland Tillmann Ullrich
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frederik Graw
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lydia Meder
- Chair of Experimental Medicine I, Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
2
|
Gimenez GA, Romijn M, van den Herik J, Meijer W, Eggers R, Hobo B, De Zeeuw CI, Canto CB, Verhaagen J, Carulli D. A Study on Potential Sources of Perineuronal Net-Associated Sema3A in Cerebellar Nuclei Reveals Toxicity of Non-Invasive AAV-Mediated Cre Expression in the Central Nervous System. Int J Mol Sci 2025; 26:819. [PMID: 39859534 PMCID: PMC11765860 DOI: 10.3390/ijms26020819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown. Most Sema3A-bearing neurons do not express Sema3A mRNA, suggesting that Sema3A may be released from other neurons. Another potential source of Sema3A is the choroid plexus. To identify sources of PNN-associated Sema3A, we focused on the cerebellar nuclei, which contain Sema3A+ PNNs. Cerebellar nuclei neurons receive prominent input from Purkinje cells (PCs), which express high levels of Sema3A mRNA. By using a non-invasive viral vector approach, we overexpressed Cre in PCs, the choroid plexus, or throughout the CNS of Sema3Afl/fl mice. Knocking out Sema3A in PCs or the choroid plexus was not sufficient to decrease the amount of PNN-associated Sema3A. Alternatively, knocking out Sema3A throughout the CNS induced a decrease in PNN-associated Sema3A. However, motor deficits, microgliosis, and neurodegeneration were observed, which were due to Cre toxicity. Our study represents the first attempt to unravel cellular sources of PNN-associated Sema3A and shows that non-invasive viral-mediated Cre expression throughout the CNS could lead to toxicity, complicating the interpretation of Cre-mediated Sema3A knock-out.
Collapse
Affiliation(s)
- Geoffrey-Alexander Gimenez
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (C.I.D.Z.); (C.B.C.)
| | - Maurits Romijn
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Joëlle van den Herik
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Wouter Meijer
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Ruben Eggers
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Barbara Hobo
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Chris I. De Zeeuw
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (C.I.D.Z.); (C.B.C.)
- Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (C.I.D.Z.); (C.B.C.)
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Daniela Carulli
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| |
Collapse
|
3
|
Enz LS, Winkler A, Wrzos C, Dasen B, Nessler S, Stadelmann C, Schaeren-Wiemers N. An Animal Model for Chronic Meningeal Inflammation and Inflammatory Demyelination of the Cerebral Cortex. Int J Mol Sci 2023; 24:13893. [PMID: 37762198 PMCID: PMC10531364 DOI: 10.3390/ijms241813893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Modeling chronic cortical demyelination allows the study of long-lasting pathological changes observed in multiple sclerosis such as failure of remyelination, chronically disturbed functions of oligodendrocytes, neurons and astrocytes, brain atrophy and cognitive impairments. We aimed at generating an animal model for studying the consequences of chronic cortical demyelination and meningeal inflammation. To induce long-lasting cortical demyelination and chronic meningeal inflammation, we immunized female Lewis rats against myelin oligodendrocyte glycoprotein (MOG) and injected lentiviruses for continuing overexpression of the cytokines TNFα and IFNγ in the cortical brain parenchyma. Immunization with MOG and overexpression of TNFα and IFNγ led to widespread subpial demyelination and meningeal inflammation that were stable for at least 10 weeks. We demonstrate here that immunization with MOG is necessary for acute as well as chronic cortical demyelination. In addition, long-lasting overexpression of TNFα and IFNγ in the brain parenchyma is sufficient to induce chronic meningeal inflammation. Our model simulates key features of chronic cortical demyelination and inflammation, reminiscent of human multiple sclerosis pathology. This will allow molecular, cellular and functional investigations for a better understanding of the adaptation mechanisms of the cerebral cortex in multiple sclerosis.
Collapse
Affiliation(s)
- Lukas Simon Enz
- Neurobiology, Department of Biomedicine, University Hospital Basel, University Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland;
| | - Anne Winkler
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (S.N.); (C.S.)
| | - Claudia Wrzos
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (S.N.); (C.S.)
| | - Boris Dasen
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University Basel, CH-4031 Basel, Switzerland;
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (S.N.); (C.S.)
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (S.N.); (C.S.)
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland;
| |
Collapse
|
4
|
Cunningham CJ, Choi RB, Bullock WA, Robling AG. Perspective: The current state of Cre driver mouse lines in skeletal research: Challenges and opportunities. Bone 2023; 170:116719. [PMID: 36868507 PMCID: PMC10087282 DOI: 10.1016/j.bone.2023.116719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
The Cre/Lox system has revolutionized the ability of biomedical researchers to ask very specific questions about the function of individual genes in specific cell types at specific times during development and/or disease progression in a variety of animal models. This is true in the skeletal biology field, and numerous Cre driver lines have been created to foster conditional gene manipulation in specific subpopulations of bone cells. However, as our ability to scrutinize these models increases, an increasing number of issues have been identified with most driver lines. All existing skeletal Cre mouse models exhibit problems in one or more of the following three areas: (1) cell type specificity-avoiding Cre expression in unintended cell types; (2) Cre inducibility-improving the dynamic range for Cre in inducible models (negligible Cre activity before induction and high Cre activity after induction); and (3) Cre toxicity-reducing the unwanted biological effects of Cre (beyond loxP recombination) on cellular processes and tissue health. These issues are hampering progress in understanding the biology of skeletal disease and aging, and consequently, identification of reliable therapeutic opportunities. Skeletal Cre models have not advanced technologically in decades despite the availability of improved tools, including multi-promoter-driven expression of permissive or fragmented recombinases, new dimerization systems, and alternative forms of recombinases and DNA sequence targets. We review the current state of skeletal Cre driver lines, and highlight some of the successes, failures, and opportunities to improve fidelity in the skeleton, based on successes pioneered in other areas of biomedical science.
Collapse
Affiliation(s)
- Connor J Cunningham
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Stewart CM, Bo Y, Fu K, Chan M, Kozak R, Apperley KYP, Laroche G, Daniel R, Beauchemin AM, Kobinger G, Kobasa D, Côté M. Sphingosine Kinases Promote Ebola Virus Infection and Can Be Targeted to Inhibit Filoviruses, Coronaviruses, and Arenaviruses Using Late Endocytic Trafficking to Enter Cells. ACS Infect Dis 2023; 9:1064-1077. [PMID: 37053583 DOI: 10.1021/acsinfecdis.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Entry of enveloped viruses in host cells requires the fusion of viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. These viral fusion proteins need to be triggered by host factors, and for some viruses, this event occurs inside endosomes and/or lysosomes. Consequently, these 'late-penetrating viruses' must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late-penetrating viruses also depend on specific host proteins for efficient delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1/2 inhibited entry of Ebola virus (EBOV) into host cells. Mechanistically, inhibition of SK1/2 prevented EBOV from reaching late-endosomes and lysosomes that contain the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests that the trafficking defect caused by SK1/2 inhibition occurs independently of sphingosine-1-phosphate (S1P) signaling through cell-surface S1P receptors. Lastly, we found that chemical inhibition of SK1/2 prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, and inhibits infection by replication-competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SK1/2 in endocytic trafficking, which can be targeted to inhibit entry of late-penetrating viruses and could serve as a starting point for the development of broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Corina M Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Infectious Diseases and Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Kim Yang-Ping Apperley
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - André M Beauchemin
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gary Kobinger
- Galveston National Laboratory, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas 77550, United States
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Infectious Diseases and Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
6
|
Rossi M, Salomon A, Chaumontel N, Molet J, Bailly S, Tillet E, Bouvard C. Warning regarding hematological toxicity of tamoxifen activated CreERT2 in young Rosa26CreERT2 mice. Sci Rep 2023; 13:5976. [PMID: 37045870 PMCID: PMC10097815 DOI: 10.1038/s41598-023-32633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The Cre-lox system is a versatile and powerful tool used in mouse genetics. It allows spatial and/or temporal control of the deletion of a target gene. The Rosa26-CreERT2 (R26CreERT2) mouse model allows ubiquitous expression of CreERT2. Once activated by tamoxifen, CreERT2 will enter into the nuclei and delete floxed DNA sequences. Here, we show that intraperitoneal injection of tamoxifen in young R26CreERT2 mice leads to morbidity and mortality within 10 days after the first injection, in the absence of a floxed allele. Activation of CreERT2 by tamoxifen led to severe hematological defects, with anemia and a strong disorganization of the bone marrow vascular bed. Cell proliferation was significantly reduced in the bone marrow and the spleen resulting in the depletion of several hematopoietic cells. However, not all cell types or organs were affected to the same extent. We realized that many research groups are not aware of the potential toxicity of Cre recombinases, resulting in misinterpretation of the observed phenotype and in a waste of time and resources. We discuss the necessity to include tamoxifen injected CreERT2 controls lacking a floxed allele in experimental designs and to improve communication about the limitations of Cre-lox mouse models among the scientific community.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Aude Salomon
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Nicolas Chaumontel
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Jenny Molet
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Emmanuelle Tillet
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France.
| |
Collapse
|
7
|
Alia AO, Jeon S, Popovic J, Salvo MA, Sadleir KR, Vassar R, Cuddy LK. Aberrant glial activation and synaptic defects in CaMKIIα-iCre and nestin-Cre transgenic mouse models. Sci Rep 2022; 12:22099. [PMID: 36543864 PMCID: PMC9772212 DOI: 10.1038/s41598-022-26671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Current scientific research is driven by the ability to manipulate gene expression by utilizing the Cre/loxP system in transgenic mouse models. However, artifacts in Cre-driver mouse lines that introduce undesired effects and confound results are increasingly being reported. Here, we show aberrant neuroinflammation and synaptic changes in two widely used Cre-driver mouse models. Neuroinflammation in CaMKIIα-iCre mice was characterized by the activation and proliferation of microglia and astrocytes in synaptic layers of the hippocampus. Increased GFAP and Iba1 levels were observed in hippocampal brain regions of 4-, 8- and 22-month-old CaMKIIα-iCre mice compared to WT littermates. Synaptic changes in NMDAR, AMPAR, PSD95 and phosphorylated CaMKIIα became apparent in 8-month-old CaMKIIα-iCre mice but were not observed in 4-month-old CaMKIIα-iCre mice. Synaptophysin and synaptoporin were unchanged in CaMKIIα-iCre compared to WT mice, suggesting that synaptic alterations may occur in excitatory postsynaptic regions in which iCre is predominantly expressed. Finally, hippocampal volume was reduced in 22-month-old CaMKIIα-iCre mice compared to WT mice. We tested the brains of mice of additional common Cre-driver mouse models for neuroinflammation; the nestin-Cre mouse model showed synaptic changes and astrocytosis marked by increased GFAP+ astrocytes in cortical and hippocampal regions, while the original CaMKIIα-Cre T29-1 strain was comparable to WT mice. The mechanisms underlying abnormal neuroinflammation in nestin-Cre and CaMKIIα-iCre are unknown but may be associated with high levels of Cre expression. Our findings are critical to the scientific community and demonstrate that the correct Cre-driver controls must be included in all studies using these mice.
Collapse
Affiliation(s)
- Alia O. Alia
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sohee Jeon
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jelena Popovic
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Miranda A. Salvo
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Katherine R. Sadleir
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Robert Vassar
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA ,grid.16753.360000 0001 2299 3507Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Leah K. Cuddy
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
8
|
Benlarbi M, Laroche G, Fink C, Fu K, Mulloy RP, Phan A, Ariana A, Stewart CM, Prévost J, Beaudoin-Bussières G, Daniel R, Bo Y, El Ferri O, Yockell-Lelièvre J, Stanford WL, Giguère PM, Mubareka S, Finzi A, Dekaban GA, Dikeakos JD, Côté M. Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron. iScience 2022; 25:105316. [PMID: 36254158 PMCID: PMC9549715 DOI: 10.1016/j.isci.2022.105316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corby Fink
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rory P. Mulloy
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julien Yockell-Lelièvre
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William L. Stanford
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patrick M. Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory A. Dekaban
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
9
|
Skovsø S, Overby P, Memar-Zadeh J, Lee JTC, Yang JCC, Shanina I, Sidarala V, Levi-D'Ancona E, Zhu J, Soleimanpour SA, Horwitz MS, Johnson JD. β-Cell Cre Expression and Reduced Ins1 Gene Dosage Protect Mice From Type 1 Diabetes. Endocrinology 2022; 163:6681115. [PMID: 36048448 DOI: 10.1210/endocr/bqac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/19/2022]
Abstract
A central goal of physiological research is the understanding of cell-specific roles of disease-associated genes. Cre-mediated recombineering is the tool of choice for cell type-specific analysis of gene function in preclinical models. In the type 1 diabetes (T1D) research field, multiple lines of nonobese diabetic (NOD) mice have been engineered to express Cre recombinase in pancreatic β cells using insulin promoter fragments, but tissue promiscuity remains a concern. Constitutive Ins1tm1.1(cre)Thor (Ins1Cre) mice on the C57/bl6-J background have high β-cell specificity with no reported off-target effects. We explored whether NOD:Ins1Cre mice could be used to investigate β-cell gene deletion in T1D disease modeling. We studied wild-type (Ins1WT/WT), Ins1 heterozygous (Ins1Cre/WT or Ins1Neo/WT), and Ins1 null (Ins1Cre/Neo) littermates on a NOD background. Female Ins1Neo/WT mice exhibited significant protection from diabetes, with further near-complete protection in Ins1Cre/WT mice. The effects of combined neomycin and Cre knockin in Ins1Neo/Cre mice were not additive to the Cre knockin alone. In Ins1Neo/Cre mice, protection from diabetes was associated with reduced insulitis at age 12 weeks. Collectively, these data confirm previous reports that loss of Ins1 alleles protects NOD mice from diabetes development and demonstrates, for the first time, that Cre itself may have additional protective effects. This has important implications for the experimental design and interpretation of preclinical T1D studies using β-cell-selective Cre in NOD mice.
Collapse
Affiliation(s)
- Søs Skovsø
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter Overby
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jasmine Memar-Zadeh
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jason T C Lee
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jenny C C Yang
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Iryna Shanina
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vaibhav Sidarala
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Elena Levi-D'Ancona
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jie Zhu
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Scott A Soleimanpour
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Marc S Horwitz
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
10
|
Rashbrook VS, Brash JT, Ruhrberg C. Cre toxicity in mouse models of cardiovascular physiology and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:806-816. [PMID: 37692772 PMCID: PMC7615056 DOI: 10.1038/s44161-022-00125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 09/12/2023]
Abstract
The Cre-LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre-LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, independently of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilising the Cre-LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.
Collapse
Affiliation(s)
- Victoria S. Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T. Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
11
|
Niemann B, Haufs-Brusberg S, Puetz L, Feickert M, Jaeckstein MY, Hoffmann A, Zurkovic J, Heine M, Trautmann EM, Müller CE, Tönjes A, Schlein C, Jafari A, Eltzschig HK, Gnad T, Blüher M, Krahmer N, Kovacs P, Heeren J, Pfeifer A. Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine. Nature 2022; 609:361-368. [PMID: 35790189 PMCID: PMC9452294 DOI: 10.1038/s41586-022-05041-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Brown adipose tissue (BAT) dissipates energy1,2 and promotes cardiometabolic health3. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centred obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic programme in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced 'browning' of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacological inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, respectively. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a 'replace me' signalling function that regulates thermogenic fat and counteracts obesity.
Collapse
Affiliation(s)
- Birte Niemann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
| | - Saskia Haufs-Brusberg
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Laura Puetz
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Martin Feickert
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jelena Zurkovic
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva-Maria Trautmann
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Azin Jafari
- Clinic and Polyclinic for General, Visceral, Thoracic and Vascular Surgery, University Hospital, University of Bonn, Bonn, Germany
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
- PharmaCenter Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
12
|
Erben L, Welday JP, Murphy R, Buonanno A. Toxic and Phenotypic Effects of AAV_Cre Used to Transduce Mesencephalic Dopaminergic Neurons. Int J Mol Sci 2022; 23:9462. [PMID: 36012727 PMCID: PMC9408874 DOI: 10.3390/ijms23169462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
A popular approach to spatiotemporally target genes using the loxP/Cre recombination system is stereotaxic microinjection of adeno-associated virus (AAV) expressing Cre recombinase (AAV_Cre) in specific neuronal structures. Here, we report that AAV_Cre microinjection in the ventral tegmental area (VTA) of ErbB4 Cyt-1-floxed (ErbB4 Cyt-1fl/fl) mice at titers commonly used in the literature (~1012-1013 GC/mL) can have neurotoxic effects on dopaminergic neurons and elicit behavioral abnormalities. However, these effects of AAV_Cre microinjection are independent of ErbB4 Cyt-1 recombination because they are also observed in microinjected wild-type (WT) controls. Mice microinjected with AAV_Cre (1012-1013 GC/mL) exhibit reductions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) expression, loss of dopaminergic neurons, and they behaviorally become hyperactive, fail to habituate in the open field and exhibit sensorimotor gating deficits compared to controls microinjected with AAV_GFP. Importantly, these AAV_Cre non-specific effects are: (1) independent of serotype, (2) occur with vectors expressing either Cre or Cre-GFP fusion protein and (3) preventable by reducing viral titers by 1000-fold (1010 GC/mL), which retains sufficient recombination activity to target floxed genes. Our studies emphasize the importance of including AAV_Cre-injected WT controls in experiments because recombination-independent effects on gene expression, neurotoxicity and behaviors could be erroneously attributed to consequences of gene ablation.
Collapse
Affiliation(s)
| | | | | | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Cre-Recombinase Induces Apoptosis and Cell Death in Enterocyte Organoids. Antioxidants (Basel) 2022; 11:antiox11081452. [PMID: 35892654 PMCID: PMC9332190 DOI: 10.3390/antiox11081452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
The culture of primary intestinal epithelia cells is not possible in a normal culture system. In 2009 a three-dimensional culture system of intestinal stem cells was established that shows many of the physiological features of the small intestine, such as crypt-villus structure, stem cell niche and all types of differentiated intestinal epithelial cells. These enteroids can be used to analyze biology of intestinal stem cells, gut homeostasis and the development of diseases. They also give the possibility to reduce animal numbers, as enteroids can be cryo-conserved and cultivated for many passages. To investigate the influence of genes such as NADPH oxidases on the gut homeostasis, transgenic approached are the method of choice. The generation of enteroids from knockout mice allows real-time observations of knockout effects. Often conditional knockout or overexpression strategies using inducible Cre recombinase are applied to avoid effects of adaption to the knockout. However, the Cre recombinase has many known caveats from unspecific binding and its endonuclease activity. In this study, we show that although NADPH oxidases are important for in vivo differentiation and proliferation of the intestine, their expression is drastically reduced in the organoid system. Activation of Cre recombinase by 4-hydroxy tamoxifen in freshly isolated enteroids, independently of floxed genes, leads to decreased diameter of organoids. This effect is concentration-dependent and is caused by reduced cell proliferation and induction of apoptosis and DNA damage. In contrast, constitutive expression of Cre has no impact on the enteroids. Therefore, reduction of tamoxifen concentration and treatment duration should be carefully titrated, and appropriate controls are necessary.
Collapse
|
14
|
Droogers WJ, Willems J, MacGillavry HD, de Jong APH. Duplex Labeling and Manipulation of Neuronal Proteins Using Sequential CRISPR/Cas9 Gene Editing. eNeuro 2022; 9:ENEURO.0056-22.2022. [PMID: 35851300 PMCID: PMC9333357 DOI: 10.1523/eneuro.0056-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
CRISPR/Cas9-mediated knock-in methods enable the labeling of individual endogenous proteins to faithfully determine their spatiotemporal distribution in cells. However, reliable multiplexing of knock-in events in neurons remains challenging because of cross talk between editing events. To overcome this, we developed conditional activation of knock-in expression (CAKE), allowing efficient, flexible, and accurate multiplex genome editing in rat neurons. To diminish cross talk, CAKE is based on sequential, recombinase-driven guide RNA (gRNA) expression to control the timing of genomic integration of each donor sequence. We show that CAKE is broadly applicable to co-label various endogenous proteins, including cytoskeletal proteins, synaptic scaffolds, ion channels and neurotransmitter receptor subunits. To take full advantage of CAKE, we resolved the nanoscale co-distribution of endogenous synaptic proteins using super-resolution microscopy, demonstrating that their co-organization depends on synapse size. Finally, we introduced inducible dimerization modules, providing acute control over synaptic receptor dynamics in living neurons. These experiments highlight the potential of CAKE to reveal new biological insight. Altogether, CAKE is a versatile method for multiplex protein labeling that enables the detection, localization, and manipulation of endogenous proteins in neurons.Significance StatementAccurate localization and manipulation of endogenous proteins is essential to unravel neuronal function. While labeling of individual proteins is achievable with existing gene editing techniques, methods to label multiple proteins in neurons are limiting. We introduce a new CRISPR/Cas9 strategy, CAKE, achieving faithful duplex protein labeling using sequential editing of genes. We use CAKE to visualize the co-localization of essential neuronal proteins, including cytoskeleton components, ion channels and synaptic scaffolds. Using super-resolution microscopy, we demonstrate that the co-organization of synaptic scaffolds and neurotransmitter receptors scales with synapse size. Finally, we acutely modulate the dynamics of synaptic receptors using labeling with inducible dimerization domains. Thus, CAKE mediates accurate duplex endogenous protein labeling and manipulation to address biological questions in neurons.
Collapse
Affiliation(s)
- Wouter J Droogers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jelmer Willems
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Arthur P H de Jong
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Sharp B, Rallabandi R, Devaux P. Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Mol Diagn Ther 2022; 26:353-367. [PMID: 35763161 DOI: 10.1007/s40291-022-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Ethical issues are a significant barrier to the use of embryonic stem cells in patients due to their origin: human embryos. To further the development of stem cells in a patient application, alternative sources of cells were sought. A process referred to as reprogramming was established to create induced pluripotent stem cells from somatic cells, resolving the ethical issues, and vectors were developed to deliver the reprogramming factors to generate induced pluripotent stem cells. Early viral vectors used integrating retroviruses and lentiviruses as delivery vehicles for the transcription factors required to initiate reprogramming. However, because of the inherent risk associated with vectors that integrate into the host genome, non-integrating approaches were explored. The development of non-integrating viral vectors offers a safer alternative, and these modern vectors are reliable, efficient, and easy to use to achieve induced pluripotent stem cells suitable for direct patient application in the growing field of individualized medicine. This review summarizes all the RNA viral vectors in the field of reprogramming with a special focus on the emerging delivery vectors based on non-integrating Paramyxoviruses, Sendai and measles viruses. We discuss their design and evolution towards being safe and efficient reprogramming vectors in generating induced pluripotent stem cells from somatic cells.
Collapse
Affiliation(s)
- Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramya Rallabandi
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA.,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA. .,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Carter-Timofte ME, Arulanandam R, Kurmasheva N, Fu K, Laroche G, Taha Z, van der Horst D, Cassin L, van der Sluis RM, Palermo E, Di Carlo D, Jacobs D, Maznyi G, Azad T, Singaravelu R, Ren F, Hansen AL, Idorn M, Holm CK, Jakobsen MR, van Grevenynghe J, Hiscott J, Paludan SR, Bell JC, Seguin J, Sabourin LA, Côté M, Diallo JS, Alain T, Olagnier D. Antiviral Potential of the Antimicrobial Drug Atovaquone against SARS-CoV-2 and Emerging Variants of Concern. ACS Infect Dis 2021; 7:3034-3051. [PMID: 34658235 PMCID: PMC8547501 DOI: 10.1021/acsinfecdis.1c00278] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/22/2022]
Abstract
The antimicrobial medication malarone (atovaquone/proguanil) is used as a fixed-dose combination for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travelers. It is an inexpensive, efficacious, and safe drug frequently prescribed around the world. Following anecdotal evidence from 17 patients in the provinces of Quebec and Ontario, Canada, suggesting that malarone/atovaquone may present some benefits in protecting against COVID-19, we sought to examine its antiviral potential in limiting the replication of SARS-CoV-2 in cellular models of infection. In VeroE6 expressing human TMPRSS2 and human lung Calu-3 epithelial cells, we show that the active compound atovaquone at micromolar concentrations potently inhibits the replication of SARS-CoV-2 and other variants of concern including the alpha, beta, and delta variants. Importantly, atovaquone retained its full antiviral activity in a primary human airway epithelium cell culture model. Mechanistically, we demonstrate that the atovaquone antiviral activity against SARS-CoV-2 is partially dependent on the expression of TMPRSS2 and that the drug can disrupt the interaction of the spike protein with the viral receptor, ACE2. Additionally, spike-mediated membrane fusion was also reduced in the presence of atovaquone. In the United States, two clinical trials of atovaquone administered alone or in combination with azithromycin were initiated in 2020. While we await the results of these trials, our findings in cellular infection models demonstrate that atovaquone is a potent antiviral FDA-approved drug against SARS-CoV-2 and other variants of concern in vitro.
Collapse
Affiliation(s)
| | - Rozanne Arulanandam
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
| | - Naziia Kurmasheva
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | - Kathy Fu
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Center for Infection, Immunity, and Inflammation,
University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Ottawa Institute of Systems
Biology, Ottawa, Ontario K1H 8L1, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Center for Infection, Immunity, and Inflammation,
University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Ottawa Institute of Systems
Biology, Ottawa, Ontario K1H 8L1, Canada
| | - Zaid Taha
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
| | | | - Lena Cassin
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | - Renée M. van der Sluis
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
- Aarhus Institute of Advanced Studies, Aarhus
University, Aarhus 8000, Denmark
| | - Enrico Palermo
- Istituto Pasteur Italia-Cenci Bolognetti
Foundation, Viale Regina Elena 291, Rome 00161,
Italy
| | - Daniele Di Carlo
- Istituto Pasteur Italia-Cenci Bolognetti
Foundation, Viale Regina Elena 291, Rome 00161,
Italy
| | - David Jacobs
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Center for Infection, Immunity, and Inflammation,
University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Ottawa Institute of Systems
Biology, Ottawa, Ontario K1H 8L1, Canada
| | - Glib Maznyi
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
| | - Taha Azad
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
| | - Ragunath Singaravelu
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
| | - Fanghui Ren
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | | | - Manja Idorn
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | - Christian K. Holm
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | | | - Julien van Grevenynghe
- Institut National de la Recherche
Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie,
Laval, Québec H7V 1B7, Canada
| | - John Hiscott
- Istituto Pasteur Italia-Cenci Bolognetti
Foundation, Viale Regina Elena 291, Rome 00161,
Italy
| | - Søren R. Paludan
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | - John C. Bell
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
| | - Jean Seguin
- CCFP, Dipl. Sport Med., CareMedics
McArthur, 311 McArthur Avenue suite 103, Ottawa, Ontario K1L 8M3,
Canada
| | - Luc A. Sabourin
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Cellular and Molecular Medicine,
University of Ottawa, Ottawa, Ontario K1H 8M5,
Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Center for Infection, Immunity, and Inflammation,
University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Ottawa Institute of Systems
Biology, Ottawa, Ontario K1H 8L1, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Children’s Hospital of Eastern
Ontario Research Institute, Ottawa, Ontario K1H 8L1,
Canada
| | - David Olagnier
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| |
Collapse
|
17
|
Fitzgerald B, Connolly KA, Cui C, Fagerberg E, Mariuzza DL, Hornick NI, Foster GG, William I, Cheung JF, Joshi NS. A mouse model for the study of anti-tumor T cell responses in Kras-driven lung adenocarcinoma. CELL REPORTS METHODS 2021; 1:100080. [PMID: 34632444 PMCID: PMC8500377 DOI: 10.1016/j.crmeth.2021.100080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023]
Abstract
Kras-driven lung adenocarcinoma (LUAD) is the most common lung cancer. A significant fraction of patients with Kras-driven LUAD respond to immunotherapy, but mechanistic studies of immune responses against LUAD have been limited because of a lack of immunotherapy-responsive models. We report the development of the immunogenic KP × NINJA (inversion inducible joined neoantigen) (KP-NINJA) LUAD model. This model allows temporal uncoupling of antigen and tumor induction, which allows one to wait until after infection-induced inflammation has subsided to induce neoantigen expression by tumors. Neoantigen expression is restricted to EPCAM+ cells in the lung and expression of neoantigen was more consistent between tumors than when neoantigens were encoded on lentiviruses. Moreover, tumors were infiltrated by tumor-specific CD8 T cells. Finally, LUAD cell lines derived from KP-NINJA mice were immunogenic and responded to immune checkpoint therapy (anti-PD1 and anti-CTLA4), providing means for future studies into the immunobiology of therapeutic responses in LUAD.
Collapse
Affiliation(s)
- Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Kelli A. Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Dylan L. Mariuzza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Noah I. Hornick
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Gena G. Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ivana William
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Julie F. Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
18
|
La Montagna M, Shi L, Magee P, Sahoo S, Fassan M, Garofalo M. AMPKα loss promotes KRAS-mediated lung tumorigenesis. Cell Death Differ 2021; 28:2673-2689. [PMID: 34040167 PMCID: PMC8408205 DOI: 10.1038/s41418-021-00777-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/04/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a critical sensor of energy status that coordinates cell growth with energy balance. In non-small cell lung cancer (NSCLC) the role of AMPKα is controversial and its contribution to lung carcinogenesis is not well-defined. Furthermore, it remains largely unknown whether long non-coding RNAs (lncRNAs) are involved in the regulation of AMPK-mediated pathways. Here, we found that loss of AMPKα in combination with activation of mutant KRASG12D increased lung tumour burden and reduced survival in KrasLSLG12D/+/AMPKαfl/fl mice. In agreement, functional in vitro studies revealed that AMPKα silencing increased growth and migration of NSCLC cells. In addition, we identified an AMPKα-modulated lncRNA, KIMAT1 (ENSG00000228709), which in turn regulates AMPKα activation by stabilizing the lactate dehydrogenase B (LDHB). Collectively, our study indicates that AMPKα loss promotes KRAS-mediated lung tumorigenesis and proposes a novel KRAS/KIMAT1/LDHB/AMPKα axis that could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Manuela La Montagna
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Peter Magee
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Sudhakar Sahoo
- Computational Biology Support, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK.
| |
Collapse
|
19
|
Generation of human embryonic stem cell models to exploit the EWSR1-CREB fusion promiscuity as a common pathway of transformation in human tumors. Oncogene 2021; 40:5095-5104. [PMID: 34193943 PMCID: PMC8364490 DOI: 10.1038/s41388-021-01843-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 11/12/2022]
Abstract
Chromosomal translocations constitute driver mutations in solid tumors and leukemias. The mechanisms of how related or even identical gene fusions drive the pathogenesis of various tumor types remain elusive. One remarkable example is the presence of EWSR1 fusions with CREB1 and ATF1, members of the CREB family of transcription factors, in a variety of sarcomas, carcinomas and mesotheliomas. To address this, we have developed in vitro models of oncogenic fusions, in particular, EWSR1-CREB1 and EWSR1-ATF1, in human embryonic stem (hES) cells, which are capable of multipotent differentiation, using CRISPR-Cas9 technology and HDR together with conditional fusion gene expression that allows investigation into the early steps of cellular transformation. We show that expression of EWSR1-CREB1/ATF1 fusion in hES cells recapitulates the core gene signatures, respectively, of angiomatoid fibrous histiocytoma (AFH) and gastrointestinal clear cell sarcoma (GI-CCS), although both fusions lead to cell lethality. Conversely, expression of the fusions in hES cells differentiated to mesenchymal progenitors is compatible with prolonged viability while maintaining the core gene signatures. Moreover, in the context of a mesenchymal lineage, the proliferation of cells expressing the EWSR1-CREB1 fusion is further extended by deletion of the tumor suppressor TP53. We expect the generation of isogenic lines carrying oncogenic fusions in various cell lineages to expand our general understanding of how those single genetic events drive tumorigenesis while providing valuable resources for drug discovery.
Collapse
|
20
|
Ozawa A, Arakawa H. Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action. Behav Brain Res 2021; 406:113234. [PMID: 33741409 PMCID: PMC8110310 DOI: 10.1016/j.bbr.2021.113234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Recent developments in chemogenetic approaches to the investigation of brain function have ushered in a paradigm change in the strategy for drug and behavior research and clinical drug-based medications. As the nature of the drug action is based on humoral regulation, it is a challenge to identify the neuronal mechanisms responsible for the expression of certain targeted behavior induced by drug application. The development of chemogenetic approaches has allowed researchers to control neural activities in targeted neurons through a toolbox, including engineered G protein-coupled receptors or ligand-gated ion channels together with exogenously inert synthetic ligands. This review provides a brief overview of the chemogenetics toolbox with an emphasis on the DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) technique used in rodent models, which is applicable to the investigation of how specific neural circuits regulate behavioral processes. The use of chemogenetics has had a significant impact on basic neuroscience for a better understanding of the relationships between brain activity and the expression of behaviors with cell- and circuit-specific orders. Furthermore, chemogenetics is potentially a useful tool to deconstruct the neuropathological mechanisms of mental diseases and its regulation by drug, and provide us with transformative therapeutics with medication. We also review recent findings in the use of chemogenetic techniques to uncover functional circuit connections of serotonergic neurons in rodent models.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Hiroyuki Arakawa
- Department of Psychology, Tokiwa University, Mito, Ibaraki, Japan; Department of Systems Physiology, University of Ryukyus, Faculty of Medicine, Nakagami District, Okinawa, Japan.
| |
Collapse
|
21
|
Jiang M, Paniagua AE, Volland S, Wang H, Balaji A, Li DG, Lopes VS, Burgess BL, Williams DS. Microtubule motor transport in the delivery of melanosomes to the actin-rich apical domain of the retinal pigment epithelium. J Cell Sci 2020; 133:jcs242214. [PMID: 32661088 PMCID: PMC7420818 DOI: 10.1242/jcs.242214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Melanosomes are motile, light-absorbing organelles that are present in pigment cells of the skin and eye. It has been proposed that melanosome localization, in both skin melanocytes and the retinal pigment epithelium (RPE), involves melanosome capture from microtubule motors by an unconventional myosin, which dynamically tethers the melanosomes to actin filaments. Recent studies with melanocytes have questioned this cooperative capture model. Here, we test the model in RPE cells by imaging melanosomes associated with labeled actin filaments and microtubules, and by investigating the roles of different motor proteins. We found that a deficiency in cytoplasmic dynein phenocopies the lack of myosin-7a, in that melanosomes undergo fewer of the slow myosin-7a-dependent movements and are absent from the RPE apical domain. These results indicate that microtubule-based motility is required for the delivery of melanosomes to the actin-rich apical domain and support a capture mechanism that involves both microtubule and actin motors.
Collapse
Affiliation(s)
- Mei Jiang
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Antonio E Paniagua
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stefanie Volland
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hongxing Wang
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Adarsh Balaji
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David G Li
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vanda S Lopes
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Barry L Burgess
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David S Williams
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 2020; 40:833-851. [DOI: 10.1080/07388551.2020.1768043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kajan Srirangan
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Martin Loignon
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
23
|
Woitok MM, Zoubek ME, Doleschel D, Bartneck M, Mohamed MR, Kießling F, Lederle W, Trautwein C, Cubero FJ. Lipid-encapsulated siRNA for hepatocyte-directed treatment of advanced liver disease. Cell Death Dis 2020; 11:343. [PMID: 32393755 PMCID: PMC7214425 DOI: 10.1038/s41419-020-2571-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/25/2022]
Abstract
Lipid-based RNA nanocarriers have been recently accepted as a novel therapeutic option in humans, thus increasing the therapeutic options for patients. Tailored nanomedicines will enable to treat chronic liver disease (CLD) and end-stage liver cancer, disorders with high mortality and few treatment options. Here, we investigated the curative potential of gene therapy of a key molecule in CLD, the c-Jun N-terminal kinase-2 (Jnk2). Delivery to hepatocytes was achieved using a lipid-based clinically employable siRNA formulation that includes a cationic aminolipid to knockdown Jnk2 (named siJnk2). After assessing the therapeutic potential of siJnk2 treatment, non-invasive imaging demonstrated reduced apoptotic cell death and improved hepatocarcinogenesis was evidenced by improved liver parenchyma as well as ameliorated markers of hepatic damage, reduced fibrogenesis in 1-year-old mice. Strikingly, chronic siJnk2 treatment reduced premalignant nodules, indicative of tumor initiation. Furthermore, siJnk2 treatment led to a significant activation of the immune cell compartment. In conclusion, Jnk2 knockdown in hepatocytes ameliorated hepatitis, fibrogenesis, and initiation of hepatocellular carcinoma (HCC), and hence might be a suitable therapeutic option, to define novel molecular targets for precision medicine in CLD.
Collapse
Affiliation(s)
| | - Miguel Eugenio Zoubek
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Department of Toxicology and Pharmacology, School of Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre Maastricht University, Maastricht, The Netherlands
| | - Dennis Doleschel
- Institute for Experimental and Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Matthias Bartneck
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Mohamed Ramadan Mohamed
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Department of Therapeutic Chemistry, National Research Centre, 12622, Cairo, Egypt
| | - Fabian Kießling
- Institute for Experimental and Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Wiltrud Lederle
- Institute for Experimental and Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| | - Francisco Javier Cubero
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany. .,Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain. .,12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
24
|
Morikawa K, Furuhashi K, de Sena-Tomas C, Garcia-Garcia AL, Bekdash R, Klein AD, Gallerani N, Yamamoto HE, Park SHE, Collins GS, Kawano F, Sato M, Lin CS, Targoff KL, Au E, Salling MC, Yazawa M. Photoactivatable Cre recombinase 3.0 for in vivo mouse applications. Nat Commun 2020; 11:2141. [PMID: 32358538 PMCID: PMC7195411 DOI: 10.1038/s41467-020-16030-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/31/2020] [Indexed: 11/09/2022] Open
Abstract
Optogenetic genome engineering tools enable spatiotemporal control of gene expression and provide new insight into biological function. Here, we report the new version of genetically encoded photoactivatable (PA) Cre recombinase, PA-Cre 3.0. To improve PA-Cre technology, we compare light-dimerization tools and optimize for mammalian expression using a CAG promoter, Magnets, and 2A self-cleaving peptide. To prevent background recombination caused by the high sequence similarity in the dimerization domains, we modify the codons for mouse gene targeting and viral production. Overall, these modifications significantly reduce dark leak activity and improve blue-light induction developing our new version, PA-Cre 3.0. As a resource, we have generated and validated AAV-PA-Cre 3.0 as well as two mouse lines that can conditionally express PA-Cre 3.0. Together these new tools will facilitate further biological and biomedical research.
Collapse
Affiliation(s)
- Kumi Morikawa
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kazuhiro Furuhashi
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Columbia Center for Translational Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Carmen de Sena-Tomas
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Alvaro L Garcia-Garcia
- Department of Psychiatry, Division of Systems Neuroscience, New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA
| | - Ramsey Bekdash
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Alison D Klein
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Nicholas Gallerani
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hannah E Yamamoto
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Barnard College, New York, NY, 10027, USA
| | - Seon-Hye E Park
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390-911, USA
| | - Grant S Collins
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Fuun Kawano
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Transgenic Mouse Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Kimara L Targoff
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Edmund Au
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Michael C Salling
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.,Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Masayuki Yazawa
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA. .,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA. .,Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA. .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
25
|
Navabpour S, Kwapis JL, Jarome TJ. A neuroscientist's guide to transgenic mice and other genetic tools. Neurosci Biobehav Rev 2020; 108:732-748. [PMID: 31843544 PMCID: PMC8049509 DOI: 10.1016/j.neubiorev.2019.12.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The past decade has produced an explosion in the number and variety of genetic tools available to neuroscientists, resulting in an unprecedented ability to precisely manipulate the genome and epigenome in behaving animals. However, no single resource exists that describes all of the tools available to neuroscientists. Here, we review the genetic, transgenic, and viral techniques that are currently available to probe the complex relationship between genes and cognition. Topics covered include types of traditional transgenic mouse models (knockout, knock-in, reporter lines), inducible systems (Cre-loxP, Tet-On, Tet-Off) and cell- and circuit-specific systems (TetTag, TRAP, DIO-DREADD). Additionally, we provide details on virus-mediated and siRNA/shRNA approaches, as well as a comprehensive discussion of the myriad manipulations that can be made using the CRISPR-Cas9 system, including single base pair editing and spatially- and temporally-regulated gene-specific transcriptional control. Collectively, this review will serve as a guide to assist neuroscientists in identifying and choosing the appropriate genetic tools available to study the complex relationship between the brain and behavior.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, College Park, PA, USA; Center for the Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, College Park, PA, USA.
| | - Timothy J Jarome
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
26
|
Balkawade RS, Chen C, Crowley MR, Crossman DK, Clapp WL, Verlander JW, Marshall CB. Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening. Am J Physiol Renal Physiol 2019; 316:F1026-F1040. [PMID: 30810063 DOI: 10.1152/ajprenal.00359.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conditional gene targeting using Cre recombinase has offered a powerful tool to modify gene function precisely in defined cells/tissues and at specific times. However, in mammalian cells, Cre recombinase can be genotoxic. The importance of including Cre-expressing control mice to avoid misinterpretation and to maximize the validity of the experimental results has been increasingly recognized. While studying the role of podocytes in the pathogenesis of glomerular basement membrane (GBM) thickening, we used Cre recombinase driven by the podocyte-specific podocin promoter (NPHS2-Cre) to generate a conditional knockout. By conventional structural and functional measures (histology by periodic acid-Schiff staining, albuminuria, and plasma creatinine), we did not detect significant differences between NPHS2-Cre transgenic and wild-type control mice. However, surprisingly, the group that expressed Cre transgene alone developed signs of podocyte toxicity, including marked GBM thickening, loss of normal foot process morphology, and reduced Wilms tumor 1 expression. GBM thickening was characterized by altered expression of core structural protein laminin isoform α5β2γ1. RNA sequencing analysis of extracted glomeruli identified 230 genes that were significant and differentially expressed (applying a q < 0.05-fold change ≥ ±2 cutoff) in NPHS2-Cre mice compared with wild-type control mice. Many biological processes were reflected in the RNA sequencing data, including regulation of the extracellular matrix and pathways related to apoptosis and cell death. This study highlights the importance of including the appropriate controls for potential Cre-mediated toxicity in conditional gene-targeting experiments. Indeed, omitting the Cre transgene control can result in critical errors during interpretation of experimental data.
Collapse
Affiliation(s)
- Rohan S Balkawade
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chao Chen
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Michael R Crowley
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - William L Clapp
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Caroline B Marshall
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
27
|
Reichert M, Bakir B, Moreira L, Pitarresi JR, Feldmann K, Simon L, Suzuki K, Maddipati R, Rhim AD, Schlitter AM, Kriegsmann M, Weichert W, Wirth M, Schuck K, Schneider G, Saur D, Reynolds AB, Klein-Szanto AJ, Pehlivanoglu B, Memis B, Adsay NV, Rustgi AK. Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer. Dev Cell 2018; 45:696-711.e8. [PMID: 29920275 DOI: 10.1016/j.devcel.2018.05.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/11/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022]
Abstract
The regulation of metastatic organotropism in pancreatic ductal a denocarcinoma (PDAC) remains poorly understood. We demonstrate, using multiple mouse models, that liver and lung metastatic organotropism is dependent upon p120catenin (p120ctn)-mediated epithelial identity. Mono-allelic p120ctn loss accelerates KrasG12D-driven pancreatic cancer formation and liver metastasis. Importantly, one p120ctn allele is sufficient for E-CADHERIN-mediated cell adhesion. By contrast, cells with bi-allelic p120ctn loss demonstrate marked lung organotropism; however, rescue with p120ctn isoform 1A restores liver metastasis. In a p120ctn-independent PDAC model, mosaic loss of E-CADHERIN expression reveals selective pressure for E-CADHERIN-positive liver metastasis and E-CADHERIN-negative lung metastasis. Furthermore, human PDAC and liver metastases support the premise that liver metastases exhibit predominantly epithelial characteristics. RNA-seq demonstrates differential induction of pathways associated with metastasis and epithelial-to-mesenchymal transition in p120ctn-deficient versus p120ctn-wild-type cells. Taken together, P120CTN and E-CADHERIN mediated epithelial plasticity is an addition to the conceptual framework underlying metastatic organotropism in pancreatic cancer.
Collapse
Affiliation(s)
- Maximilian Reichert
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University Munich, Medizinische Klinik, Ismaninger Str. 22, Munich 81675, Germany.
| | - Basil Bakir
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Leticia Moreira
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), IDIBAPS, University of Barcelona, Catalonia, Spain
| | - Jason R Pitarresi
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Karin Feldmann
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University Munich, Medizinische Klinik, Ismaninger Str. 22, Munich 81675, Germany
| | - Lauren Simon
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Kensuke Suzuki
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ravikanth Maddipati
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Andrew D Rhim
- Division of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX, USA
| | - Anna M Schlitter
- Institute of General Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Mark Kriegsmann
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Wilko Weichert
- Institute of General Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Matthias Wirth
- Institute of Pathology, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Kathleen Schuck
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University Munich, Medizinische Klinik, Ismaninger Str. 22, Munich 81675, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University Munich, Medizinische Klinik, Ismaninger Str. 22, Munich 81675, Germany
| | - Dieter Saur
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University Munich, Medizinische Klinik, Ismaninger Str. 22, Munich 81675, Germany
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Burcin Pehlivanoglu
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Bahar Memis
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - N Volkan Adsay
- Department of Pathology, Koc University Hospital, Istanbul, Turkey
| | - Anil K Rustgi
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 900 Biomedical Research Building II/III, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Cell type‐dependent functions of microRNA‐92a. J Cell Biochem 2018; 119:5798-5804. [DOI: 10.1002/jcb.26765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
|
29
|
Lin CC, Kurashige M, Liu Y, Terabayashi T, Ishimoto Y, Wang T, Choudhary V, Hobbs R, Liu LK, Lee PH, Outeda P, Zhou F, Restifo NP, Watnick T, Kawano H, Horie S, Prinz W, Xu H, Menezes LF, Germino GG. A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Sci Rep 2018; 8:2743. [PMID: 29426897 PMCID: PMC5807443 DOI: 10.1038/s41598-018-20856-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies have reported intrinsic metabolic reprogramming in Pkd1 knock-out cells, implicating dysregulated cellular metabolism in the pathogenesis of polycystic kidney disease. However, the exact nature of the metabolic changes and their underlying cause remains controversial. We show herein that Pkd1 k o /ko renal epithelial cells have impaired fatty acid utilization, abnormal mitochondrial morphology and function, and that mitochondria in kidneys of ADPKD patients have morphological alterations. We further show that a C-terminal cleavage product of polycystin-1 (CTT) translocates to the mitochondria matrix and that expression of CTT in Pkd1 ko/ko cells rescues some of the mitochondrial phenotypes. Using Drosophila to model in vivo effects, we find that transgenic expression of mouse CTT results in decreased viability and exercise endurance but increased CO2 production, consistent with altered mitochondrial function. Our results suggest that PC1 may play a direct role in regulating mitochondrial function and cellular metabolism and provide a framework to understand how impaired mitochondrial function could be linked to the regulation of tubular diameter in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Cheng-Chao Lin
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mahiro Kurashige
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yi Liu
- Laboratory of Molecular Genetics; National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Takeshi Terabayashi
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yu Ishimoto
- Division of Nephrology and Endocrinology and the Division of CKD Pathophysiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tanchun Wang
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Vineet Choudhary
- Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Disease, NIH, Bethesda, MD, USA
| | - Ryan Hobbs
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Li-Ka Liu
- Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Disease, NIH, Bethesda, MD, USA
| | - Ping-Hsien Lee
- Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Patricia Outeda
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fang Zhou
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicholas P Restifo
- Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Terry Watnick
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - William Prinz
- Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Disease, NIH, Bethesda, MD, USA
| | - Hong Xu
- Laboratory of Molecular Genetics; National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luis F Menezes
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gregory G Germino
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
30
|
Interplay between Obesity-Induced Inflammation and cGMP Signaling in White Adipose Tissue. Cell Rep 2017; 18:225-236. [PMID: 28052251 DOI: 10.1016/j.celrep.2016.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/15/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022] Open
Abstract
Current worldwide figures suggest that obesity is pandemic. Understanding the underlying molecular mechanisms would help develop viable anti-obesity therapies. Here, we assess the influence of obesity-induced inflammation on white adipocyte cyclic guanosine monophosphate (cGMP) signaling, which is beneficial for adipocyte differentiation and thermogenesis. We find that murine gonadal and not inguinal fat is prone to obesity-induced inflammation. Correspondingly, the cGMP cascade is dysregulated in gonadal but not in inguinal fat of obese mice. Analysis of two independent human cohorts reveals a defective cGMP pathway only in visceral fat of obese subjects. Congruently, cGMP signaling is dysregulated in tumor necrosis factor α (TNF-α)-treated primary white adipocytes. TNF-α-mediated suppression of sGCβ1 is mediated via NF-κB, whereas PKG is repressed by JNK signaling. Additionally, TNF-α-activated JNK signaling suppresses PPARγ and aP2. Taken together, the intensity of obesity-induced inflammation dictates the amplitude of cGMP signaling dysregulation in white adipocytes through distinct pathways.
Collapse
|
31
|
BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination. Nat Commun 2017; 8:525. [PMID: 28904335 PMCID: PMC5597640 DOI: 10.1038/s41467-017-00634-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tumor suppressor BRCA2 predominantly predispose to breast cancer. Paradoxically, while loss of BRCA2 promotes tumor formation, it also causes cell lethality, although how lethality is triggered is unclear. Here, we generate BRCA2 conditional non-transformed human mammary epithelial cell lines using CRISPR-Cas9. Cells are inviable upon BRCA2 loss, which leads to replication stress associated with under replication, causing mitotic abnormalities, 53BP1 nuclear body formation in the ensuing G1 phase, and G1 arrest. Unexpected from other systems, the role of BRCA2 in homologous recombination, but not in stalled replication fork protection, is primarily associated with supporting human mammary epithelial cell viability, and, moreover, preventing replication stress, a hallmark of pre-cancerous lesions. Thus, we uncover a DNA under replication-53BP1 nuclear body formation-G1 arrest axis as an unanticipated outcome of homologous recombination deficiency, which triggers cell lethality and, we propose, serves as a barrier that must be overcome for tumor formation. BRCA2 mutations promote tumour formation while also paradoxically causing cell lethality. Here the authors generate conditional BRCA2 loss in a non-transformed human mammary cell line and see increased replication stress due to under-replication of DNA.
Collapse
|
32
|
Falk S, Bugeon S, Ninkovic J, Pilz GA, Postiglione MP, Cremer H, Knoblich JA, Götz M. Time-Specific Effects of Spindle Positioning on Embryonic Progenitor Pool Composition and Adult Neural Stem Cell Seeding. Neuron 2017; 93:777-791.e3. [PMID: 28231465 PMCID: PMC5338691 DOI: 10.1016/j.neuron.2017.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/12/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022]
Abstract
The developmental mechanisms regulating the number of adult neural stem cells (aNSCs) are largely unknown. Here we show that the cleavage plane orientation in murine embryonic radial glia cells (RGCs) regulates the number of aNSCs in the lateral ganglionic eminence (LGE). Randomizing spindle orientation in RGCs by overexpression of Insc or a dominant-negative form of Lgn (dnLgn) reduces the frequency of self-renewing asymmetric divisions while favoring symmetric divisions generating two SNPs. Importantly, these changes during embryonic development result in reduced seeding of aNSCs. Interestingly, no effects on aNSC numbers were observed when Insc was overexpressed in postnatal RGCs or aNSCs. These data suggest a new mechanism for controlling aNSC numbers and show that the role of spindle orientation during brain development is highly time and region dependent. Randomization of the spindle orientation changes the progenitor pool composition Overexpression of Insc or dnLgn reduces asymmetric self-renewing division of aRGCs The change in embryonic progenitor pool leads to reduced seeding of adult NSCs Insc influences the seeding of adult NSCs in a narrow developmental time window
Collapse
Affiliation(s)
- Sven Falk
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany
| | - Stéphane Bugeon
- Aix-Marseille Université, Centre National de la Recherche Scientifique, IBDM, UMR7288, 13284 Marseille, France
| | - Jovica Ninkovic
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany
| | - Gregor-Alexander Pilz
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Maria Pia Postiglione
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), 1030 Vienna, Austria
| | - Harold Cremer
- Aix-Marseille Université, Centre National de la Recherche Scientifique, IBDM, UMR7288, 13284 Marseille, France
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), 1030 Vienna, Austria
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany.
| |
Collapse
|
33
|
Richie CT, Whitaker LR, Whitaker KW, Necarsulmer J, Baldwin HA, Zhang Y, Fortuno L, Hinkle JJ, Koivula P, Henderson MJ, Sun W, Wang K, Smith JC, Pickel J, Ji N, Hope BT, Harvey BK. Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic Cre-reporter rat, and other neuronal studies. J Neurosci Methods 2017; 284:1-14. [PMID: 28380331 PMCID: PMC5501963 DOI: 10.1016/j.jneumeth.2017.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND The use of genetically-encoded fluorescent reporters is essential for the identification and observation of cells that express transgenic modulatory proteins. Near-infrared (NIR) fluorescent proteins have superior light penetration through biological tissue, but are not yet widely adopted. NEW METHOD Using the near-infrared fluorescent protein, iRFP713, improves the imaging resolution in thick tissue sections or the intact brain due to the reduced light-scattering at the longer, NIR wavelengths used to image the protein. Additionally, iRFP713 can be used to identify transgenic cells without photobleaching other fluorescent reporters or affecting opsin function. We have generated a set of adeno-associated vectors in which iRFP713 has been fused to optogenetic channels, and can be expressed constitutively or Cre-dependently. RESULTS iRFP713 is detectable when expressed in neurons both in vitro and in vivo without exogenously supplied chromophore biliverdin. Neuronally-expressed iRFP713 has similar properties to GFP-like fluorescent proteins, including the ability to be translationally fused to channelrhodopsin or halorhodopsin, however, it shows superior photostability compared to EYFP. Furthermore, electrophysiological recordings from iRFP713-labeled cells compared to cells labeled with mCherry suggest that iRFP713 cells are healthier and therefore more stable and reliable in an ex vivo preparation. Lastly, we have generated a transgenic rat that expresses iRFP713 in a Cre-dependent manner. CONCLUSIONS Overall, we have demonstrated that iRFP713 can be used as a reporter in neurons without the use of exogenous biliverdin, with minimal impact on viability and function thereby making it feasible to extend the capabilities for imaging genetically-tagged neurons in slices and in vivo.
Collapse
Affiliation(s)
- Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Leslie R Whitaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Keith W Whitaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States; US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States
| | - Julie Necarsulmer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Heather A Baldwin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Yajun Zhang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States; Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, United States
| | - Lowella Fortuno
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Josh J Hinkle
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Pyry Koivula
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Mark J Henderson
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Wenzhi Sun
- Janelia Research Campus,Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Kai Wang
- Janelia Research Campus,Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Jeffrey C Smith
- Intramural Research Program, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, United States
| | - Jim Pickel
- Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892, United States
| | - Na Ji
- Janelia Research Campus,Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Bruce T Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States.
| |
Collapse
|
34
|
Vanoli F, Jasin M. Generation of chromosomal translocations that lead to conditional fusion protein expression using CRISPR-Cas9 and homology-directed repair. Methods 2017; 121-122:138-145. [PMID: 28522325 PMCID: PMC5531069 DOI: 10.1016/j.ymeth.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022] Open
Abstract
Recurrent chromosomal translocations often lead to expression of fusion proteins associated with oncogenic transformation. To study translocations and downstream events, genome editing techniques have been developed to generate chromosomal translocations through non-homologous end joining of DNA double-strand breaks introduced at the two participating endogenous loci. However, the frequencies at which these events occur is usually too low to efficiently clone cells carrying the translocation. This article provides a detailed method using CRISPR-Cas9 technology and homology-directed repair to efficiently isolate cells harboring a chromosomal translocation. For an additional level of control, the resulting fusion protein is conditionally expressed to allow early events in oncogenic transformation to be studied. We focus on the generation of the EWSR1-WT1 fusion using human mesenchymal cells, which is associated with the translocation found in desmoplastic small round cell tumors.
Collapse
MESH Headings
- Abdominal Neoplasms/genetics
- Abdominal Neoplasms/metabolism
- Abdominal Neoplasms/pathology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- CRISPR-Associated Protein 9
- CRISPR-Cas Systems
- Cell Line
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 22
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA Breaks, Double-Stranded
- Desmoplastic Small Round Cell Tumor/genetics
- Desmoplastic Small Round Cell Tumor/metabolism
- Desmoplastic Small Round Cell Tumor/pathology
- Endonucleases/genetics
- Endonucleases/metabolism
- Genome, Human
- Humans
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Mutagenesis, Site-Directed/methods
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Recombinational DNA Repair
- Translocation, Genetic
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
Collapse
Affiliation(s)
- Fabio Vanoli
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
35
|
CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells. Proc Natl Acad Sci U S A 2017; 114:3696-3701. [PMID: 28325870 DOI: 10.1073/pnas.1700622114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gene editing techniques have been extensively used to attempt to model recurrent genomic rearrangements found in tumor cells. These methods involve the induction of double-strand breaks at endogenous loci followed by the identification of breakpoint junctions within a population, which typically arise by nonhomologous end joining. The low frequency of these events, however, has hindered the cloning of cells with the desired rearrangement before oncogenic transformation. Here we present a strategy combining CRISPR-Cas9 technology and homology-directed repair to allow for the selection of human mesenchymal stem cells harboring the oncogenic translocation EWSR1-WT1 found in the aggressive desmoplastic small round cell tumor. The expression of the fusion transcript is under the control of the endogenous EWSR1 promoter and, importantly, can be conditionally expressed using Cre recombinase. This method is easily adapted to generate any cancer-relevant rearrangement.
Collapse
|
36
|
Amini HR, Pakdel A, Shahr-Babak HM, Eghbalsaied S. Developing a puncture-free in ovo chicken transfection strategy based on bypassing albumen nucleases. Theriogenology 2017; 91:90-97. [DOI: 10.1016/j.theriogenology.2016.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022]
|
37
|
Blaj C, Schmidt EM, Lamprecht S, Hermeking H, Jung A, Kirchner T, Horst D. Oncogenic Effects of High MAPK Activity in Colorectal Cancer Mark Progenitor Cells and Persist Irrespective of RAS Mutations. Cancer Res 2017; 77:1763-1774. [PMID: 28202525 DOI: 10.1158/0008-5472.can-16-2821] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/28/2022]
Abstract
About 40% of colorectal cancers have mutations in KRAS accompanied by downstream activation of MAPK signaling, which promotes tumor invasion and progression. Here, we report that MAPK signaling shows strong intratumoral heterogeneity and unexpectedly remains regulated in colorectal cancer irrespective of KRAS mutation status. Using primary colorectal cancer tissues, xenograft models, and MAPK reporter constructs, we showed that tumor cells with high MAPK activity resided specifically at the leading tumor edge, ceased to proliferate, underwent epithelial-mesenchymal transition (EMT), and expressed markers related to colon cancer stem cells. In KRAS-mutant colon cancer, regulation of MAPK signaling was preserved through remaining wild-type RAS isoforms. Moreover, using a lineage tracing strategy, we provide evidence that high MAPK activity marked a progenitor cell compartment of growth-fueling colon cancer cells in vivo Our results imply that differential MAPK signaling balances EMT, cancer stem cell potential, and tumor growth in colorectal cancer. Cancer Res; 77(7); 1763-74. ©2017 AACR.
Collapse
Affiliation(s)
- Cristina Blaj
- Pathologisches Institut, Ludwig-Maximilians-Universität München, München, Germany
| | - Eva Marina Schmidt
- Pathologisches Institut, Ludwig-Maximilians-Universität München, München, Germany
| | - Sebastian Lamprecht
- Pathologisches Institut, Ludwig-Maximilians-Universität München, München, Germany
| | - Heiko Hermeking
- Pathologisches Institut, Ludwig-Maximilians-Universität München, München, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Jung
- Pathologisches Institut, Ludwig-Maximilians-Universität München, München, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Kirchner
- Pathologisches Institut, Ludwig-Maximilians-Universität München, München, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Horst
- Pathologisches Institut, Ludwig-Maximilians-Universität München, München, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
38
|
Costa CRM, Feitosa MLT, Bezerra DO, Carvalho YKP, Olivindo RFG, Fernando PB, Silva GC, Silva MLG, Ambrósio CE, Conde Júnior AM, Argolo Neto NM, Costa Silva LM, Carvalho MAM. Labeling of adipose-derived stem cells with quantum dots provides stable and long-term fluorescent signal for ex vivo cell tracking. In Vitro Cell Dev Biol Anim 2016; 53:363-370. [DOI: 10.1007/s11626-016-0121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
|
39
|
Wei Y, Chiang WC, Sumpter R, Mishra P, Levine B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell 2016; 168:224-238.e10. [PMID: 28017329 DOI: 10.1016/j.cell.2016.11.042] [Citation(s) in RCA: 591] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/15/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Abstract
The removal of unwanted or damaged mitochondria by autophagy, a process called mitophagy, is essential for key events in development, cellular homeostasis, tumor suppression, and prevention of neurodegeneration and aging. However, the precise mechanisms of mitophagy remain uncertain. Here, we identify the inner mitochondrial membrane protein, prohibitin 2 (PHB2), as a crucial mitophagy receptor involved in targeting mitochondria for autophagic degradation. PHB2 binds the autophagosomal membrane-associated protein LC3 through an LC3-interaction region (LIR) domain upon mitochondrial depolarization and proteasome-dependent outer membrane rupture. PHB2 is required for Parkin-induced mitophagy in mammalian cells and for the clearance of paternal mitochondria after embryonic fertilization in C. elegans. Our findings pinpoint a conserved mechanism of eukaryotic mitophagy and demonstrate a function of prohibitin 2 that may underlie its roles in physiology, aging, and disease.
Collapse
Affiliation(s)
- Yongjie Wei
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Wei-Chung Chiang
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Rhea Sumpter
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA.
| |
Collapse
|
40
|
Liu J, Shui SL. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J Control Release 2016; 244:83-97. [PMID: 27865852 DOI: 10.1016/j.jconrel.2016.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
41
|
Park T, Koptyra M, Curran T. Fibroblast Growth Requires CT10 Regulator of Kinase (Crk) and Crk-like (CrkL). J Biol Chem 2016; 291:26273-26290. [PMID: 27807028 DOI: 10.1074/jbc.m116.764613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
CT10 regulator of kinase (Crk) and Crk-like (CrkL) are the cellular counterparts of the viral oncogene v-Crk Elevated levels of Crk and CrkL have been observed in many human cancers; inhibition of Crk and CrkL expression reduced the tumor-forming potential of cancer cell lines. Despite a close relationship between the Crk family proteins and tumorigenesis, how Crk and CrkL contribute to cell growth is unclear. We ablated endogenous Crk and CrkL from cultured fibroblasts carrying floxed alleles of Crk and CrkL by transfection with synthetic Cre mRNA (synCre). Loss of Crk and CrkL induced by synCre transfection blocked cell proliferation and caused shrinkage of the cytoplasm and the nucleus, formation of adherens junctions, and reduced cell motility. Ablation of Crk or CrkL alone conferred a much more modest reduction in cell proliferation. Reintroduction of CrkI, CrkII, or CrkL individually rescued cell proliferation in the absence of the endogenous Crk and CrkL, suggesting that Crk and CrkL play overlapping functions in regulating fibroblast growth. Serum and basic FGF induced phosphorylation of Akt, MAP kinases, and S6 kinase and Fos expression in the absence of Crk and CrkL, suggesting that cells lacking Crk and CrkL are capable of initiating major signal transduction pathways in response to extracellular stimuli. Furthermore, cell cycle and cell death analyses demonstrated that fibroblasts lacking Crk and CrkL become arrested at the G1-S transition and undergo a modest apoptosis. Taken together, our results suggest that Crk and CrkL play essential overlapping roles in fibroblast growth.
Collapse
Affiliation(s)
- Taeju Park
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Mateusz Koptyra
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Tom Curran
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| |
Collapse
|
42
|
Kasai Y, Harayama S. Construction of Marker-Free Transgenic Strains of Chlamydomonas reinhardtii Using a Cre/loxP-Mediated Recombinase System. PLoS One 2016; 11:e0161733. [PMID: 27564988 PMCID: PMC5001723 DOI: 10.1371/journal.pone.0161733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/10/2016] [Indexed: 12/14/2022] Open
Abstract
The Escherichia coli bacteriophage P1 encodes a site-specific recombinase called Cre and two 34-bp target sites of Cre recombinase called loxP. The Cre/loxP system has been used to achieve targeted insertion and precise deletion in many animal and plant genomes. The Cre/loxP system has particularly been used for the removal of selectable marker genes to create marker-free transgenic organisms. For the first time, we applied the Cre/loxP-mediated site-specific recombination system to Chlamydomonas reinhardtii to construct marker-free transgenic strains. Specifically, C. reinhardtii strains cc4350 and cc124 carrying an aphVIII expression cassette flanked by two direct repeats of loxP were constructed. Separately, a synthetic Cre recombinase gene (CrCRE), the codons of which were optimized for expression in C. reinhardtii, was synthesized, and a CrCRE expression cassette was introduced into strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette. Among 46 transformants carrying the CrCRE expression cassette stably, the excision of aphVIII by CrCre recombinase was observed only in one transformant. We then constructed an expression cassette of an in-frame fusion of ble to CrCRE via a short linker peptide. The product of ble (Ble) is a bleomycin-binding protein that confers resistance to bleomycin-related antibiotics such as Zeocin and localizes in the nucleus. Therefore, the ble-(linker)-CrCRE fusion protein is expected to localize in the nucleus. When the ble-(linker)-CrCRE expression cassette was integrated into the genome of strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette, CrCre recombinase-mediated excision of the aphVIII expression cassette was observed at a frequency higher than that in stable transformants of the CrCRE expression cassette. Similarly, from strain cc124 carrying a single loxP-flanked aphVIII expression cassette, the aphVIII expression cassette was successfully excised after introduction of the ble-(linker)-CrCRE expression cassette. The ble-(linker)-CrCRE expression cassette remained in the genome after excision of the aphVIII expression cassette, and it was subsequently removed by crossing with the wild-type strain. This precise Cre-mediated deletion method applicable to transgenic C. reinhardtii could further increase the potential of this organism for use in basic and applied research.
Collapse
Affiliation(s)
- Yuki Kasai
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
| | - Shigeaki Harayama
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
43
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
44
|
Pépin G, Ferrand J, Höning K, Jayasekara WSN, Cain JE, Behlke MA, Gough DJ, G Williams BR, Hornung V, Gantier MP. Cre-dependent DNA recombination activates a STING-dependent innate immune response. Nucleic Acids Res 2016; 44:5356-64. [PMID: 27166376 PMCID: PMC4914124 DOI: 10.1093/nar/gkw405] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/02/2016] [Indexed: 01/05/2023] Open
Abstract
Gene-recombinase technologies, such as Cre/loxP-mediated DNA recombination, are important tools in the study of gene function, but have potential side effects due to damaging activity on DNA. Here we show that DNA recombination by Cre instigates a robust antiviral response in mammalian cells, independent of legitimate loxP recombination. This is due to the recruitment of the cytosolic DNA sensor STING, concurrent with Cre-dependent DNA damage and the accumulation of cytoplasmic DNA. Importantly, we establish a direct interplay between this antiviral response and cell–cell interactions, indicating that low cell densities in vitro could be useful to help mitigate these effects of Cre. Taking into account the wide range of interferon stimulated genes that may be induced by the STING pathway, these results have broad implications in fields such as immunology, cancer biology, metabolism and stem cell research. Further, this study sets a precedent in the field of gene-engineering, possibly applicable to other enzymatic-based genome editing technologies.
Collapse
Affiliation(s)
- Geneviève Pépin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Jonathan Ferrand
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Klara Höning
- Institute of Molecular Medicine, University Hospital University of Bonn, 53127 Bonn, Germany
| | - W Samantha N Jayasekara
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Jason E Cain
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Mark A Behlke
- Integrated DNA Technologies Inc., Coralville, IA 52241, USA
| | - Daniel J Gough
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Bryan R G Williams
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital University of Bonn, 53127 Bonn, Germany Gene Centre and Department of Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
45
|
Hackett AR, Lee DH, Dawood A, Rodriguez M, Funk L, Tsoulfas P, Lee JK. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis 2016; 89:10-22. [PMID: 26804026 PMCID: PMC4785033 DOI: 10.1016/j.nbd.2016.01.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022] Open
Abstract
NG2 cells, also known as oligodendrocyte progenitors or polydendrocytes, are a major component of the glial scar that forms after spinal cord injury. NG2 cells react to injury by proliferating around the lesion site and differentiating into oligodendrocytes and astrocytes, but the molecular mechanism is poorly understood. In this study, we tested the role of the transcription factor STAT3, and its suppressor SOCS3, in NG2 cell proliferation and differentiation after spinal cord injury. Using knockout mice in which STAT3 or SOCS3 are genetically deleted specifically in NG2 cells, we found that deletion of STAT3 led to a reduction in oligodendrogenesis, while deletion of SOCS3 led to enhanced proliferation of NG2 cells within the glial scar after spinal cord injury. Additionally, STAT3 and SOCS3 were not required for astrogliogenesis from NG2 cells after spinal cord injury. Interestingly, genetic deletion of STAT3 and SOCS3 did not have opposing effects, suggesting that SOCS3 may have targets other than the STAT3 pathway in NG2 cells after spinal cord injury. Altogether, our data show that both STAT3 and SOCS3 play important, yet unexpected, roles in NG2 cell proliferation and differentiation after spinal cord injury.
Collapse
Affiliation(s)
- Amber R Hackett
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Do-Hun Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Abdul Dawood
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Mario Rodriguez
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Lucy Funk
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Pantelis Tsoulfas
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
46
|
Israeli E, Dryanovski DI, Schumacker PT, Chandel NS, Singer JD, Julien JP, Goldman RD, Opal P. Intermediate filament aggregates cause mitochondrial dysmotility and increase energy demands in giant axonal neuropathy. Hum Mol Genet 2016; 25:2143-2157. [PMID: 27000625 DOI: 10.1093/hmg/ddw081] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/07/2016] [Indexed: 12/26/2022] Open
Abstract
Intermediate filaments (IFs) are cytoskeletal polymers that extend from the nucleus to the cell membrane, giving cells their shape and form. Abnormal accumulation of IFs is involved in the pathogenesis of number neurodegenerative diseases, but none as clearly as giant axonal neuropathy (GAN), a ravaging disease caused by mutations in GAN, encoding gigaxonin. Patients display early and severe degeneration of the peripheral nervous system along with IF accumulation, but it has been difficult to link GAN mutations to any particular dysfunction, in part because GAN null mice have a very mild phenotype. We therefore established a robust dorsal root ganglion neuronal model that mirrors key cellular events underlying GAN. We demonstrate that gigaxonin is crucial for ubiquitin-proteasomal degradation of neuronal IF. Moreover, IF accumulation impairs mitochondrial motility and is associated with metabolic and oxidative stress. These results have implications for other neurological disorders whose pathology includes IF accumulation.
Collapse
Affiliation(s)
| | | | | | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey D Singer
- Department of Biology, Portland State University, Portland, OR, USA and
| | - Jean P Julien
- Research Centre of IUSMQ, Department of Psychiatry and Neuroscience of Laval University, Quebec, QC, G1V 0A6, Canada
| | | | - Puneet Opal
- Davee Department of Neurology, Department of Cell and Molecular Biology,
| |
Collapse
|
47
|
Barboza LCM, Lezirovitz K, Zanatta DB, Strauss BE, Mingroni-Netto RC, Oiticica J, Haddad LA, Bento RF. Transplantation and survival of mouse inner ear progenitor/stem cells in the organ of Corti after cochleostomy of hearing-impaired guinea pigs: preliminary results. Braz J Med Biol Res 2016; 49:e5064. [PMID: 27007652 PMCID: PMC4819408 DOI: 10.1590/1414-431x20155064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/16/2015] [Indexed: 11/30/2022] Open
Abstract
In mammals, damage to sensory receptor cells (hair cells) of the inner ear results in permanent sensorineural hearing loss. Here, we investigated whether postnatal mouse inner ear progenitor/stem cells (mIESCs) are viable after transplantation into the basal turns of neomycin-injured guinea pig cochleas. We also examined the effects of mIESC transplantation on auditory functions. Eight adult female Cavia porcellus guinea pigs (250-350g) were deafened by intratympanic neomycin delivery. After 7 days, the animals were randomly divided in two groups. The study group (n=4) received transplantation of LacZ-positive mIESCs in culture medium into the scala tympani. The control group (n=4) received culture medium only. At 2 weeks after transplantation, functional analyses were performed by auditory brainstem response measurement, and the animals were sacrificed. The presence of mIESCs was evaluated by immunohistochemistry of sections of the cochlea from the study group. Non-parametric tests were used for statistical analysis of the data. Intratympanic neomycin delivery damaged hair cells and increased auditory thresholds prior to cell transplantation. There were no significant differences between auditory brainstem thresholds before and after transplantation in individual guinea pigs. Some mIESCs were observed in all scalae of the basal turns of the injured cochleas, and a proportion of these cells expressed the hair cell marker myosin VIIa. Some transplanted mIESCs engrafted in the cochlear basilar membrane. Our study demonstrates that transplanted cells survived and engrafted in the organ of Corti after cochleostomy.
Collapse
Affiliation(s)
- L C M Barboza
- Departamento de Otorrinolaringologia (LIM32), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - K Lezirovitz
- Departamento de Otorrinolaringologia (LIM32), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - D B Zanatta
- Setor de Vetores Virais, Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - B E Strauss
- Setor de Vetores Virais, Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R C Mingroni-Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - J Oiticica
- Departamento de Otorrinolaringologia (LIM32), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L A Haddad
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R F Bento
- Departamento de Otorrinolaringologia (LIM32), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
48
|
Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration. Proc Natl Acad Sci U S A 2016; 113:2514-9. [PMID: 26888285 DOI: 10.1073/pnas.1515526113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics.
Collapse
|
49
|
McHaffie SL, Hastie ND, Chau YY. Effects of CreERT2, 4-OH Tamoxifen, and Gender on CFU-F Assays. PLoS One 2016; 11:e0148105. [PMID: 26828722 PMCID: PMC4734617 DOI: 10.1371/journal.pone.0148105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/13/2016] [Indexed: 12/29/2022] Open
Abstract
Gene function in stem cell maintenance is often tested by inducing deletion via the Cre-loxP system. However, controls for Cre and other variables are frequently not included. Here we show that when cultured in the presence of 4-OH tamoxifen, bone and marrow cells containing the CreERT2 construct have a reduced colony forming ability. Inactive CreERT2 recombinase, however, has the opposite effect. Young female marrow cells containing the inactive CreERT2 construct grew more colonies than cells lacking the construct altogether. Young female control marrow cells (i.e., negative for CreERT2) also produced significantly greater colony numbers when cultured with 4-OH tamoxifen, compared with the ethanol vehicle control. In conclusion, we report that the use of the Cre-loxP system is inadvisable in combination with CFU-F assays, and that appropriate controls should be in place to extend the future use of Cre-loxP in alternate assays.
Collapse
Affiliation(s)
- Sophie L. McHaffie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicholas D. Hastie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - You-Ying Chau
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
50
|
Berry M, Ahmed Z, Morgan-Warren P, Fulton D, Logan A. Prospects for mTOR-mediated functional repair after central nervous system trauma. Neurobiol Dis 2015; 85:99-110. [PMID: 26459109 DOI: 10.1016/j.nbd.2015.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/09/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested that the growth of central nervous system (CNS) axons during development is mediated through the PI3K/Akt/mammalian target of rapamycin (mTOR) intracellular signalling axis and that suppression of activity in this pathway occurs during maturity as levels of the phosphatase and tensin homologue (PTEN) rise and inhibit PI3K activation of mTOR, accounting for the failure of axon regeneration in the injured adult CNS. This hypothesis is supported by findings confirming that suppression of PTEN in experimental adult animals promotes impressive axon regeneration in the injured visual and corticospinal motor systems. This review focuses on these recent developments, discussing the therapeutic potential of a mTOR-based treatment aimed at promoting functional recovery in CNS trauma patients, recognising that to fulfil this ambition, the new therapy should aim to promote not only axon regeneration but also remyelination of regenerated axons, neuronal survival and re-innervation of denervated targets through accurate axonal guidance and synaptogenesis, all with minimal adverse effects. The translational challenges presented by the implementation of this new axogenic therapy are also discussed.
Collapse
Affiliation(s)
- Martin Berry
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Peter Morgan-Warren
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daniel Fulton
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|