1
|
Viox EG, Richard J, Grandea AG, Nguyen K, Harper J, Auger J, Ding S, Gasser R, Prévost J, Marchitto L, Medjahed H, Bourassa C, Gaudette F, Pagliuzza A, Trifone CA, Gavegnano C, Hurwitz SJ, Park J, Clark NM, Hammad I, Capuano S, Martin MA, Schinazi RF, Silvestri G, Kulpa DA, Kumar P, Chomont N, Pazgier M, Smith AB, Sodroski J, Evans DT, Finzi A, Paiardini M. Safety, pharmacokinetics, and biological activity of CD4-mimetic BNM-III-170 in SHIV-infected rhesus macaques. J Virol 2025; 99:e0006225. [PMID: 40192306 PMCID: PMC12090809 DOI: 10.1128/jvi.00062-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/10/2025] [Indexed: 05/21/2025] Open
Abstract
Anti-HIV-1 antibodies capable of mediating ADCC are elicited by the majority of people with HIV-1 and preferentially target the "open," CD4-bound conformation of HIV-1 envelope glycoproteins (Env). However, due to the "closed" conformation sampled by unliganded HIV-1-Envs, these antibodies are ineffective at eliminating infected cells. BNM-III-170 is a small-molecule CD4-mimetic compound that binds the Phe43 cavity of the gp120 subunit of Env, forcing Env to "open up," thus exposing epitopes targeted by CD4-induced (CD4i), ADCC-mediating antibodies. Here, we assessed the safety, pharmacokinetics, and biological activity of BNM-III-170 in uninfected and SHIV-AD8-EO-infected rhesus macaques (RMs). In uninfected RMs, single subcutaneous administrations of 3-36 mg/kg BNM-III-170 were well-tolerated, with serum half-lives ranging from 3 to 6 h. In SHIV-infected RMs, four different regimens were evaluated: 2 × 36 mg/kg daily, 1 × 24 mg/kg, 3 × 36 mg/kg every 7 days, and 3 × 36 mg/kg every 3 days. While toxicity was observed with daily doses, all other regimens demonstrated reasonable safety profiles. No changes in plasma viral loads were observed in SHIV-infected RMs following any of the evaluated BNM-III-170 dosing regimens. However, plasma collected following BNM-III-170 administration was shown to have increased binding to infected cells and to sensitize SHIV AD8-EO virions to neutralization by otherwise non-neutralizing antibodies. In addition, the plasma of treated animals mediated ADCC in the presence of BNM-III-170. These results establish a well-tolerated BNM-III-170 dosing regimen in SHIV-infected RMs and serve as proof of concept for its biological activity in promoting the targeting of infected cells by CD4i ADCC-mediating antibodies. Thus, they inform future studies evaluating CD4mc treatment in ART-treated animals.IMPORTANCEA therapeutic regimen able to eradicate or functionally cure HIV-1 remains elusive and may require a "shock-and-kill" approach to reactivate and then purge the latent HIV-1 reservoir. The small-molecule CD4-mimetic compound BNM-III-170 has previously been shown to (i) sensitize HIV-1-infected cells to ADCC mediated by plasma from people with HIV-1 (PWH) in vitro and (ii) significantly delay the time to viral rebound following ART interruption when combined with anti-CoRBS + anti-cluster A Abs or plasma from PWH in humanized mice. To evaluate the use of BNM-III-170 as part of a kill approach, we characterized the safety, pharmacokinetics, and biological activity of BNM-III-170 in uninfected and SHIV-infected RMs. Our study identifies a tolerable BNM-III-170 dosing regimen in SHIV-infected RMs and provides insights into its antiviral activities; as such, it informs future studies evaluating the efficacy of BNM-III-170 in reducing the viral reservoir.
Collapse
Affiliation(s)
- Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Andres G. Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James Auger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | - Cesar Ariel Trifone
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Christina Gavegnano
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Selwyn J. Hurwitz
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jun Park
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Iman Hammad
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Raymond F. Schinazi
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Agrawal A, Varshney R, Gattani A, Kirthika P, Gupta R, Kumar D, Singh RP, Singh P. SLAM (CD150) receptor homologous peptides block the peste des petits ruminants virus entry into B95a cells. Proteins 2024; 92:356-369. [PMID: 37881117 DOI: 10.1002/prot.26595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023]
Abstract
The fusion of haemagglutinin-neuraminidase (HN) protein of peste des petits ruminant (PPR) virus with signaling lymphocyte activation molecules (SLAM) host cell receptor consequences the virus entry and multiplication inside the host cell. The use of synthetic SLAM homologous peptides (i.e., molecular decoy for HN protein of PPR virus) may check PPR infection at the preliminary stage. Hence, the predicted SLAM homologous peptides using bioinformatics tools were synthesized by solid phase chemistry with standard Merrifield's 9-fluorenylmethoxycarbonyl (Fmoc) chemistry and were purified by reverse phase high performance liquid chromatography. The secondary structures of synthesized peptides were elucidated by circular dichroism spectroscopy. The in vitro interactions of these peptides were studied through indirect Enzyme Linked Immuno Sorbent Assay (ELISA) and visual surface plasmon UV-visible spectroscopy. The SLAM homologous peptides were able to interact with the peste des petits ruminant virus (PPRV) with varying binding efficiency. The interaction of SLAM homologous peptide with the PPR virus was ascertained by the change in the plasmon color from red wine to purple during visual detection and also by bathochromic shift in absorbance spectra under UV-visible spectrophotometry. The cytotoxic and anti-PPRV effect of these peptides were also evaluated in B95a cell line using PPR virus (Sungri/96). The cytotoxic concentration 50 (CC50 ) value of each peptide was greater than 1000 μg mL-1 . The anti-PPRV efficiency of SLAM-22 was relatively high among SLAM homologous peptides, SLAM-22 at 25 μg mL-1 concentration showed a reduction of more than log10 3 virus titer by priming of B95a cell line while the use of SLAM-15 and Muco-17 at the same concentration dropped virus titer from log10 4.8 to log10 2.5 and log10 3.1 respectively. The concentration of SLAM homologous peptide (25 μg mL-1 ) to exert its anti-PPRV effect was much less than its CC50 level (>1000 μg mL-1 ). Therefore, the synthetic SLAM homologous peptides may prove to be better agents to target PPRV.
Collapse
Affiliation(s)
- Aditya Agrawal
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, Madhya Pradesh, India
| | - Rajat Varshney
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
- Division of Bacteriology and Mycology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | - Anil Gattani
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Biochemistry, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Perumalraja Kirthika
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohini Gupta
- Department of Veterinary Medicine, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | | | - Praveen Singh
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Biophysics Section, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| |
Collapse
|
3
|
Agrawal A, Varshney R, Gattani A, Hira Khan M, Gupta R, Solanki KS, Patel SK, Singh RP, Singh P. Development of Hemagglutinin-Neuraminidase Homologous Peptides as Novel Promising Therapeutic Agents Against Peste des Petits Ruminants Virus. Protein J 2023; 42:685-697. [PMID: 37421558 DOI: 10.1007/s10930-023-10134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
The lack of specific antiviral therapy and complications associated with the existing peste des petits ruminants (PPR) vaccines accentuates the search of novel antiviral blocking agents in order to curtail the PPR infection at initial level. The synthetic hemagglutinin-neuraminidase (HN) homologous peptides may compete with the natural HN protein of PPR virus for binding to signaling lymphocytic activation molecule (SLAM) receptor, consequently, may disrupt peste des petits ruminants virus (PPRV) at entry level. Therefore, insilico analysis, synthesis, purification and subsequent characterization of HN homologous peptides were conducted in this study. The HN homologous peptides were synthesized by means of solid phase chemistry and were purified by reversed-phase-high performance liquid chromatography. The mass as well as sequence of HN homologous peptides were assessed by mass spectroscopy while its secondary structure was elucidated by circular dichroism spectroscopy. The binding (interaction) efficacy of HN homologous peptides with PPRV antibodies was assessed via indirect enzyme linked immunosorbent assay, visual detection test (red wine to purple), bathochromic shift under UV-Vis spectrophotometry and lateral flow immunochromatographic strip test. The antiviral properties and cytotoxicity of these peptides were also assessed in B95a cell line with changes in cytopathic effect and titer of PPRV (Sungri/96). The presence of green fluorescein isothiocyanate over the B95a cell surface pointed towards the binding of HN homologous peptides with surface SLAM receptor. Moreover, the intact beta sheet configuration in water and lower cytotoxicity [cytotoxic concentration 50 (CC50) > 1000 µg/ml] of these peptides signifies its in vivo use. Among HN homologous peptides, the binding efficacy and antiviral properties of pep A was relatively high in comparison to pep B and Pep ppr peptides. The prerequisite concentration of HN homologous peptides (pep A = 12.5 µg/ml; pep B = 25 µg/ml; pep ppr = 25 µg/ml) to exemplify its antiviral effect was much lower than its CC50 level. Hence, this study signifies the therapeutic potential of synthetic HN homologous peptides.
Collapse
Affiliation(s)
- Aditya Agrawal
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India.
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal husbandry, NDVSU, Rewa, Jabalpur, 486001, India.
| | - Rajat Varshney
- Department of Veterinary Microbiology, BHU, Mirzapur, U.P., 231001, India
- Division of Bacteriology and Mycology, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| | - Anil Gattani
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal husbandry, NDVSU, Jabalpur, 486001, India
| | - Mahvash Hira Khan
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal husbandry, NDVSU, Jabalpur, 486001, India
| | - Rohini Gupta
- Department of Veterinary Medicine, College of Veterinary Science and Animal husbandry, NDVSU, Jabalpur, 486001, India
| | - Khushal Singh Solanki
- Division of Veterinary Biotechnology, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| | - Shailesh Kumar Patel
- Department of Veterinary Pathology, College of Veterinary Science and Animal husbandry, NDVSU, Rewa, Jabalpur, 486001, India
| | - R P Singh
- Division of Bacteriology and Mycology, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| | - Praveen Singh
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| |
Collapse
|
4
|
Urano E, Itoh Y, Suzuki T, Sasaki T, Kishikawa JI, Akamatsu K, Higuchi Y, Sakai Y, Okamura T, Mitoma S, Sugihara F, Takada A, Kimura M, Nakao S, Hirose M, Sasaki T, Koketsu R, Tsuji S, Yanagida S, Shioda T, Hara E, Matoba S, Matsuura Y, Kanda Y, Arase H, Okada M, Takagi J, Kato T, Hoshino A, Yasutomi Y, Saito A, Okamoto T. An inhaled ACE2 decoy confers protection against SARS-CoV-2 infection in preclinical models. Sci Transl Med 2023; 15:eadi2623. [PMID: 37647387 DOI: 10.1126/scitranslmed.adi2623] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
The Omicron variant continuously evolves under the humoral immune pressure exerted by vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the resulting Omicron subvariants display further immune evasion and antibody escape. An engineered angiotensin-converting enzyme 2 (ACE2) decoy composed of high-affinity ACE2 and an IgG1 Fc domain could offer an alternative modality to neutralize SARS-CoV-2. We previously reported its broad spectrum and therapeutic potential in rodent models. Here, we demonstrate that the engineered ACE2 decoy retains neutralization activity against Omicron subvariants, including the currently emerging XBB and BQ.1 strains, which completely evade antibodies currently in clinical use. SARS-CoV-2, under the suboptimal concentration of neutralizing drugs, generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against the engineered ACE2 decoy. Furthermore, inhalation of aerosolized decoys improved the outcomes of rodents infected with SARS-CoV-2 at a 20-fold lower dose than that of intravenous administration. Last, the engineered ACE2 decoy exhibited therapeutic efficacy for cynomolgus macaques infected with SARS-CoV-2. These results indicate that this engineered ACE2 decoy represents a promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation could be considered as a noninvasive approach to enhance the efficacy of COVID-19 treatments.
Collapse
Affiliation(s)
- Emiko Urano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Takanori Sasaki
- Collaborative Research Center for Okayama Medical Innovation Center, Dentistry, and Pharmaceutical Sciences, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-0082, Japan
| | - Jun-Ichi Kishikawa
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Kanako Akamatsu
- Department of Oncogene, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Shuya Mitoma
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Akira Takada
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Mari Kimura
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shuto Nakao
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Mika Hirose
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Tadahiro Sasaki
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Ritsuko Koketsu
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shunya Tsuji
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 565-0871, Japan
| | - Tatsuo Shioda
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 565-0871, Japan
| | - Hisashi Arase
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Okada
- Department of Oncogene, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Oncogene Research, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Junichi Takagi
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
- Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie, 514-8507, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, 889-2155, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Tada T, Dcosta BM, Zhou H, Landau NR. Prophylaxis and treatment of SARS-CoV-2 infection by an ACE2 receptor decoy in a preclinical animal model. iScience 2023; 26:106092. [PMID: 36741912 PMCID: PMC9886562 DOI: 10.1016/j.isci.2023.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The emergence of SARS-CoV-2 variants with highly mutated spike proteins has presented an obstacle to the use of monoclonal antibodies for the prevention and treatment of SARS-CoV-2 infection. We show that a high-affinity receptor decoy protein in which a modified ACE2 ectodomain is fused to a single domain of an immunoglobulin heavy chain Fc region dramatically suppressed virus loads in mice upon challenge with a high dose of parental SARS-CoV-2 or Omicron variants. The decoy also potently suppressed virus replication when administered shortly post-infection. The decoy approach offers protection against the current viral variants and, potentially, against SARS-CoV-2 variants that may emerge with the continued evolution of the spike protein or novel viruses that use ACE2 for virus entry.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Belinda M. Dcosta
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Nathaniel R. Landau
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| |
Collapse
|
6
|
Matsumoto K, Kuwata T, Tolbert WD, Richard J, Ding S, Prévost J, Takahama S, Judicate GP, Ueno T, Nakata H, Kobayakawa T, Tsuji K, Tamamura H, Smith AB, Pazgier M, Finzi A, Matsushita S. Characterization of a Novel CD4 Mimetic Compound YIR-821 against HIV-1 Clinical Isolates. J Virol 2023; 97:e0163822. [PMID: 36511698 PMCID: PMC9888228 DOI: 10.1128/jvi.01638-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Small CD4-mimetic compound (CD4mc), which inhibits the interaction between gp120 with CD4, acts as an entry inhibitor and induces structural changes in the HIV-1 envelope glycoprotein trimer (Env) through its insertion within the Phe43 cavity of gp120. We recently developed YIR-821, a novel CD4mc, that has potent antiviral activity and lower toxicity than the prototype NBD-556. To assess the possibility of clinical application of YIR-821, we tested its antiviral activity using a panel of HIV-1 pseudoviruses from different subtypes. YIR-821 displayed entry inhibitor activity against 53.5% (21/40) of the pseudoviruses tested and enhanced neutralization mediated by coreceptor binding site (CoRBS) antibodies in 50% (16/32) of these. Furthermore, when we assessed the antiviral effects using a panel of pseudoviruses and autologous plasma IgG, enhancement of antibody-mediated neutralization activity was observed for 48% (15/31) of subtype B strains and 51% (28/55) of non-B strains. The direct antiviral activity of YIR-821 as an entry inhibitor was observed in 53% of both subtype B (27/51) and non-B subtype (40/75) pseudoviruses. Enhancement of antibody-dependent cellular cytotoxicity was also observed with YIR-821 for all six selected clinical isolates, as well as for the transmitted/founder (T/F) CH58 virus-infected cells. The sequence diversity in the CD4 binding site as well as other regions, such as the gp120 inner domain layers or gp41, may be involved in the multiple mechanisms related to the sensitive/resistant phenotype of the virus to YIR-821. Our findings may facilitate the clinical application of YIR-821. IMPORTANCE Small CD4-mimetic compound (CD4mc) interacts with the Phe43 cavity and triggers conformational changes, enhancing antibody-mediated neutralization and antibody-dependent cellular cytotoxicity (ADCC). Here, we evaluated the effect of YIR-821, a novel CD4mc, against clinical isolates, including both subtype B and non-B subtype viruses. Our results confirm the desirable properties of YIR-821, which include entry inhibition, enhancement of IgG-neutralization, binding, and ADCC, in addition to low toxicity and long half-life in a rhesus macaque model, that might facilitate the clinical application of this novel CD4mc. Our observation of primary viruses that are resistant to YIR-821 suggests that further development of CD4mcs with different structural properties is required.
Collapse
Affiliation(s)
- Kaho Matsumoto
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeo Kuwata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Shokichi Takahama
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - George P. Judicate
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hirotomo Nakata
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Shuzo Matsushita
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Prophylaxis and Treatment of SARS-CoV-2 infection by an ACE2 Receptor Decoy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522401. [PMID: 36656772 PMCID: PMC9844012 DOI: 10.1101/2022.12.31.522401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The emergence of SARS-CoV-2 variants with highly mutated spike proteins has presented an obstacle to the use of monoclonal antibodies for the prevention and treatment of SARS-CoV-2 infection. We show that a high affinity receptor decoy protein in which a modified ACE2 ectodomain is fused to a single domain of an immunoglobulin heavy chain Fc region dramatically suppressed virus loads in mice upon challenge with a high dose of parental SARS-CoV-2 or Omicron variants. The decoy also potently suppressed virus replication when administered shortly post-infection. The decoy approach offers protection against the current viral variants and, potentially, against SARS-CoV-2 variants that may emerge with the continued evolution of the spike protein or novel viruses that use ACE2 for virus entry.
Collapse
|
8
|
Hodge EA, Naika GS, Kephart SM, Nguyen A, Zhu R, Benhaim MA, Guo W, Moore JP, Hu SL, Sanders RW, Lee KK. Structural dynamics reveal isolate-specific differences at neutralization epitopes on HIV Env. iScience 2022; 25:104449. [PMID: 35677643 PMCID: PMC9167985 DOI: 10.1016/j.isci.2022.104449] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022] Open
Abstract
The envelope glycoprotein (Env) is the sole target for neutralizing antibodies against HIV and the most rapidly evolving, variable part of the virus. High-resolution structures of Env trimers captured in the pre-fusion, closed conformation have revealed a high degree of structural similarity across diverse isolates. Biophysical data, however, indicate that Env is highly dynamic, and the level of dynamics and conformational sampling is believed to vary dramatically between HIV isolates. Dynamic differences likely influence neutralization sensitivity, receptor activation, and overall trimer stability. Here, using hydrogen/deuterium-exchange mass spectrometry (HDX-MS), we have mapped local dynamics across native-like Env SOSIP trimers from diverse isolates. We show that significant differences in epitope order are observed across most sites targeted by broadly neutralizing antibodies. We also observe isolate-dependent conformational switching that occurs over a broad range of timescales. Lastly, we report that hyper-stabilizing mutations that dampen dynamics in some isolates have little effect on others.
Collapse
Affiliation(s)
- Edgar A. Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gajendra S. Naika
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Sally M. Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam Nguyen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Richard Zhu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mark A. Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Wenjin Guo
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - John P. Moore
- Division of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Rogier W. Sanders
- Division of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
10
|
Zhang Z, Zeng E, Zhang L, Wang W, Jin Y, Sun J, Huang S, Yin W, Dai J, Zhuang Z, Chen Z, Sun J, Zhu A, Li F, Cao W, Li X, Shi Y, Gan M, Zhang S, Wei P, Huang J, Zhong N, Zhong G, Zhao J, Wang Y, Shao W, Zhao J. Potent prophylactic and therapeutic efficacy of recombinant human ACE2-Fc against SARS-CoV-2 infection in vivo. Cell Discov 2021; 7:65. [PMID: 34385423 PMCID: PMC8359631 DOI: 10.1038/s41421-021-00302-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
The current COVID-19 pandemic, caused by SARS-CoV-2, poses a serious public health threat. Effective therapeutic and prophylactic treatments are urgently needed. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, which binds to the receptor binding domain (RBD) of SARS-CoV-2 spike protein. Here, we developed recombinant human ACE2-Fc fusion protein (hACE2-Fc) and a hACE2-Fc mutant with reduced catalytic activity. hACE2-Fc and the hACE2-Fc mutant both efficiently blocked entry of SARS-CoV-2, SARS-CoV, and HCoV-NL63 into hACE2-expressing cells and inhibited SARS-CoV-2 S protein-mediated cell-cell fusion. hACE2-Fc also neutralized various SARS-CoV-2 strains with enhanced infectivity including D614G and V367F mutations, as well as the emerging SARS-CoV-2 variants, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.1 (Kappa), and B.1.617.2 (Delta), demonstrating its potent and broad-spectrum antiviral effects. In addition, hACE2-Fc proteins protected HBE from SARS-CoV-2 infection. Unlike RBD-targeting neutralizing antibodies, hACE2-Fc treatment did not induce the development of escape mutants. Furthermore, both prophylactic and therapeutic hACE2-Fc treatments effectively protected mice from SARS-CoV-2 infection, as determined by reduced viral replication, weight loss, histological changes, and inflammation in the lungs. The protection provided by hACE2 showed obvious dose-dependent efficacy in vivo. Pharmacokinetic data indicated that hACE2-Fc has a relative long half-life in vivo compared to soluble ACE2, which makes it an excellent candidate for prophylaxis and therapy for COVID-19 as well as for SARS-CoV and HCoV-NL63 infections.
Collapse
Grants
- This work is supported by the grants from The National Key Research and Development Program of China (2018YFC1200100, 2018ZX10301403, 2020YFC0842400), National Natural Science Foundation of China (82025001), Ministries of Science and Technology, Education of Guangdong province (2020B1111330001, 2020A111128008, 2020B1111320003, 2020A0505100063, 2020KZDZX1158, B195001248, 2020A1515010911, 2019TX05Y120), National Key Technology R&D Program (2018YFC1311900), Guangdong Science and Technology Foundation (2019B030316028), Guangzhou Institute of Respiratory Health Open Project (Funds provided by China Evergrande Group, 2020GIRHHMS07 and 2020GIRHHMS07), State Key Laboratory of Respiratory Disease (SKLRD-QN-201912 and SKLRD-Z-202007), Guangzhou Medical University High-level University Innovation Team Training Program (Guangzhou Medical University released [2017] No.159).
Collapse
Affiliation(s)
- Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Eric Zeng
- Nanjing Legend Biotech Co., Ltd, Nanjing, Jiangsu, China
| | - Lu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong, China
| | - Weiming Wang
- Nanjing GenScript Biotech Co., Ltd, NanJing, Jiangsu, China
| | - Yingkang Jin
- Pediatric Pulmonary Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiye Sun
- Nanjing GenScript Biotech Co., Ltd, NanJing, Jiangsu, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weitao Cao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaobo Li
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong, China
| | - Mian Gan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peilan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jicheng Huang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guocai Zhong
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China.
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Weihui Shao
- Nanjing GenScript Biotech Co., Ltd, NanJing, Jiangsu, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou laboratory, Bio-island, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Umotoy JC, de Taeye SW. Antibody Conjugates for Targeted Therapy Against HIV-1 as an Emerging Tool for HIV-1 Cure. Front Immunol 2021; 12:708806. [PMID: 34276704 PMCID: PMC8282362 DOI: 10.3389/fimmu.2021.708806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Although advances in antiretroviral therapy (ART) have significantly improved the life expectancy of people living with HIV-1 (PLWH) by suppressing HIV-1 replication, a cure for HIV/AIDS remains elusive. Recent findings of the emergence of drug resistance against various ART have resulted in an increased number of treatment failures, thus the development of novel strategies for HIV-1 cure is of immediate need. Antibody-based therapy is a well-established tool in the treatment of various diseases and the engineering of new antibody derivatives is expanding the realms of its application. An antibody-based carrier of anti-HIV-1 molecules, or antibody conjugates (ACs), could address the limitations of current HIV-1 ART by decreasing possible off-target effects, reduce toxicity, increasing the therapeutic index, and lowering production costs. Broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency against HIV-1 are currently being explored to prevent or treat HIV-1 infection in the clinic. Moreover, bNAbs can be engineered to deliver cytotoxic or immune regulating molecules as ACs, further increasing its therapeutic potential for HIV-1 cure. ACs are currently an important component of anticancer treatment with several FDA-approved constructs, however, to date, no ACs are approved to treat viral infections. This review aims to outline the development of AC for HIV-1 cure, examine the variety of carriers and payloads used, and discuss the potential of ACs in the current HIV-1 cure landscape.
Collapse
Affiliation(s)
- Jeffrey C Umotoy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
13
|
Tada T, Fan C, Chen JS, Kaur R, Stapleford KA, Gristick H, Dcosta BM, Wilen CB, Nimigean CM, Landau NR. An ACE2 Microbody Containing a Single Immunoglobulin Fc Domain Is a Potent Inhibitor of SARS-CoV-2. Cell Rep 2020; 33:108528. [PMID: 33326798 PMCID: PMC7705358 DOI: 10.1016/j.celrep.2020.108528] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Soluble forms of angiotensin-converting enzyme 2 (ACE2) have recently been shown to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We report on an improved soluble ACE2, termed a "microbody," in which the ACE2 ectodomain is fused to Fc domain 3 of the immunoglobulin (Ig) heavy chain. The protein is smaller than previously described ACE2-Ig Fc fusion proteins and contains an H345A mutation in the ACE2 catalytic active site that inactivates the enzyme without reducing its affinity for the SARS-CoV-2 spike. The disulfide-bonded ACE2 microbody protein inhibits entry of SARS-CoV-2 spike protein pseudotyped virus and replication of live SARS-CoV-2 in vitro and in a mouse model. Its potency is 10-fold higher than soluble ACE2, and it can act after virus bound to the cell. The microbody inhibits the entry of β coronaviruses and virus with the variant D614G spike. The ACE2 microbody may be a valuable therapeutic for coronavirus disease 2019 (COVID-19) that is active against viral variants and future coronaviruses.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Chen Fan
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ramanjit Kaur
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | | | - Harry Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Belinda M Dcosta
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
14
|
Moyo T, Guleid FH, Schomaker M, Williamson C, Dorfman JR. HIV-1 Subtype C Tier 3 Viruses Have Increased Infectivity Compared to Tier 2 Viruses. AIDS Res Hum Retroviruses 2020; 36:1010-1019. [PMID: 32935560 DOI: 10.1089/aid.2020.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A primary concern of an antibody-based HIV-1 therapy is the virus' ability to rapidly escape antibody responses. Therefore, we investigated the relationships between antibody neutralization sensitivity, viral phenotype, and infectivity in 13 subtype C viruses using a HeLa transfectant-based assay. We observed that the seven tier 3 viruses exhibited higher infectivity than the tier 2 viruses, suggesting that higher neutralization resistance did not have a substantial entry cost. There was no relationship between neutralization resistance and susceptibility to entry inhibitors Maraviroc, PSC RANTES, or the fusion inhibitor T20, indicating that neutralization resistance may not alter these inhibitor target sites. By analyzing glycosylation patterns in 82 subtype C viruses, we found that the presence of an N-linked glycan motif at position N413 and its absence at N332 were the most important predictors of neutralization resistance. In a set of 200 subtype C viruses, tier 3 strains were more resistant than tier 2 or 1B viruses to several broadly neutralizing monoclonal antibodies targeting three different epitopes. This suggests that it is unlikely that resistance to antibodies targeting a single epitope drives overall resistance. In the context of an antibody-based intervention, highly resistant viruses with increased infectivity, circulating in the population, could hinder HIV-1 control since entry of tier 3 viruses is not always selected against. Therefore, for any long-term antibody-based intervention to be globally relevant, it must elicit responses that limit the occurrence of resistance.
Collapse
Affiliation(s)
- Thandeka Moyo
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Fatuma H. Guleid
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Michael Schomaker
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Jeffrey R. Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Nanoparticles presenting clusters of CD4 expose a universal vulnerability of HIV-1 by mimicking target cells. Proc Natl Acad Sci U S A 2020; 117:18719-18728. [PMID: 32690692 PMCID: PMC7414181 DOI: 10.1073/pnas.2010320117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CD4-based decoy approaches against HIV-1 are attractive options for long-term viral control, but initial designs, including soluble CD4 (sCD4) and CD4-Ig, were ineffective. To evaluate a therapeutic that more accurately mimics HIV-1 target cells compared with monomeric sCD4 and dimeric CD4-Ig, we generated virus-like nanoparticles that present clusters of membrane-associated CD4 (CD4-VLPs) to permit high-avidity binding of trimeric HIV-1 envelope spikes. In neutralization assays, CD4-VLPs were >12,000-fold more potent than sCD4 and CD4-Ig and >100-fold more potent than the broadly neutralizing antibody (bNAb) 3BNC117, with >12,000-fold improvements against strains poorly neutralized by 3BNC117. CD4-VLPs also neutralized patient-derived viral isolates that were resistant to 3BNC117 and other bNAbs. Intraperitoneal injections of CD4-CCR5-VLP produced only subneutralizing plasma concentrations in HIV-1-infected humanized mice but elicited CD4-binding site mutations that reduced viral fitness. All mutant viruses showed reduced sensitivity to sCD4 and CD4-Ig but remained sensitive to neutralization by CD4-VLPs in vitro. In vitro evolution studies demonstrated that CD4-VLPs effectively controlled HIV-1 replication at neutralizing concentrations, and viral escape was not observed. Moreover, CD4-VLPs potently neutralized viral swarms that were completely resistant to CD4-Ig, suggesting that escape pathways that confer resistance against conventional CD4-based inhibitors are ineffective against CD4-VLPs. These findings suggest that therapeutics that mimic HIV-1 target cells could prevent viral escape by exposing a universal vulnerability of HIV-1: the requirement to bind CD4 on a target cell. We propose that therapeutic and delivery strategies that ensure durable bioavailability need to be developed to translate this concept into a clinically feasible functional cure therapy.
Collapse
|
16
|
McCune JM, Weissman IL. The Ban on US Government Funding Research Using Human Fetal Tissues: How Does This Fit with the NIH Mission to Advance Medical Science for the Benefit of the Citizenry? Stem Cell Reports 2020; 13:777-786. [PMID: 31722191 PMCID: PMC6895704 DOI: 10.1016/j.stemcr.2019.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 01/19/2023] Open
Abstract
Some have argued that human fetal tissue research is unnecessary and/or immoral. Recently, the Trump administration has taken the drastic––and we believe misguided––step to effectively ban government-funded research on fetal tissue altogether. In this article, we show that entire lines of research and their clinical outcomes would not have progressed had fetal tissue been unavailable. We argue that this research has been carried out in a manner that is ethical and legal, and that it has provided knowledge that has saved lives, particularly those of pregnant women, their unborn fetuses, and newborns. We believe that those who support a ban on the use of fetal tissue are halting medical progress and therefore endangering the health and lives of many, and for this they should accept responsibility. At the very least, we challenge them to be true to their beliefs: if they wish to short-circuit a scientific process that has led to medical advances, they should pledge to not accept for themselves the health benefits that such advances provide.
Collapse
Affiliation(s)
- Joseph M McCune
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and Ludwig Center for Cancer Stem Cell Research, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Su X, Wang Q, Wen Y, Jiang S, Lu L. Protein- and Peptide-Based Virus Inactivators: Inactivating Viruses Before Their Entry Into Cells. Front Microbiol 2020; 11:1063. [PMID: 32523582 PMCID: PMC7261908 DOI: 10.3389/fmicb.2020.01063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Infectious diseases caused by human immunodeficiency virus (HIV) and other highly pathogenic enveloped viruses, have threatened the global public health. Most antiviral drugs act as passive defenders to inhibit viral replication inside the cell, while a few of them function as gate keepers to combat viruses outside the cell, including fusion inhibitors, e.g., enfuvirtide, and receptor antagonists, e.g., maraviroc, as well as virus inactivators (including attachment inhibitors). Different from fusion inhibitors and receptor antagonists that must act in the presence of target cells, virus inactivators can actively inactivate cell-free virions in the blood, through interaction with one or more sites in the envelope glycoproteins (Envs) on virions. Notably, a number of protein- and peptide-based virus inactivators (PPVIs) under development are expected to have a better utilization rate than the current antiviral drugs and be safer for in vivo human application than the chemical-based virus inactivators. Here we have highlighted recent progress in developing PPVIs against several important enveloped viruses, including HIV, influenza virus, Zika virus (ZIKV), dengue virus (DENV), and herpes simplex virus (HSV), and the potential use of PPVIs for urgent treatment of infection by newly emerging or re-emerging viruses.
Collapse
Affiliation(s)
- Xiaojie Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Zuru DU. Theoretical model for the design and preparation of a CNT–ursonic acid drug matrix as HIV-gp120 entry inhibitor. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Pu J, Wang Q, Xu W, Lu L, Jiang S. Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses 2019; 11:v11080705. [PMID: 31374953 PMCID: PMC6722851 DOI: 10.3390/v11080705] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Application of highly active antiretroviral drugs (ARDs) effectively reduces morbidity and mortality in HIV-infected individuals. However, the emergence of multiple drug-resistant strains has led to the increased failure of ARDs, thus calling for the development of anti-HIV drugs with targets or mechanisms of action different from those of the current ARDs. The first peptide-based HIV entry inhibitor, enfuvirtide, was approved by the U.S. FDA in 2003 for treatment of HIV/AIDS patients who have failed to respond to the current ARDs, which has stimulated the development of several series of protein- and peptide-based HIV entry inhibitors in preclinical and clinical studies. In this review, we highlighted the properties and mechanisms of action for those promising protein- and peptide-based HIV entry inhibitors targeting the HIV-1 gp120 or gp41 and discussed their advantages and disadvantages, compared with the current ARDs.
Collapse
Affiliation(s)
- Jing Pu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Combination antiretroviral therapy (ART) has enabled tremendous progress in suppressing HIV replication in infected patients. However, ART alone cannot eradicate HIV and its latent, persisting reservoirs. Novel approaches are needed to eradicate the virus or achieve functional cure in the absence of ART. RECENT FINDINGS Adoptive T-cell therapies were initially tested in HIV-infected individuals with limited efficiency. Benefiting from new and improved methodologies, an increasing array of CAR T-cell therapies has been successfully developed in the cancer immunotherapy field, demonstrating promising new avenues that could be applied to HIV. Numerous studies have characterized various HIV-specific CAR constructs, types of cytolytic effector cells, and CAR-expressing cells' trafficking to the reservoir compartments, warranting further in-vivo efforts. Notably, the ability of CAR cells to persist and function in low-antigen environments in vivo, that is, in ART-suppressed patients, remains unclear. SUMMARY Despite promising results in preclinical studies, only a handful of clinical trials have been initiated worldwide. Several obstacles remain prior to successful application of HIV-specific CAR T-cell therapies in patients. In this review, we survey the current state of the field, and address paths towards realizing the goal of an efficacious HIV CAR T-cell product.
Collapse
|
21
|
Ancestral sequences from an elite neutralizer proximal to the development of neutralization resistance as a potential source of HIV vaccine immunogens. PLoS One 2019; 14:e0213409. [PMID: 30969970 PMCID: PMC6457492 DOI: 10.1371/journal.pone.0213409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022] Open
Abstract
A major challenge in HIV vaccine development is the identification of immunogens able to elicit broadly neutralizing antibodies (bNAbs). While remarkable progress has been made in the isolation and characterization of bNAbs, the epitopes they recognize appear to be poorly immunogenic. Thus, none of the candidate vaccines developed to date has induced satisfactory levels of neutralizing antibodies to the HIV envelope protein (Env). One approach to the problem of poor immunogenicity is to build vaccines based on envelope (env) genes retrieved from rare individuals termed elite neutralizers (ENs) who at one time possessed specific sequences that stimulated the formation of bNAbs. Env proteins selected from these individuals could possess uncommon, yet to be defined, structural features that enhance the immunogenicity of epitopes recognized by bNAbs. Here we describe the recovery of envs from an EN that developed unusually broad and potent bNAbs. As longitudinal specimens were not available, we combined plasma and provirus sequences acquired from a single time-point to infer a phylogenetic tree. Combining ancestral reconstruction data with virus neutralization data allowed us to sift through the myriad of virus quasi-species that evolved in this individual to identify envelope sequences from the nodes that appeared to define the transition from neutralization sensitive envs to the neutralization resistant envs that occur in EN plasma. Synthetic genes from these nodes were functional in infectivity assays and sensitive to neutralization by bNAbs, and may provide a novel source of immunogens for HIV vaccine development.
Collapse
|
22
|
Antiviral Activity of HIV gp120-Targeting Bispecific T Cell Engager Antibody Constructs. J Virol 2018; 92:JVI.00491-18. [PMID: 29720517 DOI: 10.1128/jvi.00491-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Today's gold standard in HIV therapy is combined antiretroviral therapy (cART). It requires strict adherence by patients and lifelong medication, which can lower the viral load below detection limits and prevent HIV-associated immunodeficiency but cannot cure patients. The bispecific T cell-engaging (BiTE) antibody technology has demonstrated long-term relapse-free outcomes in patients with relapsed and refractory acute lymphocytic leukemia. Here, we generated BiTE antibody constructs that target the HIV-1 envelope protein gp120 (HIV gp120) using either the scFv B12 or VRC01, the first two extracellular domains (1 + 2) of human CD4 alone or joined to the single chain variable fragment (scFv) of the antibody 17b fused to an anti-human CD3ε scFv. These engineered human BiTE antibody constructs showed engagement of T cells for redirected lysis of HIV gp120-transfected CHO cells. Furthermore, they substantially inhibited HIV-1 replication in peripheral blood mononuclear cells (PBMCs) as well as in macrophages cocultured with autologous CD8+ T cells, the most potent being the human CD4(1 + 2) BiTE [termed CD(1 + 2) h BiTE] antibody construct and the CD4(1 + 2)L17b BiTE antibody construct. The CD4(1 + 2) h BiTE antibody construct promoted HIV infection of human CD4-/CD8+ T cells. In contrast, the neutralizing B12 and the VRC01 BiTE antibody constructs, as well as the CD4(1 + 2)L17b BiTE antibody construct, did not. Thus, BiTE antibody constructs targeting HIV gp120 are very promising for constraining HIV and warrant further development as novel antiviral therapy with curative potential.IMPORTANCE HIV is a chronic infection well controlled with the current cART. However, we lack a cure for HIV, and the HIV pandemic goes on. Here, we showed in vitro and ex vivo that a BiTE antibody construct targeting HIV gp120 resulted in substantially reduced HIV replication. In addition, these BiTE antibody constructs display efficient killing of gp120-expressing cells and inhibited replication in ex vivo HIV-infected PBMCs or macrophages. We believe that BiTE antibody constructs recognizing HIV gp120 could be a very valuable strategy for a cure of HIV in combination with cART and compounds which reverse latency.
Collapse
|
23
|
HIV transmitted/founder vaccines elicit autologous tier 2 neutralizing antibodies for the CD4 binding site. PLoS One 2017; 12:e0177863. [PMID: 29020058 PMCID: PMC5636061 DOI: 10.1371/journal.pone.0177863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/04/2017] [Indexed: 01/16/2023] Open
Abstract
Here we report the construction, antigenicity and initial immunogenicity testing of DNA and modified vaccinia Ankara (MVA) vaccines expressing virus-like particles (VLPs) displaying sequential clade C Envelopes (Envs) that co-evolved with the elicitation of broadly neutralizing antibodies (bnAbs) to the CD4 binding site (CD4bs) in HIV-infected individual CH0505. The VLP-displayed Envs showed reactivity for conformational epitopes displayed on the receptor-binding form of Env. Two inoculations of the DNA-T/F vaccine, followed by 3 inoculations of the MVA-T/F vaccine and a final inoculation of the MVA-T/F plus a gp120-T/F protein vaccine elicited nAb to the T/F virus in 2 of 4 rhesus macaques (ID50 of ~175 and ~30). Neutralizing Ab plateaued at 100% neutralization and mapped to the CD4bs like the bnAbs elicited in CH0505. The nAb did not have breadth for other tier 2 viruses. Immunizations with T/F followed by directed-lineage vaccines, both with and without co-delivery of directed-lineage gp120 boosts, failed to elicit tier 2 neutralizing Ab for the CD4bs. Thus, pulsed exposures to DNA and MVA-expressed VLPs plus gp120 protein of a T/F Env can induce autologous tier 2 nAbs to the CD4bs.
Collapse
|
24
|
Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States. J Virol 2017; 91:JVI.00174-17. [PMID: 28490588 DOI: 10.1128/jvi.00174-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023] Open
Abstract
The envelope glycoproteins (Envs) on the surfaces of HIV-1 particles are targeted by host antibodies. Primary HIV-1 isolates demonstrate different global sensitivities to antibody neutralization; tier-1 isolates are sensitive, whereas tier-2 isolates are more resistant. Single-site mutations in Env can convert tier-2 into tier-1-like viruses. We hypothesized that such global change in neutralization sensitivity results from weakening of intramolecular interactions that maintain Env integrity. Three strategies commonly applied to perturb protein structure were tested for their effects on global neutralization sensitivity: exposure to low temperature, Env-activating ligands, and a chaotropic agent. A large panel of diverse tier-2 isolates from clades B and C was analyzed. Incubation at 0°C, which globally weakens hydrophobic interactions, causes gradual and reversible exposure of the coreceptor-binding site. In the cold-induced state, Envs progress at isolate-specific rates to unstable forms that are sensitive to antibody neutralization and then gradually lose function. Agents that mimic the effects of CD4 (CD4Ms) also induce reversible structural changes to states that exhibit isolate-specific stabilities. The chaotropic agent urea (at low concentrations) does not affect the structure or function of native Env. However, urea efficiently perturbs metastable states induced by cold and CD4Ms and increases their sensitivity to antibody neutralization and their inactivation rates Therefore, chemical and physical agents can guide Env from the stable native state to perturbation-sensitive forms and modulate their stability to bestow tier-1-like properties on primary tier-2 strains. These concepts can be applied to enhance the potency of vaccine-elicited antibodies and microbicides at mucosal sites of HIV-1 transmission.IMPORTANCE An effective vaccine to prevent transmission of HIV-1 is a primary goal of the scientific and health care communities. Vaccine-elicited antibodies target the viral envelope glycoproteins (Envs) and can potentially inhibit infection. However, the potency of such antibodies is generally low. Single-site mutations in Env can enhance the global sensitivity of HIV-1 to neutralization by antibodies. We found that such a hypersensitivity phenotype can also be induced by agents that destabilize protein structure. Exposure to 0°C or low concentrations of Env-activating ligands gradually guides Env to metastable forms that expose cryptic epitopes and that are highly sensitive to neutralization. Low concentrations of the chaotropic agent urea do not affect native Env but destabilize perturbed states induced by cold or CD4Ms and increase their neutralization. The concept of enhancing antibody sensitivity by chemical agents that affect the structural stability of proteins can be applied to increase the potency of topical microbicides and vaccine-elicited antibodies.
Collapse
|
25
|
Momota K, Furukawa H, Kimura S, Hotoda H, Oka S, Shimada K. Antiviral and Biological Properties of Dimethoxytrityl-Linked Guanine-Rich Oligodeoxynucleotides that Inhibit Replication by Primary Clinical Human Immunodeficiency virus Type 1 Isolates. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- K Momota
- Biological Research Laboratories, Sankyo, 2-58 Hiromachi 1-chome Shinagawa-ku, Tokyo 140, Japan
| | - H Furukawa
- Biological Research Laboratories, Sankyo, 2-58 Hiromachi 1-chome Shinagawa-ku, Tokyo 140, Japan
| | - S Kimura
- The Department of Infection Control and Prevention, Faculty of Medicine, Tokyo University, 3-1 Hongo 7-chome Bunkyo-ku, Tokyo 113, Japan
| | - H Hotoda
- Exploratory Chemistry Research Laboratories, Sankyo, 2-58 Hiromachi 1-chome Shinagawa-ku, Tokyo 140, Japan
| | - S Oka
- The Department of Infectious Diseases, Institute of Medical Science, 4-6 Shirokanedai 1-chome Minato-ku, Tokyo 108, Japan
| | - K Shimada
- The Department of Infectious Diseases, Institute of Medical Science, 4-6 Shirokanedai 1-chome Minato-ku, Tokyo 108, Japan
| |
Collapse
|
26
|
Musumeci G, Bon I, Lembo D, Cagno V, Re MC, Signoretto C, Diani E, Lopalco L, Pastori C, Martin L, Ponchel G, Gibellini D, Bouchemal K. M48U1 and Tenofovir combination synergistically inhibits HIV infection in activated PBMCs and human cervicovaginal histocultures. Sci Rep 2017; 7:41018. [PMID: 28145455 PMCID: PMC5286506 DOI: 10.1038/srep41018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Microbicides are considered a promising strategy for preventing human immunodeficiency virus (HIV-1) transmission and disease. In this report, we first analyzed the antiviral activity of the miniCD4 M48U1 peptide formulated in hydroxyethylcellulose (HEC) hydrogel in activated peripheral blood mononuclear cells (PBMCs) infected with R5- and X4–tropic HIV-1 strains. The results demonstrate that M48U1 prevented infection by several HIV-1 strains including laboratory strains, and HIV-1 subtype B and C strains isolated from the activated PBMCs of patients. M48U1 also inhibited infection by two HIV-1 transmitted/founder infectious molecular clones (pREJO.c/2864 and pTHRO.c/2626). In addition, M48U1 was administered in association with tenofovir, and these two antiretroviral drugs synergistically inhibited HIV-1 infection. In the next series of experiments, we tested M48U1 alone or in combination with tenofovir in HEC hydrogel with an organ-like structure mimicking human cervicovaginal tissue. We demonstrated a strong antiviral effect in absence of significant tissue toxicity. Together, these results indicate that co-treatment with M48U1 plus tenofovir is an effective antiviral strategy that may be used as a new topical microbicide to prevent HIV-1 transmission.
Collapse
Affiliation(s)
- Giuseppina Musumeci
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - Isabella Bon
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Valeria Cagno
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Maria Carla Re
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Erica Diani
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif sur Yvette, F-91191, France
| | - Gilles Ponchel
- Institut Galien Paris Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris Saclay, 5 rue J-B. Clément, 92296, Châtenay-Malabry cedex, France
| | - Davide Gibellini
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Kawthar Bouchemal
- Institut Galien Paris Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris Saclay, 5 rue J-B. Clément, 92296, Châtenay-Malabry cedex, France
| |
Collapse
|
27
|
Abstract
Despite major advances in our understanding of the biology of HIV-1 infection, and advances in antiretroviral therapy to treat the disease, there were 2.1 million new cases of HIV-1 infection in 2015, and 36.7 million people living with AIDS (http://www.unaids.org/en/resources/fact-sheet ). Thus, a vaccine that can prevent HIV-infection remains a global priority. Thirty-three years after the discovery of HIV-1(1 ), and the demonstration it was the cause of AIDS(2 ) and after 6 HIV-1 vaccine efficacy trials (3 –8 ), no HIV-1 candidate vaccine has shown enough efficacy to be approved for clinical use. Of several vaccine concepts tested in efficacy trials, only one, the RV144 pox virus prime, protein boost (ALVAC/AIDSVAX B/E) vaccine, showed a low level of vaccine protection with an estimated 31% vaccine efficacy (8 ). Candidate vaccines have sought to elicit both antibody and T-cell responses, but to fully prevent the acquisition of infection, a major focus has been on the induction of protective antibody responses (9 , 10 ). Hence, the focus of this issue of Immunologic Reviews is “Antibodies and Immunity to HIV”. Animal models have demonstrated that passive administration of HIV-1-- neutralizing antibodies can fully protect against infection, but the induction of such antibodies via immunization remains a major scientific challenge. With recent advances in the isolation and characterization of broadly neutralizing antibodies (bnAbs) from HIV-1-infected subjects, in elucidating structures of the HIV-1 envelope glycoprotein (Env), in defining novel approaches to immunogen design, and in improved understanding of the immunological pathways leading to bNAb elicitation, the challenge developing an HIV-1 vaccine appears to be more tractable. The articles in this issue highlight both major areas of HIV-1 vaccine development progress and remaining obstacles, and provide context for the renewed optimism that a highly effective vaccine, while not imminent, is possible.
Collapse
Affiliation(s)
- Barton F. Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Shi S, Nguyen PK, Cabral HJ, Diez-Barroso R, Derry PJ, Kanahara SM, Kumar VA. Development of peptide inhibitors of HIV transmission. Bioact Mater 2016; 1:109-121. [PMID: 29744399 PMCID: PMC5883972 DOI: 10.1016/j.bioactmat.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of HIV has long faced the challenge of high mutation rates leading to rapid development of resistance, with ongoing need to develop new methods to effectively fight the infection. Traditionally, early HIV medications were designed to inhibit RNA replication and protein production through small molecular drugs. Peptide based therapeutics are a versatile, promising field in HIV therapy, which continues to develop as we expand our understanding of key protein-protein interactions that occur in HIV replication and infection. This review begins with an introduction to HIV, followed by the biological basis of disease, current clinical management of the disease, therapeutics on the market, and finally potential avenues for improved drug development.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- ART, antiretroviral therapy
- CDC, Centers for Disease Control and Prevention
- Drug development
- FDA, US Food and Drug Administration
- FY, fiscal year
- HAART, highly active antiretroviral therapy
- HCV, hepatitis C Virus
- HIV
- HIV treatment
- HIV, human immunodeficiency virus
- INSTI, Integrase strand transfer inhibitors
- LEDGF, lens epithelium-derived growth factor
- NNRTI, Non-nucleoside reverse transcriptase inhibitors
- NRTI, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors
- Peptide inhibitor
- Peptide therapeutic
- R&D, research and development
- RT, reverse transcriptase
Collapse
Affiliation(s)
- Siyu Shi
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Henry J. Cabral
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | | | - Paul J. Derry
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | | | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
29
|
Curreli F, Belov DS, Ramesh RR, Patel N, Altieri A, Kurkin AV, Debnath AK. Design, synthesis and evaluation of small molecule CD4-mimics as entry inhibitors possessing broad spectrum anti-HIV-1 activity. Bioorg Med Chem 2016; 24:5988-6003. [PMID: 27707628 DOI: 10.1016/j.bmc.2016.09.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
Since our first discovery of a CD4-mimic, NBD-556, which targets the Phe43 cavity of HIV-1 gp120, we and other groups made considerable progress in designing new CD4-mimics with viral entry-antagonist property. In our continued effort to make further progress we have synthesized twenty five new analogs based on our earlier reported viral entry antagonist, NBD-11021. These compounds were tested first in HIV-1 Env-pseudovirus based single-cycle infection assay as well as in a multi-cycle infection assay. Four of these new compounds showed much improved antiviral potency as well as cytotoxicity. We selected two of the best compounds 45A (NBD-14009) and 46A (NBD-14010) to test against a panel of 51 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates. These compounds showed noticeable breadth of antiviral potency with IC50 of as low as 150nM. These compounds also inhibited cell-to-cell fusion and cell-to-cell HIV-1 transmission. The study is expected to pave the way of designing more potent and selective HIV-1 entry inhibitors targeted to the Phe43 cavity of HIV-1 gp120.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Ranjith R Ramesh
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Naisargi Patel
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
30
|
Konopka K, Davis BR, Larsen CE, Düzgüneş N. Anionic Liposomes Inhibit Human Immunodeficiency Virus Type 1 (HIV-1) Infectivity in CD4+ A3.01 and H9 Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029300400308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunodeficiency viruses undergo fusion with liposomes containing anionic phospholipids (Larsen etal., 1990). We have investigated the effect of liposomes composed of cardiolipin, phosphatidylserine or phosphatidylinositol, on the infectivity of three strains of HIV-1 in A3.01 and H9 cells, measured by p24 (gag) production in the medium. The infectivity of HIV-1 in A3.01 or H9 cells was inhibited by the presence of cardiolipin liposomes during a 2 h infection period, with IC50's of 23.0, 4.8, and 5.0 μM phospholipid, respectively, for the different strains. Liposomes composed of phosphatidylserine or phosphatidylinositol were ineffective under similar conditions. However, prolonged pre-incubation of the virus with these liposomes also inhibited infectivity. Inhibition of virus binding to cells could not account for the inhibition of infectivity. We propose that the fusion products of HIV-1 and anionic liposomes are impaired in their ability to fuse with the plasma membrane.
Collapse
Affiliation(s)
- K. Konopka
- Department of Microbiology, University of the Pacific, School of Dentistry, San Francisco, CA 94115-2399, USA
- Cancer Research Institute, and 4Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0128, USA
| | - B. R. Davis
- Medical Research Institute, California Pacific Medical Center, San Francisco, CA 94115, USA
| | - C. E. Larsen
- Cancer Research Institute, and 4Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0128, USA
| | - N. Düzgüneş
- Department of Microbiology, University of the Pacific, School of Dentistry, San Francisco, CA 94115-2399, USA
- Cancer Research Institute, and 4Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0128, USA
| |
Collapse
|
31
|
Shimizu NS, Handa A, Shimizu NG, Ikeda R, Uchiyama T, Achiwa K, Hoshino H. Inhibition of Infection of T-Cells with Human Immunodeficiency Virus Type 1 by Dideoxynucleosides Conjugated with Oligopeptides. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029500600103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We conjugated nucleoside derivatives that have anti-HIV-1 activities with oligopeptides that should bind to the gp120 of the HIV-1 virion, and examined their anti-HIV-1 activities. These derivates included 3′-azido-2′,3′-dideoxythymidine (AZT), 2′,3′-dideoxyuridine (ddU), 2′,3′-dideoxycytidine (ddC), 2′,3′-dideoxyinosine (ddI) and 2′,3′-dideoxyadenine (ddA). Dipeptides consisting of N-carbomethoxy-carbonyl-prolyl-phenylalanylbenzyl ester (CPF) and oligopeptides derived from the complementarity-determining region 2 (CDR2) of domain 1 of CD4 were synthesized. The N-terminals of these peptides were conjugated with the 5′OH of AZT, ddU, ddC, ddl or ddA through carbonyl moieties. CPF conjugated with AZT, ddC, ddl or ddA through two-carbonyl moieties exhibited powerful anti-HIV-1 activity, which was similar to that of the respective nucleosides when compared at the same molar concentration. No complex compound connected by a one-carbonyl moiety had anti-HIV-1 activity, whereas a tetrapeptide or octapeptide of the CDR2 region combined with AZT did have such activity. The toxicity of these CPF-containing compounds to human peripheral blood lymphocytes was slightly weaker than the toxicities of the corresponding nucleosides lacking CPF. Antiviral nucleosides containing oligopeptides may be used as lead compounds in an effort to isolate more effective and less cytotoxic anti-HIV-1 agents.
Collapse
Affiliation(s)
- N. S. Shimizu
- Department of Hygiene and Virology, Gunma University School of Medicine, Showa-machi, Maebashi, Gunma 371, Japan
| | - A. Handa
- Department of Hygiene and Virology, Gunma University School of Medicine, Showa-machi, Maebashi, Gunma 371, Japan
| | - N. G. Shimizu
- Department of Hygiene and Virology, Gunma University School of Medicine, Showa-machi, Maebashi, Gunma 371, Japan
| | - R. Ikeda
- Department of Hygiene and Virology, Gunma University School of Medicine, Showa-machi, Maebashi, Gunma 371, Japan
- Laboratory of Infectious Diseases, Nippon Kayaku Co., Ltd, Iwahana-machi, Takasaki, Gunma 370-12, Japan
| | - T. Uchiyama
- School of Pharmaceutical Sciences, University of Shizuoka, Yada 395, Shizuoka 422, Japan
| | - K. Achiwa
- School of Pharmaceutical Sciences, University of Shizuoka, Yada 395, Shizuoka 422, Japan
| | - H. Hoshino
- Department of Hygiene and Virology, Gunma University School of Medicine, Showa-machi, Maebashi, Gunma 371, Japan
| |
Collapse
|
32
|
Schols D, Pauwels R, Witvrouw M, Desmyter J, De Clercq E. Differential Activity of Polyanionic Compounds and Castanospermine against HIV Replication and HIV-Induced Syncytium Formation Depending on Virus Strain and Cell Type. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029200300104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyanionic compounds [i.e. pentosan polysulphate, dextran sulphate, heparin, suramin, and aurintricarboxylic acid (ATA)] and castanospermine were examined for their inhibitory effect on human immunodeficiency virus (HIV) strains (HIV-1IIIB, HIV-1RF, HIV-2ROD and HIV-2EHO) in two different assays (HIV cytopathicity in MT-4 cells and HIV antigen expression in CEM cells). In the MT-4 assay dextran sulphate and pentosan polysulphate were more active against HIV-2ROD, suramin was more active against HIV-1RF, and ATA more active against HIV-2EHO-Heparin was less, but castanospermine was more, active against the two HIV-2 strains. In the CEM assay dextran sulphate and suramin were equally active against all HIV strains, pentosan polysulphate was more active against both HIV-2 strains, whereas heparin was less active against HIV-2ROD and ATA again was more active against HIV-2EHO. The compounds and soluble CD4 (sCD4) were also tested in the HIV-induced syncytium formation assay, where chronically infected HUT-78 cells were mixed with uninfected MOLT-4 or CEM cells. The inhibitory effect of suramin and ATA on syncytium formation was independent of the virus strain or cell type. For dextran sulphate and pentosan polysulphate, it was dependent on virus strain, and for heparin, castanospermine, and sCD4, it was dependent on both the virus strain and cell type.
Collapse
Affiliation(s)
- D. Schols
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - R. Pauwels
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - M. Witvrouw
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - J. Desmyter
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - E. De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
33
|
Kuzmina A, Vaknin K, Gdalevsky G, Vyazmensky M, Marks RS, Taube R, Engel S. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes. PLoS One 2015; 10:e0144043. [PMID: 26629902 PMCID: PMC4667905 DOI: 10.1371/journal.pone.0144043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022] Open
Abstract
Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.
Collapse
Affiliation(s)
- Alona Kuzmina
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Karin Vaknin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Garik Gdalevsky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maria Vyazmensky
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
| | - Robert S. Marks
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- The Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (SE); (RT)
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- The Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
34
|
Heredia A, Latinovic OS, Barbault F, de Leeuw EPH. A novel small-molecule inhibitor of HIV-1 entry. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5469-78. [PMID: 26491257 PMCID: PMC4598220 DOI: 10.2147/dddt.s89338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Antiretroviral therapy has transformed HIV-1 infection into a managed condition with near-normal life expectancy. However, a significant number of patients remain with limited therapeutic options due to HIV-1 resistance, side effects, or drug costs. Further, it is likely that current drugs will not retain efficacy, due to risks of side effects and transmitted resistance. Results We describe compound 5660386 (3-ethyl-2-[3-(1,3,3-trimethyl-1,3-dihydro-2H-indol-2-ylidene)-1-propen-1-yl]-1,3-benzothiazol-3-ium) as a novel inhibitor of HIV-1 entry. Compound 5660386 inhibits HIV-1 entry in cell lines and primary cells, binds to HIV-1 envelope protein, and inhibits the interaction of GP120 to CD4. Further, compound 5660386 showed a unique and broad-range activity against primary HIV-1 isolates from different subtypes and geographical areas. Conclusion Development of small-molecule entry inhibitors of HIV-1 such as 5660386 may lead to novel classes of anti-HIV-1 therapeutics. These inhibitors may be particularly effective against viruses resistant to current antiretroviral drugs and could have potential applications in both treatment and prevention.
Collapse
Affiliation(s)
- Alonso Heredia
- Department of Medicine, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA ; Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Olga S Latinovic
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA ; Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Florent Barbault
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMRCNRS7086, Paris, France
| | - Erik P H de Leeuw
- Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA ; Department of Biochemistry and Molecular Biology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Phenotypic Correlates of HIV-1 Macrophage Tropism. J Virol 2015; 89:11294-311. [PMID: 26339058 DOI: 10.1128/jvi.00946-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HIV-1 is typically CCR5 using (R5) and T cell tropic (T-tropic), targeting memory CD4(+) T cells throughout acute and chronic infections. However, viruses can expand into alternative cells types. Macrophage-tropic (M-tropic) HIV-1 variants have evolved to infect macrophages, which have only low levels of surface CD4. Most M-tropic variants have been isolated from the central nervous system during late-stage chronic infection. We used the HIV-1 env genes of well-defined, subject-matched M-tropic and T-tropic viruses to characterize the phenotypic features of the M-tropic Env protein. We found that, compared to T-tropic viruses, M-tropic viruses infect monocyte-derived macrophages (MDMs) on average 28-fold more efficiently, use low-density CD4 more efficiently, have increased sensitivity to soluble CD4 (sCD4), and show trends toward sensitivity to some CD4 binding site antibodies but no difference in sensitivity to antibodies targeting the CD4-bound conformation. M-tropic viruses also displayed a trend toward resistance to neutralization by monoclonal antibodies targeting the V1/V2 region of Env, suggesting subtle changes in Env protein conformation. The paired M- and T-tropic viruses did not differ in autologous serum neutralization, temperature sensitivity, entry kinetics, intrinsic infectivity, or Env protein incorporation. We also examined viruses with modestly increased CD4 usage. These variants have significant sensitivity to sCD4 and may represent evolutionary intermediates. CD4 usage is strongly correlated with infectivity of MDMs over a wide range of CD4 entry phenotypes. These data suggest that emergence of M-tropic HIV-1 includes multiple steps in which a phenotype of increased sensitivity to sCD4 and enhanced CD4 usage accompany subtle changes in Env conformation. IMPORTANCE HIV-1 typically replicates in CD4(+) T cells. However, HIV-1 can evolve to infect macrophages, especially within the brain. Understanding how CCR5-using macrophage-tropic viruses evolve and differ from CCR5-using T cell-tropic viruses may provide insights into viral evolution and pathogenesis within the central nervous system. We characterized the HIV-1 env viral entry gene from subject-matched macrophage-tropic and T cell-tropic viruses to identify entry features of macrophage-tropic viruses. We observed several differences between T cell-tropic and macrophage-tropic Env proteins, including functional differences with host CD4 receptor engagement and possible changes in the CD4 binding site and V1/V2 region. We also identified viruses with phenotypes between that of "true" macrophage-tropic and T cell-tropic viruses, which may represent evolutionary intermediates in a multistep process to macrophage tropism.
Collapse
|
36
|
Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. J Virol 2015; 89:10383-98. [PMID: 26246566 DOI: 10.1128/jvi.01653-15] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Generating neutralizing antibodies (nAbs) is a major goal of many current HIV-1 vaccine efforts. To be of practical value, these nAbs must be both potent and cross-reactive in order to be capable of preventing the transmission of the highly diverse and generally neutralization resistant (Tier-2) HIV-1 strains that are in circulation. The HIV-1 envelope glycoprotein (Env) spike is the only target for nAbs. To explore whether Tier-2 nAbs can be induced by Env proteins, we immunized conventional mice with soluble BG505 SOSIP.664 trimers that mimic the native Env spike. Here, we report that it is extremely difficult for murine B cells to recognize the Env epitopes necessary for inducing Tier-2 nAbs. Thus, while trimer-immunized mice raised Env-binding IgG Abs and had high-quality T follicular helper (Tfh) cell and germinal center (GC) responses, they did not make BG505.T332N nAbs. Epitope mapping studies showed that Ab responses in mice were specific to areas near the base of the soluble trimer. These areas are not well shielded by glycans and likely are occluded on virions, which is consistent with the lack of BG505.T332N nAbs. These data inform immunogen design and suggest that it is useful to obscure nonneutralizing epitopes presented on the base of soluble Env trimers and that the glycan shield of well-formed HIV Env trimers is virtually impenetrable for murine B cell receptors (BCRs). IMPORTANCE Human HIV vaccine efficacy trials have not generated meaningful neutralizing antibodies to circulating HIV strains. One possible hindrance has been the lack of immunogens that properly mimic the native conformation of the HIV envelope trimer protein. Here, we tested the first generation of soluble, native-like envelope trimer immunogens in a conventional mouse model. We attempted to generate neutralizing antibodies to neutralization-resistant circulating HIV strains. Various vaccine strategies failed to induce neutralizing antibodies to a neutralization-resistant HIV strain. Further analysis revealed that mouse antibodies targeted areas near the bottom of the soluble envelope trimers. These areas are not easily accessible on the HIV virion due to occlusion by the viral membrane and may have resulted from an absence of glycan shielding. Our results suggest that obscuring the bottom of soluble envelope trimers is a useful strategy to reduce antibody responses to epitopes that are not useful for virus neutralization.
Collapse
|
37
|
Novel CD4-Based Bispecific Chimeric Antigen Receptor Designed for Enhanced Anti-HIV Potency and Absence of HIV Entry Receptor Activity. J Virol 2015; 89:6685-94. [PMID: 25878112 DOI: 10.1128/jvi.00474-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/11/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Adoptive transfer of CD8 T cells genetically engineered to express "chimeric antigen receptors" (CARs) represents a potential approach toward an HIV infection "functional cure" whereby durable virologic suppression is sustained after discontinuation of antiretroviral therapy. We describe a novel bispecific CAR in which a CD4 segment is linked to a single-chain variable fragment of the 17b human monoclonal antibody recognizing a highly conserved CD4-induced epitope on gp120 involved in coreceptor binding. We compared a standard CD4 CAR with CD4-17b CARs where the polypeptide linker between the CD4 and 17b moieties is sufficiently long (CD4-35-17b CAR) versus too short (CD4-10-17b) to permit simultaneous binding of the two moieties to a single gp120 subunit. When transduced into a peripheral blood mononuclear cell (PBMC) or T cells thereof, all three CD4-based CARs displayed specific functional activities against HIV-1 Env-expressing target cells, including stimulation of gamma interferon (IFN-γ) release, specific target cell killing, and suppression of HIV-1 pseudovirus production. In assays of spreading infection of PBMCs with genetically diverse HIV-1 primary isolates, the CD4-10-17b CAR displayed enhanced potency compared to the CD4 CAR whereas the CD4-35-17b CAR displayed diminished potency. Importantly, both CD4-17b CARs were devoid of a major undesired activity observed with the CD4 CAR, namely, rendering the transduced CD8(+) T cells susceptible to HIV-1 infection. Likely mechanisms for the superior potency of the CD4-10-17b CAR over the CD4-35-17b CAR include the greater potential of the former to engage in the serial antigen binding required for efficient T cell activation and the ability of two CD4-10-17b molecules to simultaneously bind a single gp120 subunit. IMPORTANCE HIV research has been energized by prospects for a cure for HIV infection or, at least, for a "functional cure" whereby antiretroviral therapy can be discontinued without virus rebound. This report describes a novel CD4-based "chimeric antigen receptor" (CAR) which, when genetically engineered into T cells, gives them the capability to selectively respond to and kill HIV-infected cells. This CAR displays enhanced features compared to previously described CD4-based CARs, namely, increased potency and avoidance of the undesired rendering of the genetically modified CD8 T cells susceptible to HIV infection. When adoptively transferred back to the individual, the genetically modified T cells will hopefully provide durable killing of infected cells and sustained virus suppression without continued antiretroviral therapy, i.e., a functional cure.
Collapse
|
38
|
Glycans flanking the hypervariable connecting peptide between the A and B strands of the V1/V2 domain of HIV-1 gp120 confer resistance to antibodies that neutralize CRF01_AE viruses. PLoS One 2015; 10:e0119608. [PMID: 25793890 PMCID: PMC4368187 DOI: 10.1371/journal.pone.0119608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/01/2015] [Indexed: 11/30/2022] Open
Abstract
Understanding the molecular determinants of sensitivity and resistance to neutralizing antibodies is critical for the development of vaccines designed to prevent HIV infection. In this study, we used a genetic approach to characterize naturally occurring polymorphisms in the HIV envelope protein that conferred neutralization sensitivity or resistance. Libraries of closely related envelope genes, derived from virus quasi-species, were constructed from individuals infected with CRF01_AE viruses. The libraries were screened with plasma containing broadly neutralizing antibodies, and neutralization sensitive and resistant variants were selected for sequence analysis. In vitro mutagenesis allowed us to identify single amino acid changes in three individuals that conferred resistance to neutralization by these antibodies. All three mutations created N-linked glycosylation sites (two at N136 and one at N149) proximal to the hypervariable connecting peptide between the C-terminus of the A strand and the N-terminus of the B strand in the four-stranded V1/V2 domain β-sheet structure. Although N136 has previously been implicated in the binding of broadly neutralizing monoclonal antibodies, this glycosylation site appears to inhibit the binding of neutralizing antibodies in plasma from HIV-1 infected subjects. Previous studies have reported that the length of the V1/V2 domain in transmitted founder viruses is shorter and possesses fewer glycosylation sites compared to viruses isolated from chronic infections. Our results suggest that vaccine immunogens based on recombinant envelope proteins from clade CRF01_AE viruses might be improved by inclusion of envelope proteins that lack these glycosylation sites. This strategy might improve the efficacy of the vaccines used in the partially successful RV144 HIV vaccine trial, where the two CRF01_AE immunogens (derived from the A244 and TH023 isolates) both possessed glycosylation sites at N136 and N149.
Collapse
|
39
|
Abstract
ABSTRACT HIV resistance against currently approved entry inhibitors, the chemokine receptor-5 (CCR5) antagonist maraviroc and the fusion inhibitor enfuvirtide (T-20), manifests in a complex manner that is distinct from the resistance patterns against other classes of antiretroviral drugs. Several attachment and fusion inhibitors are currently under various stages of development. Whereas CCR5 co-receptor antagonists have been widely studied until now, because patients who lack CCR5 are healthy and protected to some extent from HIV-infection, CXCR4-antagonist development has been slower, due to limited antiviral activity and potential toxicity given that CXCR4 may have essential cellular functions. Novel fusion inhibitor development is focusing on orally available small-molecule inhibitors that might replace T-20, which needs to be administered by subcutaneous injection.
Collapse
Affiliation(s)
- Victor G Kramer
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
40
|
de Carvalho JV, de Castro RO, da Silva EZM, Silveira PP, da Silva-Januário ME, Arruda E, Jamur MC, Oliver C, Aguiar RS, daSilva LLP. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One 2014; 9:e113691. [PMID: 25423108 PMCID: PMC4244142 DOI: 10.1371/journal.pone.0113691] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/27/2014] [Indexed: 01/09/2023] Open
Abstract
Nef is an HIV-1 accessory protein that promotes viral replication and pathogenesis. A key function of Nef is to ensure sustained depletion of CD4 and MHC-I molecules in infected cells by inducing targeting of these proteins to multivesicular bodies (MVBs), and ultimately to lysosomes for degradation. Nef also affects cellular secretory routes promoting its own secretion via exosomes. To better understand the effects of Nef on the exocytic pathway, we investigated whether this viral factor modifies the composition of exosomes released by T lymphocytes. We showed that both CD4 and MHC-I molecules are secreted in exosomes from T cells and that the expression of Nef reduces the amount of these proteins in exosomes. To investigate the functional role for this novel activity of Nef, we performed in vitro HIV-1 infection assays in the presence of distinct populations of exosomes. We demonstrated that exosomes released by CD4+ T cells, but not CD4− T cells, efficiently inhibit HIV-1 infection in vitro. Because CD4 is the main receptor for HIV-1 infection, these results suggest that CD4 molecules displayed on the surface of exosomes can bind to envelope proteins of HIV-1 hindering virus interaction with target cells and infection. Importantly, CD4-depleted exosomes released by CD4+ T cells expressing Nef have a reduced capacity to inhibit HIV-1 infection in vitro. These results provide evidence that Nef promotes HIV-1 infection by reducing the expression of CD4 in exosomes from infected cells, besides the original role of Nef in reducing the CD4 levels at the cell surface.
Collapse
Affiliation(s)
- Julianne V. de Carvalho
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rodrigo O. de Castro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Elaine Z. M. da Silva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Paola P. Silveira
- Molecular Virology Laboratory, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mara E. da Silva-Januário
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eurico Arruda
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria C. Jamur
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Constance Oliver
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Renato S. Aguiar
- Molecular Virology Laboratory, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis L. P. daSilva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
41
|
Abstract
Although some success was achieved in recent years in HIV prevention, an effective vaccine remains the means with the most potential of curtailing HIV-1 infections worldwide. Despite multiple failed attempts, a recent HIV vaccine regimen demonstrated modest protection from infection. Although the protective efficacy in this trial was not sufficient to warrant licensure, it spurred renewed optimism in the field and has provided valuable insights for improving future vaccine designs. This review summarizes the pertinent details of vaccine development and discusses ways the field is moving forward to develop a vaccine to prevent HIV infection and disease progression.
Collapse
Affiliation(s)
- Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 908, 20th Street South, CCB 328, Birmingham, AL 35294, USA.
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 845, 19th Street South, BBRB 557, Birmingham, AL 35294, USA
| |
Collapse
|
42
|
Ma J, Wang SS, Lin YZ, Liu HF, Liu Q, Wei HM, Wang XF, Wang YH, Du C, Kong XG, Zhou JH, Wang X. Infection of equine monocyte-derived macrophages with an attenuated equine infectious anemia virus (EIAV) strain induces a strong resistance to the infection by a virulent EIAV strain. Vet Res 2014; 45:82. [PMID: 25106750 PMCID: PMC4283155 DOI: 10.1186/s13567-014-0082-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 07/23/2014] [Indexed: 11/10/2022] Open
Abstract
The Chinese attenuated equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. Given that the induction of immune protection results from the interactions between viruses and hosts, a better understanding of the characteristics of vaccine strain infection and host responses would be useful for elucidating the mechanism of the induction of immune protection by the Chinese attenuated EIAV strain. In this study, we demonstrate in equine monocyte-derived macrophages (eMDM) that EIAVFDDV13, a Chinese attenuated EIAV strain, induced a strong resistance to subsequent infection by a pathogenic strain, EIAVUK3. Further experiments indicate that the expression of the soluble EIAV receptor sELR1, Toll-like receptor 3 (TLR3) and interferon β (IFNβ) was up-regulated in eMDM infected with EIAVFDDV13 compared with eMDM infected with EIAVUK3. Stimulating eMDM with poly I:C resulted in similar resistance to EIAV infection as induced by EIAVFDDV13 and was correlated with enhanced TLR3, sELR1 and IFNβ expression. The knock down of TLR3 mRNA significantly impaired poly I:C-stimulated resistance to EIAV, greatly reducing the expression of sELR1 and IFNβ and lowered the level of infection resistance induced by EIAVFDDV13. These results indicate that the induction of restraining infection by EIAVFDDV13 in macrophages is partially mediated through the up-regulated expression of the soluble viral receptor and IFNβ, and that the TLR3 pathway activation plays an important role in the development of an EIAV-resistant intracellular environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | | |
Collapse
|
43
|
Binding mode characterization of NBD series CD4-mimetic HIV-1 entry inhibitors by X-ray structure and resistance study. Antimicrob Agents Chemother 2014; 58:5478-91. [PMID: 25001301 DOI: 10.1128/aac.03339-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously identified two small-molecule CD4 mimetics--NBD-556 and NBD-557--and synthesized a series of NBD compounds that resulted in improved neutralization activity in a single-cycle HIV-1 infectivity assay. For the current investigation, we selected several of the most active compounds and assessed their antiviral activity on a panel of 53 reference HIV-1 Env pseudoviruses representing diverse clades of clinical isolates. The selected compounds inhibited tested clades with low-micromolar potencies. Mechanism studies indicated that they act as CD4 agonists, a potentially unfavorable therapeutic trait, in that they can bind to the gp120 envelope glycoprotein and initiate a similar physiological response as CD4. However, one of the compounds, NBD-09027, exhibited reduced agonist properties, in both functional and biophysical studies. To understand the binding mode of these inhibitors, we first generated HIV-1-resistant mutants, assessed their behavior with NBD compounds, and determined the X-ray structures of two inhibitors, NBD-09027 and NBD-10007, in complex with the HIV-1 gp120 core at ∼2-Å resolution. Both studies confirmed that the NBD compounds bind similarly to NBD-556 and NBD-557 by inserting their hydrophobic groups into the Phe43 cavity of gp120. The basic nitrogen of the piperidine ring is located in close proximity to D368 of gp120 but it does not form any H-bond or salt bridge, a likely explanation for their nonoptimal antagonist properties. The results reveal the structural and biological character of the NBD series of CD4 mimetics and identify ways to reduce their agonist properties and convert them to antagonists.
Collapse
|
44
|
Jones R, Gazzard B. HIV/AIDS pathogenesis and treatment options focusing on the viral entry inhibitors. Expert Rev Anti Infect Ther 2014; 4:303-12. [PMID: 16597210 DOI: 10.1586/14787210.4.2.303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The advent of highly active antiretroviral therapy (HAART) has revolutionized the treatment of HIV. A wide variety of antiretroviral agents are now available, allowing patients and physicians a choice of effective therapy. However, drug resistance and toxicities are emerging as major treatment challenges in the HAART era. The development of agents within existing and novel antiretroviral classes remains paramount in order to preserve the reduced morbidity and mortality we have come to expect from HAART use. This article details the development of the HIV epidemic, reviewing current and future treatment strategies, and concentrating upon the viral entry inhibitors.
Collapse
Affiliation(s)
- Rachael Jones
- Department of HIV and GU Medicine, The Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| | | |
Collapse
|
45
|
Dürr R, Keppler O, Christ F, Crespan E, Garbelli A, Maga G, Dietrich U. Targeting Cellular Cofactors in HIV Therapy. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Abstract
The development of an effective vaccine has been hindered by the enormous diversity of human immunodeficiency virus-1 (HIV-1) and its ability to escape a myriad of host immune responses. In addition, conserved vulnerable regions on the HIV-1 envelope glycoprotein are often poorly immunogenic and elicit broadly neutralizing antibody responses (BNAbs) in a minority of HIV-1-infected individuals and only after several years of infection. All of the known BNAbs demonstrate high levels of somatic mutations and often display other unusual traits, such as a long heavy chain complementarity determining region 3 (CDRH3) and autoreactivity that can be limited by host tolerance controls. Nonetheless, the demonstration that HIV-1-infected individuals can make potent BNAbs is encouraging, and recent progress in isolating such antibodies and mapping their immune pathways of development is providing new strategies for vaccination.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
47
|
Ping LH, Joseph SB, Anderson JA, Abrahams MR, Salazar-Gonzalez JF, Kincer LP, Treurnicht FK, Arney L, Ojeda S, Zhang M, Keys J, Potter EL, Chu H, Moore P, Salazar MG, Iyer S, Jabara C, Kirchherr J, Mapanje C, Ngandu N, Seoighe C, Hoffman I, Gao F, Tang Y, Labranche C, Lee B, Saville A, Vermeulen M, Fiscus S, Morris L, Karim SA, Haynes BF, Shaw GM, Korber BT, Hahn BH, Cohen MS, Montefiori D, Williamson C, Swanstrom R. Comparison of viral Env proteins from acute and chronic infections with subtype C human immunodeficiency virus type 1 identifies differences in glycosylation and CCR5 utilization and suggests a new strategy for immunogen design. J Virol 2013; 87:7218-33. [PMID: 23616655 PMCID: PMC3700278 DOI: 10.1128/jvi.03577-12] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/15/2013] [Indexed: 12/18/2022] Open
Abstract
Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly underglycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets.
Collapse
Affiliation(s)
- Li-Hua Ping
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah B. Joseph
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey A. Anderson
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melissa-Rose Abrahams
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | | | - Laura P. Kincer
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Florette K. Treurnicht
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | - Leslie Arney
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suany Ojeda
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ming Zhang
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | - Jessica Keys
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - E. Lake Potter
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haitao Chu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Penny Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maria G. Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shilpa Iyer
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cassandra Jabara
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Duke Human Vaccine Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Nobubelo Ngandu
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | | | - Irving Hoffman
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yuyang Tang
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Celia Labranche
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Benhur Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, USA
| | - Andrew Saville
- South African National Blood Service, Weltevreden Park, South Africa
| | - Marion Vermeulen
- South African National Blood Service, Weltevreden Park, South Africa
| | - Susan Fiscus
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Salim Abdool Karim
- Center for AIDS Program Research in South Africa, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - George M. Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bette T. Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Myron S. Cohen
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | - Ronald Swanstrom
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
48
|
Diaz-Aguilar B, Dewispelaere K, Yi HA, Jacobs A. Significant differences in cell-cell fusion and viral entry between strains revealed by scanning mutagenesis of the C-heptad repeat of HIV gp41. Biochemistry 2013; 52:3552-63. [PMID: 23621782 DOI: 10.1021/bi400201h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transmembrane subunit, gp41, of the HIV envelope mediates the viral fusion step of entry into the host cell. The protein consists of an extracellular domain, a transmembrane domain, and a cytoplasmic tail. The extracellular domain contains a fusion peptide, an N-terminal heptad repeat, a loop region, a C-terminal heptad repeat (CHR), and a membrane-proximal external region. For this study, we examined each amino acid in the CHR (residues 623-659) by alanine scanning mutagenesis in two HIV strains: one CCR5-utilizing strain (JRFL) and one CXCR4-utilizing strain (HXB2). We studied the functional importance of each amino acid residue by measuring mutational effects in both cell-cell fusion and viral entry and assessing envelope expression and gp120-gp41 proteolytic processing. The transmembrane subunit of the HIV envelope, gp41, is very sensitive to subtle changes, like alanine substitution, which severely affect envelope function at multiple sites. Two important general findings are apparent when the entire data set from this study is taken into account. (1) Strain HXB2 is much more stable to mutagenesis than strain JRFL, and (2) viral entry is much more stable to mutagenesis than cell-cell fusion. These findings strengthen our notion that gp41 is a vulnerable target for therapeutic and prophylactic intervention. Further structural studies aimed at gaining a full understanding of the intermediate states that drive HIV membrane fusion are imperative.
Collapse
Affiliation(s)
- Barbara Diaz-Aguilar
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York , Buffalo, New York 14214, United States
| | | | | | | |
Collapse
|
49
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
50
|
Haqqani AA, Tilton JC. Entry inhibitors and their use in the treatment of HIV-1 infection. Antiviral Res 2013; 98:158-70. [PMID: 23541872 DOI: 10.1016/j.antiviral.2013.03.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
Entry of HIV into target cells is a complex, multi-stage process involving sequential attachment and CD4 binding, coreceptor binding, and membrane fusion. HIV entry inhibitors are a complex group of drugs with multiple mechanisms of action depending on the stage of the viral entry process they target. Two entry inhibitors are currently approved for the treatment of HIV-infected patients. Maraviroc, a CCR5 antagonist, blocks interactions between the viral envelope proteins and the CCR5 coreceptor. Enfuvirtide, a fusion inhibitor, disrupts conformational changes in gp41 that drive membrane fusion. A wide array of additional agents are in various stages of development. This review covers the entry inhibitors and their use in the treatment of HIV-infected patients.
Collapse
Affiliation(s)
- Aiman A Haqqani
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|