1
|
Stankey CT, Lee JC. The Role of ETS2 in Macrophage Inflammation. DNA Cell Biol 2025. [PMID: 40227609 DOI: 10.1089/dna.2025.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Autoimmune and inflammatory diseases are rising globally yet widely effective therapies remain elusive. Most treatments have limited efficacy, significant potential side effects, or eventually lose response, underscoring the urgent need for new therapeutic approaches. We recently discovered that ETS2, a transcription factor, functions as a master regulator of macrophage-driven inflammation-and is causally linked to the pathogenesis of multiple inflammatory diseases via human genetics. The pleotropic inflammatory effects of ETS2 included upregulation of many cytokines that are individually targeted by current disease therapies, including TNFα, IL-23, IL1β, and TNF-like ligand 1A signaling. With the move toward combination treatment-to maximize efficacy-targeting ETS2 presents a unique opportunity to potentially induce a broad therapeutic effect. However, there will be multiple challenges to overcome since direct ETS2 inhibition is unlikely to be feasible. Here, we discuss these challenges and other unanswered questions about the central role that ETS2 plays in macrophage inflammation.
Collapse
Affiliation(s)
- Christina T Stankey
- Genetic Mechanisms of Disease Lab, The Francis Crick Institute, London, United Kingdom
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James Christopher Lee
- Genetic Mechanisms of Disease Lab, The Francis Crick Institute, London, United Kingdom
- Department of Gastroenterology, Royal Free Hospital, London, United Kingdom
- Division of Medicine, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Kearly A, Saelee P, Bard J, Sinha S, Satterthwaite A, Garrett-Sinha LA. Sequences within and upstream of the mouse Ets1 gene drive high level expression in B cells, but are not sufficient for consistent expression in T cells. PLoS One 2025; 20:e0308896. [PMID: 40053568 PMCID: PMC11888140 DOI: 10.1371/journal.pone.0308896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025] Open
Abstract
The levels of transcription factor Ets1 are high in resting B and T cells, but are downregulated by signaling through antigen receptors and Toll-like receptors (TLRs). Loss of Ets1 in mice leads to excessive immune cell activation and development of an autoimmune syndrome and reduced Ets1 expression has been observed in human PBMCs in the context of autoimmune diseases. In B cells, Ets1 serves to prevent premature activation and differentiation to antibody-secreting cells. Given these important roles for Ets1 in the immune response, stringent control of Ets1 gene expression levels is required for homeostasis. However, the genetic regulatory elements that control expression of the Ets1 gene remain relatively unknown. Here we identify a topologically-associating domain (TAD) in the chromatin of B cells that includes the mouse Ets1 gene locus and describe an interaction hub that extends over 100 kb upstream and into the gene body. Additionally, we compile epigenetic datasets to find several putative regulatory elements within the interaction hub by identifying regions of high DNA accessibility and enrichment of active enhancer histone marks. Using reporter constructs, we determine that DNA sequences within this interaction hub are sufficient to direct reporter gene expression in lymphoid tissues of transgenic mice. Further analysis indicates that the reporter construct drives faithful expression of the reporter gene in mouse B cells, but variegated expression in T cells, suggesting the existence of T cell regulatory elements outside this region. To investigate how the downregulation of Ets1 transcription is associated with alterations in the epigenetic landscape of stimulated B cells, we performed ATAC-seq in resting and BCR-stimulated primary B cells and identified four regions within and upstream of the Ets1 locus that undergo changes in chromatin accessibility that correlate to Ets1 gene expression. Interestingly, functional analysis of several putative Ets1 regulatory elements using luciferase constructs suggested a high level of functional redundancy. Taken together our studies reveal a complex network of regulatory elements and transcription factors that coordinate the B cell-specific expression of Ets1.
Collapse
Affiliation(s)
- Alyssa Kearly
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Prontip Saelee
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jonathan Bard
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Anne Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
3
|
Kearly A, Saelee P, Bard J, Sinha S, Satterthwaite A, Garrett-Sinha LA. Sequences within and upstream of the mouse Ets1 gene drive high level expression in B cells, but are not sufficient for consistent expression in T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606433. [PMID: 39149372 PMCID: PMC11326187 DOI: 10.1101/2024.08.02.606433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The levels of transcription factor Ets1 are high in resting B and T cells, but are downregulated by signaling through antigen receptors and Toll-like receptors (TLRs). Loss of Ets1 in mice leads to excessive immune cell activation and development of an autoimmune syndrome and reduced Ets1 expression has been observed in human PBMCs in the context of autoimmune diseases. In B cells, Ets1 serves to prevent premature activation and differentiation to antibody-secreting cells. Given these important roles for Ets1 in the immune response, stringent control of Ets1 gene expression levels is required for homeostasis. However, the genetic regulatory elements that control expression of the Ets1 gene remain relatively unknown. Here we identify a topologically-associating domain (TAD) in the chromatin of B cells that includes the mouse Ets1 gene locus and describe an interaction hub that extends over 100 kb upstream and into the gene body. Additionally, we compile epigenetic datasets to find several putative regulatory elements within the interaction hub by identifying regions of high DNA accessibility and enrichment of active enhancer histone marks. Using reporter constructs, we determine that DNA sequences within this interaction hub are sufficient to direct reporter gene expression in lymphoid tissues of transgenic mice. Further analysis indicates that the reporter construct drives faithful expression of the reporter gene in mouse B cells, but variegated expression in T cells, suggesting the existence of T cell regulatory elements outside this region. To investigate how the downregulation of Ets1 transcription is associated with alterations in the epigenetic landscape of stimulated B cells, we performed ATAC-seq in resting and BCR-stimulated primary B cells and identified four regions within and upstream of the Ets1 locus that undergo changes in chromatin accessibility that correlate to Ets1 gene expression. Interestingly, functional analysis of several putative Ets1 regulatory elements using luciferase constructs suggested a high level of functional redundancy. Taken together our studies reveal a complex network of regulatory elements and transcription factors that coordinate the B cell-specific expression of Ets1.
Collapse
Affiliation(s)
- Alyssa Kearly
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Prontip Saelee
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jonathan Bard
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| |
Collapse
|
4
|
Pratt HG, Ma L, Dziadowicz SA, Ott S, Whalley T, Szomolay B, Eubank TD, Hu G, Boone BA. Analysis of single nuclear chromatin accessibility reveals unique myeloid populations in human pancreatic ductal adenocarcinoma. Clin Transl Med 2024; 14:e1595. [PMID: 38426634 PMCID: PMC10905544 DOI: 10.1002/ctm2.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND A better understanding of the pancreatic ductal adenocarcinoma (PDAC) immune microenvironment is critical to developing new treatments and improving outcomes. Myeloid cells are of particular importance for PDAC progression; however, the presence of heterogenous subsets with different ontogeny and impact, along with some fluidity between them, (infiltrating monocytes vs. tissue-resident macrophages; M1 vs. M2) makes characterisation of myeloid populations challenging. Recent advances in single cell sequencing technology provide tools for characterisation of immune cell infiltrates, and open chromatin provides source and function data for myeloid cells to assist in more comprehensive characterisation. Thus, we explore single nuclear assay for transposase accessible chromatin (ATAC) sequencing (snATAC-Seq), a method to analyse open gene promoters and transcription factor binding, as an important means for discerning the myeloid composition in human PDAC tumours. METHODS Frozen pancreatic tissues (benign or PDAC) were prepared for snATAC-Seq using 10× Chromium technology. Signac was used for preliminary analysis, clustering and differentially accessible chromatin region identification. The genes annotated in promoter regions were used for Gene Ontology (GO) enrichment and cell type annotation. Gene signatures were used for survival analysis with The Cancer Genome Atlas (TCGA)-pancreatic adenocarcinoma (PAAD) dataset. RESULTS Myeloid cell transcription factor activities were higher in tumour than benign pancreatic samples, enabling us to further stratify tumour myeloid populations. Subcluster analysis revealed eight distinct myeloid populations. GO enrichment demonstrated unique functions for myeloid populations, including interleukin-1b signalling (recruited monocytes) and intracellular protein transport (dendritic cells). The identified gene signature for dendritic cells influenced survival (hazard ratio = .63, p = .03) in the TCGA-PAAD dataset, which was unique to PDAC. CONCLUSIONS These data suggest snATAC-Seq as a method for analysis of frozen human pancreatic tissues to distinguish myeloid populations. An improved understanding of myeloid cell heterogeneity and function is important for developing new treatment targets in PDAC.
Collapse
Affiliation(s)
- Hillary G. Pratt
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Li Ma
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Sebastian A. Dziadowicz
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Sascha Ott
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | | | - Barbara Szomolay
- Division of Infection and Immunity & Systems Immunity Research InstituteCardiff UniversityCardiffUK
| | - Timothy D. Eubank
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- In Vivo Multifunctional Magnetic Resonance CenterWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Gangqing Hu
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Brian A. Boone
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of SurgeryWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
5
|
Chandra A, Yoon S, Michieletto MF, Goldman N, Ferrari EK, Abedi M, Johnson I, Fasolino M, Pham K, Joannas L, Kee BL, Henao-Mejia J, Vahedi G. Quantitative control of Ets1 dosage by a multi-enhancer hub promotes Th1 cell differentiation and protects from allergic inflammation. Immunity 2023; 56:1451-1467.e12. [PMID: 37263273 PMCID: PMC10979463 DOI: 10.1016/j.immuni.2023.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
Multi-enhancer hubs are spatial clusters of enhancers present across numerous developmental programs. Here, we studied the functional relevance of these three-dimensional structures in T cell biology. Mathematical modeling identified a highly connected multi-enhancer hub at the Ets1 locus, comprising a noncoding regulatory element that was a hotspot for sequence variation associated with allergic disease in humans. Deletion of this regulatory element in mice revealed that the multi-enhancer connectivity was dispensable for T cell development but required for CD4+ T helper 1 (Th1) differentiation. These mice were protected from Th1-mediated colitis but exhibited overt allergic responses. Mechanistically, the multi-enhancer hub controlled the dosage of Ets1 that was required for CTCF recruitment and assembly of Th1-specific genome topology. Our findings establish a paradigm wherein multi-enhancer hubs control cellular competence to respond to an inductive cue through quantitative control of gene dosage and provide insight into how sequence variation within noncoding elements at the Ets1 locus predisposes individuals to allergic responses.
Collapse
Affiliation(s)
- Aditi Chandra
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sora Yoon
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi Goldman
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily K Ferrari
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maryam Abedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabelle Johnson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Fasolino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth Pham
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonel Joannas
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barbara L Kee
- Department of Pathology, Committees on Cancer Biology and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Distinct Prognostic and Immunological Roles of ETS1 and ETS2: A Pan-Cancer Analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4343350. [PMID: 36760475 PMCID: PMC9904892 DOI: 10.1155/2023/4343350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Objective ETS1 and ETS2, the main ETS family of transcription factors, have been found to act as downstream effectors of the RAS/MAPK pathway. This study explores the expression and prognostic values of ETS1 and ETS2 across cancers. We also aimed to explore the significance of ETS1 and ETS2 expression in normal immune cells with relation to tumorigenesis. Methods The expression of ETS1 and ETS2 was examined in the HPA and GEPIA2 databases. The KM plotter was applied to examine prognostic value of ETS1 and ETS2. Correlation between ETS1/ETS2 and infiltrating immune cells and immune checkpoints was assessed using TIMER2.0. The mutation landscape of ETS1/ETS2 was explored using the cBioPortal. STRING and GEPIA2 were used to screen ETS1/ETS2 binding and correlated genes. Enrichr was applied to perform GO and KEGG enrichment analyses. Results ETS1 showed enhanced expression in lymphoid tissue, while ETS2 showed low tissue specificity. ETS1 was increased in 12 and decreased in 6 cancers, while ETS2 was increased in 4 and decreased in 13 cancers. Both ETS1 and ETS2 were favorable prognostic markers in LIHC and KIRC, while they showed different prognostic roles in more cancers. ETS1 showed stronger correlation with several infiltrating immune cells and immune checkpoints compared with ETS2. Both ETS1 and ETS2 harbored low mutation ratio. ETS1 interacting and correlated genes were enriched in GO terms in response to cadmium ion and response to oxidative stress, while those of ETS2 were enriched in transcription regulation. Conclusion ETS1 and ETS2 showed different patterns in expression, prognostic values, correlation with immune infiltrating, and immune checkpoints. ETS1 and ETS2 play distinct roles across cancer.
Collapse
|
7
|
Abstract
Objective In this study, we aimed to identify prognostic immune-related genes and establish a prognostic model for laryngeal cancer based on these genes. Methods Transcriptome profiles and clinical data of patients with laryngeal cancer were downloaded from The Cancer Genome Atlas database. Integrated bioinformatics analyses were performed to identify genes associated with prognosis. Results Thirty prognostic immune-related genes for laryngeal cancer were identified. We constructed a regulatory network of prognosis comprising transcription factors and immune-related genes. Multivariate Cox regression analyses identified 15 immune-related genes in the network that were used to establish the prognostic model. The model exhibited excellent prognostic prediction ability with a high area under the curve value (0.916). The calculated risk score based on expression of the 15 immune-related genes was shown to be an independent prognostic factor for laryngeal cancer. Conclusion We identified prognostic immune-related genes and established a prognostic model for laryngeal cancer, which might help identify novel predictive biomarkers and therapeutic targets of laryngeal cancer.
Collapse
Affiliation(s)
- Huan Xiao
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qi-Sheng Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Qian Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Vocational and Technical College of Health, Nanning, China
| |
Collapse
|
8
|
Transcriptomic Profiles of CD47 in Breast Tumors Predict Outcome and Are Associated with Immune Activation. Int J Mol Sci 2021; 22:ijms22083836. [PMID: 33917174 PMCID: PMC8067872 DOI: 10.3390/ijms22083836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022] Open
Abstract
Targeting the innate immune system has attracted attention with the development of anti- CD47 antibodies. Anti-CD47 antibodies block the inhibition of the phagocytic activity of macrophages caused by the up-regulation of CD47 on tumor cells. In this study, public genomic data was used to identify genes highly expressed in breast tumors with elevated CD47 expression and analyzed the association between the presence of tumor immune infiltrates and the expression of the selected genes. We found that 142 genes positively correlated with CD47, of which 83 predicted favorable and 32 detrimental relapse-free survival (RFS). From those associated with favorable RFS, we selected the genes with immunologic biological functions and defined a CD47-immune signature composed of PTPRC, HLA-E, TGFBR2, PTGER4, ETS1, and OPTN. In the basal-like and HER2+ breast cancer subtypes, the expression of the CD47-immune signature predicted favorable outcome, correlated with the presence of tumor immune infiltrates, and with gene expression signatures of T cell activation. Moreover, CD47 up-regulated genes associated with favorable survival correlated with pro-tumoral macrophages. In summary, we described a CD47-immune gene signature composed of 6 genes associated with favorable prognosis, T cell activation, and pro-tumoral macrophages in breast cancer tumors expressing high levels of CD47.
Collapse
|
9
|
Bègue A, Crepieux P, Vu-Dac N, Hautefeuille A, Spruyt N, Laudet V, Stehelin D. Identification of a second promoter in the human c-ets-2 proto-oncogene. Gene Expr 2018; 6:333-47. [PMID: 9495315 PMCID: PMC6148255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We localized and characterized a new regulatory element with promoter activity in the human c-ets-2 intron 1. This promoter governs the expression of 5' divergent c-ets-2 transcripts through multiple start sites dispersed within 300 bp. Among the multiple start sites detected, three are major transcriptional initiation points. We detected transcripts initiated from this new promoter in various cell lines such as COLO 320, NBE, or HepG2 cells. This promoter exhibits transcriptional activity when linked to the CAT gene, and deletion constructs reveal that it contains activating and repressing elements. The sequence of the promoter reveals putative binding sites for ETS, MYB, GATA, and Oct factors. In addition, we show that this promoter is functionally conserved in the chicken.
Collapse
Affiliation(s)
- A Bègue
- CNRS URA 1160, Oncologie Moléculaire, Institut Pasteur, Lille, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Panagoulias I, Georgakopoulos T, Aggeletopoulou I, Agelopoulos M, Thanos D, Mouzaki A. Transcription Factor Ets-2 Acts as a Preinduction Repressor of Interleukin-2 (IL-2) Transcription in Naive T Helper Lymphocytes. J Biol Chem 2016; 291:26707-26721. [PMID: 27815505 DOI: 10.1074/jbc.m116.762179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/01/2016] [Indexed: 11/06/2022] Open
Abstract
IL-2 is the first cytokine produced when naive T helper (Th) cells are activated and differentiate into dividing pre-Th0 proliferating precursors. IL-2 expression is blocked in naive, but not activated or memory, Th cells by the transcription factor Ets-2 that binds to the antigen receptor response element (ARRE)-2 of the proximal IL-2 promoter. Ets-2 acts as an independent preinduction repressor in naive Th cells and does not interact physically with the transcription factor NFAT (nuclear factor of activated T-cells) that binds to the ARRE-2 in activated Th cells. In naive Th cells, Ets-2 mRNA expression, Ets-2 protein levels, and Ets-2 binding to ARRE-2 decrease upon cell activation followed by the concomitant expression of IL-2. Cyclosporine A stabilizes Ets-2 mRNA and protein when the cells are activated. Ets-2 silences directly constitutive or induced IL-2 expression through the ARRE-2. Conversely, Ets-2 silencing allows for constitutive IL-2 expression in unstimulated cells. Ets-2 binding to ARRE-2 in chromatin is stronger in naive compared with activated or memory Th cells; in the latter, Ets-2 participates in a change of the IL-2 promoter architecture, possibly to facilitate a quick response when the cells re-encounter antigen. We propose that Ets-2 expression and protein binding to the ARRE-2 of the IL-2 promoter are part of a strictly regulated process that results in a physiological transition of naive Th cells to Th0 cells upon antigenic stimulation. Malfunction of such a repression mechanism at the molecular level could lead to a disturbance of later events in Th cell plasticity, leading to autoimmune diseases or other pathological conditions.
Collapse
Affiliation(s)
- Ioannis Panagoulias
- From the Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece and
| | - Tassos Georgakopoulos
- From the Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece and
| | - Ioanna Aggeletopoulou
- From the Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece and
| | - Marios Agelopoulos
- the Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens GR-11527, Greece
| | - Dimitris Thanos
- the Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens GR-11527, Greece
| | - Athanasia Mouzaki
- From the Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece and
| |
Collapse
|
11
|
Garrett-Sinha LA, Kearly A, Satterthwaite AB. The Role of the Transcription Factor Ets1 in Lupus and Other Autoimmune Diseases. Crit Rev Immunol 2016; 36:485-510. [PMID: 28845756 DOI: 10.1615/critrevimmunol.2017020284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excess B- and T-cell activation, the development of autoantibodies against self-antigens including nuclear antigens, and immune complex deposition in target organs, which triggers an inflammatory response and tissue damage. The genetic and environmental factors that contribute to the development of SLE have been studied extensively in both humans and mouse models of the disease. One of the important genetic contributions to SLE development is an alteration in the expression of the transcription factor Ets1, which regulates the functional differentiation of lymphocytes. Here, we review the genetic, biochemical, and immunological studies that have linked low levels of Ets1 to aberrant lymphocyte differentiation and to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203
| | - Alyssa Kearly
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne B Satterthwaite
- Department of Internal Medicine, Rheumatic Diseases Division; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
12
|
Koyama K, Takahara K, Inamoto T, Ibuki N, Minami K, Uehara H, Komura K, Nishida T, Sakamoto T, Hirano H, Nomi H, Kiyama S, Azuma H. E74-like factor inhibition induces reacquisition of hormone sensitiveness decreasing period circadian protein homolog 1 expression in prostate cancer cells. Prostate Int 2015; 3:16-21. [PMID: 26288799 PMCID: PMC4495571 DOI: 10.1016/j.prnil.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/27/2014] [Indexed: 01/09/2023] Open
Abstract
Purpose Initiating as an androgen-dependent adenocarcinoma, prostate cancer (PCa) gradually progresses to a castrate-resistant disease following androgen deprivation therapy with a propensity to metastasize. Methods In order to resolve the mechanism of castrate-resistant PCa, we performed a cDNA-microarray assay of two PCa cell lines, LNCaP (androgen dependent) and C4-2 (androgen independent). Among them, we focused on a novel Ets transcription factor, E74-like factor 5 (ELF5), the expression level of which was extremely high in C4-2 in comparison with LNCaP both in the microarray analysis and real-time polymerase chain reaction analysis, and investigated the biological role in acquisition of androgen-refractory PCa growth. Results Western blot analysis and morphological analysis using confocal immunofluorescence microscopy demonstrated that ELF5 was expressed mainly in cytosol both in LNCaP and C4-2. Inhibition of ELF5 expression using ELF5-small interfering RNA in C4-2 induced decreased expression of androgen receptor corepressor, period circadian protein homolog 1, and MTT assay of C4-2 after ELF5 small interfering RNA transfection showed the same cell growth pattern of LNCaP. Conclusions Our in vitro experiments of cell growth and microarray analysis have demonstrated for the first time that decreased expression of period circadian protein homolog 1 due to ELF5 inhibition may induce the possibility of reacquisition of hormone sensitiveness of PCa cells. We suggest that ELF5 could be a novel potential target for the treatment of hormone-refractory PCa patients.
Collapse
Affiliation(s)
- Kohei Koyama
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Kiyoshi Takahara
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Teruo Inamoto
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Naokazu Ibuki
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Koichiro Minami
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Hirofumi Uehara
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Kazumasa Komura
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Takeshi Nishida
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Takeshi Sakamoto
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Hajime Hirano
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Hayahito Nomi
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Satoshi Kiyama
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Haruhito Azuma
- Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| |
Collapse
|
13
|
Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, Lim E, Liu W, Bronson RT, Bowden M, Brock J, Krop IE, Dillon DA, Gygi SP, Mills GB, Richardson AL, Signoretti S, Yaffe MB, Kaelin WG. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell 2014; 26:222-34. [PMID: 25117710 PMCID: PMC4169234 DOI: 10.1016/j.ccr.2014.06.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/09/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022]
Abstract
Oncoproteins and tumor suppressors antagonistically converge on critical nodes governing neoplastic growth, invasion, and metastasis. We discovered that phosphorylation of the ETS1 and ETS2 transcriptional oncoproteins at specific serine or threonine residues creates binding sites for the COP1 tumor suppressor protein, which is an ubiquitin ligase component, leading to their destruction. In the case of ETS1, however, phosphorylation of a neighboring tyrosine residue by Src family kinases disrupts COP1 binding, thereby stabilizing ETS1. Src-dependent accumulation of ETS1 in breast cancer cells promotes anchorage-independent growth in vitro and tumor growth in vivo. These findings expand the list of potential COP1 substrates to include proteins whose COP1-binding sites are subject to regulatory phosphorylation and provide insights into transformation by Src family kinases.
Collapse
Affiliation(s)
- Gang Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Qing Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ying Huang
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiaxi Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ross Tomaino
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Ehrenberger
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elgene Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Wenbin Liu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela Bowden
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jane Brock
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian E Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael B Yaffe
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
14
|
Telomerase activity and apoptosis genes as parameters of lymphocyte aging in Down syndrome patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2013. [DOI: 10.1016/j.ejmhg.2013.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
15
|
Review of Ets1 structure, function, and roles in immunity. Cell Mol Life Sci 2013; 70:3375-90. [PMID: 23288305 DOI: 10.1007/s00018-012-1243-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
The Ets1 transcription factor is a member of the Ets gene family and is highly conserved throughout evolution. Ets1 is known to regulate a number of important biological processes in normal cells and in tumors. In particular, Ets1 has been associated with regulation of immune cell function and with an aggressive behavior in tumors that express it at high levels. Here we review and summarize the general features of Ets1 and describe its roles in immunity and autoimmunity, with a focus on its roles in B lymphocytes. We also review evidence that suggests that Ets1 may play a role in malignant transformation of hematopoietic malignancies including B cell malignancies.
Collapse
|
16
|
Madapura HS, Salamon D, Wiman KG, Lain S, Klein G, Klein E, Nagy N. p53 contributes to T cell homeostasis through the induction of pro-apoptotic SAP. Cell Cycle 2012; 11:4563-9. [PMID: 23165210 DOI: 10.4161/cc.22810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lack of functional SAP protein, due to gene deletion or mutation, is the cause of X-linked lymphoproliferative disease (XLP), characterized by functionally impaired T and NK cells and a high risk of lymphoma development. We have demonstrated earlier that SAP has a pro-apoptotic function in T and B cells. Deficiency of this function might contribute to the pathogenesis of XLP. We have also shown that SAP is a target of p53 in B cell lines. In the present study, we show that activated primary T cells express p53, which induces SAP expression. p53 is functional as a transcription factor in activated T cells and induces the expression of p21, PUMA and MDM2. PARP cleavage in the late phase of activation indicates that T cells expressing high levels of SAP undergo apoptosis. Modifying p53 levels using Nutlin-3, which specifically dissociates the MDM2-p53 interaction, was sufficient to upregulate SAP expression, indicating that SAP is a target of p53 in T cells. We also demonstrated p53's role as a transcription factor for SAP in activated T cells by ChIP assays. Our result suggests that p53 contributes to T cell homeostasis through the induction of the pro-apoptotic SAP. A high level of SAP is necessary for the activation-induced cell death that is pivotal in termination of the T cell response.
Collapse
Affiliation(s)
- Harsha S Madapura
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Baron D, Magot A, Ramstein G, Steenman M, Fayet G, Chevalier C, Jourdon P, Houlgatte R, Savagner F, Pereon Y. Immune response and mitochondrial metabolism are commonly deregulated in DMD and aging skeletal muscle. PLoS One 2011; 6:e26952. [PMID: 22096509 PMCID: PMC3212519 DOI: 10.1371/journal.pone.0026952] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/06/2011] [Indexed: 01/12/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a complex process involving multiple pathways downstream of the primary genetic insult leading to fatal muscle degeneration. Aging muscle is a multifactorial neuromuscular process characterized by impaired muscle regeneration leading to progressive atrophy. We hypothesized that these chronic atrophying situations may share specific myogenic adaptative responses at transcriptional level according to tissue remodeling. Muscle biopsies from four young DMD and four AGED subjects were referred to a group of seven muscle biopsies from young subjects without any neuromuscular disorder and explored through a dedicated expression microarray. We identified 528 differentially expressed genes (out of 2,745 analyzed), of which 328 could be validated by an exhaustive meta-analysis of public microarray datasets referring to DMD and Aging in skeletal muscle. Among the 328 validated co-expressed genes, 50% had the same expression profile in both groups and corresponded to immune/fibrosis responses and mitochondrial metabolism. Generalizing these observed meta-signatures with large compendia of public datasets reinforced our results as they could be also identified in other pathological processes and in diverse physiological conditions. Focusing on the common gene signatures in these two atrophying conditions, we observed enrichment in motifs for candidate transcription factors that may coordinate either the immune/fibrosis responses (ETS1, IRF1, NF1) or the mitochondrial metabolism (ESRRA). Deregulation in their expression could be responsible, at least in part, for the same transcriptome changes initiating the chronic muscle atrophy. This study suggests that distinct pathophysiological processes may share common gene responses and pathways related to specific transcription factors.
Collapse
|
18
|
Abstract
Vaccines represent a potent tool to prevent or contain infectious diseases with high morbidity or mortality. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the effective elicitation of protective immune responses by vaccines. Recent research suggests that this represents the cooperative action of the innate and adaptive immune systems. Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules, whose list is constantly updated to fill the several empty spaces of this puzzle. The recent development of new technologies and computational tools permits the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review the role of the innate immunity in the host response to vaccine antigens and the potential of systems biology in providing relevant and novel insights in the mechanisms of action of vaccines to improve their design and effectiveness.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Naples, Italy.
| | | |
Collapse
|
19
|
Pan HF, Leng RX, Tao JH, Li XP, Ye DQ. Ets-1: a new player in the pathogenesis of systemic lupus erythematosus? Lupus 2011; 20:227-30. [PMID: 21362749 DOI: 10.1177/0961203310389842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (Ets-1) is a member of the Ets family of transcription factors that share a unique Ets DNA binding domain. They control a wide variety of cellular processes including cell proliferation and differentiation. Recently, two genome-wide association studies in systemic lupus erythematosus (SLE) independently identified genetic variants in Ets-1 associated with SLE. Interestingly, previous studies have found that Ets-1-deficient mice develop lupus-like disease characterized by high titers of IgM and IgG autoantibodies, immune complex-mediated glomerulonephritis, and local activation of complement. In addition, Ets-1 is also involved in many cellular abnormalities that are known to participate in SLE pathogenesis, such as its role in negative regulation of Th17 cell and B cell differentiation. All these findings suggest that Ets-1 may play an important role in the pathogenesis of SLE. This article will focus on current understanding of the role of Ets-1 in the physiological and pathological functions associated with SLE. It is the intention of the article to provide insights which may assist in the development of Ets-1 based approaches for the treatment of SLE.
Collapse
Affiliation(s)
- H-F Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, PR China
| | - R-X Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, PR China
| | - J-H Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, PR China
- Department of Rheumatology, Anhui Provincial Hospital, Anhui, PR China
| | - X-P Li
- Department of Rheumatology, Anhui Provincial Hospital, Anhui, PR China
| | - D-Q Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, PR China
| |
Collapse
|
20
|
Dyson OF, Traylen CM, Akula SM. Cell membrane-bound Kaposi's sarcoma-associated herpesvirus-encoded glycoprotein B promotes virus latency by regulating expression of cellular Egr-1. J Biol Chem 2010; 285:37491-502. [PMID: 20864524 DOI: 10.1074/jbc.m110.159103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the important questions in the field of virus research is about the balance between latent and lytic cycles of replication. Kaposi's sarcoma-associated herpesvirus (KSHV) remains predominantly in a latent state, with only 1-3% of cells supporting a lytic replication at any time. KSHV glycoprotein B (gB) is expressed not only on the virus envelope but also on the surfaces of the few cells supporting lytic replication. Using co-culture experiments, we determined that expression of KSHV gB on as few as 1-2% of human dermal microvascular endothelial cells resulted in a 10-fold inhibition of expression of ORF50, a viral gene critical for the onset of lytic replication. Also, we demonstrate that such a profound inhibitory effect of gB on the lytic cycle of virus replication is by repressing the ability of Egr-1 (early growth response-1) to bind and activate the ORF50 promoter. In general, virus-encoded late stage structural proteins, such as gB, are said to play major roles in virus entry and egress. The present report provides initial evidence supporting a role for membrane-associated gB expressed in a minimal number of cells to promote virus latency. These findings may have ramifications leading to a better understanding of the role of virus-encoded structural proteins not only in KSHV-related diseases but also in other viruses causing latent infections.
Collapse
Affiliation(s)
- Ossie F Dyson
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | | | | |
Collapse
|
21
|
Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, Hirankarn N, Ying D, Pan HF, Mok CC, Chan TM, Wong RWS, Lee KW, Mok MY, Wong SN, Leung AMH, Li XP, Avihingsanon Y, Wong CM, Lee TL, Ho MHK, Lee PPW, Chang YK, Li PH, Li RJ, Zhang L, Wong WHS, Ng IOL, Lau CS, Sham PC, Lau YL. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet 2010; 6:e1000841. [PMID: 20169177 PMCID: PMC2820522 DOI: 10.1371/journal.pgen.1000841] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/11/2010] [Indexed: 11/24/2022] Open
Abstract
Systemic lupus erythematosus is a complex and potentially fatal autoimmune disease, characterized by autoantibody production and multi-organ damage. By a genome-wide association study (320 patients and 1,500 controls) and subsequent replication altogether involving a total of 3,300 Asian SLE patients from Hong Kong, Mainland China, and Thailand, as well as 4,200 ethnically and geographically matched controls, genetic variants in ETS1 and WDFY4 were found to be associated with SLE (ETS1: rs1128334, P = 2.33×10−11, OR = 1.29; WDFY4: rs7097397, P = 8.15×10−12, OR = 1.30). ETS1 encodes for a transcription factor known to be involved in a wide range of immune functions, including Th17 cell development and terminal differentiation of B lymphocytes. SNP rs1128334 is located in the 3′-UTR of ETS1, and allelic expression analysis from peripheral blood mononuclear cells showed significantly lower expression level from the risk allele. WDFY4 is a conserved protein with unknown function, but is predominantly expressed in primary and secondary immune tissues, and rs7097397 in WDFY4 changes an arginine residue to glutamine (R1816Q) in this protein. Our study also confirmed association of the HLA locus, STAT4, TNFSF4, BLK, BANK1, IRF5, and TNFAIP3 with SLE in Asians. These new genetic findings may help us to gain a better understanding of the disease and the functions of the genes involved. In this study, we first conducted a genome-wide association study in a Hong Kong Chinese population, followed by replication in three other cohorts from Mainland China and a cohort from Thailand, which totaled 3,300 Asian patients and 4,200 ethnically and geographically matched controls. We identified novel variants in ETS1 and WDFY4 associated with SLE with genome-wide significance and confirmed the association of HLA locus, STAT4, BLK, IRF5, BANK1, TNFSF, and IRF5 with the disease. ETS1 encodes a critical transcription factor involved in Th17 and B cell development. Allelic expression study showed a significantly lower expression of ETS1 from the risk allele, which provided functional support to the genetic findings. WDFY4 is a huge protein with unknown function but is predominantly expressed in primary and secondary immune tissues, and a nonsynonymous SNP in this gene was found to be highly associated with SLE susceptibility. Our findings shed new light on the function of these genes as well as the mechanism of this devastating disease.
Collapse
Affiliation(s)
- Wanling Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nan Shen
- Joint Molecular Rheumatology Laboratory of the Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, Anhui Medical University School of Public Health, Hefei, Anhui, China
| | - Qiji Liu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Medical Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yan Zhang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Xia Qian
- Joint Molecular Rheumatology Laboratory of the Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nattiya Hirankarn
- Lupus Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dingge Ying
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, Anhui Medical University School of Public Health, Hefei, Anhui, China
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, New Territory, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Raymond Woon Sing Wong
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ka Wing Lee
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| | - Mo Yin Mok
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sik Nin Wong
- Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, New Territory, Hong Kong
| | | | - Xiang-Pei Li
- Department of Rheumatology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Yingyos Avihingsanon
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chun-Ming Wong
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tsz Leung Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Marco Hok Kung Ho
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Pamela Pui Wah Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yuk Kwan Chang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Philip H. Li
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ruo-Jie Li
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Epidemiology and Biostatistics, Anhui Medical University School of Public Health, Hefei, Anhui, China
| | - Lu Zhang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wilfred Hing Sang Wong
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Irene Oi Lin Ng
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chak Sing Lau
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Pak Chung Sham
- Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- * E-mail:
| | | |
Collapse
|
22
|
The human CD6 gene is transcriptionally regulated by RUNX and Ets transcription factors in T cells. Mol Immunol 2009; 46:2226-35. [DOI: 10.1016/j.molimm.2009.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/16/2009] [Indexed: 11/23/2022]
|
23
|
Nagaleekar VK, Diehl SA, Juncadella I, Charland C, Muthusamy N, Eaton S, Haynes L, Garrett-Sinha LA, Anguita J, Rincón M. IP3 receptor-mediated Ca2+ release in naive CD4 T cells dictates their cytokine program. THE JOURNAL OF IMMUNOLOGY 2009; 181:8315-22. [PMID: 19050248 DOI: 10.4049/jimmunol.181.12.8315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IP(3) (inositol 1,4,5-trisphosphate) receptors (IP(3)Rs) regulate the release of Ca(2+) from intracellular stores in response to IP(3). Little is known about regulation of the expression of IP(3)Rs and their role during the activation of CD4 T cells. In this study we show that mouse naive CD4 T cells express IP(3)R1, IP(3)R2, and IP(3)R3, but that gene expression of IP(3)R3 primarily is down-regulated upon activation due to loss of the Ets-1 transcription factor. Down-regulation of IP(3)R expression in activated CD4 T cells is associated with the failure of TCR ligation to trigger Ca(2+) release in these cells. We also show that down-regulation of specific IP(3)Rs in activated CD4 T cells correlates with the requirement of IP(3)R-mediated Ca(2+) release only for the induction of, but not for the maintenance of, IL-2 and IFN-gamma expression. Interestingly, while inhibition of IP(3)R function early during activation blocks IL-2 and IFN-gamma production, it promotes the production of IL-17 by CD4 T cells. Thus, IP(3)Rs play a key role in the activation and differentiation of CD4 T cells. The immunosuppressive effect of pharmacological blockers of these receptors may be complicated by promoting the development of inflammatory CD4 T cells.
Collapse
Affiliation(s)
- Viswas K Nagaleekar
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, Moser JM, Mehta RS, Drake DR, Castro E, Akondy R, Rinfret A, Yassine-Diab B, Said EA, Chouikh Y, Cameron MJ, Clum R, Kelvin D, Somogyi R, Greller LD, Balderas RS, Wilkinson P, Pantaleo G, Tartaglia J, Haddad EK, Sékaly RP. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. ACTA ACUST UNITED AC 2008; 205:3119-31. [PMID: 19047440 PMCID: PMC2605227 DOI: 10.1084/jem.20082292] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Correlates of immune-mediated protection to most viral and cancer vaccines are still unknown. This impedes the development of novel vaccines to incurable diseases such as HIV and cancer. In this study, we have used functional genomics and polychromatic flow cytometry to define the signature of the immune response to the yellow fever (YF) vaccine 17D (YF17D) in a cohort of 40 volunteers followed for up to 1 yr after vaccination. We show that immunization with YF17D leads to an integrated immune response that includes several effector arms of innate immunity, including complement, the inflammasome, and interferons, as well as adaptive immunity as shown by an early T cell response followed by a brisk and variable B cell response. Development of these responses is preceded, as demonstrated in three independent vaccination trials and in a novel in vitro system of primary immune responses (modular immune in vitro construct [MIMIC] system), by the coordinated up-regulation of transcripts for specific transcription factors, including STAT1, IRF7, and ETS2, which are upstream of the different effector arms of the immune response. These results clearly show that the immune response to a strong vaccine is preceded by coordinated induction of master transcription factors that lead to the development of a broad, polyfunctional, and persistent immune response that integrates all effector cells of the immune system.
Collapse
Affiliation(s)
- Denis Gaucher
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM) Saint-Luc, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dang X, Raffler NA, Ley K. Transcriptional regulation of mouse L-selectin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:146-52. [PMID: 19041738 DOI: 10.1016/j.bbagrm.2008.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/14/2008] [Accepted: 10/23/2008] [Indexed: 01/20/2023]
Abstract
L-selectin mediates the initial tethering and rolling of lymphocytes in high endothelial venules. To study the transcriptional regulation of mouse L-selectin, we cloned 4.5 kb 5'-flanking sequences of the mouse sell. Luciferase analysis of serial 5'-deletion mutants showed that the first 285 bp was sufficient to drive high promoter activity in EL4 cells, but not in Sell-negative HeLa cells, suggesting that this fragment harbors the minimal mouse sell promoter and contains cis-elements for lymphocyte-specific expression. Site-directed mutagenesis and chromatin immunoprecipitation showed that Mzf1, Klf2, Sp1, Ets1, and Irf1 bind to and activate the mouse sell promoter. Over expression of these transcription factors in EL4 cells increased expression of sell mRNA. Silencing the expression of Sp1 by siRNA significantly decreased sell promoter activity in EL4 cells. We conclude that sell transcription is regulated by Mzf1, Klf2, Sp1, Ets1, and Irf1.
Collapse
Affiliation(s)
- Xitong Dang
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
26
|
Gerhauser I, Alldinger S, Baumgärtner W. Ets-1 represents a pivotal transcription factor for viral clearance, inflammation, and demyelination in a mouse model of multiple sclerosis. J Neuroimmunol 2007; 188:86-94. [PMID: 17599467 DOI: 10.1016/j.jneuroim.2007.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/23/2007] [Accepted: 05/23/2007] [Indexed: 11/26/2022]
Abstract
Demyelination of Theiler's murine encephalomyelitis (TME) depends on viral persistence and on the mouse genotype. Ets-1 expression, a transcription factor involved in T cell activation and cytokine expression, was investigated in the spinal cord during TME using RT-qPCR and immunohistochemistry. Resistant C57BL/6 mice lacking virus persistence and demyelination demonstrated a stronger upregulation of Ets-1 mRNA transcripts in the early phase of TME compared to susceptible SJL/J mice probably linked to viral clearance. Though strong Ets-1 expression in resident glial cells such as astrocytes might inhibit lesion development, delayed Ets-1 activation in inflammatory cells seemed to promote demyelination in the late phase of TME in SJL/J mice.
Collapse
Affiliation(s)
- Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | |
Collapse
|
27
|
Yu F, Harada JN, Brown HJ, Deng H, Song MJ, Wu TT, Kato-Stankiewicz J, Nelson CG, Vieira J, Tamanoi F, Chanda SK, Sun R. Systematic identification of cellular signals reactivating Kaposi sarcoma-associated herpesvirus. PLoS Pathog 2007; 3:e44. [PMID: 17397260 PMCID: PMC1839163 DOI: 10.1371/journal.ppat.0030044] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 02/08/2007] [Indexed: 11/18/2022] Open
Abstract
The herpesvirus life cycle has two distinct phases: latency and lytic replication. The balance between these two phases is critical for viral pathogenesis. It is believed that cellular signals regulate the switch from latency to lytic replication. To systematically evaluate the cellular signals regulating this reactivation process in Kaposi sarcoma-associated herpesvirus, the effects of 26,000 full-length cDNA expression constructs on viral reactivation were individually assessed in primary effusion lymphoma-derived cells that harbor the latent virus. A group of diverse cellular signaling proteins were identified and validated in their effect of inducing viral lytic gene expression from the latent viral genome. The results suggest that multiple cellular signaling pathways can reactivate the virus in a genetically homogeneous cell population. Further analysis revealed that the Raf/MEK/ERK/Ets-1 pathway mediates Ras-induced reactivation. The same pathway also mediates spontaneous reactivation, which sets the first example to our knowledge of a specific cellular pathway being studied in the spontaneous reactivation process. Our study provides a functional genomic approach to systematically identify the cellular signals regulating the herpesvirus life cycle, thus facilitating better understanding of a fundamental issue in virology and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Fuqu Yu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Josephine N Harada
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Helen J Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hongyu Deng
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Moon Jung Song
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Juran Kato-Stankiewicz
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christian G Nelson
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jeffrey Vieira
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sumit K Chanda
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Smith AD, Sumazin P, Xuan Z, Zhang MQ. DNA motifs in human and mouse proximal promoters predict tissue-specific expression. Proc Natl Acad Sci U S A 2006; 103:6275-80. [PMID: 16606849 PMCID: PMC1458868 DOI: 10.1073/pnas.0508169103] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comprehensive identification of cis-regulatory elements is necessary for accurately reconstructing gene regulatory networks. We studied proximal promoters of human and mouse genes with differential expression across 56 terminally differentiated tissues. Using in silico techniques to discover, evaluate, and model interactions among sequence elements, we systematically identified regulatory modules that distinguish elevated from inhibited expression in the corresponding transcripts. We used these putative regulatory modules to construct a single predictive model for each of the 56 tissues. These predictors distinguish tissue-specific elevated from inhibited expression with statistical significance in 80% of the tissues (45 of 56). The predictors also reveal synergy between cis-regulatory modules and explain large-scale tissue-specific differential expression. For testis and liver, the predictors include computationally predicted motifs. For most other tissues, the predictors reveal synergy between experimentally verified motifs and indicate genes that are regulated by similar tissue-specific machinery. The identification in proximal promoters of cis-regulatory modules with tissue-specific activity lays the groundwork for complete characterization and deciphering of cis-regulatory DNA code in mammalian genomes.
Collapse
Affiliation(s)
- Andrew D. Smith
- *Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724; and
| | - Pavel Sumazin
- *Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724; and
- Computer Science Department, Portland State University, Portland, OR 97207
| | - Zhenyu Xuan
- *Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724; and
| | - Michael Q. Zhang
- *Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Miwa K, Nakashima H, Aoki M, Miyake T, Kawasaki T, Iwai M, Oishi M, Kataoka K, Ohgi S, Ogihara T, Kaneda Y, Morishita R. Inhibition of ets, an essential transcription factor for angiogenesis, to prevent the development of abdominal aortic aneurysm in a rat model. Gene Ther 2005; 12:1109-18. [PMID: 15800662 DOI: 10.1038/sj.gt.3302496] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathophysiology of abdominal aortic aneurysms (AAA) is considered to be complicated. As matrix degradation contributes to the progression of AAA, the destruction and degradation of elastin fibers caused by an increase in matrix metalloproteinases (MMPs) plays a pivotal role in the development of AAA. Although ets, an essential transcription factor for angiogenesis, regulates MMPs, the role of ets in the development of AAA has not yet been clarified. Thus, we evaluated the role of ets in a rat AAA model using a decoy strategy. Transfection of ODN into AAA was performed by transient aortic perfusion of elastase and by wrapping the AAA in a delivery sheet containing decoy ODN. The inhibitory effect of ets decoy ODN on ets binding activity was confirmed by gel mobility shift assay. MMPs expression was decreased in the aorta transfected with ets decoy ODN as compared to scrambled decoy ODN. Also, ultrasound study demonstrated that elastase-induced aneurismal dilation was significantly suppressed by transfection of ets decoy ODN at 4 weeks after treatment as compared to scrambled decoy ODN. Moreover, the destruction of elastin fibers was inhibited in the aorta transfected with ets decoy ODN, accompanied by a reduction of MMPs expression. An inhibitory effect of decoy ODN on MMP expression was confirmed by ex vivo experiments showing that transfection of decoy ODN into an organ culture of human aorta resulted in significant inhibition of the secretion of both MMP-1 and MMP-9. Here, we demonstrated that ets may play a pivotal role in the progression of AAA through the activation of MMPs in a rat model. Ets might be a potential target to develop pharmacotherapy/gene therapy to treat AAA through the inhibition of MMPs.
Collapse
Affiliation(s)
- K Miwa
- Division of Clinical Gene Therapy, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Grenningloh R, Kang BY, Ho IC. Ets-1, a functional cofactor of T-bet, is essential for Th1 inflammatory responses. ACTA ACUST UNITED AC 2005; 201:615-26. [PMID: 15728239 PMCID: PMC2213045 DOI: 10.1084/jem.20041330] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To mount an effective type 1 immune response, type 1 T helper (Th1) cells must produce inflammatory cytokines and simultaneously suppress the expression of antiinflammatory cytokines. How these two processes are coordinately regulated at the molecular level is still unclear. In this paper, we show that the proto-oncogene E26 transformation-specific-1 (Ets-1) is necessary for T-bet to promote interferon-gamma production and that Ets-1 is essential for mounting effective Th1 inflammatory responses in vivo. In addition, Ets-1-deficient Th1 cells also produce a very high level of interleukin 10. Thus, Ets-1 plays a crucial and unique role in the reciprocal regulation of inflammatory and antiinflammatory Th responses.
Collapse
Affiliation(s)
- Roland Grenningloh
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
31
|
Okamoto S, Ji H, Howie D, Clarke K, Gullo C, Manning S, Coyle AJ, Terhorst C. Expression of the SH2D1A gene is regulated by a combination of transcriptional and post-transcriptional mechanisms. Eur J Immunol 2004; 34:3176-86. [PMID: 15459902 DOI: 10.1002/eji.200324755] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The SH2D1A gene, which is altered or deleted in patients with X-linked lymphoproliferative disease, encodes the small protein SAP (for SLAM-associated protein) that is expressed in T and NK cells. A 22-bp fragment in close proximity to an initiator-like site was defined as the basal promoter of mouse SH2D1A, and a highly homologous 33-bp segment was defined as the human basal promoter. When an Ets consensus site was mutated, no reporter activity was detectable. Gel mobility supershift assays revealed that the two transcription factors Ets-1 and Ets-2 bind to the human and mouse sequences. The involvement of Ets-1 and Ets-2 in expression of SH2D1A was functionally confirmed by overexpression studies of their dominant-negative forms. We also found that SH2D1A mRNA decays very rapidly in mouse T cells, and its 3' untranslated region (UTR) has RNA-destabilizing activity in transfection studies with reporter/3' UTR constructs. As judged by RNA-gel mobility shift assays, this rapid degradation of SH2D1A mRNA was due to a balance in binding of the factors AUF1 and HuR to its 3' UTR. Although the SH2D1A mRNA level decreased upon triggering of the T cell receptor (TCR), the RNA degradation rate itself was not altered by TCR engagement.
Collapse
Affiliation(s)
- Susumu Okamoto
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Arman M, Calvo J, Trojanowska ME, Cockerill PN, Santana M, López-Cabrera M, Vives J, Lozano F. Transcriptional Regulation of Human CD5: Important Role of Ets Transcription Factors in CD5 Expression in T Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:7519-29. [PMID: 15187131 DOI: 10.4049/jimmunol.172.12.7519] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD5 is a surface receptor constitutively expressed on thymocytes and mature T and B-1a cells. CD5 expression is tightly regulated during T and B cell development and activation processes. In this study we shown that the constitutive expression of CD5 on human T cells correlates with the presence of a DNase I-hypersensitive (DH) site at the 5'-flanking region of CD5. Human CD5 is a TATA-less gene for which 5'-RACE analysis shows multiple transcriptional start sites, the most frequent of which locates within an initiator sequence. Luciferase reporter assays indicate that a 282-bp region upstream of the initiation ATG displays full promoter activity in human T cells. Two conserved Ets-binding sites (at positions -239 and -185) were identified as functionally relevant to CD5 expression by site-directed mutagenesis, EMSAs, and cotransfection experiments. A possible contribution of Sp1 (-115 and -95), c-Myb (-177), and AP-1-like (-151) motifs was also detected. Further DH site analyses revealed an inducible DH site 10 kb upstream of the human CD5 gene in both T and B CD5(+) cells. Interestingly, a 140-bp sequence showing high homology with a murine inducible enhancer is found within that site. The data presented indicate that the 5'-flanking region of human CD5 is transcriptionally active in T cells, and that Ets transcription factors in conjunction with other regulatory elements are responsible for constitutive and tissue-specific CD5 expression.
Collapse
Affiliation(s)
- Mònica Arman
- Servei d'Immunologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic i Provincial de Barcelona, Villaroel 170, Barcelona 08036, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ko M, Jang J, Ahn J, Lee K, Chung H, Jeon SH, Seong RH. T Cell Receptor Signaling Inhibits Glucocorticoid-induced Apoptosis by Repressing the SRG3 Expression via Ras Activation. J Biol Chem 2004; 279:21903-15. [PMID: 15016814 DOI: 10.1074/jbc.m402144200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of T cell antigen receptor (TCR) signaling inhibits glucocorticoid (GC)-induced apoptosis of T cells. However, the detailed mechanism regarding how activated T cells are protected from GC-induced apoptosis is unclear. Previously, we have shown that the expression level of SRG3, a murine homolog of BAF155 in humans, correlated well with the GC sensitivity of T cells either in vitro or in vivo. Intriguingly, the expression of SRG3 decreased upon positive selection in the thymus. Here we have shown that TCR signaling inhibits the SRG3 expression via Ras activation and thereby renders primary thymocytes and some thymoma cells resistant to GC-mediated apoptosis. By using pharmacological inhibitors, we have shown that Ras-mediated down-regulation of the SRG3 gene expression is mediated by MEK/ERK and phosphatidylinositol 3-kinase pathways. Moreover, TCR signals repressed the SRG3 transcription through the putative binding sites for E proteins and Ets family transcription factors in the proximal region of the SRG3 promoter. Introduction of mutations in these elements rendered the SRG3 promoter immune to the Ras or TCR signals. Taken together, these observations suggest that TCR signals result in GC desensitization in immature T cells by repressing SRG3 gene expression via Ras activation.
Collapse
MESH Headings
- Animals
- Apoptosis
- Binding Sites
- Binding, Competitive
- Blotting, Northern
- Cell Nucleus/metabolism
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Down-Regulation
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Flow Cytometry
- Genes, Reporter
- Glucocorticoids/metabolism
- Glucocorticoids/pharmacology
- Imidazoles/pharmacology
- Immunoblotting
- Kinetics
- Luciferases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutagenesis, Site-Directed
- Phosphatidylinositol 3-Kinases/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- Pyridines/pharmacology
- Receptors, Antigen, T-Cell/metabolism
- Repressor Proteins
- Signal Transduction
- Thymus Gland/cytology
- Time Factors
- Trans-Activators/biosynthesis
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Myunggon Ko
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang P, Wu P, Egan RW, Billah MM. Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5). Differential tissue distribution and subcellular localization of PDE9A variants. Gene 2003; 314:15-27. [PMID: 14527714 DOI: 10.1016/s0378-1119(03)00733-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, four splice variants of human cGMP-specific phosphodiesterase (PDE) 9A (PDEs 9A1, 9A2, 9A3 and 9A4) have been identified. In this study, we have cloned a cDNA representing a new human PDE9A variant (PDE9A5). PDE9A5 encodes a protein of 492 amino acids, smaller than PDEs 9A1 and 9A2 but larger than PDEs 9A3 and 9A4. The exon structure of PDE9A5 is different from those of PDEs 9A1, 9A2, 9A3 and 9A4 in that, of the 20 exons of PDE9A gene, it lacks exons 2 and 5. PDE9A5 has been characterized in comparison with PDE9A1, the longest PDE9A variant. PDEs 9A5 and 9A1 have similar enzymatic properties. They both have a high affinity for cGMP with similar Km values (0.39 and 0.25 microM, respectively), although they have slightly different Vmax values (2.55 and 0.96 micromol/min/mg, respectively). They exhibit very similar divalent metal ion dependency and inhibitor sensitivity. Real-time quantitative PCR analysis shows that PDEs 9A5 and 9A1 exhibit differential tissue distribution. They are highly expressed in immune tissues (spleen, lymph node and thymus) and are more abundant in T cells than in B cells, neutrophils and monocytes. When transiently expressed in HEK293 cells, PDEs 9A5 and 9A1 proteins exhibit differential subcellular localization. PDE9A5 localizes exclusively in the cytoplasm, whereas PDE9A1 localizes in the nucleus only. The nuclear localization of PDE9A1 is dependent on a unique pat7 motif. By Western blot analysis, native PDE9A1 is detectable in the nucleus but not in the cytoplasm of T cells. Thus, to our knowledge, PDE9A1 is the only PDE isoform found to localize exclusively in the nucleus. We speculate that the physiological role of the PDE9A diversity may be imparting cGMP-metabolizing ability to specific cellular compartments in appropriate tissues.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- 3',5'-Cyclic-GMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-GMP Phosphodiesterases/genetics
- 3',5'-Cyclic-GMP Phosphodiesterases/metabolism
- Alternative Splicing
- Amino Acid Sequence
- Base Sequence
- Blotting, Western
- Cell Line
- Cloning, Molecular
- Cyclic GMP/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Humans
- Imidazoles/pharmacology
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Male
- Molecular Sequence Data
- Phosphodiesterase Inhibitors/pharmacology
- Piperazines/pharmacology
- Purines
- Purinones/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sildenafil Citrate
- Sulfones
Collapse
Affiliation(s)
- Peng Wang
- Allergy Department, Schering-Plough Research Institute, 2015 Galloping Hill Road, K-15-1600, Kenilworth, NJ 07033, USA.
| | | | | | | |
Collapse
|
35
|
Ahmed SS, Tan FK. Identification of novel targets in scleroderma: update on population studies, cDNA arrays, SNP analysis, and mutations. Curr Opin Rheumatol 2003; 15:766-71. [PMID: 14569208 DOI: 10.1097/00002281-200311000-00014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Systemic sclerosis, or scleroderma, is an uncommon autoimmune connective tissue disease that results in systemic fibrosis. Its etiologic basis remains unclear. The pathogenesis of systemic sclerosis involves a proliferative and obliterative vasculopathy resulting from endothelial cell dysfunction, extensive fibrosis secondary to fibroblast activation, and autoimmunity as demonstrated by the presence of disease-specific autoantibodies. Although there is no clear and convincing evidence for an environmental trigger in most cases, accumulating data emphasize the role of genetic factors in systemic sclerosis. As in other complex human diseases, multiple genes likely contribute to disease susceptibility and the clinical manifestations of systemic sclerosis. This review will cover the application of genomics to the complex genetics of systemic sclerosis. RECENT FINDINGS The following review is an update on novel targets identified in scleroderma based on published reports (May 2000-May 2003) of mutation/polymorphism analysis (using SNP and haplotyping), the results from a recent genome-wide scan on a Native American population with systemic sclerosis, and gene expression studies (microarrays). SUMMARY The use of genomics has revealed novel targets and genetic associations that may contribute to the cause, the onset, and the subsequent pathologic changes that constitute systemic sclerosis. The identification of potential candidates for gene therapy or disease-specific targets amenable to pharmacologic intervention will benefit patients with systemic sclerosis who are currently being treated for their symptoms and not the disease process itself.
Collapse
Affiliation(s)
- S Sohail Ahmed
- Department of Internal Medicine, University of Texas Medical School-Houston, Texas 77030, USA.
| | | |
Collapse
|
36
|
Abstract
The Ets1 proto-oncoprotein is a member of the Ets family of transcription factors that share a unique DNA binding domain, the Ets domain. The DNA binding activity of Ets1 is controlled by kinases and transcription factors. Some transcription factors, such as AML-1, regulate Ets1 by targeting its autoinhibitory module. Others, such as Pax-5, alter Ets1 DNA binding properties. Ets1 harbors two phosphorylation sites, threonine-38 and an array of serines within the exon VII domain. Phosphorylation of threonine-38 by ERK1/2 activates Ets1, whereas phosphorylation of the exon VII domain by CaMKII or MLCK inhibits Ets1 DNA binding activity. Ets1 is expressed by numerous cell types. In haemotopoietic cells, it contributes to the regulation of cellular differentiation. In a variety of other cells, including endothelial cells, vascular smooth muscle cells and epithelial cancer cells, Ets1 promotes invasive behavior. Regulation of MMP1, MMP3, MMP9 and uPA as well as of VEGF and VEGF receptor gene expression has been ascribed to Ets1. In tumors, Ets1 expression is indicative of poorer prognosis.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Universität Halle-Wittenberg Universitätsklinik und Poliklinik für Gynäkologie Magdeburger Str, 24 06097 Halle, Saale, Germany.
| |
Collapse
|
37
|
DeRyckere D, Mann DL, DeGregori J. Characterization of transcriptional regulation during negative selection in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:802-11. [PMID: 12847248 DOI: 10.4049/jimmunol.171.2.802] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Negative selection is the process whereby immature thymocytes expressing TCRs with high affinity for self-peptide:MHC complexes are induced to undergo apoptosis. The transcriptional events that occur as a result of TCR signaling during negative selection are not well-characterized. Using oligonucleotide arrays, we have identified 33 genes that exhibit changes in RNA levels in CD4(+)CD8(+) thymocytes during negative selection in vivo. Of 18 genes that have been further characterized, 13 are regulated in response to stimulation with Ag or anti-CD3 and anti-CD28 Abs ex vivo, indicating that these genes are regulated independently of activation of the peripheral immune system. These data also support the idea that anti-CD3/CD28-mediated thymocyte apoptosis is a valid model for negative selection in vivo. A detailed examination of the regulation of many of the identified genes in response to treatment with dexamethasone or gamma-radiation or in response to anti-CD3/anti-CD28 stimulation in the presence of pharmacological inhibitors of mitogen-activated protein kinase kinase kinase 1, p38 mitogen-activated protein kinase, phosphatidylinositol 3-kinase, calcineurin, and cyclin-dependent kinase 2 has facilitated the elucidation of a map of the transcriptional events that occur downstream of the TCR. These studies support a model whereby similar signal transduction pathways are activated by stimuli that induce positive and negative selection and are consistent with the idea that the balance between opposing proapoptotic and antiapoptotic pathways determines cell fate. The data presented in this study also suggest that calcineurin functions to amplify TCR signals by promoting sustained increases in the levels of specific transcripts.
Collapse
Affiliation(s)
- Deborah DeRyckere
- Department of Biochemistry, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
38
|
Sugimoto H, Sugimoto S, Tatei K, Obinata H, Bakovic M, Izumi T, Vance DE. Identification of Ets-1 as an important transcriptional activator of CTP:phosphocholine cytidylyltransferase alpha in COS-7 cells and co-activation with transcriptional enhancer factor-4. J Biol Chem 2003; 278:19716-22. [PMID: 12642588 DOI: 10.1074/jbc.m301590200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine biosynthesis via the CDP-choline pathway is primarily regulated by CTP:phosphocholine cytidylyltransferase (CT). Transcriptional enhancer factor-4 (TEF-4) enhances the transcription of CTalpha in COS-7 cells by interactions with the basal transcription machinery (Sugimoto, H., Bakovic, M., Yamashita, S., and Vance, D.E. (2001) J. Biol. Chem. 276,12338-12344). To identify the most important transcription factor involved in basal CTalpha transcription, we made CTalpha promoter-deletion and -mutated constructs linked to a luciferase reporter and transfected them into COS-7 cells. The results indicate that an important site regulating basal CTalpha transcription is -53/-47 (GACTTCC), which is a putative consensus-binding site of Ets transcription factors (GGAA) in the opposite orientation. Gel shift analyses indicated the existence of a binding protein for -53/-47 (GACTTCC) in nuclear extracts of COS-7 cells. When anti-Ets-1 antibody was incubated with the probe in gel shift analyses, the intensity of the binding protein was decreased. The binding of endogenous Ets-1 to the promoter probe was increased when TEF-4 was expressed; however, the amount of Ets-1 detected by immunoblotting was unchanged. When cells were transfected with Ets-1 cDNA, the luciferase activity of CTalpha promoter constructs was greatly enhanced. Co-transfection experiments with Ets-1 and TEF-4 showed enhanced expression of reporter constructs as well as CTalpha mRNA. These results suggest that Ets-1 is an important transcriptional activator of the CTalpha gene and that Ets-1 activity is enhanced by TEF-4.
Collapse
Affiliation(s)
- Hiroyuki Sugimoto
- Department of Biochemistry, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Li X, Lu JY, Zhao LQ, Wang XQ, Liu GL, Liu Z, Zhou CN, Wu M, Liu ZH. Overexpression of ETS2 in human esophageal squamous cell carcinoma. World J Gastroenterol 2003; 9:205-8. [PMID: 12532432 PMCID: PMC4611312 DOI: 10.3748/wjg.v9.i2.205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the expression pattern of ETS2 (erythroblastosis virus oncogene homolog 2) in human esophageal squamous cell carcinoma (ESCC).
METHODS: Reverse transcription polymerase chain reaction (RT-PCR) and Northern blot were performed to examine the expression level of ETS2 mRNA in 37 pairs of ESCC tissue samples. Western blot and immunohistochemistry were carried out to check the expression level of ETS2 protein in 30 pairs of ESCC tissue specimens.
RESULTS: RT-PCR and Northern blot analysis showed that ETS2 mRNA upregulated in 75.7% (28/37) examined ESCC tissues relative to matched normal tissues. From those 37 cases, 14 cases were randomly selected to perform Western blot and the results revealed that ETS2 protein overexpressed in 71.4% (10/14) checked ESCC tissues compared with the corresponding normal tissues. Moreover, the expression patterns of ETS2 protein in those 14 cases were identical to those of ETS2 mRNA displayed by RT-PCR or Northern Blot. Immunohistochemistry analysis showed that the expression level of ETS2 protein rose in 75% (12/16) tumor epithelial cells contrasted to the normal cells. Altogether the expression level of ETS2 protein increased in 73.3% (22/30) checked ESCC tissue samples contrary to their normal counterparts.
CONCLUSION: The results suggested that ETS2 overexpressed in paired human ESCC tissue samples at both mRNA and protein levels and may be associated with the tumorigenesis of esophagus.
Collapse
Affiliation(s)
- Xin Li
- National Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zaldumbide A, Carlotti F, Pognonec P, Boulukos KE. The role of the Ets2 transcription factor in the proliferation, maturation, and survival of mouse thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4873-81. [PMID: 12391198 DOI: 10.4049/jimmunol.169.9.4873] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we investigated the effects of Ets2 expression on the proliferation, maturation, and survival of thymocytes by establishing transgenic mice that specifically express Ets2 or a dominant negative form of Ets2, Deltaets2, in the thymus. We show that, in young animals, there are fewer T cells in Deltaets2 transgenic thymi and that the maturation of these T cells is affected at the CD4(-)CD8(-) double-negative to CD4(+)CD8(+) double-positive transition compared with wild-type littermate mice. Partial recovery in the number of thymocytes and full T cell maturation are restored with increasing age of Deltaets2 transgenic animals. However, thymocytes from adult Deltaets2 transgenic mice cultured ex vivo are more sensitive to cell death and to glucocorticoid-induced apoptosis than are T cells from control littermate mice. We also show that T cells from adult ets2 transgenic mice proliferate faster than their wild-type littermates. The proliferation and survival of these T cells are clearly affected upon apoptotic signals: glucocorticoid-induced apoptosis induces T cells from ets2 transgenic mice to continue to proliferate in vivo and to survive better ex vivo than T cells from control littermates. It has been shown that c-Myc expression is required for thymic proliferation and improves thymocyte survival of dexamethasone-treated animals. We show that the expression of c-Myc, an Ets2 target, is elevated in T cells freshly isolated from thymi of ets2 transgenic mice pretreated with dexamethasone. Together, these results show that Ets2 plays a role in the proliferation and survival of thymocytes, implicating a Myc-dependent pathway.
Collapse
Affiliation(s)
- Arnaud Zaldumbide
- Institute of Signaling, Developmental Biology and Cancer Research, Center de Biochimie, Université de Nice, Parc Valrose, France
| | | | | | | |
Collapse
|
41
|
Jones DC, Ding X, Daynes RA. Nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) is expressed in resting murine lymphocytes. The PPARalpha in T and B lymphocytes is both transactivation and transrepression competent. J Biol Chem 2002; 277:6838-45. [PMID: 11726654 DOI: 10.1074/jbc.m106908200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors that belong to the nuclear hormone receptor superfamily. PPARalpha and PPARgamma ligands have been demonstrated to exert anti-inflammatory activities in macrophages by repressing the activities of several transcription factors. PPARgamma is expressed in T lymphocytes and may play a role in cytokine production, cellular proliferation, and susceptibility to apoptosis. Herein, we demonstrate that T and B lymphocytes constitutively express PPARalpha. PPARalpha represents the predominant isoform expressed in lymphocytes, whereas PPARgamma dominates in all cell types of the myeloid lineage. PPARalpha expression was down-regulated following T-cell activation while PPARgamma expression increased under the same activating conditions. PPARalpha expression in T cells may be regulated by microenvironmental factors, because Peyer's patch T cells expressed far greater levels of PPARalpha than T cells isolated from peripheral lymphoid organs. Exposure to specific ligand determined that PPARalpha in lymphocytes can effectively transactivate a peroxisome proliferator response element reporter construct. PPARalpha's ability to regulate endogenous genes, however, required treatment with histone deacetylase inhibitors. Finally, ligand activation of lymphocyte PPARalpha antagonized NF-kappaB. Our observation that a functional PPARalpha exists within T cells and B lymphocytes suggests an expanding role for this nuclear receptor in cells of the immune system.
Collapse
Affiliation(s)
- Dallas C Jones
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
42
|
Grant C, Barmak K, Alefantis T, Yao J, Jacobson S, Wigdahl B. Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation. J Cell Physiol 2002; 190:133-59. [PMID: 11807819 DOI: 10.1002/jcp.10053] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human T cell lymphotropic/leukemia virus type I (HTLV-I) has been identified as the causative agent of both adult T cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the exact sequence of events that occur during the early stages of infection are not known in detail, the initial route of infection may predetermine, along with host, environmental, and viral factors, the subset of target cells and/or the primary immune response encountered by HTLV-I, and whether an HTLV-I-infected individual will remain asymptomatic, develop ATL, or progress to the neuroinflammatory disease, HAM/TSP. Although a large number of studies have indicated that CD4(+) T cells represent an important target for HTLV-I infection in the peripheral blood (PB), additional evidence has accumulated over the past several years demonstrating that HTLV-I can infect several additional cellular compartments in vivo, including CD8(+) T lymphocytes, PB monocytes, dendritic cells, B lymphocytes, and resident central nervous system (CNS) astrocytes. More importantly, extensive latent viral infection of the bone marrow, including cells likely to be hematopoietic progenitor cells, has been observed in individuals with HAM/TSP as well as some asymptomatic carriers, but to a much lesser extent in individuals with ATL. Furthermore, HTLV-I(+) CD34(+) hematopoietic progenitor cells can maintain the intact proviral genome and initiate viral gene expression during the differentiation process. Introduction of HTLV-I-infected bone marrow progenitor cells into the PB, followed by genomic activation and low level viral gene expression may lead to an increase in proviral DNA load in the PB, resulting in a progressive state of immune dysregulation including the generation of a detrimental cytotoxic Tax-specific CD8(+) T cell population, anti-HTLV-I antibodies, and neurotoxic cytokines involved in disruption of myelin-producing cells and neuronal degradation characteristic of HAM/TSP.
Collapse
Affiliation(s)
- Christian Grant
- Laboratory for Molecular Retrovirology and Viral Neuropathogenesis, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
43
|
Martin-Serrano J, Li K, Bieniasz PD. Cyclin T1 expression is mediated by a complex and constitutively active promoter and does not limit human immunodeficiency virus type 1 Tat function in unstimulated primary lymphocytes. J Virol 2002; 76:208-19. [PMID: 11739686 PMCID: PMC135689 DOI: 10.1128/jvi.76.1.208-219.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin T1 (CycT1), a component of positive-transcription-elongation factor-b (P-TEFb), is an essential cofactor for transcriptional activation by lentivirus Tat proteins. It is thought that low CycT1 expression levels restrict human immunodeficiency virus type 1 (HIV-1) expression levels and replication in resting CD4+ lymphocytes. In this study, we undertook a functional analysis of the cycT1 promoter to determine which, if any, promoter elements might be responsible for cellular activation state-dependent CycT1 expression. The cycT1 gene contains a complex promoter that exhibits an extreme degree of functional redundancy: five nonoverlapping fragments were found to exhibit significant promoter activity in immortalized cell lines, and these elements could interact in a synergistic or redundant manner to mediate cycT1 transcription. Reporter gene expression, mediated by the cycT1 promoter, was detectable in unstimulated transfected primary lymphocytes and multiple sites within the promoter could serve to initiate transcription. While utilization of these start sites was significantly altered by the application of exogenous stimuli to primary lymphocytes and two distinct promoter elements exhibited enhanced activity in the presence of phorbol ester, overall cycT1 transcription was only modestly enhanced in response to cell activation. These observations prompted a reexamination of CycT1 protein expression in primary lymphocytes. In fact, steady-state CycT1 expression is only slightly lower in unstimulated lymphocytes compared to phorbol ester-treated cells or a panel of immortalized cell lines. Importantly, CycT1 is expressed at sufficient levels in unstimulated primary cells to support robust Tat activity. These results strongly suggest that CycT1 expression levels in unstimulated primary lymphocytes do not profoundly limit HIV-1 gene expression or provide an adequate mechanistic explanation for proviral latency in vivo.
Collapse
Affiliation(s)
- Juan Martin-Serrano
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York 10016, USA
| | | | | |
Collapse
|
44
|
Wang P, Wu P, Egan RW, Billah MM. Human phosphodiesterase 8A splice variants: cloning, gene organization, and tissue distribution. Gene 2001; 280:183-94. [PMID: 11738832 DOI: 10.1016/s0378-1119(01)00783-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have cloned cDNAs representing five full-length human phosphodiesterase (PDE) 8A splice variants (PDE8As 1-5) from testis and T cells. PDE8A1 encodes a hydrophilic protein of 829 amino acids, containing an N-terminal REC domain, a PAS domain, and a C-terminal catalytic domain. PDE8A2 encodes a protein of 783 amino acids, identical to PDE8A1 but lacking the PAS domain. PDE8A3 encodes a shorter protein equivalent to the C-terminal 449 amino acids of PDE8A1, containing the catalytic but not the REC and PAS domains. PDE8A4 and PDE8A5, though different from each other at the nucleotide level, encode an identical protein equivalent to the C-terminal 582 amino acids of PDE8A1, including half of the PAS domain. The PDE8A gene is revealed to contain 23 exons, and its exon-intron boundaries have been defined. In addition, we have mapped a common transcription initiation site, and further determined the upstream 5'-flanking sequence of 1740 bp containing the putative promoter. Compared to PDE8A1, PDE8As 2-5 appear to be expressed in much lower abundance. Among various tissues and organs, PDE8A1 and PDE8A2 are expressed at various levels.
Collapse
Affiliation(s)
- P Wang
- Allergy Department, Schering-Plough Research Institute, 2015 Galloping Hill Road, K-15-1600, Kenilworth, NJ 07033, USA.
| | | | | | | |
Collapse
|
45
|
Oikawa T, Yamada T, Kondoh N, Negishi-Kihara F, Hitomi Y, Suzuki M, Teramoto S. Extinction of expression of the genes encoding haematopoietic cell-restricted transcription factors in T-lymphoma x fibroblast cell hybrids. Immunology 2001; 104:162-7. [PMID: 11683956 PMCID: PMC1783288 DOI: 10.1046/j.1365-2567.2001.01298.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that expression of the T-cell receptor (TCR) alpha and lck genes is extinguished in hybrids between mouse T-lymphoma EL4 cells and mouse fibroblast B82 cells. In the present study, we found that the activities of the TCRalpha minimum enhancer and the lck promoter monitored by the luciferase or chloramphenicol acetyltransferase (CAT) assays were markedly inhibited in the hybrids. Expression of the TCF-1, LEF-1, GATA-3, Ikaros, c-myb and Fli-1 genes, which encode the haematopoietic cell-restricted transcription factors that appear to be responsible for the activities of the enhancer and the promoter, was fully extinguished or markedly suppressed in the hybrids. On the other hand, expression of the transcription factor genes observed in both parental cells, such as the AML1 and c-ets-1 genes, and that of the genes encoding ubiquitously expressed transcription factors, such as the E2A, CREB and c-ets-2 genes, was not significantly suppressed in the hybrids. These results suggest that the genes encoding haematopoietic cell-restricted transcription factors are targets for negative regulation in fibroblastic background and that the repression of these genes may consequently lead to suppression of the promoter and/or enhancer activities of several T-cell-specific structural genes in T-lymphoma x fibroblast cell hybrids.
Collapse
Affiliation(s)
- T Oikawa
- Department of Cell Genetics, Sasaki Institute, Kanda-Surugadai, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Takahashi T, Sugishita Y, Kinugawa K, Shimizu T, Yao A, Harada K, Matsui H, Nagai R. Ets-1 is involved in transcriptional regulation of the chick inducible nitric oxide synthase gene in embryonic ventricular myocytes. Mol Cell Biochem 2001; 226:57-65. [PMID: 11768239 DOI: 10.1023/a:1012781618109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to elucidate roles of Ets family of transcription factors in transcriptional activation of inducible nitric oxide synthase (iNOS) genes, we analyzed the chick iNOS gene expression in cultured chick embryonic ventricular myocytes (CEVM). Deletional analysis and site-directed mutagenesis demonstrated that both the Ets/PEA3 site (-221 to -216 bp) and the kappaB site (-101 to -93 bp) of the 5'-flanking region of the chick iNOS gene were involved in the maximal activation of the lipopolysaccharide (LPS)-induced expression of the reporter (luciferase) gene, although the proximal kappaB site played the more essential role. Electrophoretic mobility shift assay revealed that LPS augmented the nuclear protein bindings to the Ets/PEA3 as well as kappaB motifs. Ets-1, one of the Ets proteins, was suggested to be bound to the Ets/PEA3 oligonucleotide. By Northern blot analysis, LPS was shown to induce iNOS mRNA in CEVM, along with a preceding increase in the levels of c-ets-1 mRNA. Ets-1 may be involved in the iNOS gene transcription in CEVM, presumably through interacting with the NF-kappaB.
Collapse
Affiliation(s)
- T Takahashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Bone formation in vivo is a complex phenomenon whereby recruitment and replication of mesenchymal precursors of osteoblasts, differentiation into preosteoblasts, osteoblasts, and mature osteoblasts ultimately result in the accumulation and mineralization of the extracellular matrix. MC3T3-E1, a clonal osteoblastic cell line, was derived from mouse calvaria and undergoes an ordered and time dependent developmental sequence leading to formation of multilayered bone nodules over a 30 - 35 day period. This developmental pattern is characterized by the replication of preosteoblasts followed by growth arrest and expression of mature osteoblastic characteristics such as matrix maturation and eventual formation of multilayered nodules with a mineralized extracellular matrix. We have found that Ets1 is expressed in proliferating preosteoblastic cells whereas Ets2 is expressed by differentiating and mature osteoblasts. In addition, the expression of Ets1 can be induced in MC3T3-E1 and fetal rat calvaria cells by retinoic acid (RA) which is known to exert profound effects on skeletal growth and development, bone turnover, and induce specific cellular responses in bone cells. Thus the multiple functions of RA in bone cells are likely to be mediated in part by Ets1. Also, Ets2 transgenic mice develop multiple neurocranial, viserocranial, and cervical skeletal abnormalities. Significantly, these abnormalities are similar to the skeletal anomalies found in trisomy-16 mice and in humans with Down's syndrome, wherein the dosage of Ets2 is known to be increased. These results indicate that Ets2 has an important role in skeletal development and that Ets2 overexpression in transgenics is responsible for the genesis of the same type of skeletal abnormalities that are seen in Down's syndrome. Thus the genetic programs regulated by Ets1 and Ets2 may significantly affect the development and differentiation of osteoblasts, and in fact, Ets1 has been shown to interact with the 'quintessential' osteoblast transcription factor CbfA1. This review will examine in detail the role and possible targets of Ets1 and Ets2 in osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- A Raouf
- Department of Laboratory Medicine and Pathobiology, MRC group in Periodontal Physiology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
48
|
Remy P, Baltzinger M. The Ets-transcription factor family in embryonic development: lessons from the amphibian and bird. Oncogene 2000; 19:6417-31. [PMID: 11175358 DOI: 10.1038/sj.onc.1204044] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter reviews the expression and role of Ets-genes during embryogenesis of amphibians and birds. In addition to overlapping expression domains, some of them exhibit cell type-specific expression. Many of them are expressed in migratory cells: neural crest, endothelial, and pronephric duct cells for instance. They are also transcribed in embryonic areas affected by epithelio-mesenchymal transitions. Both processes involve modifications of cellular adhesion. Ets-family genes appear to coordinate changes in the expression of adhesion molecules and degradation of the extracellular matrix upon regulation of matrix metalloproteinases and their specific inhibitors. These functions are essential for physiological processes like tissue remodelling during embryogenesis or wound healing. Unfortunately they also play a harmful role in metastasis. Recent studies in the nervous system showed that Ets-genes contribute to the establishment of a cellular identity. This identity could rely on definite cell-surface determinants, among which cadherins could play an important role. In addition to cell-type specific expression, other factors contribute to the specificity of function of Ets-genes. These genes have a broad specificity of recognition of target sequences in gene promoters, insufficient for accurate control of gene expression. A fine tuning could arise from combinatorial interactions with other Ets- or accessory proteins.
Collapse
Affiliation(s)
- P Remy
- FRE 2168 du CNRS, IPCB, 21 rue René Descartes, 67084 Strasbourg cedex, France
| | | |
Collapse
|
49
|
Bartel FO, Higuchi T, Spyropoulos DD. Mouse models in the study of the Ets family of transcription factors. Oncogene 2000; 19:6443-54. [PMID: 11175360 DOI: 10.1038/sj.onc.1204038] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Ets family of transcription factors is one of a growing number of master regulators of development. This family was originally defined by the presence of a conserved DNA binding domain, the Ets domain. To date, nearly 30 members of this family have been identified and implicated in a wide range of physiological and pathological processes. Despite the likely importance of Ets-family members, each of their precise roles has not been delineated. Herein, we describe the elucidation of essential functions of a few of these family members in vivo using knockout mouse models. Of the knockouts generated to date, the majority shows important functions in hematopoiesis, ranging from PU.1, a principle regulator of myelo-lymphopoiesis, to Spi-B which regulates the proper function of terminally differentiated cells. Ets1 was shown to be of intermediate importance as a regulator of pan-lymphoid development. Other Ets family members such as Fli1 and TEL1 display distinct and/or overlapping functions in vasculo/angiogenesis, hemostasis and hematopoiesis. The remaining knockouts generated, Ets2 and Er81, show non-hematopoietic defects related to extraembryonic development and neurogenesis, respectively. The pioneering group of knockout models described reveals only the most distinct functions of each of these Ets family members. A better understanding of the roles and hierarchies of Ets family members in cellular differentiation will come with the generation of new null alleles in previously untargeted family members, more mutant alleles in members already disrupted, double knockouts, ES cell differentiation and chimera rescue experiments, and tissue-specific inducible knockouts.
Collapse
Affiliation(s)
- F O Bartel
- Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA
| | | | | |
Collapse
|
50
|
Abstract
Cellular responses to environmental stimuli are controlled by a series of signaling cascades that transduce extracellular signals from ligand-activated cell surface receptors to the nucleus. Although most pathways were initially thought to be linear, it has become apparent that there is a dynamic interplay between signaling pathways that result in the complex pattern of cell-type specific responses required for proliferation, differentiation and survival. One group of nuclear effectors of these signaling pathways are the Ets family of transcription factors, directing cytoplasmic signals to the control of gene expression. This family is defined by a highly conserved DNA binding domain that binds the core consensus sequence GGAA/T. Signaling pathways such as the MAP kinases, Erk1 and 2, p38 and JNK, the PI3 kinases and Ca2+-specific signals activated by growth factors or cellular stresses, converge on the Ets family of factors, controlling their activity, protein partnerships and specification of downstream target genes. Interestingly, Ets family members can act as both upstream and downstream effectors of signaling pathways. As downstream effectors their activities are directly controlled by specific phosphorylations, resulting in their ability to activate or repress specific target genes. As upstream effectors they are responsible for the spacial and temporal expression or numerous growth factor receptors. This review provides a brief survey of what is known to date about how this family of transcription factors is regulated by cellular signaling with a special focus on Ras responsive elements (RREs), the MAP kinases (Erks, p38 and JNK) and Ca2+-specific pathways and includes a description of the multiple roles of Ets family members in the lymphoid system. Finally, we will discuss other potential mechanisms and pathways involved in the regulation of this important family of transcription factors.
Collapse
Affiliation(s)
- J S Yordy
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|