1
|
Mallaby J, Mwangi W, Ng J, Stewart A, Dorey-Robinson D, Kipling D, Hershberg U, Fraternali F, Nair V, Dunn-Walters D. Diversification of immunoglobulin genes by gene conversion in the domestic chicken ( Gallus gallus domesticus). DISCOVERY IMMUNOLOGY 2023; 2:kyad002. [PMID: 38567069 PMCID: PMC10917233 DOI: 10.1093/discim/kyad002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 04/04/2024]
Abstract
Sustainable modern poultry production depends on effective protection against infectious diseases and a diverse range of antibodies is key for an effective immune response. In the domestic chicken, somatic gene conversion is the dominant process in which the antibody immunoglobulin genes are diversified. Affinity maturation by somatic hypermutation (SHM) also occurs, but the relative contribution of gene conversion versus somatic hypermutation to immunoglobulin (Ig) gene diversity is poorly understood. In this study, we use high throughput long-read sequencing to study immunoglobulin diversity in multiple immune-associated tissues in Rhode Island Red chickens. To better understand the impact of genetic diversification in the chicken, a novel gene conversion identification software was developed (BrepConvert). In this study, BrepConvert enabled the identification of over 1 million gene conversion events. Mapping the occurrence of putative somatic gene conversion (SGC) events throughout the variable gene region revealed repetitive and highly restricted patterns of genetic insertions in both the antibody heavy and light chains. These patterns coincided with the locations of genetic variability in available pseudogenes and align with antigen binding sites, predominately the complementary determining regions (CDRs). We found biased usage of pseudogenes during gene conversion, as well as immunoglobulin heavy chain diversity gene (IGHD) preferences during V(D)J gene rearrangement, suggesting that antibody diversification in chickens is more focused than the genetic potential for diversity would suggest.
Collapse
Affiliation(s)
- Jessica Mallaby
- Department of Bioscience and Medicine, University of Surrey, Guildford, UK
- Pirbright Institute, Woking, UK
| | | | - Joseph Ng
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Alexander Stewart
- Department of Bioscience and Medicine, University of Surrey, Guildford, UK
| | | | - David Kipling
- Department of Bioscience and Medicine, University of Surrey, Guildford, UK
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | | | | |
Collapse
|
2
|
IGH Rearrangement Evolution in Adult KMT2A-rearranged B-cell Precursor ALL: Implications for Cell-of-origin and MRD Monitoring. Hemasphere 2022; 7:e820. [PMID: 36570692 PMCID: PMC9771314 DOI: 10.1097/hs9.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
|
3
|
Yu X, Zizzo Z, Kennedy PG. An appraisal of antigen identification and IgG effector functions driving host immune responses in multiple sclerosis. Mult Scler Relat Disord 2021; 56:103328. [PMID: 34666240 DOI: 10.1016/j.msard.2021.103328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
Increased immunoglobulin G (IgG) antibodies and oligoclonal bands (OCB) are the most characteristic features of multiple sclerosis (MS), a neuroinflammatory demyelinating disease with neurodegeneration at chronic stages. OCB are shown to be associated with disease activity and brain atrophy. Despite intensive research over the last several decades, the antigen specificities of the IgG in MS have remained elusive. We present evidence which supports that intrathecal IgG is not driven by antigen-stimulation, therefore provide reasoning for failed MS antigen identification. Further, the presence of co-deposition of IgG and activated complement products in MS lesions suggest that the IgG effector functions may play a critical role in disease pathogenesis.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Zoe Zizzo
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Peter Ge Kennedy
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
4
|
Jackson TR, Ling RE, Roy A. The Origin of B-cells: Human Fetal B Cell Development and Implications for the Pathogenesis of Childhood Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:637975. [PMID: 33679795 PMCID: PMC7928347 DOI: 10.3389/fimmu.2021.637975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Human B-lymphopoiesis is a dynamic life-long process that starts in utero by around six post-conception weeks. A detailed understanding of human fetal B-lymphopoiesis and how it changes in postnatal life is vital for building a complete picture of normal B-lymphoid development through ontogeny, and its relevance in disease. B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common cancers in children, with many of the leukemia-initiating events originating in utero. It is likely that the biology of B-ALL, including leukemia initiation, maintenance and progression depends on the developmental stage and type of B-lymphoid cell in which it originates. This is particularly important for early life leukemias, where specific characteristics of fetal B-cells might be key to determining how the disease behaves, including response to treatment. These cellular, molecular and/or epigenetic features are likely to change with age in a cell intrinsic and/or microenvironment directed manner. Most of our understanding of fetal B-lymphopoiesis has been based on murine data, but many recent studies have focussed on characterizing human fetal B-cell development, including functional and molecular assays at a single cell level. In this mini-review we will give a short overview of the recent advances in the understanding of human fetal B-lymphopoiesis, including its relevance to infant/childhood leukemia, and highlight future questions in the field.
Collapse
Affiliation(s)
- Thomas R Jackson
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca E Ling
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
5
|
Liao H, Li S, Yu Y, Yue Y, Su K, Zheng Q, Jiang N, Zhang Z. Characteristics of Plasmablast Repertoire in Chronically HIV-Infected Individuals for Immunoglobulin H and L Chain Profiled by Single-Cell Analysis. Front Immunol 2020; 10:3163. [PMID: 32117215 PMCID: PMC7026028 DOI: 10.3389/fimmu.2019.03163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023] Open
Abstract
Characterization of the diversified immunoglobulin (Ig) repertoire may provide insight into pathways that shape an efficient antibody (Ab) repertoire for immune response against human immunodeficiency virus (HIV) infection. This study aimed to profile characteristics of the plasmablast repertoire during chronic HIV infection. Ig variable regions of plasmablasts from both chronically HIV-infected donors (HIVDs) previously treated with antiretroviral therapy (ART) and healthy donors (HDs) were amplified by single-cell PCR to establish the basis for further repertoire analysis. We compared the plasmablast repertoires expressed in multiple chronically HIVDs after ART treatment cessation and HDs. We also examined the non-productive repertoire to identify the indication of the immediate products of the rearrangement machinery without an impact of selection during HIV infection. We found multiple differences between the productive repertoires of HIVD and HD subjects, including biased usages of VH3-49, VH1-2, VH3-33, VH3-74, and VH5-51 in VH and D1-7, D1-14, D1-20, and D5-5/18 in D segments in the HIVD group, as well as shorter and preferential glycine usages in CDRH3 regions. Gene selections were also detected in light chains. Notably, differences between productive rearrangements of HIVDs and HDs outnumbered those between productive and non-productive rearrangements within HIVDs. HIV infection may exert a dominant impact on the development of the plasmablast repertoire. The impact of selection is of limited significance in shaping the plasmablast repertoire. Overall, the data indicate that the environment in which the plasmablasts live can affect the distribution of the VH and VL genes in the repertoire and the amino acid compositions of the expressed Abs.
Collapse
Affiliation(s)
- Hongyan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Song Li
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yangsheng Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yinshi Yue
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States.,Eppley Research Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Qin Zheng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Nenggang Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhixin Zhang
- State Key Laboratory of Biotherapy, Ministry of Education Key Laboratory of Birth Defects, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Ghosn E, Yoshimoto M, Nakauchi H, Weissman IL, Herzenberg LA. Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development 2019; 146:146/15/dev170571. [PMID: 31371526 DOI: 10.1242/dev.170571] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current paradigm that a single long-term hematopoietic stem cell can regenerate all components of the mammalian immune system has been challenged by recent findings in mice. These findings show that adult tissue-resident macrophages and innate-like lymphocytes develop early in fetal hematopoiesis from progenitors that emerge prior to, and apparently independently of, conventional long-term hematopoietic stem cells. Here, we discuss these recent findings, which show that an early and distinct wave of hematopoiesis occurs for all major hematopoietic lineages. These data provide evidence that fetal hematopoietic progenitors not derived from the bona fide long-term hematopoietic stem cells give rise to tissue-resident immune cells that persist throughout adulthood. We also discuss recent insights into B lymphocyte development and attempt to synthesize seemingly contradictory recent findings on the origins of innate-like B-1a lymphocytes during fetal hematopoiesis.
Collapse
Affiliation(s)
- Eliver Ghosn
- Departments of Medicine and Pediatrics, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leonore A Herzenberg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Hong B, Wu Y, Li W, Wang X, Wen Y, Jiang S, Dimitrov DS, Ying T. In-Depth Analysis of Human Neonatal and Adult IgM Antibody Repertoires. Front Immunol 2018; 9:128. [PMID: 29459861 PMCID: PMC5807330 DOI: 10.3389/fimmu.2018.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 11/25/2022] Open
Abstract
Although high-throughput sequencing and associated bioinformatics technologies have enabled the in-depth, sequence-based characterization of human immune repertoires, only a few studies on a relatively small number of sequences explored the characteristics of antibody repertoires in neonates, with contradictory conclusions. To gain a more comprehensive understanding of the human IgM antibody repertoire, we performed Illumina sequencing and IMGT/HighV-QUEST analysis of IgM heavy chain repertoire of the B lymphocytes from the cord blood (CB) of neonates, as well as the repertoire from peripheral blood of healthy human adults (HH). The comparative study revealed unexpectedly high levels of similarity between the neonatal and adult repertoires. In both repertoires, the VDJ gene usage showed no significant difference, and the most frequently used VDJ gene was IGHV4-59, IGHD3-10, and IGHJ3. The average amino acid (aa) length of CDR1 (CB: 8.5, HH: 8.4) and CDR2 (CB: 7.6, HH: 7.5), as well as the aa composition and the average hydrophobicity of the CDR3 demonstrated no significant difference between the two repertories. However, the average aa length of CDR3 was longer in the HH repertoire than the CB repertoire (CB: 14.5, HH: 15.5). Besides, the frequencies of aa mutations in CDR1 (CB: 19.33%, HH: 25.84%) and CDR2 (CB: 9.26%, HH: 17.82%) were higher in the HH repertoire compared to the CB repertoire. Interestingly, the most prominent difference between the two repertoires was the occurrence of N2 addition (CB: 64.87%, HH: 85.69%), a process that occurs during V-D-J recombination for introducing random nucleotide additions between D- and J-gene segments. The antibody repertoire of healthy adults was more diverse than that of neonates largely due to the higher occurrence of N2 addition. These findings may lead to a better understanding of antibody development and evolution pathways and may have potential practical value for facilitating the generation of more effective antibody therapeutics and vaccines.
Collapse
Affiliation(s)
- Binbin Hong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Li
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Xun Wang
- Shanghai Blood Center, WHO Collaborating Center for Blood Transfusion Services, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
On being the right size: antibody repertoire formation in the mouse and human. Immunogenetics 2017; 70:143-158. [DOI: 10.1007/s00251-017-1049-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
|
9
|
Carey AJ, Hope JL, Mueller YM, Fike AJ, Kumova OK, van Zessen DBH, Steegers EAP, van der Burg M, Katsikis PD. Public Clonotypes and Convergent Recombination Characterize the Naïve CD8 + T-Cell Receptor Repertoire of Extremely Preterm Neonates. Front Immunol 2017; 8:1859. [PMID: 29312340 PMCID: PMC5742125 DOI: 10.3389/fimmu.2017.01859] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/07/2017] [Indexed: 01/03/2023] Open
Abstract
Respiratory support improvements have aided survival of premature neonates, but infection susceptibility remains a predominant problem. We previously reported that neonatal mice have a rapidly evolving T-cell receptor (TCR) repertoire that impairs CD8+ T cell immunity. To understand the impact of prematurity on the human CD8+ TCR repertoire, we performed next-generation sequencing of the complementarity-determining region 3 (CDR3) from the rearranged TCR variable beta (Vβ) in sorted, naïve CD8+ T cells from extremely preterm neonates (23–27 weeks gestation), term neonates (37–41 weeks gestation), children (16–56 months), and adults (25–50 years old). Strikingly, preterm neonates had an increased frequency of public clonotypes shared between unrelated individuals. Public clonotypes identified in preterm infants were encoded by germline gene sequences, and some of these clonotypes persisted into adulthood. The preterm neonatal naïve CD8+ TCR repertoire exhibited convergent recombination, characterized by different nucleotide sequences encoding the same amino acid CDR3 sequence. As determined by Pielou’s evenness and iChao1 metrics, extremely preterm neonates have less clonality, and a much lower bound for the number of unique TCR within an individual preterm neonate, which indicates a less rich and diverse repertoire, as compared to term neonates, children, and adults. This suggests that T cell selection in the preterm neonate may be less stringent or different. Our analysis is the first to compare the TCR repertoire of naïve CD8+ T cells between viable preterm neonates and term neonates. We find preterm neonates have a repertoire immaturity which potentially contributes to their increased infection susceptibility. A developmentally regulated, evenly distributed repertoire in preterm neonates may lead to the inclusion of public TCR CDR3β sequences that overlap between unrelated individuals in the preterm repertoire.
Collapse
Affiliation(s)
- Alison J Carey
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jennifer L Hope
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adam J Fike
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ogan K Kumova
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - David B H van Zessen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
10
|
Breaux B, Deiss TC, Chen PL, Cruz-Schneider MP, Sena L, Hunter ME, Bonde RK, Criscitiello MF. The Florida manatee (Trichechus manatus latirostris) immunoglobulin heavy chain suggests the importance of clan III variable segments in repertoire diversity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:57-68. [PMID: 28131767 DOI: 10.1016/j.dci.2017.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Manatees are a vulnerable, charismatic sentinel species from the evolutionarily divergent Afrotheria. Manatee health and resistance to infectious disease is of great concern to conservation groups, but little is known about their immune system. To develop manatee-specific tools for monitoring health, we first must have a general knowledge of how the immunoglobulin heavy (IgH) chain locus is organized and transcriptionally expressed. Using the genomic scaffolds of the Florida manatee (Trichechus manatus latirostris), we characterized the potential IgH segmental diversity and constant region isotypic diversity and performed the first Afrotherian repertoire analysis. The Florida manatee has low V(D)J combinatorial diversity (3744 potential combinations) and few constant region isotypes. They also lack clan III V segments, which may have caused reduced VH segment numbers. However, we found productive somatic hypermutation concentrated in the complementarity determining regions. In conclusion, manatees have limited IGHV clan and combinatorial diversity. This suggests that clan III V segments are essential for maintaining IgH locus diversity.
Collapse
Affiliation(s)
- Breanna Breaux
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Patricia L Chen
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | - Leonardo Sena
- Laboratory of Medical and Human Genetics, Federal University of Pará, Belém, Pará, Brazil.
| | - Margaret E Hunter
- Wetland and Aquatic Research Center, U.S. Geological Survey, 7920 NW 71st Street, Gainesville, FL 32653, USA.
| | - Robert K Bonde
- Wetland and Aquatic Research Center, U.S. Geological Survey, 7920 NW 71st Street, Gainesville, FL 32653, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
11
|
Roy A, Bystry V, Bohn G, Goudevenou K, Reigl T, Papaioannou M, Krejci A, O'Byrne S, Chaidos A, Grioni A, Darzentas N, Roberts IAG, Karadimitris A. High resolution IgH repertoire analysis reveals fetal liver as the likely origin of life-long, innate B lymphopoiesis in humans. Clin Immunol 2017. [PMID: 28645875 PMCID: PMC5678457 DOI: 10.1016/j.clim.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The ontogeny of the natural, public IgM repertoire remains incompletely explored. Here, high-resolution immunogenetic analysis of B cells from (unrelated) fetal, child, and adult samples, shows that although fetal liver (FL) and bone marrow (FBM) IgM repertoires are equally diversified, FL is the main source of IgM natural immunity during the 2nd trimester. Strikingly, 0.25% of all prenatal clonotypes, comprising 18.7% of the expressed repertoire, are shared with the postnatal samples, consistent with persisting fetal IgM + B cells being a source of natural IgM repertoire in adult life. Further, the origins of specific stereotypic IgM + B cell receptors associated with chronic lymphocytic leukemia, can be traced back to fetal B cell lymphopoiesis, suggesting that persisting fetal B cells can be subject to malignant transformation late in life. Overall, these novel data provide unique insights into the ontogeny of physiological and malignant B lymphopoiesis that spans the human lifetime. Second trimester human fetal liver and fetal bone marrow B-cells have IgM repertoires that are equally diversified Human fetal liver B-cells are the main source of innate, natural IgM responses CLL-associated, stereotypic B cell receptors are detected in fetal IgM repertoire
Collapse
Affiliation(s)
- Anindita Roy
- Department of Paediatrics, University of Oxford, Brno, Czech Republic
| | - Vojtech Bystry
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Georg Bohn
- Centre for Haematology, Department of Medicine, Imperial College London, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Katerina Goudevenou
- Centre for Haematology, Department of Medicine, Imperial College London, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Tomas Reigl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Maria Papaioannou
- Centre for Haematology, Department of Medicine, Imperial College London, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Adam Krejci
- Centre for Haematology, Department of Medicine, Imperial College London, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK; RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Sorcha O'Byrne
- Department of Paediatrics, University of Oxford, Brno, Czech Republic
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Medicine, Imperial College London, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Andrea Grioni
- Department of Paediatrics, University of Oxford, Brno, Czech Republic; Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Nikos Darzentas
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Irene A G Roberts
- Department of Paediatrics, University of Oxford, Brno, Czech Republic; MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK.
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Medicine, Imperial College London, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK.
| |
Collapse
|
12
|
Rechavi E, Somech R. Survival of the fetus: fetal B and T cell receptor repertoire development. Semin Immunopathol 2017; 39:577-583. [PMID: 28466095 DOI: 10.1007/s00281-017-0626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/04/2017] [Indexed: 12/29/2022]
Abstract
A mature and diverse T and B cell receptor repertoire is a prerequisite for immunocompetence. In light of its increased susceptibility to infection, the human fetus has long been considered deficient in this regard. However, data accumulated since the 1990s and in earnest in the past couple of years paints a more complicated picture. As we describe in this review, mechanisms responsible for generating a diverse receptor repertoire, such as somatic recombination, class switch recombination, and somatic hypermutation, are all operational to surprising extents in the growing fetus. The composition of the fetal repertoire differs from that of adults, with preferential usage of certain variable (V), diversity (D), and joining (J) gene segments and a shorter complementarity determining (CDR3) region, primarily due to decreased terminal deoxynucleotidyl transferase (TdT) expression. Both T and B cell receptor repertoires are extremely diverse by the end of the second trimester, and in the case of T cells, are capable of responding to an invading pathogen with in utero clonal expansion. Thus, it would appear as though the T and B cell receptor repertoires are not a hindrance towards immunocompetence of the newborn. Our improved understanding of fetal receptor repertoire development is already bearing fruit in the early diagnosis of primary immunodeficiencies (PID) and may help clarify the pathogenesis of congenital infections, recurrent abortions, and autoimmune disorders in the near future.
Collapse
Affiliation(s)
- Erez Rechavi
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
13
|
Sudhakar N, Rajkumar T, Rajalekshmy KR, Nancy NK. Characterization of clonal immunoglobulin heavy (IGH) V-D-J gene rearrangements and the complementarity-determining region in South Indian patients with precursor B-cell acute lymphoblastic leukemia. Blood Res 2017; 52:55-61. [PMID: 28401103 PMCID: PMC5383589 DOI: 10.5045/br.2017.52.1.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/13/2016] [Accepted: 12/27/2016] [Indexed: 12/01/2022] Open
Abstract
Background This study characterized clonal IG heavy V-D-J (IGH) gene rearrangements in South Indian patients with precursor B-cell acute lymphoblastic leukemia (precursor B-ALL) and identified age-related predominance in VDJ rearrangements. Methods IGH rearrangements were studied in 50 precursor B-ALL cases (common ALL=37, pre-B ALL=10, pro-B ALL=3) by polymerase chain reaction (PCR) heteroduplex analysis. Twenty randomly selected clonal IGH rearrangement sequences were analyzed using the IMGT/V-QUEST tool. Results Clonal IGH rearrangements were detected in 41 (82%) precursor B-ALL cases. Among the IGHV1-IGHV7 subgroups, IGHV3 was used in 25 (50%) cases. Among the IGHD1-IGHD7 genes, IGHD2 and IGHD3 were used in 8 (40%) and 5 (25%) clones, respectively. Among the IGHJ1-IGHJ6 genes, IGHJ6 and IGHJ4 were used in 9 (45%) and 6 (30%) clones, respectively. In 6 out of 20 (30%) IGH rearranged sequences, CDR3 was in frame whereas 14 (70%) had rearranged sequences and CDR3 was out of frame. A somatic mutation in Vmut/Dmut/Jmut was detected in 14 of 20 IGH sequences. On average, Vmut/Dmut/Jmut were detected in 0.1 nt, 1.1 nt, and 0.2 nt, respectively. Conclusion The IGHV3 gene was frequently used whereas lower frequencies of IGHV5 and IGHV6 and a higher frequency of IGHV4 were detected in children compared with young adults. The IGHD2 and IGHD3 genes were over-represented, and the IGHJ6 gene was predominantly used in precursor-B-ALL. However, the IGH gene rearrangements in precursor-B-ALL did not show any significant age-associated genotype pattern attributed to our population.
Collapse
Affiliation(s)
- Natarajan Sudhakar
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India.; Department of Biotechnology, Dr. M.G.R. Educational & Research Institute, Chennai, India
| | | | | | | |
Collapse
|
14
|
New JS, King RG, Kearney JF. Manipulation of the glycan-specific natural antibody repertoire for immunotherapy. Immunol Rev 2016; 270:32-50. [PMID: 26864103 DOI: 10.1111/imr.12397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural immunoglobulin derived from innate-like B lymphocytes plays important roles in the suppression of inflammatory responses and represents a promising therapeutic target in a growing number of allergic and autoimmune diseases. These antibodies are commonly autoreactive and incorporate evolutionarily conserved specificities, including certain glycan-specific antibodies. Despite this conservation, exposure to bacterial polysaccharides during innate-like B lymphocyte development, through either natural exposure or immunization, induces significant changes in clonal representation within the glycan-reactive B cell pool. Glycan-reactive natural antibodies (NAbs) have been reported to play protective and pathogenic roles in autoimmune and inflammatory diseases. An understanding of the composition and functions of a healthy glycan-reactive NAb repertoire is therefore paramount. A more thorough understanding of NAb repertoire development holds promise for the design of both biological diagnostics and therapies. In this article, we review the development and functions of NAbs and examine three glycan specificities, represented in the innate-like B cell pool, to illustrate the complex roles environmental antigens play in NAb repertoire development. We also discuss the implications of increased clonal plasticity of the innate-like B cell repertoire during neonatal and perinatal periods, and the prospect of targeting B cell development with interventional therapies and correct defects in this important arm of the adaptive immune system.
Collapse
Affiliation(s)
- J Stewart New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Rother MB, Jensen K, van der Burg M, van de Bovenkamp FS, Kroek R, van IJcken WFJ, van der Velden VHJ, Cupedo T, Olstad OK, van Dongen JJM, van Zelm MC. Decreased IL7Rα and TdT expression underlie the skewed immunoglobulin repertoire of human B-cell precursors from fetal origin. Sci Rep 2016; 6:33924. [PMID: 27658954 PMCID: PMC5034271 DOI: 10.1038/srep33924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022] Open
Abstract
Newborns are unable to mount antibody responses towards certain antigens. This has been related to the restricted repertoire of immunoglobulin (Ig) genes of their B cells. The mechanisms underlying the restricted fetal Ig gene repertoire are currently unresolved. We here addressed this with detailed molecular and cellular analysis of human precursor-B cells from fetal liver, fetal bone marrow (BM), and pediatric BM. In the absence of selection processes, fetal B-cell progenitors more frequently used proximal V, D and J genes in complete IGH gene rearrangements, despite normal Ig locus contraction. Fewer N-nucleotides were added in IGH gene rearrangements in the context of low TdT and XRCC4 expression. Moreover, fetal progenitor-B cells expressed lower levels of IL7Rα than their pediatric counterparts. Analysis of progenitor-B cells from IL7Rα-deficient patients revealed that TdT expression and N-nucleotides additions in Dh-Jh junctions were dependent on functional IL7Rα. Thus, IL7Rα affects TdT expression, and decreased expression of this receptor underlies at least in part the skewed Ig repertoire formation in fetal B-cell precursors. These new insights provide a better understanding of the formation of adaptive immunity in the developing fetus.
Collapse
Affiliation(s)
- Magdalena B. Rother
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kristin Jensen
- Department of Medical Biochemistry, Oslo University Hospital, Norway
- Volvat Medical Center, Oslo, Norway
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Roel Kroek
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | - Tom Cupedo
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ole K. Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Norway
- Volvat Medical Center, Oslo, Norway
| | | | - Menno C. van Zelm
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Rechavi E, Lev A, Lee YN, Simon AJ, Yinon Y, Lipitz S, Amariglio N, Weisz B, Notarangelo LD, Somech R. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci Transl Med 2015; 7:276ra25. [DOI: 10.1126/scitranslmed.aaa0072] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Tallmadge RL, Tseng CT, Felippe MJB. Diversity of immunoglobulin lambda light chain gene usage over developmental stages in the horse. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:171-179. [PMID: 24726757 PMCID: PMC4107094 DOI: 10.1016/j.dci.2014.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
To further studies of neonatal immune responses to pathogens and vaccination, we investigated the dynamics of B lymphocyte development and immunoglobulin (Ig) gene diversity. Previously we demonstrated that equine fetal Ig VDJ sequences exhibit combinatorial and junctional diversity levels comparable to those of adult Ig VDJ sequences. Herein, RACE clones from fetal, neonatal, foal, and adult lymphoid tissue were assessed for Ig lambda light chain combinatorial, junctional, and sequence diversity. Remarkably, more lambda variable genes (IGLV) were used during fetal life than later stages and IGLV gene usage differed significantly with time, in contrast to the Ig heavy chain. Junctional diversity measured by CDR3L length was constant over time. Comparison of Ig lambda transcripts to germline revealed significant increases in nucleotide diversity over time, even during fetal life. These results suggest that the Ig lambda light chain provides an additional dimension of diversity to the equine Ig repertoire.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| | - Chia T Tseng
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - M Julia B Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|
18
|
Tallmadge RL, Tseng CT, King RA, Felippe MJB. Developmental progression of equine immunoglobulin heavy chain variable region diversity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:33-43. [PMID: 23567345 PMCID: PMC3672396 DOI: 10.1016/j.dci.2013.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Humoral immunity is a critical component of the immune system that is established during fetal life and expands upon exposure to pathogens. The extensive humoral immune response repertoire is generated in large part via immunoglobulin (Ig) heavy chain variable region diversity. The horse is a useful model to study the development of humoral diversity because the placenta does not transfer maternal antibodies; therefore, Igs detected in the fetus and pre-suckle neonate were generated in utero. The goal of this study was to compare the equine fetal Ig VDJ repertoire to that of neonatal, foal, and adult horse stages of life. We found similar profiles of IGHV, IGHD, and IGHJ gene usage throughout life, including predominant usage of IGHV2S3, IGHD18S1, and IGHJ1S5. CDR3H lengths were also comparable throughout life. Unexpectedly, Ig sequence diversity significantly increased between the fetal and neonatal age, and, as expected, between the foal and adult age.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | |
Collapse
|
19
|
Daszkowska-Golec A, Szarejko I. Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:138. [PMID: 23717320 PMCID: PMC3652521 DOI: 10.3389/fpls.2013.00138] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
Two highly specialized cells, the guard cells that surround the stomatal pore, are able to integrate environmental and endogenous signals in order to control the stomatal aperture and thereby the gas exchange. The uptake of CO2 is associated with a loss of water by leaves. Control of the size of the stomatal aperture optimizes the efficiency of water use through dynamic changes in the turgor of the guard cells. The opening and closing of stomata is regulated by the integration of environmental signals and endogenous hormonal stimuli. The various different factors to which the guard cells respond translates into the complexity of the network of signaling pathways that control stomatal movements. The perception of an abiotic stress triggers the activation of signal transduction cascades that interact with or are activated by phytohormones. Among these, abscisic acid (ABA), is the best-known stress hormone that closes the stomata, although other phytohormones, such as jasmonic acid, brassinosteroids, cytokinins, or ethylene are also involved in the stomatal response to stresses. As a part of the drought response, ABA may interact with jasmonic acid and nitric oxide in order to stimulate stomatal closure. In addition, the regulation of gene expression in response to ABA involves genes that are related to ethylene, cytokinins, and auxin signaling. In this paper, recent findings on phytohormone crosstalk, changes in signaling pathways including the expression of specific genes and their impact on modulating stress response through the closing or opening of stomata, together with the highlights of gaps that need to be elucidated in the signaling network of stomatal regulation, are reviewed.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
20
|
Vas J, Grönwall C, Silverman GJ. Fundamental roles of the innate-like repertoire of natural antibodies in immune homeostasis. Front Immunol 2013; 4:4. [PMID: 23386848 PMCID: PMC3564042 DOI: 10.3389/fimmu.2013.00004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 01/03/2013] [Indexed: 11/13/2022] Open
Abstract
The composition of the early immune repertoire is biased with prominent expression of spontaneously arising B cell clones that produce IgM with recurrent and often autoreactive binding specificities. Amongst these naturally arising antibodies (NAbs) are IgM antibodies that specifically recognized amaged and senescent cells, often via oxidation-associated neo-determinants. These NAbs are present from birth and can be further boosted by apoptotic cell challenge. Recent studies have shown that IgM NAb to apoptotic cells can enhance phagocytic clearance, as well as suppress proinflammatory responses induced via Toll-like receptors, and block pathogenic IgG-immune complex (IC)-mediated inflammatory responses. Specific antibody effector functions appear to be involved, as these anti-inflammatory properties are dependent on IgM-mediated recruitment of the early recognition factors of complement. Clinical surveys have suggested that anti-apoptotic cell (AC) IgM NAbs may modulate disease activity in some patients with autoimmune disease. In mechanistic studies, anti-AC NAbs were shown to act in dendritic cells by inhibition of the mitogen-activated protein kinase (MAPK) pathway, a primary signal transduction pathway that controls inflammatory responses. This immunomodulatory pathway has an absolute requirement for the induction of MAPK phosphatase-1. Taken together, recent studies have elucidated the novel properties of a class of protective NAbs, which may directly blunt inflammatory responses through a primitive pathway for regulation of the innate immune system.
Collapse
Affiliation(s)
- Jaya Vas
- Laboratory of B Cell Immunobiology, Department of Medicine, New York University School of Medicine New York, NY, USA
| | | | | |
Collapse
|
21
|
Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLoS One 2012; 7:e36750. [PMID: 22590602 PMCID: PMC3348910 DOI: 10.1371/journal.pone.0036750] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/07/2012] [Indexed: 12/27/2022] Open
Abstract
A number of antibodies that efficiently neutralize microbial targets contain long heavy chain complementarity determining region 3 (HCDR3) loops. For HIV, several of the most broad and potently neutralizing antibodies have exceptionally long HCDR3s. Two broad potently neutralizing HIV-specific antibodies, PG9 and PG16, exhibit secondary structure. Two other long HCDR3 antibodies, 2F5 and 4E10, protect against mucosal challenge with SHIV. Induction of such long HCDR3 antibodies may be critical to the design of an effective vaccine strategy for HIV and other pathogens, however it is unclear at present how to induce such antibodies. Here, we present genetic evidence that human peripheral blood antibodies containing long HCDR3s are not primarily generated by insertions introduced during the somatic hypermutation process. Instead, they are typically formed by processes occurring as part of the original recombination event. Thus, the response of B cells encoding antibodies with long HCDR3s results from selection of unusual clones from the naïve repertoire rather than through accumulation of insertions. These antibodies typically use a small subset of D and J gene segments that are particularly suited to encoding long HCDR3s, resulting in the incorporation of highly conserved genetic elements in the majority of antibody sequences encoding long HCDR3s.
Collapse
|
22
|
Sun Y, Wang C, Wang Y, Zhang T, Ren L, Hu X, Zhang R, Meng Q, Guo Y, Fei J, Li N, Zhao Y. A comprehensive analysis of germline and expressed immunoglobulin repertoire in the horse. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1009-1020. [PMID: 20466019 DOI: 10.1016/j.dci.2010.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/02/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
Based on the recently released horse genome, we have characterized the genomic organization of the horse Ig gene loci. The horse IgH locus in genomic scaffold Un0011 contains 40 D(H) segments, 8 J(H) segments and 50 V(H) segments. The Igkappa locus contains only a single C(kappa) gene, 5 J(kappa) segments and a 60 V(kappa) segments, whereas the Iglambda locus contains 7 C(lambda) genes each preceded by a J(lambda) gene segment. A total of 110 V(lambda) segments with the same transcriptional polarity as J(lambda)-C(lambda) were identified upstream of the J(lambda)-C(lambda) cluster. However, 34 V(lambda) segments locating downstream of the J(lambda)-C(lambda) cluster showed an opposite transcriptional polarity. Our results reveal that the horse germline V repertoires were more complex than previously estimated. By analyzing the cloned IgH/L cDNA, we further showed that several selected V subgroups were utilized in the expressed V(H), V(kappa), or V(lambda) and a high frequency of nucleotide deletions and insertions were introduced by somatic hypermutation in these expressed V genes.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ordering human CD34+CD10-CD19+ pre/pro-B-cell and CD19- common lymphoid progenitor stages in two pro-B-cell development pathways. Proc Natl Acad Sci U S A 2010; 107:5925-30. [PMID: 20231472 DOI: 10.1073/pnas.0907942107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies here respond to two long-standing questions: Are human "pre/pro-B" CD34(+)CD10(-)CD19(+) and "common lymphoid progenitor (CLP)/early-B" CD34(+)CD10(+)CD19(-) alternate precursors to "pro-B" CD34(+)CD19(+)CD10(+) cells, and do the pro-B cells that arise from these progenitors belong to the same or distinct B-cell development pathways? Using flow cytometry, gene expression profiling, and Ig V(H)-D-J(H) sequencing, we monitor the initial 10 generations of development of sorted cord blood CD34(high)Lineage(-) pluripotential progenitors growing in bone marrow S17 stroma cocultures. We show that (i) multipotent progenitors (CD34(+)CD45RA(+)CD10(-)CD19(-)) directly generate an initial wave of Pax5(+)TdT(-) "unilineage" pre/pro-B cells and a later wave of "multilineage" CLP/early-B cells and (ii) the cells generated in these successive stages act as precursors for distinct pro-B cells through two independent layered pathways. Studies by others have tracked the origin of B-lineage leukemias in elderly mice to the mouse B-1a pre/pro-B lineage, which lacks the TdT activity that diversifies the V(H)-D-J(H) Ig heavy chain joints found in the early-B or B-2 lineage. Here, we show a similar divergence in human B-cell development pathways between the Pax5(+)TdT(-) pre/pro-B differentiation pathway that gives rise to infant B-lineage leukemias and the early-B pathway.
Collapse
|
24
|
Mahmoud TI, Kearney JF. Terminal deoxynucleotidyl transferase is required for an optimal response to the polysaccharide α-1,3 dextran. THE JOURNAL OF IMMUNOLOGY 2009; 184:851-8. [PMID: 20018621 DOI: 10.4049/jimmunol.0902791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An understanding of Ab responses to polysaccharides associated with pathogenic microorganisms is of importance for improving vaccine design, especially in neonates that respond poorly to these types of Ags. In this study, we have investigated the role of the lymphoid-specific enzyme TdT in generating B cell clones responsive to alpha-1,3 dextran (DEX). TdT is a DNA polymerase that plays a major role in generating diversity of lymphocyte AgRs during V(D)J recombination. In this study, we show that the DEX-specific Ab response is lower, and the dominant DEX-specific J558 idiotype (Id) is not detected in TdT(-/-) mice when compared with wild-type (WT) BALB/c mice. Nucleotide sequencing of H chain CDR3s of DEX-specific plasmablasts, sorted postimmunization, showed that TdT(-/-) mice generate a lower frequency of the predominant adult molecularly determined clone J558. Complementation of TdT expression in TdT(-/-) mice by early forced expression of the short splice variant of TdT-restored WT proportions of J558 Id+ clones and also abrogated the development of the minor M104E Id+ clones. J558 Id V(D)J rearrangements are detected as early as 7 d after birth in IgM-negative B cell precursors in the liver and spleen of WT and TdT-transgenic mice but not in TdT(-/-) mice. These data show that TdT is essential for the generation of the predominant higher-affinity DEX-responsive J558 clone.
Collapse
Affiliation(s)
- Tamer I Mahmoud
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
25
|
Deane M, Norton JD. Detection of Immunoglobulin Gene Rearrangement in B Cell Neoplasias by Polymerase Chain Reaction Gene Amplification. Leuk Lymphoma 2009; 5:9-22. [DOI: 10.3109/10428199109068100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Souto-Carneiro MM, Sims GP, Girschik H, Lee J, Lipsky PE. Developmental changes in the human heavy chain CDR3. THE JOURNAL OF IMMUNOLOGY 2006; 175:7425-36. [PMID: 16301650 DOI: 10.4049/jimmunol.175.11.7425] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The CDR3 of the Ig H chain (CDR3(H)) is significantly different in fetal and adult repertoires. To understand the mechanisms involved in the developmental changes in the CDR3(H) of Ig H chains, sets of nonproductive V(H)DJ(H) rearrangements obtained from fetal, full-term neonates and adult single B cells were analyzed and compared with the corresponding productive repertoires. Analysis of the nonproductive repertoires was particularly informative in assessing developmental changes in the molecular mechanisms of V(H)DJ(H) recombination because these rearrangements did not encode a protein and therefore their distribution was not affected by selection. Although a number of differences were noted, the major reasons that fetal B cells expressed Ig H chains with shorter CDR3(H) were both diminished TdT activity in the DJ(H) junction and the preferential use of the short J(H) proximal D segment D7-27. The enhanced usage of D7-27 by fetal B cells appeared to relate to its position in the locus rather than its short length. The CDR3(H) progressively acquired a more adult phenotype during ontogeny. In fetal B cells, there was decreased recurrent DJ(H) rearrangements before V(H)-DJ(H) rearrangement and increased usage of junctional microhomologies both of which also converted to the adult pattern during ontogeny. Overall, these results indicate that the decreased length and complexity of the CDR3(H) of fetal B cells primarily reflect limited enzymatic modifications of the joins as well as a tendency to use proximal D and J(H) segments during DJ(H) rearrangements.
Collapse
Affiliation(s)
- M Margarida Souto-Carneiro
- Repertoire Analysis Group, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA
| | | | | | | | | |
Collapse
|
27
|
Di Martino D, Terranova MP, Scuderi F, Di Michele P, Iacovone S, Scarso L, Dallorso S, Dini G, Morreale G, Valetto A. VH3 and VH6 Immunoglobulin M Repertoire Reconstitution after Hematopoietic Stem-Cell Transplantation in Children. Transplantation 2005; 79:98-107. [PMID: 15714176 DOI: 10.1097/01.tp.0000147461.71610.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Immune reconstitution after hematopoietic stem-cell transplantation (HSCT) occurs gradually. Thus, a variable period of immunodeficiency may be present, leading to immunomediated complications, such as graft-versus-host disease (GVHD) and opportunistic infections. METHODS To better understand the kinetics of B-cell repertoire reconstitution in children, 49 pediatric patients were analyzed before and after transplantation by immunoglobulin (Ig) HCDR3 fingerprinting, which is a molecular technique that analyzes one of the hypervariable segments of the Ig heavy chain, which provides the amino acid residues that are essential to interact with antigens. RESULTS In healthy donors, the CDR3 fingerprinting profile shows 16 to 20 bands, and each band corresponds to a particular length of CDR3. This situation is considered polyclonal. Patients analyzed just after transplantation show strong oligoclonality, because only a few CDR3 bands are detected within the first 3 to 6 months. CONCLUSIONS The authors' data show a significant lag in diversification of the B-cell repertoire, which reaches the polyclonal situation of normal healthy donors approximately 6 months after HSCT. This period may vary depending on the type of transplant (autologous vs. allogeneic) and on the immunosuppressive therapy related to GVHD.
Collapse
Affiliation(s)
- Daniela Di Martino
- Laboratory of Hematology, Department of Pediatric Hematology and Oncology, G. Gaslini Institute, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li A, Rue M, Zhou J, Wang H, Goldwasser MA, Neuberg D, Dalton V, Zuckerman D, Lyons C, Silverman LB, Sallan SE, Gribben JG. Utilization of Ig heavy chain variable, diversity, and joining gene segments in children with B-lineage acute lymphoblastic leukemia: implications for the mechanisms of VDJ recombination and for pathogenesis. Blood 2004; 103:4602-4609. [PMID: 15010366 DOI: 10.1182/blood-2003-11-3857] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence analysis of the immunoglobulin heavy chain genes (IgH) has demonstrated preferential usage of specific variable (V), diversity (D), and joining (J) genes at different stages of B-cell development and in B-cell malignancies, and this has provided insight into B-cell maturation and selection. Knowledge of the association between rearrangement patterns based on updated databases and clinical characteristics of pediatric acute lymphoblastic leukemia (ALL) is limited. We analyzed 381 IgH sequences identified at presentation in 317 children with B-lineage ALL and assessed the V(H)D(H)J(H) gene utilization profiles. The D(H)J(H)-proximal V(H) segments and the D(H)2 gene family were significantly overrepresented. Only 21% of V(H)-J(H) joinings were potentially productive, a finding associated with a trend toward an increased risk of relapse. These results suggest that physical location at the V(H) locus is involved in preferential usage of D(H)J(H)-proximal V(H) segments whereas D(H) and J(H) segment usage is governed by position-independent molecular mechanisms. Molecular pathophysiology appears relevant to clinical outcome in patients who have only productive rearrangements, and specific rearrangement patterns are associated with differences in the tumor biology of childhood ALL.
Collapse
Affiliation(s)
- Aihong Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ros F, Puels J, Reichenberger N, van Schooten W, Buelow R, Platzer J. Sequence analysis of 0.5 Mb of the rabbit germline immunoglobulin heavy chain locus. Gene 2004; 330:49-59. [PMID: 15087123 DOI: 10.1016/j.gene.2003.12.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 12/18/2003] [Accepted: 12/30/2003] [Indexed: 11/22/2022]
Abstract
A bacterial artificial chromosome (BAC) library was created using partially digested rabbit chromosomal DNA. Four BAC clones spanning about 0.5 Mb of the rabbit immunoglobulin (Ig) heavy chain locus were isolated and sequenced. Three of the BAC clones were partially overlapping. Thirty-four V elements, 11 D elements, DQ52, six J elements and the coding regions of Cmicro, Cgamma, C and four Calpha genes were identified and characterized. Additionally, the sequence of a fosmid clone spanning Calpha13 and 30 kb 3'enhancer region was determined. The organization of the locus and the potential function of newly identified functional and structural elements are discussed.
Collapse
Affiliation(s)
- Francesca Ros
- University of Munich, Institut für Molekulare Tierzucht und Biotechnologie, Feodor-Lynen-Str. 25, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Weitkamp JH, Kallewaard N, Kusuhara K, Bures E, Williams JV, LaFleur B, Greenberg HB, Crowe JE. Infant and adult human B cell responses to rotavirus share common immunodominant variable gene repertoires. THE JOURNAL OF IMMUNOLOGY 2004; 171:4680-8. [PMID: 14568943 DOI: 10.4049/jimmunol.171.9.4680] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab repertoires exhibit marked restrictions during fetal life characterized by biases of variable gene usage and lack of junctional diversity. We tested the hypothesis that Ab repertoire restriction contributes to the observed poor quality of specific Ab responses made by infants to viral infections. We analyzed the molecular determinants of B cell responses in humans to two Ags of rotavirus (RV), a common and clinically important infection of human infants. We sequenced Ab H and L chain V region genes (V(H) and V(L)) of clones expanded from single B cells responding to RV virus protein 6 or virus protein 7. We found that adults exhibited a distinct bias in use of gene segments in the V(H)1 and V(H)4 families, for example, V(H)1-46, V(H)4-31, and V(H)4-61. This gene segment bias differed markedly from the V(H)3 dominant bias seen in randomly selected adult B cells. Recombinant Abs incorporating any of those three immunodominant V(H) segments bound to RV-infected cells and also to purified RV particles. The RV-specific B cell repertoires of infants aged 2-11 mo and those of adults were highly related when compared by V(H), D, J(H), V(L), and J(L) segment selection, extent of junctional diversity, and mean H chain complementarity determining region 3 length. These data suggest that residual fetal bias of the B cell repertoire is not a limiting determinant of the quality of Ab responses to viruses of infants beyond the neonatal period.
Collapse
Affiliation(s)
- Jörn-Hendrik Weitkamp
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-2581, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
van Dongen JJM, Langerak AW, Brüggemann M, Evans PAS, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, García-Sanz R, van Krieken JHJM, Droese J, González D, Bastard C, White HE, Spaargaren M, González M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2004; 17:2257-317. [PMID: 14671650 DOI: 10.1038/sj.leu.2403202] [Citation(s) in RCA: 2365] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a European BIOMED-2 collaborative study, multiplex PCR assays have successfully been developed and standardized for the detection of clonally rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes and the chromosome aberrations t(11;14) and t(14;18). This has resulted in 107 different primers in only 18 multiplex PCR tubes: three VH-JH, two DH-JH, two Ig kappa (IGK), one Ig lambda (IGL), three TCR beta (TCRB), two TCR gamma (TCRG), one TCR delta (TCRD), three BCL1-Ig heavy chain (IGH), and one BCL2-IGH. The PCR products of Ig/TCR genes can be analyzed for clonality assessment by heteroduplex analysis or GeneScanning. The detection rate of clonal rearrangements using the BIOMED-2 primer sets is unprecedentedly high. This is mainly based on the complementarity of the various BIOMED-2 tubes. In particular, combined application of IGH (VH-JH and DH-JH) and IGK tubes can detect virtually all clonal B-cell proliferations, even in B-cell malignancies with high levels of somatic mutations. The contribution of IGL gene rearrangements seems limited. Combined usage of the TCRB and TCRG tubes detects virtually all clonal T-cell populations, whereas the TCRD tube has added value in case of TCRgammadelta(+) T-cell proliferations. The BIOMED-2 multiplex tubes can now be used for diagnostic clonality studies as well as for the identification of PCR targets suitable for the detection of minimal residual disease.
Collapse
Affiliation(s)
- J J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Collins AM, Sewell WA, Edwards MR. Immunoglobulin gene rearrangement, repertoire diversity, and the allergic response. Pharmacol Ther 2003; 100:157-70. [PMID: 14609718 DOI: 10.1016/j.pharmthera.2003.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunoglobulin repertoire arises as a consequence of combinatorial diversity, junctional diversity, and the process of somatic point mutation. Each of these processes involves biases that limit and shape the available immunoglobulin repertoire. The expressed repertoire is further shaped by selection, to the extent that biased gene usage can become apparent in many disease states. The study of rearranged immunoglobulin genes therefore may not only provide insights into the molecular processes involved in the generation of antibody diversity but also inform us of pathogenic processes and perhaps identify particular lymphocyte clones as therapeutic targets. Partly as a consequence of the low numbers of circulating IgE-committed B-cells, studies of rearranged IgE genes in allergic individuals have commenced relatively recently. In this review, recent advances in our understanding of the processes of immunoglobulin gene rearrangement and somatic point mutation are described, and biases inherent to these processes are discussed. The evidence that some diseases may be associated with particular gene rearrangements is then considered, with a particular focus on allergic disease. Reviewed data suggest that an important contribution to the IgE response may come from cells that use relatively rare heavy chain V (V(H)) segment genes, which display little somatic point mutation. Some IgE antibodies also seem to display polyreactive binding. In other contexts, these 3 characteristics have been associated with antibodies of the B-1 B-cell subset, and the possibility that B-1 B-cells contribute to the allergic response is therefore considered.
Collapse
Affiliation(s)
- A M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
33
|
Van Esch WJE, Reparon-Schuijt CC, Hamstra HJ, Van Kooten C, Logtenberg T, Breedveld FC, Verweij CL. Human IgG Fc-binding phage antibodies constructed from synovial fluid CD38+ B cells of patients with rheumatoid arthritis show the imprints of an antigen-dependent process of somatic hypermutation and clonal selection. Clin Exp Immunol 2003; 131:364-76. [PMID: 12562401 PMCID: PMC1808634 DOI: 10.1046/j.1365-2249.2003.02068.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The persistent presence of rheumatoid factors (RFs) in the circulation is a characteristic phenomenon in patients with rheumatoid arthritis (RA). Recent data indicate that RFs associated with seropositive RA are derived from terminally differentiated CD20-, CD38+ plasma cells (PCs) present in synovial fluids of the inflamed joints. These cells were shown to secrete RFs actively and are thought to originate from germinal centre (GC)-like structures present in the inflamed synovium. To obtain a representative image of the structural properties of IgM and IgG RFs associated with RA, phage antibody display libraries were constructed from CD38+ PCs isolated from the inflamed joints of RF-seropositive patients with RA. Subsequently, human IgG Fc-binding monoclonal phage antibodies were selected and analysed. The data suggest that RA-associated RFs are encoded by a diverse set of VL and a more restricted set of VH regions. VH gene family usage of PC-derived IgM- and IgG-RFs was found to be restricted to the VH1 and 3 gene families, with a preference for VH3, and many different VL genes were shown to contribute to RF specificity. Clonally related VH as well as VL sequences were identified, based on the presence of identical CDR3 regions and shared somatic mutations. In this B cell selection process base-pair substitutions as well as deletions of triplets in CDR regions, leaving the transcripts in frame, were involved. Together, these data provide further evidence for an Ag-driven immune response in the terminal differentiation into RF-producing PCs in patients with RA, including expansion of clonally related B cells, selection and isotype switching, all hallmarks of a GC reaction.
Collapse
Affiliation(s)
- W J E Van Esch
- Department of Rheumatology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
In healthy humans, antibody repertoires change during ontogeny and senescence. The dynamics of antibody repertoires among adults over a longer period of time in one and the same individual has, however, not been extensively studied. In this study we analysed peripheral blood samples from five healthy adults, taken over a period of 10 weeks and once 9 years later. A competitive, quantitative polymerase chain reaction (PCR) was developed to investigate short and long-term variations in VH gene family repertoires. Serum antibody levels to common self and non-self antigens were determined in samples taken at the same time-points as the cell samples to analyse possible correlations between molecular and serological expression profiles. We found a high degree of stability in the VH gene family repertoire over time as well as between individuals with a Caucasian background. A specific change in the usage of primarily the VH3 and VH5 gene families was observed in one individual at one time-point. The deviating pattern resembled the VH gene family utilization pattern observed in naturally activated B lymphocytes. The fluctuations in VH3 and VH5 gene family expression correlated with the presence of rheumatoid factor in serum. We discuss the possible influence of polyclonal, transient stimulation of B cells on VH gene repertoires, as measured in circulating B cells.
Collapse
Affiliation(s)
- Iris Van Dijk-Härd
- Department of Clinical Immunology, Karolinska Institute at Huddinge University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
35
|
Golby S, Hackett M, Boursier L, Dunn‐Walters D, Thiagamoorthy S, Spencer J. B cell development and proliferation of mature B cells in human fetal intestine. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.2.279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Sarah Golby
- Department of Histopathology, GKT Medical School, St. Thomas’ Campus, London, United Kingdom
| | - Maggie Hackett
- Department of Histopathology, GKT Medical School, St. Thomas’ Campus, London, United Kingdom
| | - Laurent Boursier
- Department of Histopathology, GKT Medical School, St. Thomas’ Campus, London, United Kingdom
| | - Deborah Dunn‐Walters
- Department of Histopathology, GKT Medical School, St. Thomas’ Campus, London, United Kingdom
| | | | - Jo Spencer
- Department of Histopathology, GKT Medical School, St. Thomas’ Campus, London, United Kingdom
| |
Collapse
|
36
|
Edwards MR, Brouwer W, Choi CHY, Ruhno J, Ward RL, Collins AM. Analysis of IgE antibodies from a patient with atopic dermatitis: biased V gene usage and evidence for polyreactive IgE heavy chain complementarity-determining region 3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6305-13. [PMID: 12055246 DOI: 10.4049/jimmunol.168.12.6305] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To better understand V gene usage, specificity, and clonal origins of IgE Abs in allergic reactions, we have constructed a combinatorial Ab library from the mRNA of an adult patient with atopic dermatitis. Sequence analysis of random clones revealed that 33% of clones used the IGHV6-1 H chain V gene segment, the only member of the V(H)6 gene family. IGHV6-1 is rarely used in the expressed adult repertoire; however, it is associated with fetal derived Abs. Features of the V(H)6 rearrangements included short complementarity-determining region 3, frequent use of IGHD7-27 D gene, and little nucleotide addition at the D-J junction. There was also a low level of mutation compared with V(H)1, V(H)3, and V(H)4 rearrangements. The library was expressed as phage-Fab fusions, and specific phage selected by panning on the egg allergen ovomucoid. Upon expression as soluble IgE Fabs, 12 clones demonstrated binding to ovomucoid, skim milk, and BSA by ELISA. Nucleotide sequencing demonstrated that the IGHV6-1 V gene segment encoded each of the 12 multiply reactive IgE Fabs. A cyclic peptide was designed from the complementarity-determining region 3 of several of these clones. The cyclic peptide bound both self and nonself Ags, including ovomucoid, human IgG, tetanus toxoid, and human and bovine von Willebrand factor. These results suggest that some IgE Abs may bind more than one Ag, which would have important implications for understanding the multiple sensitivities seen in conditions such as atopic dermatitis.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antibody Diversity/genetics
- Antibody Specificity/genetics
- Binding Sites, Antibody/genetics
- Binding, Competitive/genetics
- Binding, Competitive/immunology
- Cloning, Molecular
- Complementarity Determining Regions/analysis
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- DNA Mutational Analysis
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/immunology
- Female
- Gene Library
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Humans
- Immunoglobulin E/analysis
- Immunoglobulin E/genetics
- Immunoglobulin E/metabolism
- Immunoglobulin Fab Fragments/biosynthesis
- Immunoglobulin Fragments/biosynthesis
- Immunoglobulin Fragments/genetics
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin J-Chains/genetics
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Molecular Sequence Data
- Nucleotides/metabolism
- Ovomucin/metabolism
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Sequence Analysis, DNA
- Sequence Analysis, Protein
Collapse
Affiliation(s)
- Michael R Edwards
- School of Microbiology and Immunology, University of New South Wales, Kensington, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The kappa chain repertoire of individual IgD(+) human neonatal B cells was analyzed using a single cell PCR technique. A total of 104 productive and 90 non-productive VkappaJkappa rearrangements from three cord blood B cell samples were sequenced and compared to the adult IgM(+) peripheral B cell VkappaJkappa repertoire. All six Vkappa families were present in neonatal B cells, but the distribution was not random. In the non-productive repertoire Vkappa2 and Vkappa6 families were less frequent, Vkappa1 and Vkappa3 families were as frequent, and Vkappa4 and Vkappa5 families were more frequent than expected from random chance. Notably, the Vkappa2 family was negatively selected into the productive repertoire. In contrast, the Vkappa1 family was positively selected because of positive selection of three specific genes, O12/O2, L12a and L9. B3 (Vkappa4) and B2 (Vkappa5) were over-represented in the non-productive repertoire and then were expressed less frequently in the productive repertoire. In contrast, the Vkappa3 family gene, A27, was also over-represented in the non-productive repertoire but not further selected into the productive repertoire. Compared to the adult repertoire, junctional diversity was less marked because of a diminished influence of TdT activity, whereas the mean CDR3 length was comparable to that of normal adult B cells. Comparison of the distribution of Vkappa and Jkappa genes with those found in normal adult subjects suggested that there was less receptor editing in neonatal B cells. When neonatal CD5(+) B cells were compared with CD5(-) IgD(+) B cells, it was noted that the Vkappa gene A30 was used only in CD5(+) B cells in both the productive and non-productive repertoires. The results indicate that the usage of Vkappa genes by neonatal B cells is biased by both intrinsic molecular processes and selection. The evidence of selection indicates that the Vkappa repertoire is shaped by self antigens, since exposure to exogenous antigens is limited at the time of birth.
Collapse
Affiliation(s)
- Hermann J Girschick
- Department of Internal Medicine, Harold C. Simmons Arthritis Research Center, University of Texas, Southwestern Medical Center at Dallas, Dallas, TX 75235, USA.
| | | |
Collapse
|
38
|
Chevillard C, Ozaki J, Herring CD, Riblet R. A three-megabase yeast artificial chromosome contig spanning the C57BL mouse Igh locus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5659-66. [PMID: 12023364 DOI: 10.4049/jimmunol.168.11.5659] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse Ig H chain (Igh) complex locus is composed of >100 gene segments encoding the variable, diversity, joining, and constant portions of the Ab H chain protein. To advance the characterization of this locus and to identify all the V(H) genes, we have isolated the entire region from C57BL/6 and C57BL/10 as a yeast artificial chromosome contig. The mouse Igh locus extends approximately three megabases and contains at least 134 V(H) genes classified in 15 partially interspersed families. Two non-Igh pseudogenes (Odc-rs8 and Rpl32-rs14) were localized in the distal part of the locus. This physical yeast artificial chromosome map will provide important structure and guidance for the sequencing of this large, complex, and highly repetitive locus.
Collapse
Affiliation(s)
- Christophe Chevillard
- Faculty of Medicine, Immunology and Genetics of Parasitic Diseases, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | | | | | | |
Collapse
|
39
|
Adderson EE. Antibody repertoires in infants and adults: effects of T-independent and T-dependent immunizations. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2001; 23:387-403. [PMID: 11826616 DOI: 10.1007/s281-001-8166-x] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Polysaccharide(PS)-encapsulated bacteria such as Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis are among the most prevalent bacterial pathogens of humans. Infections caused by these organisms are both common (otitis media, sinusitis) and severe (meningitis, bacteremia). Antibodies directed against the capsular PS of encapsulated bacteria prevent infection by promoting opsonophagocytic killing. Most bacterial PS, however, are type II T-cell-independent (TI-2) antigens that are poorly immunogenic in young children at highest risk of developing disease. Conjugation of bacterial PS to a protein carrier converts the immune response to a T-cell-dependent (TD) form and significantly improves the immunogenicity of PS, especially in infants. H. influenzae type b (Hib) is a major cause of invasive infection in non-immune children. The medical importance of this pathogen and the availability of both TI-2 and TD Hib PS vaccine formulations have made the human anti-Hib-PS immune response an excellent model for the study of the biology of these B cell responses.
Collapse
MESH Headings
- Adult
- Aged
- Aging/immunology
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/chemistry
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/immunology
- Antibody Diversity
- Antigen-Antibody Reactions
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Antigens, T-Independent/immunology
- Bacterial Capsules/immunology
- Bacterial Vaccines/immunology
- Child
- Child, Preschool
- Haemophilus Vaccines/immunology
- Haemophilus influenzae type b/immunology
- Humans
- Immune System/growth & development
- Immunization
- Immunoglobulin Idiotypes/genetics
- Immunoglobulin Idiotypes/immunology
- Infant
- Infant, Newborn
- Mice
- Middle Aged
- Polysaccharides, Bacterial/immunology
- Structure-Activity Relationship
- T-Lymphocytes/immunology
- Vaccines, Conjugate/immunology
Collapse
Affiliation(s)
- E E Adderson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, USA.
| |
Collapse
|
40
|
Hirose Y, Kiyoi H, Itoh K, Kato K, Saito H, Naoe T. B-cell precursors differentiated from cord blood CD34+ cells are more immature than those derived from granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells. Immunology 2001; 104:410-7. [PMID: 11899426 PMCID: PMC1783328 DOI: 10.1046/j.1365-2567.2001.01336.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Umbilical cord blood (CB) has been widely used instead of bone marrow (BM) and peripheral blood (PB) for stem cell transplantation (SCT). However, problems of sustained immunodeficiency after CB transplantation remain to be resolved. To elucidate the mechanism of immunodeficiency, we compared the characteristics of B cells differentiated in vitro from CD34+ cells of CB with those of PB. Purified CD34+ cells from CB and PB were cultured on murine stroma cell-line MS-5 with stem cell factor and granulocyte colony-stimulating factor for 6 weeks. The B-cell precursors (pre-B cells) that differentiated in this culture system, were analysed as to their immunoglobulin heavy chain (IgH) variable region gene repertoire and the expression of B-cell differentiation-related genes. CD10+ CD19+ pre-B cells were differentiated from both PB and CB. Although the usages of IgH gene segments in pre-B cells differentiated from CB and PB were similar, the N region was significantly shorter in CB-derived than PB-derived cells. Productive rearrangements were significantly fewer in cells of CB than PB in the third week. Among a number of B-cell differentiation-related genes, the terminal deoxynucleotidyl transferase (TdT) gene was not expressed in CB-derived cells during the culture. These results indicated that immature features of pre-B cells from CB, such as lack of TdT expression, and a short N region and few productive rearrangements in the IgH gene, might cause the delay in mature B-cell production.
Collapse
Affiliation(s)
- Yuka Hirose
- Department of Infectious Diseases, Nagoya University School of MedicineNagoya
| | - Hitoshi Kiyoi
- Department of Infectious Diseases, Nagoya University School of MedicineNagoya
| | - Katsuhiko Itoh
- Department of Clinical Molecular Biology, Kyoto University Faculty of MedicineKyoto
| | - Koji Kato
- Children's Medical Centre, Japanese Red Cross Nagoya First HospitalNagoya
| | - Hidehiko Saito
- Department of Infectious Diseases, Nagoya University School of MedicineNagoya
- Department of Medicine, Nagoya National HospitalNagoya, Japan
| | - Tomoki Naoe
- Department of Infectious Diseases, Nagoya University School of MedicineNagoya
| |
Collapse
|
41
|
Meffre E, Milili M, Blanco-Betancourt C, Antunes H, Nussenzweig MC, Schiff C. Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development. J Clin Invest 2001; 108:879-86. [PMID: 11560957 PMCID: PMC200933 DOI: 10.1172/jci13051] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Developing B cells must pass a series of checkpoints that are regulated by membrane-bound Ig(mu) through the Igalpha-Igbeta signal transducers. To determine how Ig(mu) expression affects B cell development and Ab selection in humans we analyzed Ig gene rearrangements in pro-B cells from two patients who are unable to produce Ig(mu) proteins. We find that Ig(mu) expression does not affect V(H), D, or J(H) segment usage and is not required for human Igkappa and Iglambda recombination or expression. However, the heavy and light chains found in pro-B cells differed from those in peripheral B cells in that they showed unusually long CDR3s. In addition, the Igkappa repertoire in Ig(mu)-deficient pro-B cells was skewed to downstream Jkappas and upstream Vkappas, consistent with persistent secondary V(D)J rearrangements. Thus, Ig(mu) expression is not required for secondary V(D)J recombination in pro-B cells. However, B cell receptor expression shapes the Ab repertoire in humans and is essential for selection against Ab's with long CDR3s.
Collapse
Affiliation(s)
- E Meffre
- Laboratory of Molecular Immunology, The Rockefeller University, Howard Hughes Medical Institute, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The enormous diversity of immunoglobulin (Ig) variable (V) gene sequences encoding the antibody repertoire are formed by the somatic recombination of relatively few genetic elements. In B-lineage malignancies, Ig gene rearrangements have been widely used for determining clonality and cell origin. The recent development of rapid cloning and sequencing techniques has resulted in a substantial accumulation of IgV region sequences at various stages of B-cell development and has revealed stage-specific trends in the use of V, diversity, joining genes, the degree of noncoding nucleotide addition, and the rate of somatic mutations. Furthermore, sequences from B-lineage malignant cells nearly reflect the characteristics of the normal counterpart at each respective stage of development. Alternatively, from the IgV region structure of the malignant cells, it is possible to speculate at which stage of B-cell development the cells were transformed. As the complete nucleotide sequences of the human Ig heavy and Ig light V region loci have now been determined, the study of Ig genetics has entered into the super-information era.
Collapse
Affiliation(s)
- H Kiyoi
- Department of Infectious Diseases, Nagoya University School of Medicine, Japan.
| | | |
Collapse
|
43
|
Abstract
B cells can revise their antigen receptors outside the confines of the bone marrow by secondary Ig gene rearrangements. Although the initial motivation to perform these revisions might be to silence a self-reactive specificity, those B cells that reinitiate the recombination process can perform a series of "leaping" rearrangements and inadvertently shift their receptor specificity towards autoimmunity. Heavy-chain receptor revision, coupled with other atypical rearrangements, might contribute to autoantibody production in systemic lupus erythematosus.
Collapse
Affiliation(s)
- K D Klonowski
- Temple University School of Medicine, Dept of Microbiology and Immunology, 3400 N. Broad St., Philadelphia, PA 19140, USA
| | | |
Collapse
|
44
|
Minegishi Y, Conley ME. Negative Selection at the Pre-BCR Checkpoint Elicited by Human μ Heavy Chains with Unusual CDR3 Regions. Immunity 2001; 14:631-41. [PMID: 11371364 DOI: 10.1016/s1074-7613(01)00131-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Approximately 9% of in-frame mu heavy chain transcripts found in normal human pro-B cells encode proteins that can be expressed on the cell surface in the absence of surrogate or conventional light chains. These unusual mu heavy chains demonstrate preferential use of certain VH genes (VH3-23), frequent expression of DH regions in underrepresented reading frames, and an increased number of positively charged amino acids within the CDR3 region. Transcripts for these proteins are not found in pre-B cells or in mature B cells. When expressed in Jurkat T cells with the Ig(alpha)/Ig(beta) signal transduction module, these aberrant mu heavy chains induce cell activation and apoptosis. These results suggest that some mu heavy chains elicit negative selection at the pro-B cell to pre-B cell transition.
Collapse
Affiliation(s)
- Y Minegishi
- Department of Immunology, St. Jude Children's Research Hospital, University of Tennessee College of Medicine, Memphis, TN 38105, USA
| | | |
Collapse
|
45
|
Mortuza FY, Moreira IM, Papaioannou M, Gameiro P, Coyle LA, Gricks CS, Amlot P, Prentice HG, Madrigal A, Hoffbrand AV, Foroni L. Immunoglobulin heavy-chain gene rearrangement in adult acute lymphoblastic leukemia reveals preferential usage of J(H)-proximal variable gene segments. Blood 2001; 97:2716-26. [PMID: 11313263 DOI: 10.1182/blood.v97.9.2716] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to characterize individual-segment and overall patterns of V(H) gene usage in adult B-lineage acute lymphoblastic leukemia (ALL). Theoretical values of V(H) segment usage were calculated with the assumption that all V(H) segments capable of undergoing rearrangement have an equal probability of selection for recombination. Leukemic clones from 127 patients with adult B-lineage acute leukemias were studied by fingerprinting by means of primers for the framework 1 and joining segments. Clones from early preimmune B cells (245 alleles identified) show a predominance of V(H)6 family rearrangements and, consequently, do not conform to this hypothesis. However, profiles of V(H) gene family usage in mature B cells, as investigated in peripheral blood (6 samples), B-cell lymphomas (36 clones) and chronic lymphocytic leukemia (56 clones), are in agreement with this theoretical profile. Sequence analyses of 64 V(H) clones in adult ALL revealed that the rate of V(H) usage is proportional to the proximity of the V(H) gene to the J(H) locus and that the relationship can be mathematically defined. Except for V(H)6, no other V(H) gene is excessively used in adult ALL. V(H) pseudogenes are rarely used (n = 2), which implies the existence of early mechanisms in the pathway to B-cell maturation to reduce wasteful V(H)-(D(H))-J(H) recombination. Finally, similar to early immunoglobulin-H rearrangement patterns in the mouse, B cells of ALL derive from a pool of cells more immature than the cells in chronic lymphoid B-cell malignancies.
Collapse
Affiliation(s)
- F Y Mortuza
- Department of Haematology and Immunology, Royal Free and University College of London (Royal Free Campus), London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mo L, Leu SJ, Berry C, Liu F, Olee T, Yang YY, Beardsley DS, McMillan R, Woods VL, Chen PP. The frequency of homozygous deletion of a developmentally regulated Vh gene (Humhv3005) is increased in patients with chronic idiopathic thrombocytopenic purpura. Autoimmunity 2001; 24:257-63. [PMID: 9147584 DOI: 10.3109/08916939608994718] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Little is known of the genetic factors that may contribute to the development of chronic idiopathic thrombocytopenic purpura (cITP). We have previously shown that a developmentally regulated Vh gene (Humhv3005) is absent in 10/41 (24%) of patients with systemic lupus erythematosus while it is absent in only 7/88 (8%) of normal controls. This finding suggests that a homozygous deletion of an Ig variable (V) gene may alter the immune system and thus predispose the host to an autoimmune disorder. We have analyzed the same gene in 44 patients with cITP and found that Humhv3005 and like genes were absent in a higher percentage of patients (14 of 44, 31.8%) than they were absent in either normals (7/88, 8%, p = 0.002) or thrombocytopenic patients without cITP (6/53, 11.3%, p = 0.042); the hv3005 deletion frequency in the latter group did not differ from that in normals (P = 0.74). These data suggest that deletions of Humhv3005 and/or highly homologous Vh genes may predispose individuals to the development of cITP, and may contribute toward production of pathogenic antiplatelet antibodies.
Collapse
Affiliation(s)
- L Mo
- Department of Medicine, University of California, San Diego, La Jolla 92093-0663, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gharagozloo S, Sharifian RA, Mageed RA, Shokri F. Analysis of the expressed immunoglobulin variable region heavy chain gene products in paraproteins from Iranian patients with multiple myeloma. Pathol Oncol Res 2001; 6:185-90. [PMID: 11033458 DOI: 10.1007/bf03032371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The frequency of expression of immunoglobulin (Ig) variable region heavy (VH ) chain gene products was studied in 43 Iranian patients with mutiple myeloma (MM). The expressed VH gene families and associated cross-reactive idiotypes (CRI) were analysed by immunoblotting and ELISA, using peptide-induced polyclonal antibodies specific for VH 1-VH 6 gene families and monoclonal antibodies (MAb) recognising CRI linked to theVH 1, VH 3, VH 4 and VH 6 gene families. The results revealed that the VH 3 family (60. 5%) was the most predominant gene family. In contrast, no paraproteins were encoded by genes from the VH 2 gene family and only 2.3% were encoded by the VH 5 family. The panel of paraproteins tested rarely expressed the probed VH -associated CRI. Our results suggest that: 1-The Ig VH genes, may not be randomly expressed in the malignant plasma cells from Iranian patients with MM. 2- Some of the genes seem to be negatively selected or highly mutated, as evidenced by the lack of expression of the probed CRI.
Collapse
Affiliation(s)
- S Gharagozloo
- School of Public Health Tehran University of Medical Sciences, Department of Immunology, Tehran, 14155, I.R. Iran
| | | | | | | |
Collapse
|
48
|
Gokmen E, Bachier C, Raaphorst FM, Muller T, Armstrong D, LeMaistre CF, Teale JM. Ig heavy chain CDR3 size diversities are similar after conventional peripheral blood and ex vivo expanded hematopoietic cell transplants. Bone Marrow Transplant 2001; 27:413-24. [PMID: 11313671 DOI: 10.1038/sj.bmt.1702794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2000] [Accepted: 11/22/2000] [Indexed: 11/09/2022]
Abstract
It is largely unknown whether the immune repertoire can be reconstituted successfully after high-dose chemotherapy and transplantation using ex vivo expanded hematopoietic stem cell (HSC) grafts. It is critically important for the transplant outcome that immune repertoire reconstitution progresses after ex vivo expanded HSC graft transplants at least as efficiently as that seen after conventional HSC transplants. Previously, we showed that the T cell receptor V beta (TCRVB) third complementarity determining region (CDR3) diversification after ex vivo expanded bone marrow (BM) HSC graft transplants was similar to that seen after conventional peripheral blood stem cell transplants (PBSCTs). In the present study, the CDR3 diversity of the six immunoglobulin (Ig) heavy chain variable region gene (V(H)) families was examined in five breast cancer patients who were transplanted with ex vivo expanded BM HSCs as the only source of stem cells. For comparison, 12 healthy adults and four conventional PBSCT recipients were also studied. Using both CDR3 fingerprinting and single strand conformation polymorphism (SSCP) methodologies, it is shown that the contribution of the V(H) families to the overall repertoire among healthy adults is highly variable and not always proportional to V(H) family member size. After both ex vivo expanded HSC transplants and conventional PBSCTs, the V(H) CDR3 repertoires were limited in size diversity at 6 weeks post transplant. By 6 months, however, V(H) families displayed a repertoire diversity that was as complex as that seen in healthy adults. No difference was seen between ex vivo expanded HSC graft transplant recipients and conventional PBSCT recipients in V(H) repertoire diversity. In one patient there was a follow-up analysis 12 months after ex vivo expanded graft transplant, and the diversity of the V(H) families was maintained. In all patients, the amino acid size of the CDR3 regions fell within adult limits at all time points post transplant. These results indicate that B cell repertoire regeneration after ex vivo expanded hematopoietic cell graft transplants is similar to that seen after conventional PBSCT.
Collapse
Affiliation(s)
- E Gokmen
- The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Wilson A, Maréchal C, MacDonald HR. Biased V beta usage in immature thymocytes is independent of DJ beta proximity and pT alpha pairing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:51-7. [PMID: 11123276 DOI: 10.4049/jimmunol.166.1.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During thymus development, the TCR beta locus rearranges before the TCR alpha locus. Pairing of productively rearranged TCR beta-chains with an invariant pT alpha chain leads to the formation of a pre-TCR and subsequent expansion of immature pre-T cells. Essentially nothing is known about the TCR V beta repertoire in pre-T cells before or after the expression of a pre-TCR. Using intracellular staining, we show here that the TCR V beta repertoire is significantly biased at the earliest developmental stage in which VDJ beta rearrangement has occurred. Moreover (and in contrast to the V(H) repertoire in immature B cells), V beta repertoire biases in immature T cells do not reflect proximity of V beta gene segments to the DJ beta cluster, nor do they depend upon preferential V beta pairing with the pT alpha chain. We conclude that V gene repertoires in developing T and B cells are controlled by partially distinct mechanisms.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Female
- Flow Cytometry
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multigene Family/genetics
- Multigene Family/immunology
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Protein Precursors/physiology
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Staining and Labeling
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/chemistry
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- A Wilson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
50
|
Butler JE, Weber P, Sinkora M, Sun J, Ford SJ, Christenson RK. Antibody repertoire development in fetal and neonatal piglets. II. Characterization of heavy chain complementarity-determining region 3 diversity in the developing fetus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6999-7010. [PMID: 11120827 DOI: 10.4049/jimmunol.165.12.6999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the actual combinatorial diversity in the V(H) repertoire in fetal piglets represents <1% of the potential in mice and humans, we wondered whether 1) complementarity-determining region 3 (CDR3) diversity was also restricted; 2) CDR3 diversity changed with fetal age; and 3) to what extent CDR3 contributed to the preimmune VDJ repertoire. CDR3 spectratyping and sequence analyses of 213 CDR3s recovered from >30 fetal animals of different ages showed that >95% of VDJ diversity resulted from junctional diversity. Unlike sheep and cattle, somatic hypermutation does not contribute to the repertoire. These studies also revealed that 1) N region additions are as extensive in VDJ rearrangements recovered at 30 days as those in late term fetuses, suggesting that TdT is fully active at the onset of VDJ rearrangement; 2) nearly 90% of all rearrangement are in-frame until late gestation; 3) the oligoclonal CDR3 spectratype of 30-day fetal liver becomes polyclonal by 50 days, while this change occurs much later in spleen; 4) there is little evidence of individual variation in CDR3 spectratype or differences in spectratype among lymphoid tissues with the exception of the thymus; and 4) there is a tendency for usage of the most J(H) proximal D(H) segment (D(H)B) to decrease in older fetuses and for the longer D(H) segment to be trimmed to the same length as the shorter D(H) when used in CDR3. These findings suggest that in the fetal piglet, highly restricted combinatorial diversity and the lack of somatic mutation are compensated by early onset of TdT activity and other mechanisms that contribute to CDR3 junctional diversity.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology and Iowa Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|