1
|
Wang HX, Song Z, Lao YH, Xu X, Gong J, Cheng D, Chakraborty S, Park JS, Li M, Huang D, Yin L, Cheng J, Leong KW. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc Natl Acad Sci U S A 2018; 115:4903-4908. [PMID: 29686087 PMCID: PMC5948953 DOI: 10.1073/pnas.1712963115] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-l-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Xin Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
- Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jing Gong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Du Cheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Syandan Chakraborty
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Ji Sun Park
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China;
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
- Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801;
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027;
| |
Collapse
|
2
|
Genetic background of uric acid metabolism in a patient with severe chronic tophaceous gout. Clin Chim Acta 2016; 460:46-9. [PMID: 27288985 DOI: 10.1016/j.cca.2016.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/21/2023]
Abstract
Hyperuricemia depends on the balance of endogenous production and renal excretion of uric acid. Transporters for urate are located in the proximal tubule where uric acid is secreted and extensively reabsorbed: secretion is principally ensured by the highly variable ABCG2 gene. Enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) plays a central role in purine metabolism and its deficiency is an X-linked inherited metabolic disorder associated with clinical manifestations of purine overproduction. Here we report the case of a middle-aged man with severe chronic tophaceous gout with a poor response to allopurinol and requiring repeated surgical intervention. We identified the causal mutations in the HPRT1 gene, variant c.481G>T (p.A161S), and in the crucial urate transporter ABCG2, a heterozygous variant c.421C>A (p.Q141K). This case shows the value of an analysis of the genetic background of serum uric acid.
Collapse
|
3
|
Zhang J, Fu R, Xie L, Li Q, Zhou W, Wang R, Ye J, Wang D, Xue N, Lin X, Lu Y, Huang G. A smart device for label-free and real-time detection of gene point mutations based on the high dark phase contrast of vapor condensation. LAB ON A CHIP 2015; 15:3891-3896. [PMID: 26266399 DOI: 10.1039/c5lc00488h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A smart device for label-free and real-time detection of gene point mutation-related diseases was developed based on the high dark phase contrast of vapor condensation. The main components of the device included a Peltier cooler and a mini PC board for image processing. Heat from the hot side of the Peltier cooler causes the fluid in a copper chamber to evaporate, and the vapor condenses on the surface of a microarray chip placed on the cold side of the cooler. The high dark phase contrast of vapor condensation relative to the analytes on the microarray chip was explored. Combined with rolling circle amplification, the device visualizes less-to-more hydrophilic transitions caused by gene trapping and DNA amplification. A lung cancer gene point mutation was analysed, proving the high selectivity and multiplex analysis capability of this low-cost device.
Collapse
Affiliation(s)
- Junqi Zhang
- Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China. tshgl@ tsinghua.edu.cn
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
BOROUJERDI R, SHARIATI M, NADDAFNIA H, REZAEI H. Small Duplication of HPRT 1 Gene May Be Causative For Lesh-Nyhan Disease in Iranian Patients. IRANIAN JOURNAL OF CHILD NEUROLOGY 2015; 9:103-6. [PMID: 25767547 PMCID: PMC4322507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 06/25/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022]
Abstract
Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a rare inborn error of purine metabolism and is characterized by uric acid overproduction along with a variety of neurological manifestations that depend on a degree of the enzymatic deficiency. Inheritance of HPRT deficiency is X-linked recessive; thus, males are generally more affected and heterozygous females are carriers (usually asymptomatic). Human HPRT is encoded by a single structural gene on the long arm of the X chromosome at Xq26. More than 300 mutations in the HPRT1 gene have been detected. Diagnosis can be based on clinical and biochemical findings as well as enzymatic and molecular testing. Molecular diagnosis is the best way as it allows for faster and more accurate carrier and prenatal diagnosis. In this report, a new small duplication in the HPRT1 gene was found by sequencing, which has yet to be reported.
Collapse
Affiliation(s)
| | - Mohsen SHARIATI
- Technical Corresponding in Pouya, Genetic Counseling Clinic, Qom, Iran
| | - Hosein NADDAFNIA
- Islamic Azad University Science and Research Branch, Tehran, Iran
| | | |
Collapse
|
5
|
Novel hypoxanthine guanine phosphoribosyltransferase gene mutations in Saudi Arabian hyperuricemia patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:290325. [PMID: 25136576 PMCID: PMC4119946 DOI: 10.1155/2014/290325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/11/2014] [Accepted: 04/26/2014] [Indexed: 12/12/2022]
Abstract
Over the past decade, a steady increase in the incidence of HPRT-related hyperuricemia (HRH) has been observed in Saudi Arabia. We examined all the nine exons of HPRT gene for mutations in ten biochemically confirmed hyperuricemia patients, including one female and three normal controls. In all, we identified 13 novel mutations in Saudi Arabian HPRT-related hyperuricemia patients manifesting different levels of uric acid. The Lys103Met alteration was highly recurrent and was observed in 50% of the cases, while Ala160Thr and Lys158Asn substitutions were found in two patients. Moreover, in 70% of the patients ≥2 mutations were detected concurrently in the HPRT gene. Interestingly, one of the patients that harbored Lys103Met substitution along with two frameshift mutations at codons 85 and 160 resulting in shortened protein demonstrated unusually high serum uric acid level of 738 μmol/L. Two of the seven point mutations that resulted in amino acid change (Lys103Met and Val160Gly) were predicted to be damaging by SIFT and Polyphen and were further analyzed for their protein stability and function by molecular dynamics simulation. The identified novel mutations in the HPRT gene may prove useful in the prenatal diagnosis and genetic counseling.
Collapse
|
6
|
Fu R, Ceballos-Picot I, Torres RJ, Larovere LE, Yamada Y, Nguyen KV, Hegde M, Visser JE, Schretlen DJ, Nyhan WL, Puig JG, O'Neill PJ, Jinnah HA. Genotype-phenotype correlations in neurogenetics: Lesch-Nyhan disease as a model disorder. ACTA ACUST UNITED AC 2013; 137:1282-303. [PMID: 23975452 DOI: 10.1093/brain/awt202] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Establishing meaningful relationships between genetic variations and clinical disease is a fundamental goal for all human genetic disorders. However, these genotype-phenotype correlations remain incompletely characterized and sometimes conflicting for many diseases. Lesch-Nyhan disease is an X-linked recessive disorder that is caused by a wide variety of mutations in the HPRT1 gene. The gene encodes hypoxanthine-guanine phosphoribosyl transferase, an enzyme involved in purine metabolism. The fine structure of enzyme has been established by crystallography studies, and its function can be measured with very precise biochemical assays. This rich knowledge of genetic alterations in the gene and their functional effect on its protein product provides a powerful model for exploring factors that influence genotype-phenotype correlations. The present study summarizes 615 known genetic mutations, their influence on the gene product, and their relationship to the clinical phenotype. In general, the results are compatible with the concept that the overall severity of the disease depends on how mutations ultimately influence enzyme activity. However, careful evaluation of exceptions to this concept point to several additional genetic and non-genetic factors that influence genotype-phenotype correlations. These factors are not unique to Lesch-Nyhan disease, and are relevant to most other genetic diseases. The disease therefore serves as a valuable model for understanding the challenges associated with establishing genotype-phenotype correlations for other disorders.
Collapse
Affiliation(s)
- Rong Fu
- 1 Departments of Neurology, Human Genetics and Paediatrics; Emory University, Atlanta GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fu R, Jinnah HA. Genotype-phenotype correlations in Lesch-Nyhan disease: moving beyond the gene. J Biol Chem 2011; 287:2997-3008. [PMID: 22157001 DOI: 10.1074/jbc.m111.317701] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lesch-Nyhan disease and its attenuated variants are caused by mutations in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase. The mutations are heterogeneous, with more than 400 different mutations already documented. Prior efforts to correlate variations in the clinical phenotype with different mutations have suggested that milder phenotypes typically are associated with mutants that permit some residual enzyme function, whereas the most severe phenotype is associated with null mutants. However, multiple exceptions to this concept have been reported. In the current studies 44 HPRT1 mutations associated with a wide spectrum of clinical phenotypes were reconstructed by site-directed mutagenesis, the mutant enzymes were expressed in vitro and purified, and their kinetic properties were examined toward their substrates hypoxanthine, guanine, and phosphoribosylpyrophosphate. The results provide strong evidence for a correlation between disease severity and residual catalytic activity of the enzyme (k(cat)) toward each of its substrates as well as several mechanisms that result in exceptions to this correlation. There was no correlation between disease severity and the affinity of the enzyme for its substrates (K(m)). These studies provide a valuable model for understanding general principles of genotype-phenotype correlations in human disease, as the mechanisms involved are applicable to many other disorders.
Collapse
Affiliation(s)
- Rong Fu
- Department of Neurology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
8
|
Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, Sheth V, Woodward JE, Peckham HE, Schroth GP, Kim RW, Kingsmore SF. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 2011; 3:65ra4. [PMID: 21228398 PMCID: PMC3740116 DOI: 10.1126/scitranslmed.3001756] [Citation(s) in RCA: 503] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Of 7028 disorders with suspected Mendelian inheritance, 1139 are recessive and have an established molecular basis. Although individually uncommon, Mendelian diseases collectively account for ~20% of infant mortality and ~10% of pediatric hospitalizations. Preconception screening, together with genetic counseling of carriers, has resulted in remarkable declines in the incidence of several severe recessive diseases including Tay-Sachs disease and cystic fibrosis. However, extension of preconception screening to most severe disease genes has hitherto been impractical. Here, we report a preconception carrier screen for 448 severe recessive childhood diseases. Rather than costly, complete sequencing of the human genome, 7717 regions from 437 target genes were enriched by hybrid capture or microdroplet polymerase chain reaction, sequenced by next-generation sequencing (NGS) to a depth of up to 2.7 gigabases, and assessed with stringent bioinformatic filters. At a resultant 160x average target coverage, 93% of nucleotides had at least 20x coverage, and mutation detection/genotyping had ~95% sensitivity and ~100% specificity for substitution, insertion/deletion, splicing, and gross deletion mutations and single-nucleotide polymorphisms. In 104 unrelated DNA samples, the average genomic carrier burden for severe pediatric recessive mutations was 2.8 and ranged from 0 to 7. The distribution of mutations among sequenced samples appeared random. Twenty-seven percent of mutations cited in the literature were found to be common polymorphisms or misannotated, underscoring the need for better mutation databases as part of a comprehensive carrier testing strategy. Given the magnitude of carrier burden and the lower cost of testing compared to treating these conditions, carrier screening by NGS made available to the general population may be an economical way to reduce the incidence of and ameliorate suffering associated with severe recessive childhood disorders.
Collapse
Affiliation(s)
- Callum J. Bell
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Darrell L. Dinwiddie
- National Center for Genome Resources, Santa Fe, NM 87505, USA
- Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Neil A. Miller
- National Center for Genome Resources, Santa Fe, NM 87505, USA
- Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | | | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Ray J. Langley
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Lu Zhang
- Illumina Inc., Hayward, CA 94545, USA
| | | | | | | | | | | | | | - Ryan W. Kim
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Stephen F. Kingsmore
- National Center for Genome Resources, Santa Fe, NM 87505, USA
- Children’s Mercy Hospital, Kansas City, MO 64108, USA
| |
Collapse
|
9
|
Al-Dosary M, Whittaker RG, Haughton J, McFarland R, Goodship J, Turnbull DM, Taylor RW. Neuromuscular disease presentation with three genetic defects involving two genomes. Neuromuscul Disord 2009; 19:841-4. [DOI: 10.1016/j.nmd.2009.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/16/2009] [Accepted: 10/02/2009] [Indexed: 11/25/2022]
|
10
|
SANGKITPORN SK, EKSIRI L, SANGNOI A, DUANGRUANG S, DUMBUA A, RATTANAKITTISOPHON K, SANGKITPORN S. Identification of β-globin gene mutations in Thailand using an automated fluorescence-based DNA sequencer. Int J Lab Hematol 2009; 31:521-7. [DOI: 10.1111/j.1751-553x.2008.01072.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Ea HK, Bardin T, Jinnah HA, Aral B, Lioté F, Ceballos-Picot I. Severe gouty arthritis and mild neurologic symptoms due to F199C, a newly identified variant of the hypoxanthine guanine phosphoribosyltransferase. ACTA ACUST UNITED AC 2009; 60:2201-4. [PMID: 19565499 DOI: 10.1002/art.24617] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A deficiency in hypoxanthine guanine phosphoribosyltransferase (HPRT) activity leads to overproduction of uric acid. According to the degree of enzymatic deficiency, a large spectrum of neurologic features can also be observed, ranging from mild or no neurologic involvement to complete Lesch-Nyhan disease. Herein, we describe a patient with hyperuricemia, juvenile-onset gouty arthritis, nephrolithiasis, and mild neurologic symptoms, attributed to a newly identified variant of the hprt gene, c.596T>G, resulting in the amino acid change p.F199C. Residual HPRT activity (8%) protected against severe neurologic involvement in this patient. Modeling of the mutated protein was used to predict the mechanisms that led to partial enzymatic activity. Careful neurologic examination is warranted in juvenile and middle-aged patients with gout, in order to detect mild symptoms that may lead to a diagnosis of HPRT deficiency.
Collapse
Affiliation(s)
- Hang-Korng Ea
- Hôpital Lariboisière, INSERM UMR-S 606, Paris, France
| | | | | | | | | | | |
Collapse
|
12
|
Jurecka A, Popowska E, Tylki-Szymanska A, Kubalska J, Ciara E, Krumina Z, Sykut-Cegielska J, Pronicka E. Hypoxanthine-guanine phosphoribosylotransferase deficiency--the spectrum of Polish mutations. J Inherit Metab Dis 2008; 31 Suppl 2:S447-51. [PMID: 19016344 DOI: 10.1007/s10545-008-1013-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 11/25/2022]
Abstract
Hypoxanthine-guanine phosphoribosyltransferase (HPRT; EC 2.4.2.8) deficiency (OMIM 308000) is an inborn error of purine metabolism. The defect causes three overlapping clinical syndromes: Lesch-Nyhan disease (LND; OMIM 300322), HPRT-related hyperuricaemia with neurologic dysfunction (HRND) and hyperuricaemia alone (HRH; OMIM 300322). During the period 1977-2007, 18 patients belonging to 12 Polish families and one Latvian family with HPRT deficiency have been identified. The majority of patients had a typical LND phenotype, three patients were classified as HRH and one patient as an intermediate phenotype (HRND). Genetic analysis revealed 12 different HPRT1 mutations, five of them being unique. In two typical Lesch-Nyhan families a novel single-base substitution, c.220T>G (p.Phe74Val), and a deletion of seven nucleotides, c.395_401del7 (p.Ile132LysfsX3), were found. Another novel single-base substitution, c.295T>G (p.Phe99Val), was identified in a patient with severe partial deficiency of HPRT with neurological dysfunction. In patients belonging to the HRH group, two transitions were detected: c.481G>A (p.Ala161Thr) and c.526C>T (p.Pro176Ser). Other mutations identified in Polish patients, c.131A>G (p.Asp44Gly), c.222C>A (p.Phe74Leu), c.385-1G>A (p.Asn129_Glu134del), c.482C>A (p.Ala161Glu), c.508C>T (p.Arg170Ter) and c.569G>A (p.Gly190Glu), have been reported previously in unrelated patients and are located within one of the clusters of hot spots of the HPRT1 gene (exons 3, 7 and 8). Patients with partial phenotypes presented mutations predicted to permit some degree of residual enzyme function (single-base substitutions). All mutations, except c.508C>T (p.Arg170Ter), were found in single families only, indicating the lack of any common mutation causing HPRT deficiency in Poland.
Collapse
Affiliation(s)
- A Jurecka
- Department of Metabolic Diseases, Endocrinology and Diabetology, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gheldof N, Tabuchi TM, Dekker J. The active FMR1 promoter is associated with a large domain of altered chromatin conformation with embedded local histone modifications. Proc Natl Acad Sci U S A 2006; 103:12463-8. [PMID: 16891414 PMCID: PMC1567902 DOI: 10.1073/pnas.0605343103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the effects of gene activation on chromatin conformation throughout an approximately 170-kb region comprising the human fragile X locus, which includes a single expressed gene, FMR1 (fragile X mental retardation 1). We have applied three approaches: (i) chromosome conformation capture, which assesses relative interaction frequencies of chromatin segments; (ii) an extension of this approach that identifies domains whose conformation differs from the average, which we developed and named chromosome conformation profiling; and (iii) ChIP analysis of histone modifications. We find that, in normal cells where FMR1 is active, the FMR1 promoter is at the center of a large ( approximately 50 kb) domain of reduced intersegment interactions. In contrast, in fragile X cells where FMR1 is inactive, chromatin conformation is uniform across the entire region. We also find that histone modifications that are characteristic of active genes occur tightly localized around the FMR1 promoter in normal cells and are absent in fragile X cells. Therefore, the expression-correlated change in conformation affects a significantly larger domain than that marked by histone modifications. Domain-wide changes in interaction probability could reflect increased chromatin expansion and may also be related to an altered spatial disposition that results in increased intermingling with unrelated loci. The described approaches are widely applicable to the study of conformational changes of any locus of interest.
Collapse
Affiliation(s)
- Nele Gheldof
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Tomoko M. Tabuchi
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Hinkins M, Huntriss J, Miller D, Picton HM. Expression of Polycomb-group genes in human ovarian follicles, oocytes and preimplantation embryos. Reproduction 2006; 130:883-8. [PMID: 16322547 DOI: 10.1530/rep.1.00675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian oocytes possess unique properties with respect to their ability to regulate and reprogram chromatin structure and epigenetic information. Proteins containing the conserved chromodomain motif that is common to the Polycomb-group (Pc-G) proteins and the heterochromatin-associated protein HP1, play essential roles in these processes and more specifically, in X-chromosome inactivation in female zygotes and extra-embryonic tissues and in the regulation of genomic imprinting. To characterize the potential role of these proteins in the regulation of epigenetic events during early human development, we utilized a degenerate PCR priming assay to assess the expression of mRNAs of chromodomain proteins in cDNA samples derived from the human female germline and preimplantation embryos. Expression of mRNAs of HP1 genes was observed in ovarian follicles, (HP1 (HSalpha), HP1 (HSbeta), HP1 (HSgamma)), mature oocytes (HP1 (HSalpha), HP1 (HSbeta)), cleavage stage preimplantation embryos (HP1 (HSalpha), HP1 (HSbeta), HP1 (HSgamma)) and blastocysts (HP1 (HSalpha), HP1 (HSgamma)). Transcripts for three Pc-G genes, which are essential for early mammalian development (Yin Yang 1 (YY1), Enhancer of Zeste-2 (EZH2) and Embryonic Ectoderm Development (EED)) and that are essential for the regulation of X-inactivation and certain imprinted genes (EED) were revealed by gene-specific-PCR expression analysis of human ovarian follicles, oocytes and preimplantation embryos. YY1 and EZH2 transcripts were additionally detected in metaphase II oocytes.
Collapse
Affiliation(s)
- M Hinkins
- Reproduction and Early Development Research Group, Faculty of Medicine and Health, University of Leeds, D Floor Clarendon Wing, Leeds General Infirmary, Leeds LS2 9NS, West Yorkshire, UK
| | | | | | | |
Collapse
|
15
|
O'Neill P, Nicklas J, Hirsch B, Jostes R, Hunter T, Sullivan L, Albertini R. In vitro studies of the genotoxicity of ionizing radiation in human G(0) T lymphocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:207-20. [PMID: 15887213 DOI: 10.1002/em.20143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In an effort to mimic human in vivo exposures to ionizing irradiation, G(0) phase T lymphocytes from human peripheral blood samples were utilized for in vitro studies of the genotoxic effects of (137)Cs low-LET irradiation and (222)Rn high-LET irradiation. Both types of radiation induced mutations in the HPRT gene in a dose-dependent manner, with a mutant frequency (MF) = 4.28 + 1.34x + 7.51x(2) for (137)Cs (R(2) = 0.95) and MF = 4.81 + 0.67x for (222)Rn (R(2) = 0.51). Post (137)Cs irradiation incubation in the presence of cytosine arabinoside, a reversible inhibitor of DNA repair, caused an increase in the MF over irradiation alone, consistent with a misrepair mechanism being involved in the mutagenicity of low-LET irradiation. The spectrum of (137)Cs irradiation-induced mutation displayed an increase in macro-deletions (in particular total gene deletions) and rearrangement events, some of which were further defined by either chromosome painting or direct DNA sequencing. The spectrum of (222)Rn irradiation-induced mutation was characterized by an increase in small alterations, especially multiple single base deletions/substitutions and micro-deletions. These studies define the specific response of human peripheral blood T cells to ionizing irradiation in vitro and form a basis for evaluating the genotoxic effects of human in vivo exposure.
Collapse
Affiliation(s)
- Patrick O'Neill
- University of Vermont, Genetics Laboratory, Burlington, VT 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Královičová J, Christensen MB, Vořechovský I. Biased exon/intron distribution of cryptic and de novo 3' splice sites. Nucleic Acids Res 2005; 33:4882-98. [PMID: 16141195 PMCID: PMC1197134 DOI: 10.1093/nar/gki811] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We compiled sequences of previously published aberrant 3′ splice sites (3′ss) that were generated by mutations in human disease genes. Cryptic 3′ss, defined here as those resulting from a mutation of the 3′YAG consensus, were more frequent in exons than in introns. They clustered in ∼20 nt region adjacent to authentic 3′ss, suggesting that their under-representation in introns is due to a depletion of AG dinucleotides in the polypyrimidine tract (PPT). In contrast, most aberrant 3′ss that were induced by mutations outside the 3′YAG consensus (designated ‘de novo’) were in introns. The activation of intronic de novo 3′ss was largely due to AG-creating mutations in the PPT. In contrast, exonic de novo 3′ss were more often induced by mutations improving the PPT, branchpoint sequence (BPS) or distant auxiliary signals, rather than by direct AG creation. The Shapiro–Senapathy matrix scores had a good prognostic value for cryptic, but not de novo 3′ss. Finally, AG-creating mutations in the PPT that produced aberrant 3′ss upstream of the predicted BPS in vivo shared a similar ‘BPS-new AG’ distance. Reduction of this distance and/or the strength of the new AG PPT in splicing reporter pre-mRNAs improved utilization of authentic 3′ss, suggesting that AG-creating mutations that are located closer to the BPS and are preceded by weaker PPT may result in less severe splicing defects.
Collapse
Affiliation(s)
| | | | - Igor Vořechovský
- To whom correspondence should be addressed. Tel: +44 2380 796425; Fax: +44 2380 794264;
| |
Collapse
|
17
|
Allegretta M, Ardell SK, Sullivan LM, Jacobson S, Mortreux F, Wattel E, Albertini RJ. HPRT mutations, TCR gene rearrangements, and HTLV-1 integration sites define in vivo T-cell clonal lineages. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:326-337. [PMID: 15744741 DOI: 10.1002/em.20120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
HPRT mutations in vivo in human T-lymphocytes are useful probes for mechanistic investigations. Molecular analyses of isolated mutants reveal their underlying mutational changes as well as the T-cell receptor (TCR) gene rearrangements present in the cells in question. The latter provide temporal reference points for other perturbations in the in vivo clones as well as evidence of clonal relationships among mutant isolates. Immunological studies and investigations of genomic instability have benefited from such analyses. A method is presented describing a T-cell lineage analysis in a patient with HTLV-1 infection. Lineage reconstruction of an in vivo proliferating HPRT mutant clone allows timing of the integration event to a postthymic differentiated cell prior to the occurrence of HPRT mutations.
Collapse
Affiliation(s)
- Mark Allegretta
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Huntriss J, Hinkins M, Oliver B, Harris SE, Beazley JC, Rutherford AJ, Gosden RG, Lanzendorf SE, Picton HM. Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Mol Reprod Dev 2004; 67:323-36. [PMID: 14735494 DOI: 10.1002/mrd.20030] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent evidence indicates that mammalian gametogenesis and preimplantation development may be adversely affected by both assisted reproductive and stem cell technologies. Thus, a better understanding of the developmental regulation of the underlying epigenetic processes that include DNA methylation is required. We have, therefore, monitored the expression, by PCR, of the mRNAs of DNA methyltransferases (DNMTs), methyl-CpG-binding domain proteins (MBDs), and CpG binding protein (CGBP) in a developmental series of amplified cDNA samples derived from staged human ovarian follicles, oocytes, preimplantation embryos, human embryonic stem (hES) cells and in similar murine cDNA samples. Transcripts of these genes were detected in human ovarian follicles (DNMT3A, DNMT3b1, DNMT3b4, DNMT1, MDBs1-4, MeCP2, CGBP), germinal vesicle (GV) oocytes (DNMT3A, DNMT3b1, DNMT1, MDBs1-4, MeCP2, CGBP), mature oocytes (DNMT3A, DNMT3b1, DNMT1, CGBP), and preimplantation embryos (DNMT3A, DNMT3b1, DNMT1, DNMT3L, MBD2, MDB4, CGBP). Differential expression of DNMT3B gene transcripts in undifferentiated (DNMT3b1) and in vitro differentiated human ES cells (DNMT3b3) further demonstrated an association of the DNMT3b1 transcript variant with totipotent and pluripotent human cells. Significantly, whilst the murine Dnmt3L gene is both expressed and essential for imprint establishment during murine oogenesis, transcripts of the human DNMT3L gene were only detected after fertilisation. Therefore, the mechanisms and/or the timing of imprint establishment may differ in humans.
Collapse
Affiliation(s)
- J Huntriss
- Academic Unit of Paediatrics, Obstetrics and Gynaecology, University of Leeds, D Floor, Clarendon Wing, Leeds General Infirmary, Belmont Grove, Leeds, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
O'Neill JP. Mutation Carrier Testing in Lesch-Nyhan Syndrome Families: HPRT Mutant Frequency and Mutation Analysis with Peripheral Blood T Lymphocytes. ACTA ACUST UNITED AC 2004; 8:51-64. [PMID: 15140374 DOI: 10.1089/109065704323016030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutations in the X chromosome hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene are responsible for Lesch-Nyhan syndrome and related diseases in humans. Because the gene is on the X chromosome, males are affected and females in the families are at risk of being carriers of the mutation. Because there are so many different mutations that can cause the disease (218 different mutations in 271 families), genetic testing for carrier status of females requires detailed molecular analysis of the familial mutation. This analysis can be complicated by the unavailability of an affected male for study. In addition, when the mutation is a deletion (34 reported instances), molecular analysis in females is difficult because of the two X chromosomes. We have applied a peripheral blood T lymphocyte cloning assay that uses resistance to the purine analogue 6-thioguanine (TG) to measure the frequency of cells in females expressing a mutant HPRT allele to determine mutation carrier status in 123 females in 61 families. In families in which the HPRT mutation was determined and could be easily analyzed in samples from females, we found a mean (+/- SD) mutant frequency of 9.7 (+/- 8.7) x 10(-6) in noncarrier females and 2.9 (+/- 3.0) x 10(-2) in carrier females. The frequency in carrier females is less than the 0.5 expected for nonrandom X inactivation because of in vivo selection against HPRT mutation-expressing T lymphocytes or stem cells during prenatal development. The use of this cloning assay allows determination of the carrier status of females even when the HPRT mutation is not yet known or is difficult to determine in DNA samples from females. This approach provides a rapid assay that yields information on carrier status within 10 days of sample receipt.
Collapse
Affiliation(s)
- J Patrick O'Neill
- Genetics Laboratory, University of Vermont, Burlington, VT 05401, USA.
| |
Collapse
|
20
|
Stanssens P, Zabeau M, Meersseman G, Remes G, Gansemans Y, Storm N, Hartmer R, Honisch C, Rodi CP, Böcker S, van den Boom D. High-throughput MALDI-TOF discovery of genomic sequence polymorphisms. Genome Res 2004; 14:126-33. [PMID: 14707174 PMCID: PMC314289 DOI: 10.1101/gr.1692304] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe a comparative sequencing strategy that is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses of complete base-specific cleavage reactions of a target sequence. The target is converted to a DNA/RNA mosaic structure after PCR amplification using in vitro transcription. Cleavage with defined specificity is achieved by ribonucleases. The set of cleavage products is subjected to mass spectrometry without prior fractionation. The presented resequencing assay is particularly useful for single-nucleotide polymorphism (SNP) discovery. The combination of mass spectra from four complementary cleavage reactions detects approximately 98% of all possible homozygous and heterozygous SNPs in target sequences with a length of up to 500 bases. In general, both the identity and location of the sequence variation are determined. This was exemplified by the discovery of SNPs in the human gene coding for the cholesteryl ester transfer protein using a panel of 96 genomic DNAs.
Collapse
|
21
|
Chuzhanova NA, Anassis EJ, Ball EV, Krawczak M, Cooper DN. Meta-analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat 2003; 21:28-44. [PMID: 12497629 DOI: 10.1002/humu.10146] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A relatively rare type of mutation causing human genetic disease is the indel, a complex lesion that appears to represent a combination of micro-deletion and micro-insertion. In the absence of meta-analytical studies of indels, the mutational mechanisms underlying indel formation remain unclear. Data from the Human Gene Mutation Database (HGMD) were therefore used to compare and contrast 211 different indels underlying genetic disease in an attempt to deduce the processes responsible for their genesis. Each indel was treated as if it were the result of a two-step insertion/deletion process and was assessed in the context of 10 base-pairs DNA sequence flanking the lesion on either side. Several indel hotspots were noted and a GTAAGT motif was found to be significantly over-represented in the vicinity of the indels studied. Previously postulated mechanisms underlying micro-deletions and micro-insertions were initially explored in terms of local DNA sequence regularity as measured by its complexity. The change in complexity consequent to a mutation was found to be indicative of the type of repeat sequence involved in mediating the event, thereby providing clues as to the underlying mutational mechanism. Complexity analysis was then employed to examine the possible intermediates through which each indel could have occurred and to propose likely mechanisms and pathways for indel generation on an individual basis. Manual analysis served to confirm that the majority of indels (>90%) are explicable in terms of a two-step process involving established mutational mechanisms. Indels equivalent to double base-pair substitutions (22% of the total) were found to be mechanistically indistinguishable from the remainder and may therefore be regarded as a special type of indel. The observed correspondence between changes in local DNA sequence complexity and the involvement of specific mutational mechanisms in the insertion/deletion process, and the ability of generated models to account for both the number and identity of the bases deleted and/or inserted, makes this approach invaluable not only for the analysis of indel formation, but also for the study of other types of complex lesion.
Collapse
|
22
|
Tolle R. Information technology tools for efficient SNP studies. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:303-14. [PMID: 12083962 DOI: 10.2165/00129785-200101040-00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We are currently facing a new era of studies involving single nucleotide polymorphisms (SNPs). This increased attention is stimulated by interest in individual differences in disease susceptibility as well as individual responses to drug treatment and the falling cost of genotyping. This review is a guide to the numerous public data repositories and Information Technology (IT) tools that may aid planning, preparation, running and analysis of studies involving SNPs. I will also highlight areas where researchers will have to resort to home-made IT solutions. Unfortunately, both information and IT tools are scattered throughout the internet and a lack of data exchange conventions can hamper the efficient use of these existing resources. This can lead to situations where the planning, preparation and analysis of a SNP study can actually cost more than the actual genotyping. We propose that only a customizable backbone IT infrastructure for SNP studies can help reduce costs associated with SNP data handling and tool launching.
Collapse
Affiliation(s)
- R Tolle
- LION bioscience AG, Heidelberg, Germany.
| |
Collapse
|
23
|
Micheli V, Gathof BS, Rocchigiani M, Jacomelli G, Sestini S, Peruzzi L, Notarantonio L, Cerboni B, Hayek G, Pompucci G. Biochemical and molecular study of mentally retarded patient with partial deficiency of hypoxanthine-guanine phosphoribosyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:45-52. [PMID: 12009423 DOI: 10.1016/s0925-4439(02)00053-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nucleotide metabolism was studied in erythrocytes of a mentally retarded child and family members. Partial hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency was found in the propositus and an asymptomatic maternal uncle. Studies in crude lysates demonstrated decreased apparent V(max) and slightly decreased apparent K(m) for hypoxanthine in both HPRT-deficient subjects. Genomic DNA analysis revealed a single nucleotide change with leucine-147 to phenylalanine substitution in both subjects; mother and grandmother were heterozygous carriers of the same defect. This new variant has been termed HPRT(Potenza). Increased erythrocyte concentration of NAD and rate of synthesis by intact erythrocytes were found in the patient; increased activities of nicotinic acid phosphoribosyltransferase (NAPRT) and NAD synthetase (NADs) were demonstrated in erythrocyte lysates, with normal apparent K(m) for their substrates and increased V(max). These alterations were not found in any member of the family, including the HPRT-deficient uncle. These findings show multiple derangement of nucleotide metabolism associated with partial HPRT deficiency. The enzyme alteration was presumably not the cause of neurological impairment since no neurological symptoms were found in the HPRT-deficient uncle, whereas they were present in the propositus' elder brother who had normal HPRT activity.
Collapse
Affiliation(s)
- Vanna Micheli
- Dipartimento di Biologia Molecolare, Sez. Chimica Biologica, Università di Siena, Via Fiorentina 1, 53100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Palumbo C, van Roozendaal K, Gillis AJ, van Gurp RH, de Munnik H, Oosterhuis JW, van Zoelen EJ, Looijenga LH. Expression of the PDGF alpha-receptor 1.5 kb transcript, OCT-4, and c-KIT in human normal and malignant tissues. Implications for the early diagnosis of testicular germ cell tumours and for our understanding of regulatory mechanisms. J Pathol 2002; 196:467-77. [PMID: 11920744 DOI: 10.1002/path.1064] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human testicular germ cell tumours of adolescents and adults (TGCTs), including their precursor lesion carcinoma in situ (CIS), show expression of a 1.5 kb alternative transcript of the platelet-derived growth factor (PDGF) alpha-receptor gene. The so-called P2 promoter involved is located in intron 12 and its activity was found to be mutually exclusive with activity of the classical promoter (P1), which encodes the full-length receptor. The presence of the 1.5 kb transcript could be a putative marker for the early molecular diagnosis of TGCTs. In order to validate the RT-PCR approach, this study shows that not more than 100 transcripts are necessary to obtain positivity in the test used; moreover, samples from TGCTs or CIS-containing tissues can be diluted many-fold before resulting in false-negative findings. This study also shows that within TGCTs, as in TGCT-derived cell lines, expression of the 1.5 kb transcript is differentiation-dependent and positively correlated with expression of the embryonic transcription factor OCT-4/POU5F1. Furthermore, the results indicate that in some non-TGCT cancers and cell lines the 1.5 kb transcript is also expressed, but without concomitant OCT-4/POU5F1 expression. The 1.5 kb transcript is also present in early B cells and derived leukaemias (B-ALL). In spite of similarities in chromosomal location, down-regulation upon differentiation of TGCTs, and PDGF alpha-receptor and c-KIT (the stem cell factor receptor) both being a tyrosine kinase receptor, no correlation was found between activity of the P2 promoter of the PDGF alpha-receptor gene and expression of c-KIT. In conclusion, the 1.5 kb transcript of the PDGF alpha-receptor is expressed in various cells and tissues, including particular blood cells. Although this may hamper the use of this transcript as a marker for malignancies in general, it does not appear to interfere with assays for the early detection of TGCTs.
Collapse
Affiliation(s)
- Camilla Palumbo
- Department of Cell Biology, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kersemaekers AMF, Mayer F, Molier M, van Weeren PC, Oosterhuis JW, Bokemeyer C, Looijenga LHJ. Role of P53 and MDM2 in treatment response of human germ cell tumors. J Clin Oncol 2002; 20:1551-61. [PMID: 11896104 DOI: 10.1200/jco.2002.20.6.1551] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Testicular germ cell tumors (TGCTs) of adolescents and adults are very sensitive to systemic treatment. The exquisite chemosensitivity of these cancers has been attributed to a high level of wild-type P53. MATERIALS AND METHODS To clarify the role of P53 in treatment sensitivity and resistance of TGCTs, we performed immunohistochemistry and Western blotting analysis on a series of 39 fresh-frozen primary TGCTs before therapy (unselected series). In a series of formalin-fixed paraffin-embedded TGCTs of patients with fully documented clinical course, including treatment-sensitive (n = 17) and -resistant (n = 18) tumors, P53 status was assessed by immunohistochemistry and mutation analysis. In addition, the involvement of MDM2, a P53 antagonist, was investigated by immunohistochemistry, reverse transcriptase polymerase chain reaction, and in situ hybridization. RESULTS Immunohistochemistry demonstrated absence of staining for P53 in 36%, 41%, and 17% of the unselected, responding, and nonresponding TGCTs, respectively. Of the positive TGCTs, most tumors, ie, 49%, 41%, and 33%, showed 1% to 10% positive nuclei. This overall low level of P53 was confirmed by Western blotting. Mutation analysis revealed only one silent P53 mutation in one of the responding patients. All embryonal carcinomas were homogeneously positive for MDM2, encoded by the full length mRNA, while a heterogeneous pattern was found for the other histologic components. Amplification of MDM2 was detected in one out of 12 embryonal carcinomas. CONCLUSION Although our results are in line with previous findings of the presence of wild-type P53 in TGCTs, they show that a high level of P53 does not relate directly to treatment sensitivity of these tumors, and inactivation of P53 is not a common event in the development of cisplatin resistance.
Collapse
Affiliation(s)
- Anne-Marie F Kersemaekers
- Department of Pathology/Laboratory for Experimental Patho-Oncology, University Hospital Rotterdam/Daniel, Josephine Nefkens Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Sciannamblo M, Chigorno V, Passi A, Valaperta R, Zucchi I, Sonnino S. Changes of the ganglioside pattern and content in human fibroblasts by high density cell population subculture progression. Glycoconj J 2002; 19:181-6. [PMID: 12815229 DOI: 10.1023/a:1024249707516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study we show that the ganglioside content and pattern of human skin fibroblasts change along the process of cell subculture progression by varying the cell density. GM3, GD3 and GD1a were components of the total cell ganglioside mixtures extracted from cells, but GD1a was in all the extracts a minor component or very scant. Other gangliosides present in traces were not characterised. The fibroblast ganglioside content of 52 pools of cells obtained from 5 different cell lines cultured at variable cell density ranged from 2.0 to 13.1 nmoles per mg of cell protein. The molar ratio between GM3 and GD3 varied from 418 to 0.6 in the ganglioside mixtures, as determined by densitometric quantitative analysis after thin layer chromatographic separation. Both the ganglioside content and the GM3/GD3 molar ratio were constant along several passages of subculture progression performed by plating cells collected at confluence. Instead, when the subculture progression was performed by plating cells collected at a few days after reaching confluence, a progressive increase of the ganglioside content was observed. GD3 increased proportionally more than GM3 so that a progressive decrease of the ratio between GM3 and GD3 was observed. In some experiments, GD3 was very scant at the beginning of the progression, while it was near 30% after 5 passages under these conditions. The progressive increase of GD3 along the high density cell population subculture progression was associated to a moderate increase of the mRNA GD3 synthase.
Collapse
Affiliation(s)
- Mariateresa Sciannamblo
- Study Center for the Biochemistry and Biotechnology of Glycolipids, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Segrate, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Pitera JE, Milla PJ, Scambler P, Adjaye J. Cloning of HOXD1 from unfertilised human oocytes and expression analyses during murine oogenesis and embryogenesis. Mech Dev 2001; 109:377-81. [PMID: 11731253 DOI: 10.1016/s0925-4773(01)00530-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe the cloning of HOXD1 in human unfertilised oocytes and detailed expression analyses during mouse oogenesis and embryogenesis. The cDNA of 1991bp has an open reading frame of 987bp encoding a protein of 329 amino acids. A comparison of the amino acid sequence with the mouse homologue revealed an overall homology of 85.5% with 99% identity within the homeodomain. Expression was detected in unfertilised human oocytes and 2-, 4-, 8-cell and blastocyst stage embryos. Expression analyses in mature mouse ovaries, early embryos and isolated gut revealed expression in the oocytes of the primary and secondary ovarian follicles, and in embryonal mesodermal derivatives such as dermatomes, urogenital tubercle, tail bud, kidney, ovaries, testes and enteric mesoderm adjacent to the caecum where expression was up-regulated in vitro in response to increasing doses of retinoic acid. Our observations indicate a possible role for HOXD1/Hoxd1 in the ovarian oocytes and the establishment of mesodermal derivatives during embryogenesis.
Collapse
Affiliation(s)
- J E Pitera
- Gastroenterology Department, Institute of Child Health, 30 Guilford Street, WC1N 1EH, London, UK
| | | | | | | |
Collapse
|
28
|
Martinez J, Dugaiczyk LJ, Zielinski R, Dugaiczyk A. Human genetic disorders, a phylogenetic perspective. J Mol Biol 2001; 308:587-96. [PMID: 11350162 DOI: 10.1006/jmbi.2001.4755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When viewed from the perspective of time, human genetic disorders give new insights into their etiology and evolution. Here, we have correlated a specific set of Alu repetitive DNA elements, known to be the basis of certain genetic defects, with their phylogenetic roots in primate evolution. From a differential distribution of Alu repeats among primate species, we identify the phylogenetic roots of three human genetic diseases involving the LPL, ApoB, and HPRT genes. The different phylogenetic age of these genetic disorders could explain the different susceptibility of various primate species to genetic diseases. Our results show that LPL deficiency is the oldest and should affect humans, apes, and monkeys. ApoB deficiency should affect humans and great apes, while a disorder in the HPRT gene (leading to the Lesch-Nyhan syndrome) is unique to human, chimpanzee, and gorilla. Similar results can be obtained for cancer. We submit that de novo transpositions of Alu elements, and saltatory appearances of Alu-mediated genetic disorders, represent singularities, places where behavior changes suddenly. Alus' propensity to spread, not only increased the regulatory and developmental complexity of the primate genome, it also increased its instability and susceptibility to genetic defects and cancer. The dynamic spread not only provided markers of primate phylogeny, it must have actively shaped the course of that phylogeny.
Collapse
Affiliation(s)
- J Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
29
|
Tiller GE, Hannig VL, Dozier D, Carrel L, Trevarthen KC, Wilcox WR, Mundlos S, Haines JL, Gedeon AK, Gecz J. A recurrent RNA-splicing mutation in the SEDL gene causes X-linked spondyloepiphyseal dysplasia tarda. Am J Hum Genet 2001; 68:1398-407. [PMID: 11326333 PMCID: PMC1226126 DOI: 10.1086/320594] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2001] [Accepted: 02/23/2001] [Indexed: 11/03/2022] Open
Abstract
Spondyloepiphyseal dysplasia tarda (SEDL) is a genetically heterogeneous disorder characterized by mild-to-moderate short stature and early-onset osteoarthritis. Both autosomal and X-linked forms have been described. Elsewhere, we have reported the identification of the gene for the X-linked recessive form, which maps to Xp22.2. We now report characterization of an exon-skipping mutation (IVS3+5G-->A at the intron 3 splice-donor site) in two unrelated families with SEDL. Using reverse transcriptase (RT)-PCR, we demonstrated that the mutation resulted in elimination of the first 31 codons of the open reading frame. The mutation was not detected in 120 control X chromosomes. Articular cartilage from an adult who had SEDL and carried this mutation contained chondrocytes with abundant Golgi complexes and dilated rough endoplasmic reticulum (ER). RT-PCR experiments using mouse/human cell hybrids revealed that the SEDL gene escapes X inactivation. Homologues of the SEDL gene include a transcribed retropseudogene on chromosome 19, as well as expressed genes in mouse, rat, Drosophila melanogaster Caenorhabditis elegans, and Saccharomyces cerevisiae. The latter homologue, p20, has a putative role in vesicular transport from ER to Golgi complex. These data suggest that SEDL mutations may perturb an intracellular pathway that is important for cartilage homeostasis.
Collapse
Affiliation(s)
- G E Tiller
- Department of Pediatrics and Program in Human Genetics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brooks EM, Branda RF, Nicklas JA, O'Neill JP. Molecular description of three macro-deletions and an Alu-Alu recombination-mediated duplication in the HPRT gene in four patients with Lesch-Nyhan disease. Mutat Res 2001; 476:43-54. [PMID: 11336982 DOI: 10.1016/s0027-5107(01)00065-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutations in the HPRT gene cause a spectrum of diseases that ranges from hyperuricemia alone to hyperuricemia with profound neurological and behavioral dysfunction. The extreme phenotype is termed Lesch-Nyhan syndrome. In 271 cases in which the germinal HPRT mutation has been characterized, 218 different mutations have been found. Of these, 34 (13%) are large- (macro-) deletions of one exon or greater and four (2%) are partial gene duplications. The deletion breakpoint junctions have been defined for only three of the 34 macro-deletions. The molecular basis of two of the four duplications has been defined. We report here the breakpoint junctions for three new deletion mutations, encompassing exons 4-8 (20033bp), exons 4 and 5 (13307bp) and exons 5 and 6 (9454bp), respectively. The deletion breakpoints were defined by a combination of long polymerase chain reaction (PCR) amplifications, and conventional PCR and DNA sequencing. All three deletions are the result of non-homologous recombinations. A fourth mutation, a duplication of exons 2 and 3, is the result of an Alu-mediated homologous recombination between identical 19bp sequences in introns 3 and 1. In toto, two of three germinal HPRT duplication mutations appear to have been caused by Alu-mediated homologous recombination, while only one of six deletion mutations appears to have resulted from this type of recombination mechanism. The other five deletion mutations resulted from non-homologous recombination. With this admittedly limited number of characterized macro-mutations, Alu-mediated unequal homologous recombinations account for at least 8% (3 of 38) of the macro-alterations and 1% (3 of 271) of the total HPRT germinal mutations.
Collapse
Affiliation(s)
- E M Brooks
- Genetics Laboratory, University of Vermont, 32 N. Prospect Street, Burlington, VT 05401, USA
| | | | | | | |
Collapse
|
31
|
Mognato M, Ferraro P, Canova S, Sordi G, Russo A, Cherubini R, Celotti L. Analysis of mutational effects at the HPRT locus in human G(0) phase lymphocytes irradiated in vitro with gamma rays. Mutat Res 2001; 474:147-58. [PMID: 11239972 DOI: 10.1016/s0027-5107(01)00061-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mutational effects of ionising radiation at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were studied in human peripheral blood G(0) phase lymphocytes irradiated in vitro with gamma rays. The presence of radiation induced mutants was assessed by selecting the HPRT mutants every week on the basis of 6-thioguanine resistance up to 1 month after irradiation. A dose-related increase of 14.25x10(-6) mutants/Gy was measured after an expression time of 7 days. After 2 weeks from culture starting the fraction of clonable cells in irradiated and control cell populations decreased, limiting the measurements of mutant frequency. The mutational spectrum of the HPRT gene was determined by PCR analyses in a total of 99 mutant clones derived from irradiated lymphocytes. The independent origin of mutant clones carrying the same mutation was assessed by analysing the TCR gamma gene rearrangements. The results showed a dose-related increase of deletion mutants up to 3Gy, whereas point mutation frequency increased only up to 2Gy. Two preferentially deleted regions were identified; one involving the HPRT exon 3, and another one the 3'-terminal and the 3'-flanking region of the gene. One complex mutation involving a non-contiguous deletion of exons 2-5 and 7/8 was observed among the mutants isolated after 3Gy irradiation.
Collapse
Affiliation(s)
- M Mognato
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58B, 35121, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Puig JG, Torres RJ, Mateos FA, Ramos TH, Arcas JM, Buño AS, O'Neill P. The spectrum of hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency. Clinical experience based on 22 patients from 18 Spanish families. Medicine (Baltimore) 2001; 80:102-12. [PMID: 11307586 DOI: 10.1097/00005792-200103000-00003] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) catalyzes the reutilization of hypoxanthine and guanine to the purine nucleotides IMP and GMP, respectively. HPRT deficiency is an X-linked disorder characterized by uric acid overproduction and variable neurologic impairment. The complete deficiency of HPRT is diagnostic of Lesch-Nyhan syndrome manifested by choreoathetosis, spasticity, mental retardation, and self-injurious behavior. In some HPRT-deficient patients the enzyme defect appeared to be "partial" and the neurologic symptoms mild to severe (Kelley-Seegmiller syndrome). This has prompted the classification of HPRT deficiency in 2 distinct groups: Lesch-Nyhan syndrome and Kelley-Seegmiller syndrome, which has created much confusion. A spectrum of clinical consequences of HPRT deficiency has been recognized in small series of patients, but the complete spectrum of the neurologic disorder has not been described in a single series of patients examined by the same observers. We analyzed our experience with 22 patients belonging to 18 different families with HPRT deficiency diagnosed at "La Paz" University Hospital in Madrid over the past 16 years. The clinical spectrum of these HPRT-deficient Spanish patients was similar to the different phenotypes occasionally reported in the literature, in some cases diagnosed as Lesch-Nyhan "variants." The clinical, biochemical, enzymatic, and molecular genetic studies on these 22 patients allowed us to delineate a new classification of HPRT deficiency. Based on the neurologic symptoms, dependency for personal care, HPRT activity in hemolysate and in intact erythrocytes, and predicted protein size, patients were classified into 4 groups: Group 1 (2 patients), normal development with no neurologic symptoms, HPRT activity was detectable in hemolysates and in intact erythrocytes, and the mutation did not affect the predicted protein size. Group 2 (3 patients) mild neurologic symptoms that did not prevent independent lives, HPRT activity was detectable in intact erythrocytes, and the protein size was normal. Group 3 (2 patients), severe neurologic impairment that precluded an independent life, no residual HPRT activity, and normal protein size. Group 4 (15 patients), clinical characteristics of Lesch-Nyhan syndrome (some may not show self-injurious behavior), no residual HPRT activity, and in most (7 of 8 patients in whom the mutation could be detected) the mutation affected the predicted protein size. This classification of HPRT deficiency into 4 groups may be more useful in terms of accuracy, reproducibility, assessment for treatment trials and prognosis. The study of this Spanish series allows us to conclude that HPRT deficiency may be manifested by a wide spectrum of neurologic symptoms; the overall severity of the disease is associated with mutations permitting some degree of residual enzyme activity; and mutation analysis provides a valuable tool for prognosis, carrier identification, and prenatal diagnosis.
Collapse
Affiliation(s)
- J G Puig
- La Paz University Hospital, Divisions of Internal Medicine, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
33
|
Leonhardt EA, Trinh M, Chu K, Dewey WC. Mutations induced in the HPRT gene by X-irradiation during G(1) or S: analysis of base pair alterations, small deletions, and splice errors. Mutat Res 2000; 471:7-19. [PMID: 11080656 DOI: 10.1016/s1383-5718(00)00080-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Reverse transcriptase PCR was performed with mRNA obtained from HPRT mutants that had base pair alterations, or small deletions or insertions <20bp. The frequencies of mutants yielding RT-PCR products (mRNA) were the same when human EJ30 cells were irradiated in G(1) or S (3-4-fold higher for 6 than 3Gy). However, the frequencies of mutants that did not yield RT-PCR products were approximately 10-fold higher in the cells irradiated in G(1) than in those irradiated in S. Sequence analysis of RT-PCR products and genomic DNA showed that 40% of the RT-PCR products had splice errors (one or more exons not spliced into mRNA), with 64% of them due to 1-17bp deletions. Also, the distributions of molecular alterations in exons, acceptor sites, and donor sites for mutants having splice errors (observed in this study and reported by others) were similar to those reported for mutants not yielding RT-PCR products (isolated from Russian cosmonauts). In addition, we have found previously that large deletions which eliminated 1-9 exons were preferentially induced in G(1). Therefore, we postulate that the preferential induction of mutants not yielding mRNA is due primarily to splice errors that result from deletions preferentially induced during G(1). These splice errors would then result either in no message or a message that is rapidly degraded.
Collapse
Affiliation(s)
- E A Leonhardt
- Radiation Oncology Research Laboratory, University of California at San Francisco, 1855 Folsom St. MCB200, San Francisco, CA 94103, USA.
| | | | | | | |
Collapse
|
34
|
Jinnah HA, De Gregorio L, Harris JC, Nyhan WL, O'Neill JP. The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutat Res 2000; 463:309-26. [PMID: 11018746 DOI: 10.1016/s1383-5742(00)00052-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In humans, mutations in the gene encoding the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) are associated with a spectrum of disease that ranges from hyperuricemia alone to hyperuricemia with profound neurological and behavioral dysfunction. Previous attempts to correlate different types or locations of mutations with different elements of the disease phenotype have been limited by the relatively small numbers of available cases. The current article describes the molecular genetic basis for 75 new cases of HPRT deficiency, reviews 196 previously reported cases, and summarizes four main conclusions that may be derived from the entire database of 271 mutations. First, the mutations associated with human disease appear dispersed throughout the hprt gene, with some sites appearing to represent relative mutational hot spots. Second, genotype-phenotype correlations provide no indication that specific disease features associate with specific mutation locations. Third, cases with less severe clinical manifestations typically have mutations that are predicted to permit some degree of residual enzyme function. Fourth, the nature of the mutation provides only a rough guide for predicting phenotypic severity. Though mutation analysis does not provide precise information for predicting disease severity, it continues to provide a valuable tool for genetic counseling in terms of confirmation of diagnoses, for identifying potential carriers, and for prenatal diagnosis.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Splice site nucleotide substitutions can be analyzed by comparing the individual information contents (Ri, bits) of the normal and variant splice junction sequences [Rogan and Schneider, 1995]. In the present study, we related splicing abnormalities to changes in Ri values of 111 previously reported splice site substitutions in 41 different genes. Mutant donor and acceptor sites have significantly less information than their normal counterparts. With one possible exception, primary mutant sites with <2.4 bits were not spliced. Sites with Ri values > or = 2.4 bits but less than the corresponding natural site usually decreased, but did not abolish splicing. Substitutions that produced small changes in Ri probably do not impair splicing and are often polymorphisms. The Ri values of activated cryptic sites were generally comparable to or greater than those of the corresponding natural splice sites. Information analysis revealed preexisting cryptic splice junctions that are used instead of the mutated natural site. Other cryptic sites were created or strengthened by sequence changes that simultaneously altered the natural site. Comparison between normal and mutant splice site Ri values distinguishes substitutions that impair splicing from those which do not, distinguishes null alleles from those that are partially functional, and detects activated cryptic splice sites.
Collapse
Affiliation(s)
- P K Rogan
- Department of Human Genetics, Allegheny University of the Health Sciences, Pittsburgh, PA 15212, USA.
| | | | | |
Collapse
|
36
|
O'Neill P, Trombley L, Gundel M, Hunter T, Nicklas JA, Ferreira ML, Bugallo MJ, Farias AC, Lohr A, Diamantopoulos M, Raskin S. Identification of a new Lesch-Nyhan syndrome mutation (HPRTBrasil) and analysis of potentially heterozygous females. ARQUIVOS DE NEURO-PSIQUIATRIA 1999; 57:907-11. [PMID: 10683677 DOI: 10.1590/s0004-282x1999000600001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mutation in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene has been determined in two brothers affected with Lesch-Nyhan syndrome. Female members of the family who are at risk for being heterozygous carriers of the HPRT mutation were also studied to determine whether they carry the mutation. DNA sequencing revealed that the boys' mother is heterozygous for the mutation in her somatic cells, but that three maternal aunts are not heterozygous. Such carrier information is important for the future pregnancy plans of at-risk females. The mutation, an A-->T transversion at cDNA base 590 (590A-->T), results in an amino acid change of glutamic acid to valine at codon 197, and has not been reported previously in a Lesch-Nyhan syndrome male. This mutation is designated HPRTBrasil.
Collapse
Affiliation(s)
- P O'Neill
- Genetics Laboratory, University of Vermont, Burlington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yoshitomi A, Sato A, Hayakawa H, Chida K, Toyoshima M, Uchijima M, Yoshida A, Koide Y. Biased T cell receptor Vbeta gene expression in bronchoalveolar lavage fluid from Japanese patients with sarcoidosis. Respirology 1999; 4:339-47. [PMID: 10612566 DOI: 10.1046/j.1440-1843.1999.00202.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Sarcoidosis is believed to be one of the T cell-mediated granulomatous diseases with unknown aetiology. We attempt to search for the causative T cell clones of sarcoidosis. METHODS We study T cell receptor beta-chain variable region (Vbeta) repertoire in peripheral blood (PB) and bronchoalveolar lavage fluid (BALF) from patients with sarcoidosis, using semi-quantitative reverse transcriptase-polymerase chain reaction method. The expression of 22 kinds of Vbeta genes is examined in 17 patients with sarcoidosis and nine normal subjects. RESULTS Compared with control subjects, the group with sarcoidosis exhibits significantly high expressions of the Vbeta2 (P < 0.005, Wilcoxon's test) and Vbeta6 (P = 0.005) genes in BALF. In each BALF sample, the Vbeta2 (P < 0.01, chi2 test) and Vbeta6 (P < 0.01) genes were overexpressed (> 2 SD above the mean value for each Vbeta observed in control subjects) in 11 and 10 of 17 patients with sarcoidosis, respectively. Furthermore, the amino acid sequences of Vbeta6+ complementarity determining region 3 were conserved in one of three patients. There is, however, no disposition of Vbeta gene usage in PB from patients with sarcoidosis compared with control subjects. CONCLUSIONS The T lymphocytes with Vbeta2 and/or Vbeta6 are associated with the pathogenesis of sarcoidosis. The possibility exists that these T lymphocytes might be capable of recognizing the restricted antigens, thereby inducing oligoclonal expansion.
Collapse
Affiliation(s)
- A Yoshitomi
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Roelofs H, Manes T, Janszen T, Millán JL, Oosterhuis JW, Looijenga LH. Heterogeneity in alkaline phosphatase isozyme expression in human testicular germ cell tumours: An enzyme-/immunohistochemical and molecular analysis. J Pathol 1999; 189:236-44. [PMID: 10547581 DOI: 10.1002/(sici)1096-9896(199910)189:2<236::aid-path411>3.0.co;2-j] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In humans, alkaline phosphatases are encoded by one tissue-non-specific alkaline phosphatase (TNAP) gene and three tissue-specific alkaline phosphatase genes, intestinal, placental (PLAP), and germ cell-specific alkaline phosphatase (GCAP). Although the presence of alkaline phosphatases in testicular germ cell tumours (TGCTs) of adolescents and adults has been utilized for both detection and patient monitoring, it is not known in detail which isozymes are expressed. Since alkaline phosphatase is detected in carcinoma in situ (CIS), the common precursor of all TGCTs, it might provide a marker for the early diagnosis of TGCTs. Testicular cancers of germ cell and non-germ cell origin along with testicular parenchyma with and without CIS have been analysed for the expression of the different alkaline phosphatase isozymes. Antibodies to TNAP and PLAP/GCAP showed positivity in CIS, seminoma, and embryonal carcinoma. The heterogeneous staining pattern detected in frozen tissue sections was similar to the pattern found in formalin-fixed, paraffin-embedded material, indicating a biological phenomenon and not a handling artefact. Since PLAP and GCAP cannot be distinguished using immunohistochemistry, the expression of these isozymes was studied at the molecular level using a reverse transcriptase-polymerase chain reaction (RT-PCR) approach, in combination with a primer extension assay. The results show that CIS and seminoma predominantly express GCAP, while in embryonal carcinoma the expression of GCAP versus PLAP varies. Due to the presence of alkaline phosphatase transcripts in normal testicular parenchyma, an RT-PCR-based analysis of alkaline phosphatase is not informative for the early detection of TGCTs in biopsy samples.
Collapse
Affiliation(s)
- H Roelofs
- Laboratory for Experimental Patho-Oncology, Daniel den Hoed Cancer Center, Academic Hospital Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Adjaye J, Bolton V, Monk M. Developmental expression of specific genes detected in high-quality cDNA libraries from single human preimplantation embryos. Gene 1999; 237:373-83. [PMID: 10521661 DOI: 10.1016/s0378-1119(99)00329-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe an improved highly sensitive method for generating cDNA libraries containing a high proportion of cDNAs enriched with 5'-coding sequences from single human preimplantation embryos and a 10 week old whole foetus. The embryonic mRNA was isolated using oligo-(dT) linked to magnetic beads. First-strand cDNA synthesis was carried out directly on the bound mRNA, followed by PCR designed to amplify the cDNA molecules synthesized in their entirety. The complexities of the libraries are between 10(5) and 10(6) independent clones. The average cDNA size is 1.0 kb, and the size range is 0.5-3.0 kb. PCR analysis of the embryonic libraries for specific genes has revealed transcripts for genes known to be transcribed in preimplantation stages, such as the imprinted gene SNRPN, developmental genes WNT11, HOX, OCT-1 and the embryonic OCT-4, cytoskeletal genes keratin-18 and beta-actin, the cell cycle gene C-MOS, and housekeeping genes GAPDH and HPRT. Sequencing of random clones showed the presence of a variety of sequences, such as human chorionic gonadotrophin, ubiquitin, TFIIA, guanine nucleotide-binding protein (beta-subunit), annexin I, a gene encoding a kinesin-like protein, and TWIST, which encodes a basic helix-loop-helix (bHLH) transcription factor implicated in Saethre-Chotzen syndrome (characterized by craniofacial and limb anomalies). Approximately 40% of these randomly analysed clones were full length. In addition to cDNAs matching known ESTs (Expressed Sequence Tags) in the GenBank and dbEST databases, novel sequences were detected at a frequency of 16% of randomly picked clones. The libraries are a valuable resource, providing longer cDNAs representing genes expressed during human preimplantation development.
Collapse
Affiliation(s)
- J Adjaye
- Molecular Embryology Unit, Institute of Child Health, 30 Guilford Street, London, UK.
| | | | | |
Collapse
|
40
|
Goto T, Adjaye J, Rodeck CH, Monk M. Identification of genes expressed in human primordial germ cells at the time of entry of the female germ line into meiosis. Mol Hum Reprod 1999; 5:851-60. [PMID: 10460224 DOI: 10.1093/molehr/5.9.851] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In mammals, primordial germ cells (PGCs) are first observed in the extraembryonic mesoderm from where they migrate through the hindgut and its mesentery to the genital ridge to colonize the developing gonads. Soon after reaching the gonads, the female PGCs enter meiosis, while the male PGCs are arrested in mitosis and enter meiosis postnatally. To gain an insight into the molecular events controlling human germ cell development, we determined specific profiles of gene expression using cDNA prepared from PGCs isolated from male and female fetal gonads at 10 weeks gestation, when female PGCs start to enter meiosis. The identity of the isolated PGCs, and the cDNA molecules prepared from them, was confirmed respectively, by alkaline phosphatase staining and by the presence of transcripts of OCT4, a marker gene for PGCs and pluripotent stem cells in mice. Using differential display to compare the profiles of gene expression of male and female germ cells with each other and with that of a whole 10 week old fetus, we have identified eight transcripts differentially expressed in male and/or female germ cells. Among these transcripts, we have identified a member of the olfactory receptor gene family, which contains genes known to be germline-specific in the dog and possibly associated with chemotactic function. Another transcript is common to a previously isolated sequence from the human testis and we have extended this sequence towards the 5' end for partial characterization. The germline-specific sequences also include two novel sequences not represented in the databases. These findings are highly encouraging for the elucidation of the genetic programming of male and female germ line development.
Collapse
Affiliation(s)
- T Goto
- Molecular Embryology Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | |
Collapse
|
41
|
Gruver EJ, Fatkin D, Dodds GA, Kisslo J, Maron BJ, Seidman JG, Seidman CE. Familial hypertrophic cardiomyopathy and atrial fibrillation caused by Arg663His beta-cardiac myosin heavy chain mutation. Am J Cardiol 1999; 83:13H-18H. [PMID: 10750581 DOI: 10.1016/s0002-9149(99)00251-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
More than 40 different beta-cardiac myosin heavy chain (beta-MHC) missense mutations have been identified that cause familial hypertrophic cardiomyopathy (FHC). Some of these are recognized to have important clinical manifestations, such as an increased incidence of sudden death. We report that the beta-MHC missense mutation Arg663His causes predominant cardiac morphology and atrial fibrillation. Longitudinal clinical evaluations were performed in a kindred with FHC. The nucleotide sequence of the beta-MHC gene was analyzed to define the causal mutation. A missense mutation in the beta-MHC gene, Arg663His, was identified in 24 individuals. Clinical studies demonstrated modest left ventricular hypertrophy in affected individuals, predominantly localized in the proximal segment of the interventricular septum, which increased (average = 40 +/- 8%) during 7 years of follow-up. Results showed that 47% of Arg663His adults (age > 16 years) with ventricular hypertrophy developed atrial fibrillation, significantly more (p <0.001) than observed in ungenotyped FHC populations. Survival of affected individuals remained near normal. The beta-MHC missense mutation Arg663His causes a characteristic pattern of ventricular hypertrophy. Arg663His individuals have a markedly higher prevalence of atrial fibrillation, compared with a population with ungenotyped hypertrophic cardiomyopathy. The demonstration of phenotype as a direct consequence of genotype further extends the utility of molecular data in clinical medicine. Early identification of Arg663His individuals has the potential to minimize the serious sequelae of this arrhythmia in this FHC group.
Collapse
Affiliation(s)
- E J Gruver
- Department of Cardiology, Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Otte S, Barnikol-Watanabe S, Hilschmann N. Direct dye terminator sequencing of lambda DNA and phage suspensions. Anal Biochem 1999; 270:332-4. [PMID: 10334852 DOI: 10.1006/abio.1999.4111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S Otte
- Abteilung Immunchemie, Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Strasse 3, Göttingen, D-37075, Germany.
| | | | | |
Collapse
|
43
|
Zucchi I, Jones J, Affer M, Montagna C, Redolfi E, Susani L, Vezzoni P, Parvari R, Schlessinger D, Whyte MP, Mumm S. Transcription map of Xq27: candidates for several X-linked diseases. Genomics 1999; 57:209-18. [PMID: 10198160 DOI: 10.1006/geno.1999.5768] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human Xq27 contains candidate regions for several disorders, yet is predicted to be a gene-poor cytogenetic band. We have developed a transcription map for the entire cytogenetic band to facilitate the identification of the relatively small number of expected candidate genes. Two approaches were taken to identify genes: (1) a group of 64 unique STSs that were generated during the physical mapping of the region were used in RT-PCR with RNA from human adult and fetal brain and (2) ESTs that have been broadly mapped to this region of the chromosome were finely mapped using a high-resolution yeast artificial chromosome contig. This combined approach identified four distinct regions of transcriptional activity within the Xq27 band. Among them is a region at the centromeric boundary that contains candidate regions for several rare developmental disorders (X-linked recessive hypoparathyroidism, thoracoabdominal syndrome, albinism-deafness syndrome, and Borjeson-Forssman-Lehman syndrome). Two transcriptionally active regions were identified in the center of Xq27 and include candidate regions for X-linked mental retardation syndrome 6, X-linked progressive cone dystrophy, X-linked retinitis pigmentosa 24, and a prostate cancer susceptibility locus. The fourth region of transcriptional activity encompasses the FMR1 (FRAXA) and FMR2 (FRAXE) genes. The analysis thus suggests clustered transcription in Xq27 and provides candidates for several heritable disorders for which the causative genes have not yet been found.
Collapse
Affiliation(s)
- I Zucchi
- Istituto Tecnologie Biomediche Avanzate, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Prychitko TM, Ries EA, Moore WS. Two-step cycle sequencing reduces premature terminations when using primers with high annealing temperatures. Mol Biotechnol 1998; 10:231-6. [PMID: 9951702 DOI: 10.1007/bf02740843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Direct cycle sequencing of double-stranded polymerase chain reaction (PCR) products using thermostable polymerases produces fragments that are shorter than expected when the enzyme prematurely detaches as it approaches the 5'-end of the DNA template. These premature terminations result in a substantially reduced reading length of the DNA sequence. Since some DNA templates spontaneously fold and form stable secondary structures at temperatures that are typically used for primer annealing, one factor that may cause premature terminations to occur is the formation of secondary structures in the template during the annealing step of the cycle sequencing reaction. We describe a simple and effective method for reducing premature terminations in DNA sequences. We demonstrate that maintaining the annealing temperature of the cycle sequencing reaction above a critical temperature reduces premature terminations in DNA sequences that regularly contain premature terminations when the temperature of the annealing step is 60 degrees C. In the method described, annealing and extension of the primer along the template take place at the same temperature (72 degrees C). This procedure for reducing premature terminations can be applied when sequencing with primers that are relatively long (at least 27 mer) and have high optimal annealing temperatures.
Collapse
Affiliation(s)
- T M Prychitko
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
45
|
Jiang M, Aittomäki K, Nilsson C, Pakarinen P, Iitiä A, Torresani T, Simonsen H, Goh V, Pettersson K, de la Chapelle A, Huhtaniemi I. The frequency of an inactivating point mutation (566C-->T) of the human follicle-stimulating hormone receptor gene in four populations using allele-specific hybridization and time-resolved fluorometry. J Clin Endocrinol Metab 1998; 83:4338-43. [PMID: 9851774 DOI: 10.1210/jcem.83.12.5306] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have described previously in the Finnish population an inactivating point mutation (566C-->T) in the human FSH receptor (FSHR) gene. In women, this mutation causes hypergonadotropic ovarian failure with arrest of follicular maturation and infertility, whereas in men, there is variable suppression of spermatogenesis, but no absolute infertility. To determine whether the same FSHR mutation occurs in other populations, its frequency was determined in Finland, Switzerland, Denmark, and the Chinese population of Singapore. The mutation was screened for using genomic DNA extracted from whole blood or dried blood spots. Exon 7 of the FSHR gene was first amplified using a pair of biotinylated primers. The PCR products were then immobilized on streptavidin-coated microtitration wells and hybridized using short allele-specific oligonucleotide probes labeled with europium. Time-resolved fluorometry was used for europium signal detection. To test the reliability of this method, 40 isolated DNA samples and 35 dried blood spot samples were blindly tested for the 566C-->T FSHR mutation. The analyses yielded identical results with denaturing gradient gel electrophoresis and allele-specific restriction enzyme digestion of the same samples, thus demonstrating the reliability of the tested method. Automation of this procedure allows the screening of large numbers of samples, which was subsequently carried out to investigate the frequency of the 566C-->T mutation in the study populations. A total of 4981 samples from the above-mentioned 4 countries were analyzed. The frequency of the 566C-->T mutation was 0.96% for all Finnish samples (n=1976), with a strong enrichment of the mutant allele in the northeastern part of the country. Only 1 mutation carrier was identified in the samples from Switzerland (n=1162), whereas none was found in samples from Denmark (n=1094) and the Singapore Chinese (n=540). These results suggest that the 566C-->T mutation of the FSHR gene is enriched in Finland, but is uncommon in other populations.
Collapse
Affiliation(s)
- M Jiang
- Department of Physiology, University of Turku, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Romzek NC, Harris ES, Dell CL, Skronek J, Hasse E, Reynolds PJ, Hunt SW, Shimizu Y. Use of a β1 Integrin-deficient Human T Cell to Identify β1 Integrin Cytoplasmic Domain Sequences Critical for Integrin Function. Mol Biol Cell 1998. [DOI: 10.1091/mbc.9.10.2715] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
T cell activation rapidly and transiently regulates the functional activity of integrin receptors. Stimulation of CD3/T cell receptor, CD2 or CD28, as well as activation with phorbol esters, can induce within minutes an increase in β1 integrin-mediated adhesion of T cells to fibronectin. In this study, we have produced and utilized a mutant of the Jurkat T cell line, designated A1, that lacks protein and mRNA expression of the β1 integrin subunit but retains normal levels of CD2, CD3, and CD28 on the cell surface. Activation-dependent adhesion of A1 cells to fibronectin could be restored upon transfection of a wild-type human β1 integrin cDNA. Adhesion induced by phorbol 12-myristate 13-acetate-, CD3-, CD2-, and CD28 stimulation did not occur if the carboxy-terminal five amino acids of the β1 tail were truncated or if either of two well-conserved NPXY motifs were deleted. Scanning alanine substitutions of the carboxy-terminal five amino acids demonstrated a critical role for the tyrosine residue at position 795. The carboxy-terminal truncation and the NPXY deletions also reduced adhesion induced by direct stimulation of the β1 integrin with the activating β1 integrin-specific mAb TS2/16, although the effects were not as dramatic as observed with the other integrin-activating signals. These results demonstrate a vital role for the amino-terminal NPXY motif and the carboxy-terminal end of the β1 integrin cytoplasmic domain in activation-dependent regulation of integrin-mediated adhesion in T cells. Furthermore, the A1 cell line represents a valuable new cellular reagent for the analysis of β1 integrin structure and function in human T cells.
Collapse
Affiliation(s)
- Nadine C. Romzek
- Department of Laboratory Medicine and Pathology, Center for Immunology and Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Estelle S. Harris
- Department of Medicine, Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84132; and
| | - Cheryl L. Dell
- Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105
| | - Jeffrey Skronek
- Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105
| | - Elizabeth Hasse
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Pamela J. Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Stephen W. Hunt
- Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology and Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
47
|
Romzek NC, Harris ES, Dell CL, Skronek J, Hasse E, Reynolds PJ, Hunt SW, Shimizu Y. Use of a beta1 integrin-deficient human T cell to identify beta1 integrin cytoplasmic domain sequences critical for integrin function. Mol Biol Cell 1998; 9:2715-27. [PMID: 9763439 PMCID: PMC25547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1998] [Accepted: 07/24/1998] [Indexed: 02/09/2023] Open
Abstract
T cell activation rapidly and transiently regulates the functional activity of integrin receptors. Stimulation of CD3/T cell receptor, CD2 or CD28, as well as activation with phorbol esters, can induce within minutes an increase in beta1 integrin-mediated adhesion of T cells to fibronectin. In this study, we have produced and utilized a mutant of the Jurkat T cell line, designated A1, that lacks protein and mRNA expression of the beta1 integrin subunit but retains normal levels of CD2, CD3, and CD28 on the cell surface. Activation-dependent adhesion of A1 cells to fibronectin could be restored upon transfection of a wild-type human beta1 integrin cDNA. Adhesion induced by phorbol 12-myristate 13-acetate-, CD3-, CD2-, and CD28 stimulation did not occur if the carboxy-terminal five amino acids of the beta1 tail were truncated or if either of two well-conserved NPXY motifs were deleted. Scanning alanine substitutions of the carboxy-terminal five amino acids demonstrated a critical role for the tyrosine residue at position 795. The carboxy-terminal truncation and the NPXY deletions also reduced adhesion induced by direct stimulation of the beta1 integrin with the activating beta1 integrin-specific mAb TS2/16, although the effects were not as dramatic as observed with the other integrin-activating signals. These results demonstrate a vital role for the amino-terminal NPXY motif and the carboxy-terminal end of the beta1 integrin cytoplasmic domain in activation-dependent regulation of integrin-mediated adhesion in T cells. Furthermore, the A1 cell line represents a valuable new cellular reagent for the analysis of beta1 integrin structure and function in human T cells.
Collapse
Affiliation(s)
- N C Romzek
- Department of Laboratory Medicine and Pathology, Center for Immunology and Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Roelofs H, van Gurp RJ, Oosterhuis JW, Looijenga LH. Detection of human endogenous retrovirus type K-specific transcripts in testicular parenchyma and testicular germ cell tumors of adolescents and adults: clinical and biological implications. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1277-82. [PMID: 9777959 PMCID: PMC1853062 DOI: 10.1016/s0002-9440(10)65672-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Testicular germ cell tumors (TGCTs) of adolescents and adults have been shown to contain proteins of the human endogenous retrovirus type K family. In a recent study, expression of these retroviral sequences was confirmed using in situ hybridization, which also showed expression in carcinoma in situ, the precursor of all TGCTs. Because of the clinical significance of a test for early diagnosis of TGCTs, we studied whether expression of human endogenous retrovirus type K genes could be an informative parameter. Therefore, we investigated TGCTs of various histologies and testicular parenchyma with and without carcinoma in situ using reverse transcription-polymerase chain reaction for expression of the gag, env, and prt genes. The gag and prt genes were expressed in all samples tested. The env transcripts were not found in TGCTs showing somatic differentiation only but could be detected in most normal testicular parenchyma samples. Therefore, detection of human endogenous retrovirus type K transcripts cannot be used for early diagnosis of TGCTs. Simultaneous expression of multiple gag sequences was found both in normal parenchyma and TGCTs, and we demonstrated that expression of gag sequences with an extra G, necessary to generate a functional protein, was not limited to TGCTs.
Collapse
Affiliation(s)
- H Roelofs
- Laboratory for Experimental Patho-Oncology, Daniel den Hoed Cancer Center, University Hospital Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
49
|
Keough DT, Gee CL, Emmerson BT, de Jersey J. Role of cysteine and lysine residues in human hypoxanthine-guanine phosphoribosyltransferase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:331-5. [PMID: 9598086 DOI: 10.1007/978-1-4615-5381-6_66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D T Keough
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
50
|
Yamada Y, Goto H, Suzumori K, Ogasawara N. Prenatal diagnosis of HPRT mutant genes in Lesch-Nyhan syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:211-4. [PMID: 9598061 DOI: 10.1007/978-1-4615-5381-6_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Y Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Japan
| | | | | | | |
Collapse
|