1
|
Tian W, Blomberg AL, Steinberg KE, Henriksen BL, Jørgensen JS, Skovgaard K, Skovbakke SL, Goletz S. Novel genetically glycoengineered human dendritic cell model reveals regulatory roles of α2,6-linked sialic acids in DC activation of CD4+ T cells and response to TNFα. Glycobiology 2024; 34:cwae042. [PMID: 38873803 DOI: 10.1093/glycob/cwae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Dendritic cells (DCs) are central for the initiation and regulation of appropriate immune responses. While several studies suggest important regulatory roles of sialoglycans in DC biology, our understanding is still inadequate primarily due to a lack of appropriate models. Previous approaches based on enzymatic- or metabolic-glycoengineering and primary cell isolation from genetically modified mice have limitations related to specificity, stability, and species differences. This study addresses these challenges by introducing a workflow to genetically glycoengineer the human DC precursor cell line MUTZ-3, described to differentiate and maturate into fully functional dendritic cells, using CRISPR-Cas9, thereby providing and validating the first isogenic cell model for investigating glycan alteration on human DC differentiation, maturation, and activity. By knocking out (KO) the ST6GAL1 gene, we generated isogenic cells devoid of ST6GAL1-mediated α(2,6)-linked sialylation, allowing for a comprehensive investigation into its impact on DC function. Glycan profiling using lectin binding assay and functional studies revealed that ST6GAL1 KO increased the expression of important antigen presenting and co-stimulatory surface receptors and a specifically increased activation of allogenic human CD4 + T cells. Additionally, ST6GAL1 KO induces significant changes in surface marker expression and cytokine response to TNFα-induced maturation, and it affects migration and the endocytic capacity. These results indicate that genetic glycoengineering of the isogenic MUTZ-3 cellular model offers a valuable tool to study how specific glycan structures influence human DC biology, contributing to our understanding of glycoimmunology.
Collapse
Affiliation(s)
- Weihua Tian
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Anne Louise Blomberg
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Kaylin Elisabeth Steinberg
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Betina Lyngfeldt Henriksen
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Josefine Søborg Jørgensen
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Kerstin Skovgaard
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Sarah Line Skovbakke
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Steffen Goletz
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| |
Collapse
|
2
|
Dasgupta S, Gayen S, Chakraborty T, Afrose N, Pal R, Mahata S, Nasare V, Roy S. Potential role of immune cell therapy in gynecological cancer and future promises: a comprehensive review. Med Oncol 2024; 41:98. [PMID: 38536512 DOI: 10.1007/s12032-024-02337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 05/31/2024]
Abstract
Gynecological malignancies are most leading causes of death among women worldwide. The high prevalence of gynecologic malignancies remains significant, necessitating to turn the novel treatment approach like immunotherapy, wherein cancer cells are killed by the invasion of immune system. In recent year, immunotherapy has mostly an advanced treatment approach to repressing the tumor cells survival, proliferation, and invasion via the activation of immune systems. Moreover, various types of immune cells including T-cells, B-cells, and dendritic cells are associated with the immunotherapeutic strategy in cancer treatment. Although the significant role of T-cells against cancer is well established, while B-cells and dendritic cells also play an important role against different gynecological cancer by regulating the immune system. This review focuses on that arena and highlight the role of immune cells in the treatment of gynaecological cancer. Various immune cell-based anticancer therapies such as T-cell therapies, Adoptive Cellular transfer, B-cell therapies as well as approaches to Dendritic Cell therapies have been discussed in detail. Furthermore, the clinical settings and future avenues regarding immunotherapy on gynecological cancer have also been reviewed and illuminated in the recent study.
Collapse
Affiliation(s)
- Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
| | - Sakuntala Gayen
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Tania Chakraborty
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Naureen Afrose
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Vilas Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Souvik Roy
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
3
|
Lokau J, Petasch LM, Garbers C. The soluble IL-2 receptor α/CD25 as a modulator of IL-2 function. Immunology 2024; 171:377-387. [PMID: 38037265 DOI: 10.1111/imm.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
The pleiotropic cytokine interleukin-2 (IL-2) is an integral regulator of healthy and pathological immune responses, with the most important role in regulating the homeostasis of regulatory T cells. IL-2 signalling involves three distinct receptors: The IL-2 receptor α (IL-2Rα/CD25), IL-2Rβ, and IL-2Rγ/γc . While IL-2Rβ and γc are essential for signal transduction, IL-2Rα regulates the affinity of the receptor complex towards IL-2. A soluble form of the IL-2Rα (sIL-2Rα) is present in the blood of healthy individuals and increased under various pathological conditions. Although it is known that the sIL-2Rα retains its ability to bind IL-2, it is not fully understood how this molecule affects IL-2 function and thus immune responses. Here, we summarize the current knowledge on the generation and function of the sIL-2Rα. We describe the molecular mechanisms leading to sIL-2Rα generation and discuss the different IL-2 modulating functions that have been attributed to the sIL-2Rα. Finally, we describe attempts to utilize the sIL-2Rα as a therapeutic tool.
Collapse
Affiliation(s)
- Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Lynn M Petasch
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Qin T, Chen Y, Huangfu D, Yin Y, Miao X, Yin Y, Chen S, Peng D, Liu X. PA-X protein assists H9N2 subtype avian influenza virus in escaping immune response of mucosal dendritic cells. Transbound Emerg Dis 2022; 69:e3088-e3100. [PMID: 35855630 DOI: 10.1111/tbed.14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
H9N2 subtype low pathogenicity avian influenza virus (AIV) poses a potential zoonotic risk. PA-X, a novel protein generated by PA gene ribosomal frameshift, is considered to be the virulence factor of H9N2 subtype AIVs. Our study found that rTX possessing PA-X protein enhanced the mammalian pathogenicity of H9N2 subtype AIVs compared with PA-X-deficient virus (rTX-FS). Furthermore, PA-X protein inhibited H9N2 subtype AIVs to infect dendritic cells (DCs), but not nonimmune cells (MDCK cells). Meanwhile, PA-X protein suppressed the phenotypic expression (CD80, CD86, CD40 and MHCII), early activation marker (CD69) and pro-inflammatory cytokines (IL-6 and TNF-α), whereas increased anti-inflammatory cytokine (IL-10) in DCs. After intranasally viral infection in mice, we found that PA-X protein of H9N2 subtype AIVs reduced CD11b+ and CD103+ subtype mucosal DCs recruitment to the nasal submucosa by inhibiting CCL20 expression. Moreover, PA-X protein abolished the migratory ability of CD11b+ and CD103+ DCs into draining cervical lymph nodes by down-regulating CCR7 expression. The rTX-infected DCs significantly impaired the allogeneic CD4+ T cell proliferation, suggesting PA-X protein suppressed the immune functions of DCs for hindering the downstream immune activation. These findings indicated that PA-X protein assisted H9N2 subtype AIVs in escaping immune response of mucosal DCs for enhancing the pathogenicity.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dandan Huangfu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Different In Vitro-Generated MUTZ-3-Derived Dendritic Cell Types Secrete Dexosomes with Distinct Phenotypes and Antigen Presentation Potencies. Int J Mol Sci 2022; 23:ijms23158362. [PMID: 35955496 PMCID: PMC9368791 DOI: 10.3390/ijms23158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Human dendritic cell (DC) dexosomes were evaluated for their function and preclinical validation for vaccines. Dexosomes are small DC-secreted vesicles that contain absorbing immune signals. Vaccine manufacturing requires a significant number of monocyte-derived DCs (Mo-DCs) from donor blood; thus, Mo-DC dexosomes are expected to serve as novel materials for cancer vaccination. In this study, we characterized a potential dexosome model using immature and mature MUTZ3-derived DCs (M-imIL-4-DC, M-imIFN-DC, M-mIL-4-DC, and M-mIFN-DC) and their dexosomes (M-imIL-4-Dex, M-imIFN-Dex, M-mIL4-Dex, and M-mIFN-Dex). Despite the lack of significant differences in viability, M-mIFN-DC showed a significantly higher level of yield and higher levels of maturation surface markers, such as CD86 and HLA-ABC, than M-mIL-4-DC. In addition, M-mIFN-Dex expressed a higher level of markers, such as HLA-ABC, than M-mIL-4-Dex. Furthermore, M-mIFN-Dex exhibited a higher level of antigen presentation potency, as evaluated using a MART-1 system, than either M-imIFN-Dex or M-mIL-4-Dex. We found that M-mIFN-Dex is one of the four types of MUTZ3-derived DCs that harbor potential immunogenicity, suggesting that DC dexosomes could be useful resources in cancer immunotherapy.
Collapse
|
6
|
Raeber ME, Rosalia RA, Schmid D, Karakus U, Boyman O. Interleukin-2 signals converge in a lymphoid-dendritic cell pathway that promotes anticancer immunity. Sci Transl Med 2021; 12:12/561/eaba5464. [PMID: 32938795 DOI: 10.1126/scitranslmed.aba5464] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/08/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Tumor-infiltrating dendritic cells (DCs) correlate with effective anticancer immunity and improved responsiveness to anti-PD-1 checkpoint immunotherapy. However, the drivers of DC expansion and intratumoral accumulation are ill-defined. We found that interleukin-2 (IL-2) stimulated DC formation through innate and adaptive lymphoid cells in mice and humans, and this increase in DCs improved anticancer immunity. Administration of IL-2 to humans within a clinical trial and of IL-2 receptor (IL-2R)-biased IL-2 to mice resulted in pronounced expansion of type 1 DCs, including migratory and cross-presenting subsets, and type 2 DCs, although neither DC precursors nor mature DCs had functional IL-2Rs. In mechanistic studies, IL-2 signals stimulated innate lymphoid cells, natural killer cells, and T cells to synthesize the cytokines FLT3L, CSF-2, and TNF. These cytokines redundantly caused DC expansion and activation, which resulted in improved antigen processing and correlated with favorable anticancer responses in mice and patients. Thus, IL-2 immunotherapy-mediated stimulation of DCs contributes to anticancer immunity by rendering tumors more immunogenic.
Collapse
Affiliation(s)
- Miro E Raeber
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Rodney A Rosalia
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Dominic Schmid
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Ufuk Karakus
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland. .,Faculty of Medicine, University of Zurich, CH-8006 Zurich, Switzerland
| |
Collapse
|
7
|
Astaxanthin Protects Dendritic Cells from Lipopolysaccharide-Induced Immune Dysfunction. Mar Drugs 2021; 19:md19060346. [PMID: 34204220 PMCID: PMC8235365 DOI: 10.3390/md19060346] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022] Open
Abstract
Astaxanthin, originating from seafood, is a naturally occurring red carotenoid pigment. Previous studies have focused on its antioxidant properties; however, whether astaxanthin possesses a desired anti-inflammatory characteristic to regulate the dendritic cells (DCs) for sepsis therapy remains unknown. Here, we explored the effects of astaxanthin on the immune functions of murine DCs. Our results showed that astaxanthin reduced the expressions of LPS-induced inflammatory cytokines (TNF-α, IL-6, and IL-10) and phenotypic markers (MHCII, CD40, CD80, and CD86) by DCs. Moreover, astaxanthin promoted the endocytosis levels in LPS-treated DCs, and hindered the LPS-induced migration of DCs via downregulating CCR7 expression, and then abrogated allogeneic T cell proliferation. Furthermore, we found that astaxanthin inhibited the immune dysfunction of DCs induced by LPS via the activation of the HO-1/Nrf2 axis. Finally, astaxanthin with oral administration remarkably enhanced the survival rate of LPS-challenged mice. These data showed a new approach of astaxanthin for potential sepsis treatment through avoiding the immune dysfunction of DCs.
Collapse
|
8
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
De Laere M, Berneman ZN, Cools N. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. J Neuropathol Exp Neurol 2019; 77:178-192. [PMID: 29342287 PMCID: PMC5901086 DOI: 10.1093/jnen/nlx114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migration of dendritic cells (DC) to the central nervous system (CNS) is a critical event in the pathogenesis of multiple sclerosis (MS). While up until now, research has mainly focused on the transmigration of DC through the blood-brain barrier, experimental evidence points out that also the choroid plexus and meningeal vessels represent important gateways to the CNS, especially in early disease stages. On the other hand, DC can exit the CNS to maintain immunological tolerance to patterns expressed in the CNS, a process that is perturbed in MS. Targeting trafficking of immune cells, including DC, to the CNS has demonstrated to be a successful strategy to treat MS. However, this approach is known to compromise protective immune surveillance of the brain. Unravelling the migratory paths of regulatory and pathogenic DC within the CNS may ultimately lead to the design of new therapeutic strategies able to selectively interfere with the recruitment of pathogenic DC to the CNS, while leaving host protective mechanisms intact.
Collapse
Affiliation(s)
- Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| |
Collapse
|
10
|
Yap XZ, Lundie RJ, Beeson JG, O'Keeffe M. Dendritic Cell Responses and Function in Malaria. Front Immunol 2019; 10:357. [PMID: 30886619 PMCID: PMC6409297 DOI: 10.3389/fimmu.2019.00357] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/12/2019] [Indexed: 12/24/2022] Open
Abstract
Malaria remains a serious threat to global health. Sustained malaria control and, eventually, eradication will only be achieved with a broadly effective malaria vaccine. Yet a fundamental lack of knowledge about how antimalarial immunity is acquired has hindered vaccine development efforts to date. Understanding how malaria-causing parasites modulate the host immune system, specifically dendritic cells (DCs), key initiators of adaptive and vaccine antigen-based immune responses, is vital for effective vaccine design. This review comprehensively summarizes how exposure to Plasmodium spp. impacts human DC function in vivo and in vitro. We have highlighted the heterogeneity of the data observed in these studies, compared and critiqued the models used to generate our current understanding of DC function in malaria, and examined the mechanisms by which Plasmodium spp. mediate these effects. This review highlights potential research directions which could lead to improved efficacy of existing vaccines, and outlines novel targets for next-generation vaccine strategies to target malaria.
Collapse
Affiliation(s)
- Xi Zen Yap
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel J Lundie
- Burnet Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Meredith O'Keeffe
- Burnet Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Vangeti S, Gertow J, Yu M, Liu S, Baharom F, Scholz S, Friberg D, Starkhammar M, Ahlberg A, Smed-Sörensen A. Human Blood and Tonsil Plasmacytoid Dendritic Cells Display Similar Gene Expression Profiles but Exhibit Differential Type I IFN Responses to Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:2069-2081. [PMID: 30760619 DOI: 10.4049/jimmunol.1801191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
Influenza A virus (IAV) infection constitutes an annual health burden across the globe. Plasmacytoid dendritic cells (PDCs) are central in antiviral defense because of their superior capacity to produce type I IFNs in response to viruses. Dendritic cells (DCs) differ depending on their anatomical location. However, only limited host-pathogen data are available from the initial site of infection in humans. In this study, we investigated how human tonsil PDCs, likely exposed to virus because of their location, responded to IAV infection compared with peripheral blood PDCs. In tonsils, unlike in blood, PDCs are the most frequent DC subset. Both tonsil and blood PDCs expressed several genes necessary for pathogen recognition and immune response, generally in a similar pattern. MxA, a protein that renders cells resistant to IAV infection, was detected in both tonsil and blood PDCs. However, despite steady-state MxA expression and contrary to previous reports, at high IAV concentrations (typically cytopathic to other immune cells), both tonsil and blood PDCs supported IAV infection. IAV exposure resulted in PDC maturation by upregulation of CD86 expression and IFN-α secretion. Interestingly, blood PDCs secreted 10-fold more IFN-α in response to IAV compared with tonsil PDCs. Tonsil PDCs also had a dampened cytokine response to purified TLR ligands compared with blood PDCs. Our findings suggest that tonsil PDCs may be less responsive to IAV than blood PDCs, highlighting the importance of studying immune cells at their proposed site of function.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Jens Gertow
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Sang Liu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Faezzah Baharom
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Saskia Scholz
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Magnus Starkhammar
- Capio Ear, Nose and Throat Clinic Globen, 121 77 Johanneshov, Sweden; and
| | - Alexander Ahlberg
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Huddinge, 141 86 Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden;
| |
Collapse
|
12
|
The Costimulatory Pathways and T Regulatory Cells in Ischemia-Reperfusion Injury: A Strong Arm in the Inflammatory Response? Int J Mol Sci 2018; 19:ijms19051283. [PMID: 29693595 PMCID: PMC5983665 DOI: 10.3390/ijms19051283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 02/08/2023] Open
Abstract
Costimulatory molecules have been identified as crucial regulators in the inflammatory response in various immunologic disease models. These molecules are classified into four different families depending on their structure. Here, we will focus on various ischemia studies that use costimulatory molecules as a target to reduce the inherent inflammatory status. Furthermore, we will discuss the relevant role of T regulatory cells in these inflammatory mechanisms and the costimulatory pathways in which they are involved.
Collapse
|
13
|
Díaz-Delgado J, Ressio R, Groch KR, Catão-Dias JL. Immunohistochemical investigation of the cross-reactivity of selected cell markers in formalin-fixed, paraffin-embedded lymphoid tissues of Franciscana (Pontoporia blainvillei). Vet Immunol Immunopathol 2018; 200:52-58. [PMID: 29776612 DOI: 10.1016/j.vetimm.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022]
Abstract
A considerable amount of knowledge on natural and anthropogenic pathologic conditions affecting different cetacean species has been gained over the last decades. Nonetheless, the immunopathological bases for most of these processes have been poorly documented or remain unknown. Comparative immunopathological investigations in these species are precluded by the limited number of specific antibodies, most of which are not commercially available, and the reduced spectrum of validated and/or cross-reactive ones. To partially fill in this gap of knowledge, a set of commercially available primary antibodies were tested for cross-reactivity against leukocytes and cytokines in formalin-fixed, paraffin-embedded (FFPE) lymphoid tissues (lymph nodes, spleen and thymus) of three bycaught, apparently healthy and fresh Franciscanas (Pontoporia blainvillei) using immunohistochemistry. On the basis of similar region specificity within the lymphoid organs, cellular morphology and staining pattern with human control tissues, 13/19 primary antibodies (caspase 3, CD3, CD57, CD68, FoxP3, HLA-DRα, IFNγ, IgG, IL4, IL10, Lysozyme, TGFβ and PAX-5) exhibited satisfactory cross-reactivity. Our results expand the spectrum of suitable cross-reactive primary antibodies in FFPE cetacean tissues. Further comparative immunopathological studies focused on infectious diseases and ecotoxicology may benefit from establishment of baseline expression of immunologically relevant molecules in various cetaceans species.
Collapse
Affiliation(s)
- J Díaz-Delgado
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo, Brazil; Instituto Adolfo Lutz (IAL), Centro de Patologia, Av. Dr. Arnaldo, 351-7 Andar, Sala 706, Pacaembu, São Paulo, Brazil.
| | - R Ressio
- Instituto Adolfo Lutz (IAL), Centro de Patologia, Av. Dr. Arnaldo, 351-7 Andar, Sala 706, Pacaembu, São Paulo, Brazil
| | - K R Groch
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo, Brazil
| | - J L Catão-Dias
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo, Brazil
| |
Collapse
|
14
|
Schittenhelm L, Hilkens CM, Morrison VL. β 2 Integrins As Regulators of Dendritic Cell, Monocyte, and Macrophage Function. Front Immunol 2017; 8:1866. [PMID: 29326724 PMCID: PMC5742326 DOI: 10.3389/fimmu.2017.01866] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that the β2 integrin family of adhesion molecules have an important role in suppressing immune activation and inflammation. β2 integrins are important adhesion and signaling molecules that are exclusively expressed on leukocytes. The four β2 integrins (CD11a, CD11b, CD11c, and CD11d paired with the β2 chain CD18) play important roles in regulating three key aspects of immune cell function: recruitment to sites of inflammation; cell-cell contact formation; and downstream effects on cellular signaling. Through these three processes, β2 integrins both contribute to and regulate immune responses. This review explores the pro- and anti-inflammatory effects of β2 integrins in monocytes, macrophages, and dendritic cells and how they influence the outcome of immune responses. We furthermore discuss how imbalances in β2 integrin function can have far-reaching effects on mounting appropriate immune responses, potentially influencing the development and progression of autoimmune and inflammatory diseases. Therapeutic targeting of β2 integrins, therefore, holds enormous potential in exploring treatment options for a variety of inflammatory conditions.
Collapse
Affiliation(s)
- Leonie Schittenhelm
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| | - Catharien M Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| | - Vicky L Morrison
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| |
Collapse
|
15
|
Afanasyeva MA, Putlyaeva LV, Demin DE, Kulakovskiy IV, Vorontsov IE, Fridman MV, Makeev VJ, Kuprash DV, Schwartz AM. The single nucleotide variant rs12722489 determines differential estrogen receptor binding and enhancer properties of an IL2RA intronic region. PLoS One 2017; 12:e0172681. [PMID: 28234966 PMCID: PMC5325477 DOI: 10.1371/journal.pone.0172681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/08/2017] [Indexed: 12/11/2022] Open
Abstract
We studied functional effect of rs12722489 single nucleotide polymorphism located in the first intron of human IL2RA gene on transcriptional regulation. This polymorphism is associated with multiple autoimmune conditions (rheumatoid arthritis, multiple sclerosis, Crohn's disease, and ulcerative colitis). Analysis in silico suggested significant difference in the affinity of estrogen receptor (ER) binding site between alternative allelic variants, with stronger predicted affinity for the risk (G) allele. Electrophoretic mobility shift assay showed that purified human ERα bound only G variant of a 32-bp genomic sequence containing rs12722489. Chromatin immunoprecipitation demonstrated that endogenous human ERα interacted with rs12722489 genomic region in vivo and DNA pull-down assay confirmed differential allelic binding of amplified 189-bp genomic fragments containing rs12722489 with endogenous human ERα. In a luciferase reporter assay, a kilobase-long genomic segment containing G but not A allele of rs12722489 demonstrated enhancer properties in MT-2 cell line, an HTLV-1 transformed human cell line with a regulatory T cell phenotype.
Collapse
Affiliation(s)
- Marina A. Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Lidia V. Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Denis E. Demin
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Ivan V. Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Ilya E. Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vsevolod J. Makeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anton M. Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Generation of Large Numbers of Antigen-Expressing Human Dendritic Cells Using CD14-ML Technology. PLoS One 2016; 11:e0152384. [PMID: 27050553 PMCID: PMC4822879 DOI: 10.1371/journal.pone.0152384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
We previously reported a method to expand human monocytes through lentivirus-mediated introduction of cMYC and BMI1, and we named the monocyte-derived proliferating cells, CD14-ML. CD14-ML differentiated into functional DC (CD14-ML-DC) upon addition of IL-4, resulting in the generation of a large number of DC. One drawback of this method was the extensive donor-dependent variation in proliferation efficiency. In the current study, we found that introduction of BCL2 or LYL1 along with cMYC and BMI1 was beneficial. Using the improved method, we obtained CD14-ML from all samples, regardless of whether the donors were healthy individuals or cancer patients. In vitro stimulation of peripheral blood T cells with CD14-ML-DC that were loaded with cancer antigen-derived peptides led to the establishment of CD4+ and CD8+ T cell lines that recognized the peptides. Since CD14-ML was propagated for more than 1 month, we could readily conduct genetic modification experiments. To generate CD14-ML-DC that expressed antigenic proteins, we introduced lentiviral antigen-expression vectors and subjected the cells to 2 weeks of culture for drug-selection and expansion. The resulting antigen-expressing CD14-ML-DC successfully induced CD8+ T cell lines that were reactive to CMVpp65 or MART1/MelanA, suggesting an application in vaccination therapy. Thus, this improved method enables the generation of a sufficient number of DC for vaccination therapy from a small amount of peripheral blood from cancer patients. Information on T cell epitopes is not necessary in vaccination with cancer antigen-expressing CD14-ML-DC; therefore, all patients, irrespective of HLA type, will benefit from anti-cancer therapy based on this technology.
Collapse
|
17
|
MicroRNA profiling of activated and tolerogenic human dendritic cells. Mediators Inflamm 2014; 2014:259689. [PMID: 24799764 PMCID: PMC3995309 DOI: 10.1155/2014/259689] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/19/2014] [Accepted: 02/21/2014] [Indexed: 01/11/2023] Open
Abstract
Dendritic cells (DCs) belong to the immune system and are particularly studied for their potential to direct either an activated or tolerogenic immune response. The roles of microRNAs (miRNAs) in posttranscriptional gene expression regulation are being increasingly investigated. This study's aim is to evaluate the miRNAs' expression changes in prepared human immature (iDCs), activated (aDCs), and tolerogenic dendritic cells (tDCs). The dendritic cells were prepared using GM-CSF and IL-4 (iDC) and subsequently maturated by adding LPS and IFN-γ (aDC) or IL-10 and TGF-β (tDC). Surface markers, cytokine profiles, and miRNA profiles were evaluated in iDC, tDC, and aDC at 6 h and 24 h of maturation. We identified 4 miRNAs (miR-7, miR-9, miR-155 and miR-182), which were consistently overexpressed in aDC after 6 h and 24 h of maturation and 3 miRNAs (miR-17, miR-133b, and miR-203) and miR-23b cluster solely expressed in tDC. We found 5 miRNAs (miR-10a, miR-203, miR-210, miR-30a, and miR-449b) upregulated and 3 miRNAs downregulated (miR-134, miR-145, and miR-149) in both tDC and aDC. These results indicate that miRNAs are specifically modulated in human DC types. This work may contribute to identifying specific modulating miRNAs for aDC and tDC, which could in the future serve as therapeutic targets in the treatment of cancer and autoimmune diseases.
Collapse
|
18
|
Chen X, Chang CH, Goldenberg DM. Novel strategies for improved cancer vaccines. Expert Rev Vaccines 2014; 8:567-76. [DOI: 10.1586/erv.09.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells. Microb Pathog 2013; 65:21-8. [PMID: 24067451 DOI: 10.1016/j.micpath.2013.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/08/2023]
Abstract
The pathophysiology of Mycobacterium tuberculosis (M.tb) infection is linked to the ability of the organism to grow within macrophages. Lung myeloid dendritic cells are a newly recognized reservoir of M.tb during infection. Iron (Fe) acquisition is critical for M.tb growth. In vivo, extracellular Fe is chelated to transferrin (TF) and lactoferrin (LF). We previously reported that M.tb replicating in human monocyte-dervied macrophages (MDM) can acquire Fe bound to TF, LF, and citrate, as well as from the MDM cytoplasm. Access of M.tb to Fe may influence its growth in macrophages and dendritic cells. In the present work we confirmed the ability of different strains of M.tb to grow in human myeloid dendritic cells in vitro. Fe acquired by M.tb replicating within dendritic cells from externally added Fe chelates varied with the Fe chelate present in the external media: Fe-citrate > Fe-LF > Fe-TF. Fe acquisition rates from each chelate did not vary over 7 days. M.tb within dendritic cells also acquired Fe from the dendritic cell cytoplasm, with the efficiency of Fe acquisition greater from cytoplasmic Fe sources, regardless of the initial Fe chelate from which that cytoplasmic Fe was derived. Growth and Fe acquisition results with human MDM were similar to those with dendritic cells. M.tb grow and replicate within myeloid dendritic cells in vitro. Fe metabolism of M.tb growing in either MDM or dendritic cells in vitro is influenced by the nature of Fe available and the organism appears to preferentially access cytoplasmic rather than extracellular Fe sources. Whether these in vitro data extend to in vivo conditions should be examined in future studies.
Collapse
|
20
|
Haruta M, Tomita Y, Imamura Y, Matsumura K, Ikeda T, Takamatsu K, Nishimura Y, Senju S. Generation of a large number of functional dendritic cells from human monocytes expanded by forced expression of cMYC plus BMI1. Hum Immunol 2013; 74:1400-8. [PMID: 23811433 DOI: 10.1016/j.humimm.2013.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/03/2013] [Accepted: 05/29/2013] [Indexed: 11/28/2022]
Abstract
Anticancer vaccination therapies with monocyte-derived dendritic cells (DC) are widely conducted. A large number of primary monocytes (approximately 10(8) cells) are needed to generate the number of DC required to achieve an effect upon vaccination, and monocytes are usually purified from peripheral blood mononuclear cells obtained by apheresis procedure, which is somehow invasive for cancer patients. As a means to facilitate the generation of DC for therapeutic use, we herein report a method to amplify human monocytes. We found that lentivirus-mediated transduction of cMYC along with BMI1 induced proliferation of CD14(+) monocytes derived from 9 out of 12 blood donors, and we named the monocyte-derived proliferating cells CD14-ML. Their proliferation continued for 3-5 weeks in the presence of M-CSF and GM-CSF, resulting in 20-1000-fold amplification. Importantly, the expanded CD14-ML differentiated into fully functional DC (CD14-ML-DC) upon the addition of IL-4 to the culture. We successfully stimulated autologous CD8(+) T cells with CD14-ML-DC pulsed with cytomegalovirus peptide or MART-1 peptide to generate antigen-specific CTL lines. This is the first report describing the method for in vitro expansion of human peripheral blood monocytes.
Collapse
Affiliation(s)
- Miwa Haruta
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen X, Chang CH, Stein R, Cardillo TM, Gold DV, Goldenberg DM. Prevention of Acute Graft-versus-Host Disease in a Xenogeneic SCID Mouse Model by the Humanized Anti-CD74 Antagonistic Antibody Milatuzumab. Biol Blood Marrow Transplant 2013; 19:28-39. [DOI: 10.1016/j.bbmt.2012.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
|
22
|
Delirezh N, Shojaeefar E, Parvin P, Asadi B. Comparison the effects of two monocyte isolation methods, plastic adherence and magnetic activated cell sorting methods, on phagocytic activity of generated dendritic cells. CELL JOURNAL 2013; 15:218-23. [PMID: 24027662 PMCID: PMC3769603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE It is believed that monocyte isolation methods and maturation factors affect the phenotypic and functional characteristics of resultant dendritic cells (DC). In the present study, we compared two monocyte isolation methods, including plastic adherence-dendritic cells (Adh-DC) and magnetic activated cell sorting- dendritic cells (MACS-DC), and their effects on phagocytic activity of differentiated immature DCs (immDCs). MATERIALS AND METHODS : In this experimental study, immDCs were generated from plastic adherence and MACS isolated monocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4) in five days. The phagocytic activity of immDCs was analyzed by fluorescein isothiocyanate (FITC)-conjugated latex bead using flow cytometry. One way ANOVA test was used for statistical analysis of differences among experimental groups, including Adh-DC and MACS-DC groups. RESULTS We found that phagocytic activity of Adh-DC was higher than MACS-DC, whereas the mean fluorescence intensity (MFI) of phagocytic cells was higher in MACS-DC (p<0.05). CONCLUSION : We concluded that it would be important to consider phagocytosis parameters of generated DCs before making any decision about monocyte isolation methods to have fully functional DCs.
Collapse
Affiliation(s)
- Nowruz Delirezh
- * Corresponding Address: P.O.Box: 57153-1177Department of MicrobiologyFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | | | | | | |
Collapse
|
23
|
Nair S, Archer GE, Tedder TF. Isolation and generation of human dendritic cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2012; Chapter 7:7.32.1-7.32.23. [PMID: 23129155 PMCID: PMC4559332 DOI: 10.1002/0471142735.im0732s99] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendritic cells are highly specialized antigen-presenting cells (APC), which may be isolated or generated from human blood mononuclear cells. Although mature blood dendritic cells normally represent ∼0.2% of human blood mononuclear cells, their frequency can be greatly increased using the cell enrichment methods described in this unit. More highly purified dendritic cell preparations can be obtained from these populations by sorting of fluorescence-labeled cells. Alternatively, dendritic cells can be generated from monocytes by culture with the appropriate cytokines, as described here. In addition, a negative selection approach is provided that may be employed to generate cell preparations that have been depleted of dendritic cells to be used for comparison in functional studies.
Collapse
Affiliation(s)
- Smita Nair
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Gerald E. Archer
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Thomas F. Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
24
|
Activation-induced FoxP3 expression regulates cytokine production in conventional T cells stimulated with autologous dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1583-92. [PMID: 22855393 DOI: 10.1128/cvi.00308-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A defining feature of dendritic cells (DCs) is their ability to induce the proliferation of autologous T cells in the absence of foreign antigen-a process termed the "autologous mixed leukocyte reaction" (AMLR). We report that equine monocyte-derived DCs, but not macrophages, are potent inducers of the AMLR. The response is contact dependent and major histocompatibility complex class II dependent and primarily involves CD3(+) CD4(+) CD8(-) T cells. Upon stimulation with DCs or the mitogen concanavalin A, a subset of the proliferating T cells expresses the regulatory T-cell (Treg) transcription factor FoxP3. Although many of these FoxP3(+) T cells are capable of producing the effector cytokines interleukin-4 (IL-4) and gamma interferon (IFN-γ), they are more likely to produce IL-10 and less likely to produce IFN-γ than equivalent FoxP3(-) cells. Therefore, FoxP3 expression is an inherent component of equine T cell activation and is associated with a more immunosuppressive cytokine profile. These results confirm that FoxP3 expression in the horse, in contrast to the mouse, is regulated similarly to FOXP3 expression in humans and provide evidence that FoxP3 expression by conventional T cells may help regulate the developing immune response.
Collapse
|
25
|
The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012; 12:180-90. [PMID: 22343569 DOI: 10.1038/nri3156] [Citation(s) in RCA: 1228] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-2 (IL-2) signals influence various lymphocyte subsets during differentiation, immune responses and homeostasis. As discussed in this Review, stimulation with IL-2 is crucial for the maintenance of regulatory T (T(Reg)) cells and for the differentiation of CD4(+) T cells into defined effector T cell subsets following antigen-mediated activation. For CD8(+) T cells, IL-2 signals optimize both effector T cell generation and differentiation into memory cells. IL-2 is presented in soluble form or bound to dendritic cells and the extracellular matrix. Use of IL-2 - either alone or in complex with particular neutralizing IL-2-specific antibodies - can amplify CD8(+) T cell responses or induce the expansion of the T(Reg) cell population, thus favouring either immune stimulation or suppression.
Collapse
|
26
|
Experimental human cytomegalovirus latency in CD14+ monocytes. Proc Natl Acad Sci U S A 2010; 107:20039-44. [PMID: 21041645 DOI: 10.1073/pnas.1014509107] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD14(+) monocytes are a reservoir for latent human cytomegalovirus, and virus replication is reactivated during their differentiation to macrophages or dendritic cells. It has not been clear whether the virus can establish latency upon direct infection of monocytes or whether it must first become quiescent in a progenitor cell that subsequently differentiates to generate a monocyte. We report that infection of primary human monocytes with a clinical strain of human cytomegalovirus exhibits the hallmarks of latency. We established conditions for culturing monocytes that prevent differentiation for at least 25 d, as evidenced by cell surface marker expression. Infection of these monocytes with the FIX clinical strain resulted in transient accumulation of many viral lytic RNAs and sustained expression of four previously described latency-associated transcripts. The amount of viral DNA remained constant after infection, and cell surface and total HLA-DR proteins were substantially reduced on a continuing basis after infection. When treated with cytokine mixtures that stimulate differentiation to a macrophage or dendritic cell phenotype, infected monocytes reactivated virus replication and produced infectious progeny. Treatment of infected monocytes with IL-6 alone also was sufficient for reactivation, and the particles produced after exposure to this cytokine were about fivefold more infectious than virions produced by other treatments. We propose that in vivo microenvironments influence not only the efficiency of reactivation but also the infectivity of the virions produced from latently infected monocytes.
Collapse
|
27
|
The short chain fatty acid sodium butyrate regulates the induction of CD1a in developing dendritic cells. Immunobiology 2010; 216:275-84. [PMID: 20851496 DOI: 10.1016/j.imbio.2010.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 07/07/2010] [Accepted: 07/09/2010] [Indexed: 11/23/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells with attributes for priming/activating T cells and mediating immune responses. Considering the importance of DCs in the initiation of immune responses, it will be of interest to study their mechanisms of regulation. Histone-modifying enzymes, such as histone deacetylases (HDACs), are critical in controlling chromatin organization. The aim of our study was to investigate DC differentiation under the influence of sodium butyrate (NaB), a short chain fatty acid that is a histone deacetylase inhibitor. Monocytes from healthy individuals were differentiated into immature DCs with IL-4 and GM-CSF in the presence or absence of NaB. DC differentiation was evaluated by CD14 and CD1a expression by flow cytometry. We observed that monocytes stimulated to differentiate in the presence of NaB displayed colony formation and dendritic cell morphology, lost CD14 and showed decreased secretion of IL-1β. The acquisition of CD1a, however, was impaired. Being a natural short chain fatty acid, NaB may regulate CD1a acquisition independently of its HDAC inhibitory activity. We observed that the addition of peroxisome proliferator-activated receptor γ (PPAR-γ) antagonist (GW9662) did not reverse NaB effect, suggesting this was not the pathway involved. On the other hand, CD1a can also be induced by toll like receptors 2 (TLR 2) agonists, such as Pam3Cys, and NaB inhibited this effect. Our data suggest that the histone deacetylase inhibitor NaB instead of impairing DC differentiation inhibits the acquisition of CD1a induced both by cytokines and by TLR 2 agonist stimulus. Furthermore, this occurs at the transcriptional level as NaB led to a decrease in mRNA levels of CD1a and upregulation of CD1d.
Collapse
|
28
|
CD4+ CD25+ Foxp3+ regulatory T cells, dendritic cells, and circulating cytokines in uncomplicated malaria: do different parasite species elicit similar host responses? Infect Immun 2010; 78:4763-72. [PMID: 20713627 DOI: 10.1128/iai.00578-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4(+) CD25(+) Foxp3(+) Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123(+)), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-α) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and long-lasting protective immunity to malaria.
Collapse
|
29
|
|
30
|
La Torre D, Lernmark A. Immunology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:537-83. [PMID: 20217514 DOI: 10.1007/978-90-481-3271-3_24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreatic islet beta-cells are the target for an autoimmune process that eventually results in an inability to control blood glucose due to the lack of insulin. The different steps that eventually lead to the complete loss of the beta-cells are reviewed to include the very first step of a triggering event that initiates the development of beta-cell autoimmunity to the last step of appearance of islet-cell autoantibodies, which may mark that insulitis is about to form. The observations that the initial beta-cell destruction by virus or other environmental factors triggers islet autoimmunity not in the islets but in the draining pancreatic lymph nodes are reviewed along with possible basic mechanisms of loss of tolerance to islet autoantigens. Once islet autoimmunity is established the question is how beta-cells are progressively killed by autoreactive lymphocytes which eventually results in chronic insulitis. Many of these series of events have been dissected in spontaneously diabetic mice or rats, but controlled clinical trials have shown that rodent observations are not always translated into mechanisms in humans. Attempts are therefore needed to clarify the step 1 triggering mechanisms and the step to chronic autoimmune insulitis to develop evidence-based treatment approaches to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, CRC, Department of Clinical Sciences, University Hospital MAS, SE-205 02, Malmö, Sweden.
| | | |
Collapse
|
31
|
Oshiro TM, de Almeida A, da Silva Duarte AJ. Dendritic cell immunotherapy for HIV infection: from theory to reality. Immunotherapy 2009; 1:1039-51. [DOI: 10.2217/imt.09.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Knowledge concerning the immunology of dendritic cells (DCs) accumulated over the last few decades and the development of methodologies to generate and manipulate these cells in vitro has made their therapeutic application a reality. Currently, clinical protocols for DC-based therapeutic vaccine in HIV-infected individuals show that it is a safe and promising approach. Concomitantly, important advances continue to be made in the development of methodologies to optimize DC acquisition, as well as the selection of safe, immunogenic HIV antigens and the evaluation of immune response in treated individuals.
Collapse
Affiliation(s)
- Telma Miyuki Oshiro
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| | - Alexandre de Almeida
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| |
Collapse
|
32
|
Inaba K, Swiggard WJ, Steinman RM, Romani N, Schuler G, Brinster C. Isolation of dendritic cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 3:3.7.1-3.7.19. [PMID: 19653207 DOI: 10.1002/0471142735.im0307s86] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit presents two methods for preparing dendritic cells (DCs), a highly specialized type of antigen-presenting cell (APC). The first method involves the isolation of DCs from mouse spleen, resulting in a cell population that is highly enriched in accessory cell and APC function. A support protocol for collagenase digestion of splenocyte suspensions is described to increase the yield of dendritic cells. The second method involves generating large numbers of DCs from mouse bone marrow progenitor cells. In that technique, bone marrow cells are cultured in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) to yield 5-10 x 10(6) cells, 60% of which express DC surface markers (e.g., B-7-2/CD86). Additional techniques for isolating DCs from mouse spleens or other mouse tissues, as well as from human tissues, are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Carine Brinster
- IRCL (Institut de Recherche sur le Cancer de Lille), INSERM Unité 837, Lille, France
| |
Collapse
|
33
|
Tedder TF, Jansen PJ. Isolation and generation of human dendritic cells. ACTA ACUST UNITED AC 2008; Chapter 7:7.32.1-7.32.16. [PMID: 18432844 DOI: 10.1002/0471142735.im0732s23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells are highly specialized antigen-presenting cells (APC), which may be isolated or generated from human blood mononuclear cells. Although mature blood dendritic cells normally represent 0.2% of human blood mononuclear cells, their frequency can be greatly increased using the cell enrichment methods described in this unit. More highly purified dendritic cell preparations can be obtained from these populations by sorting of fluorescence-labeled cells. Alternatively, dendritic cells can be generated from monocytes by culture with the appropriate cytokines, as described here. In addition, a negative selection approach is provided that may be employed to generate cell preparations that have been depleted of dendritic cells to be used for comparison in functional studies.
Collapse
Affiliation(s)
- T F Tedder
- Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
34
|
The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J Clin Immunol 2008; 28:685-96. [PMID: 18780166 DOI: 10.1007/s10875-008-9237-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/01/2008] [Indexed: 12/20/2022]
Abstract
Although the interleukin-2 (IL-2)/IL-2R signaling pathway has been the focus of numerous studies, certain aspects of its molecular regulation are not well characterized, especially in non-T cells, and a more complete understanding of the pathway is necessary to discern the functional basis of the genetic association between the IL-2-IL-21 and IL-2RA/CD25 gene regions and T1D in humans. Genetic variation in these regions may promote T1D susceptibility by influencing transcription and/or splicing and, hence, IL-2 and IL-2RA/CD25 expression at the protein level in different immune cell subsets; thus, there is a need to establish links between the genetic variation and immune cell phenotypes and functions in humans, which can be further investigated and validated in mouse models. The detection and characterization of genetically determined immunophenotypes should aid in elucidating disease mechanisms and may enable future monitoring of disease initiation and progression in prediabetic subjects and of responses to therapeutic intervention.
Collapse
|
35
|
Mukherjee P, Chauhan VS. Plasmodium falciparum-free merozoites and infected RBCs distinctly affect soluble CD40 ligand-mediated maturation of immature monocyte-derived dendritic cells. J Leukoc Biol 2008; 84:244-54. [PMID: 18413701 DOI: 10.1189/jlb.0807565] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Free plasmodium merozoites released from the parasitized hepatocytes and erythrocytes represent a transitory, extracellular stage in its mammalian host. In this study, we compared the effect of Plasmodium falciparum-free merozoites with infected RBCs (iRBCs) on the maturation of human monocyte-derived dendritic cells (DCs) in vitro. Phagocytosed-free merozoites prevented soluble CD40 ligand (sCD40L)-induced, phenotypic maturation of DCs and secretion of IL-12p70 but enhanced IL-10 production and primed, naive CD4+ cells to produce a high level of IL-10 compared with IFN-gamma. Free merozoites augmented sCD40L-induced ERK1/2 activation, and inhibition of ERK1/2 with its inhibitor PD98059 markedly abrogated IL-10 production and rescued IL-12 production. Therefore, the molecular mechanisms by which free merozoites antagonized sCD40L-induced DC maturation appeared to involve the activation of the ERK pathway. In contrast, phagocytosed iRBCs by itself induced DCs to semi-maturation, responded to CD40 signaling by maturing and secreting increased levels of TNF-alpha, IL-6, and also IL-12p70, and led to a pronounced, proinflammatory response by the allogenic CD4+ T cells. iRBCs regulate CD40-induced p38MAPK. Studies using inhibitors selective for p38MAPK (SB203580) showed that p38MAPK played an essential role in the maturation and function of DCs. Our results reveal the ability of free merozoites and iRBCs to distinctly alter the sCD40L-induced DC functioning by regulating the activation of the MAPK pathway that can inactivate or exacerbate immune responses to promote their survival and the development of parasite-specific pathologies.
Collapse
Affiliation(s)
- Paushali Mukherjee
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | |
Collapse
|
36
|
Gillet-Hladky S, Duperrier K, Picandet S, Mathias V, de Carvalho MC, Bernaud J, Masseau D, Bienvenu J, Rigal D. Induction of high expression of CCR7 and high production of IL-12 in human monocyte-derived dendritic cells by a new bacterial component: LCOS 1013. Int Immunopharmacol 2008; 8:1151-63. [PMID: 18602060 DOI: 10.1016/j.intimp.2008.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/19/2007] [Accepted: 02/18/2008] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) are the most potent antigen presenting cells of the immune system as they can act as initiators, stimulators and regulators of the immune response. Human DCs are most commonly generated for clinical use by in vitro differentiation of monocytes with exogenous cytokines. Here, we investigate the effect of LCOS 1013 on the production of mature Mo-DCs. LCOS 1013 is a new bacterial component from walls of gram(+)Klebsellia pneumoniae bacteria that contain some OmpA glycoproteins. Purified peripheral blood monocytes were cultured for 6 days with IL-4 and GM-CSF in order to obtain immature dendritic cells (Im-MoDCs). On day six, Im-MoDCs were matured with either LCOS 1013, TNF alpha, LPS or CD40-Ligand. LCOS 1013 matured Mo-DCs (LCO-DCs) showed a higher expression of DC-LAMP, CD80, CD83, CD54 and CD40 than TNF alpha, LPS and CD40L matured Mo-DCs. Interestingly, LCO-DCs exhibited high expression of full competent CCR7 and high secretion of IL-12 during their maturation. Functionally, LCO-DCs have equivalent potency to trigger mixed leukocyte reaction and antigen-specific reaction and polarize immune response towards Th1 way. Moreover, we found that LCOS 1013 activates DCs through TLR2. LCOS 1013 represents an attractive therapeutic maturation agent of DCs allowing the production of Mo-DCs with high capacity to migrate and to induced Th1 immune responses.
Collapse
|
37
|
Smith SS, Barnum SR. Differential expression of beta 2-integrins and cytokine production between gammadelta and alphabeta T cells in experimental autoimmune encephalomyelitis. J Leukoc Biol 2007; 83:71-9. [PMID: 17928460 DOI: 10.1189/jlb.0407263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The expression of beta 2-integrins on gammadelta T cells in naïve mice or those with experimental autoimmune encephalomyelitis (EAE) remains poorly characterized. We compared beta 2-integrin expression and cytokine production between gammadelta and alphabeta T cells over the acute course of EAE. We observed that unlike in alphabeta T cells, beta 2-integrin expression on gammadelta T cells increased significantly from baseline, peaked at Day 10, and remained unchanged in the draining lymph nodes or declined in the spleen and CNS by Day 15. In addition, IFN-gamma- and TNF-alpha-producing gammadelta T cells infiltrated the CNS rapidly and produced significantly more of these cytokines than alphabeta T cells throughout the course of EAE. These results suggest unique roles for beta 2-integrins in the trafficking of gammadelta versus alphabeta T cells during EAE and that gammadelta T cells infiltrate the CNS rapidly, producing cytokines, which modulate acute disease.
Collapse
Affiliation(s)
- Sherry S Smith
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. S., BBRB/842, Birmingham, AL 35294, USA
| | | |
Collapse
|
38
|
Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA. Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J Clin Invest 2007; 117:2517-25. [PMID: 17786242 PMCID: PMC1957542 DOI: 10.1172/jci32282] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 06/06/2007] [Indexed: 11/17/2022] Open
Abstract
We used a panel of monoclonal antibodies to characterize DCs in the dermis of normal human skin. Staining for the CD11c integrin, which is abundant on many kinds of DCs, revealed cells in the upper dermis. These cells were positive for blood DC antigen-1 (BDCA-1; also known as CD1c), HLA-DR, and CD45, markers that are also expressed by circulating myeloid DCs. A small subset of CD11c+ dermal cells expressed DEC-205/CD205 and DC-lysosomal-associated membrane glycoprotein/CD208 (DC-LAMP/CD208), suggesting some differentiation or maturation. When BDCA-1+ cells were selected from collagenase digests of normal dermis, they proved to be strong stimulators for T cells in a mixed leukocyte reaction. A second major population of cells located throughout the dermis was positive for factor XIIIA (FXIIIA), but lacked CD11c and BDCA-1. They expressed the macrophage scavenger receptor CD163 and stained weakly for HLA-DR and CD45. Isolated CD163+ dermal cells were inactive in stimulating T cell proliferation, but in biopsies of tattoos, these cells were selectively laden with granular pigments. Plasmacytoid DCs were also present in the dermis, marked by CD123 and BDCA-2. In summary, the normal dermis contains typical immunostimulatory myeloid DCs identified by CD11c and BDCA-1, as well as an additional population of poorly stimulatory macrophages marked by CD163 and FXIIIA.
Collapse
Affiliation(s)
- Lisa C. Zaba
- Laboratory for Investigative Dermatology and
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, USA
| | - Judilyn Fuentes-Duculan
- Laboratory for Investigative Dermatology and
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, USA
| | - Ralph M. Steinman
- Laboratory for Investigative Dermatology and
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, USA
| | - James G. Krueger
- Laboratory for Investigative Dermatology and
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, USA
| | - Michelle A. Lowes
- Laboratory for Investigative Dermatology and
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
39
|
Muretto P. The relationship of Langerhans cells to melanocytes and Schwann cells in mature cystic teratomas of the ovary. Int J Surg Pathol 2007; 15:266-71. [PMID: 17652534 DOI: 10.1177/1066896907302227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mature cystic teratomas have been widely studied relative to their tissue components derived from all 3 embryonic layers, and immunohistochemical methods have demonstrated a variety of neurohormonal polypeptides. To our knowledge, Langerhans cells (LCs), which are a peculiar component of epidermis, have not been reported in ovarian teratomas. The origin of these cells is still a matter of debate, ranging from bone marrow stem cells to neural elements. Thirty mature teratomas of the ovary were studied by immunohistochemistry using CD1 (specific against dendritic LCs), S100 protein (against LCs and melanocytes), and melan-A and HMB45 (against melanocytes). Furthermore, antibodies for identifying subsets of lymphocytes and monocytes (CD3, CD4, CD8, CD20, and CD68) were used. Histologic examination showed teratomas with the presence of all 3 embryonic layers in variable proportions in 23 cases, while 7 teratomas were composed only of epidermis without appendages or other tissues. Immunohistochemistry identified LCs among the suprabasal layers of epidermis in the same sites at which melanocytes were seen in the basal layer. CD1-positive LCs sometimes appeared to cross the basal membrane and penetrate the subepidermal tissue (related to their known migratory ability), and they were associated there with T-cell line lymphocytes (CD3 positive). These findings were commonly observed in teratomas that included all 3 embryonic layers and neural tissues. Notably, LCs and melanocytes were undetectable in the 7 teratomas composed of epidermis only. Our observations of LCs in ovarian teratomas led us to consider these cells to be derived from neural cells, possibly related to Schwann cells, in accord with the original description by Langerhans. In fact, LCs are always associated with melanocytes, which are universally considered to be derived from the neural crest, as are Schwann cells and peripheral nerves. Finally, we propose that LCs may be part of a cytoimmunologic system related to the T-cell compartment, with a stem cell derived from the neural crest.
Collapse
Affiliation(s)
- Pietro Muretto
- Department of Pathology, San Salvatore Hospital, Pesaro, Italy.
| |
Collapse
|
40
|
Bullard DC, Hu X, Adams JE, Schoeb TR, Barnum SR. p150/95 (CD11c/CD18) expression is required for the development of experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:2001-8. [PMID: 17525267 PMCID: PMC1899456 DOI: 10.2353/ajpath.2007.061016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
p150/95 (CD11c/CD18, CR4) is a member of the beta(2)-integrin family of adhesion molecules and is considered an important phagocytic receptor. The role of p150/95 in the development of central nervous system demyelinating diseases, including multiple sclerosis, remains unexplored. To determine p150/95-mediated mechanisms in experimental autoimmune encephalomyelitis (EAE), we performed EAE using CD11c-deficient (CD11c(-/-)) mice. EAE in CD11c(-/-) mice was significantly attenuated and characterized by markedly reduced spinal cord T-cell infiltration and interferon-gamma production by these cells. Adoptive transfer of antigen-restimulated T cells from wild-type to CD11c(-/-) mice produced significantly attenuated EAE, whereas transfer of CD11c(-/-) antigen-restimulated T cells to control mice induced a very mild, monophasic EAE. T cells from MOG(35-55) peptide-primed CD11c(-/-) mice displayed an unusual cytokine phenotype with elevated levels of interleukin (IL)-2, IL-4, and IL-12 but reduced levels of interferon-gamma, tumor necrosis factor-alpha, IL-10, IL-17, and transforming growth factor-beta compared with control mice. Overall, CD11c(-/-) T cells from primed mice proliferated comparably to that of control T cells on MOG(35-55) restimulation. Our results indicate that expression of p150/95 is critical on both T cells as well as other leukocytes for the development of demyelinating disease and may represent a novel therapeutic target for multiple sclerosis.
Collapse
Affiliation(s)
- Daniel C Bullard
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S., Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
41
|
Cravens PD, Hayashida K, Davis LS, Nanki T, Lipsky PE. Human peripheral blood dendritic cells and monocyte subsets display similar chemokine receptor expression profiles with differential migratory responses. Scand J Immunol 2007; 65:514-24. [PMID: 17523943 DOI: 10.1111/j.1365-3083.2007.01933.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human antigen presenting cells (APC) found in peripheral blood are considered to be precursors that have been released from the bone marrow and are in transit to the peripheral tissues. These APC populations include myeloid dendritic cells (mDC), plasmacytoid DC (pDC) and monocytes (Mo). To assign specialized functional roles and stages of development for APCs, CD33 expressing APC subsets were examined for their capacity to respond to chemokines. Three major CD33(+) subsets including CD33(bright)CD14(bright) Mo, CD33(bright)CD14(-) CD11c(+) mDC and CD33(dim)CD14(-) pDC were present. Dendritic cells subsets and Mo expressed low levels of CC and CXC receptors, but distinctive chemokine receptor expression profiles were not observed. The percentage of cells expressing a particular chemokine receptor varied from donor to donor and over time in the same donor. Myeloid DC and Mo but not pDC migrated toward CXCL12 in a concentration dependent manner. Monocytes and pDC, but not myeloid DC, were attracted by high concentrations of CXCL10. All CD33(+) subsets migrated in a concentration dependent manner toward CCL19, but responded less robustly to CCL21. CCL20 was not chemoattractant for any population. Despite the finding that APC did not exhibit unique surface chemokine receptor expression patterns, they exhibited differential migration to CXCL12, CXCL10 and CCL21 but not to CCL20 or CCL19.
Collapse
Affiliation(s)
- P D Cravens
- The Harold C. Simmons Arthritis Research Center, Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
42
|
Wang YS, Chi KH, Liao KW, Liu CC, Cheng CL, Lin YC, Cheng CH, Chu RM. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2007; 71:165-74. [PMID: 17695590 PMCID: PMC1899861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 08/01/2006] [Indexed: 05/16/2023]
Abstract
For therapeutic purposes, large numbers of dendritic cells (DCs) are essential. In this study, we used 2% autologous canine plasma, granulocyte/macrophage colony-stimulating factor (GM-CSF), fms-like tyrosine kinase 3 ligand (Flt3L), and interleukin 4 (IL-4) in generating monocyte-derived DCs from peripheral blood mononuclear cells of dogs. The plasma enriched the population of CD14-positive monocytes by greatly enhancing the efficiency of monocyte adherence, the proportion of adherent cells increasing from 6.6% with 10% fetal bovine serum to 15.3% with 2% autologous canine plasma. Culturing the adherent monocytes for 6 d with human GM-CSF, canine IL-4, and human Flt3L significantly increased the yield of DCs, more than 90% of which were CD14-negative. Because, in the presence of lipopolysaccharide (LPS), monocytes that were CD14-positive expressed tumor necrosis factor ac much more than DCs with low levels of CD14, it is important to decrease the numbers of CD14-positive cells in generating monocyte-derived DCs. With flow cytometry and real-time reverse-transcriptase-mediated polymerase chain reaction assays, we found that in canine immature DCs (iDCs) the expression of DLA class II molecules, CD1a, CD11c, CD40, and CD86 was high and the expression of CD80, CD83, and CD14 either low or negative. During maturation (stimulated by LPS), the expression of CDla, CD40, CD83, and CD80 was upregulated. However, the expression of DLA class II molecules, CD11c, and CD86 was not increased in mature DCs. Incubating the iDCs with LPS decreased antigen uptake and increased the cells' immunostimulatory capacity (assessed by the allogeneic mixed-lymphocyte reaction), indicating that LPS accelerates the functional maturation of DCs. This protocol may facilitate the use of DCs in cellular immunotherapy.
Collapse
Affiliation(s)
| | | | - Kuang-Wen Liao
- Department of Veterinary Medicine, National Taiwan University (Wang, Liu, Chiao-Lei Cheng, Lin, Chiung-Hsiang Cheng, Chu), Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital (Wang, Chi), and Department of Biological Science & Technology, National Chiao Tung University (Liao), Taipei, Taiwan, Republic of China
| | - Cheng-Chi Liu
- Department of Veterinary Medicine, National Taiwan University (Wang, Liu, Chiao-Lei Cheng, Lin, Chiung-Hsiang Cheng, Chu), Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital (Wang, Chi), and Department of Biological Science & Technology, National Chiao Tung University (Liao), Taipei, Taiwan, Republic of China
| | - Chiao-Lei Cheng
- Department of Veterinary Medicine, National Taiwan University (Wang, Liu, Chiao-Lei Cheng, Lin, Chiung-Hsiang Cheng, Chu), Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital (Wang, Chi), and Department of Biological Science & Technology, National Chiao Tung University (Liao), Taipei, Taiwan, Republic of China
| | - Yi-Chun Lin
- Department of Veterinary Medicine, National Taiwan University (Wang, Liu, Chiao-Lei Cheng, Lin, Chiung-Hsiang Cheng, Chu), Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital (Wang, Chi), and Department of Biological Science & Technology, National Chiao Tung University (Liao), Taipei, Taiwan, Republic of China
| | - Chiung-Hsiang Cheng
- Department of Veterinary Medicine, National Taiwan University (Wang, Liu, Chiao-Lei Cheng, Lin, Chiung-Hsiang Cheng, Chu), Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital (Wang, Chi), and Department of Biological Science & Technology, National Chiao Tung University (Liao), Taipei, Taiwan, Republic of China
| | - Rea-Min Chu
- Department of Veterinary Medicine, National Taiwan University (Wang, Liu, Chiao-Lei Cheng, Lin, Chiung-Hsiang Cheng, Chu), Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital (Wang, Chi), and Department of Biological Science & Technology, National Chiao Tung University (Liao), Taipei, Taiwan, Republic of China
| |
Collapse
|
43
|
Velten FW, Rambow F, Metharom P, Goerdt S. Enhanced T-cell activation and T-cell-dependent IL-2 production by CD83+, CD25high, CD43high human monocyte-derived dendritic cells. Mol Immunol 2007; 44:1544-50. [PMID: 17023048 DOI: 10.1016/j.molimm.2006.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 08/14/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Although standardized protocols are widely used for the generation of monocyte-derived immunostimulatory dendritic cells (DC(ims)), the inducibility of Th1 cells by DC(ims) may considerably differ. As a measure for the quality of DC(ims) generated from an individual donor at a certain time point, CD83 is used in combination with HLA-DR and CD86 to assess DC maturation. When phenotypically analyzing DC(ims), we identified a subpopulation ( approximately 60%) of CD83+, CD86+, and HLA-DR+ DC(ims) that co-expressed CD25. DC within a given DC(ims) preparation identified by lower expression of CD83 and by selective expression of CD14, however, did not co-express CD25. In order to establish CD25 as an additional maturation marker of DC(ims), we studied the DC phenotype of these cells as well as the DC-dependent T-cell proliferation and T-cell cytokine production profile after co-incubation with sorted CD25(high) and CD25(low) subpopulations of CD83+, HLA-DR+, CD86+ DC(ims). CD25(high) DC(ims) showed significant up-regulation of the DC activation molecule CD43 and induced increased levels of IL-2 secretion in allogeneic T-cells (170.7+/-86.7pg/mL) as compared to T-cells coincubated with CD25(low) DC(ims) (86.6+/-37.6pg/mL) [p=0.0224]. This was reflected by a significantly lower T-cell stimulatory capacity of CD25(low) DC(ims) (84.0% of CD25(high) DC(ims), 1:10 ratio; p=0.014) whereas the T-cell stimulatory capacity of CD25(low) DC(ims) was much higher when compared to IL-10 induced regulatory DC (55.3% of CD25(high) DC(ims); 1:10 ratio). With regard to cancer vaccination protocols, we propose to use CD25 and CD43 as additional markers for DC quality control, assessment of maturational status, and positive selection.
Collapse
Affiliation(s)
- Florian W Velten
- Department of Dermatology, University Medical Center Mannheim, Ruprecht Karls University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | |
Collapse
|
44
|
Cameron PU, Handley AJ, Baylis DC, Solomon AE, Bernard N, Purcell DFJ, Lewin SR. Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J Virol 2006; 81:2297-306. [PMID: 17166903 PMCID: PMC1865918 DOI: 10.1128/jvi.01795-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) transmission by the parenteral route is similar to mucosal transmission in the predominance of virus using the CCR5 coreceptor (R5 virus), but it is unclear whether blood dendritic cells (DCs), monocytes, or T cells are the cells initially infected. We used ex vivo HIV-1 infection of sorted blood mononuclear cells to model the in vivo infection of blood leukocytes. Using quantitative real-time PCR to detect full-length HIV-1 DNA, both sorted CD11c(+) myeloid and CD11c(-) plasmacytoid DCs were more frequently infected than other blood mononuclear cells, including CD16(+) or CD14(+) monocytes or resting CD4(+) T cells. There was a strong correlation between CCR5 coreceptor use and preferential DC infection across a range of HIV-1 isolates. After infection of unsorted blood mononuclear cells, HIV-1 was initially detected in the CD11c(+) DCs and later in other leukocytes, including clustering DCs and activated T cells. DC infection with R5 virus was productive, as shown by efficient transmission to CD4(+) T cells in coculture. Blood DCs infected with HIV-1 in vitro and cultured alone expressed only low levels of multiply spliced HIV-1 RNA unless cocultured with CD4(+) T cells. Early selective infection of immature blood DCs by R5 virus and upregulation of viral expression during DC-T-cell interaction and transmission provide a potential pathway for R5 selection following parenteral transmission.
Collapse
Affiliation(s)
- Paul U Cameron
- Department of Immunology, Monash University, Commercial Road, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chan A, Baird M, Mercer AA, Fleming SB. Maturation and function of human dendritic cells are inhibited by orf virus-encoded interleukin-10. J Gen Virol 2006; 87:3177-3181. [PMID: 17030850 DOI: 10.1099/vir.0.82238-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orf virus (ORFV) is a parapoxvirus that infects sheep, goats and man. In humans, the virus induces acute, pustular skin lesions that can develop into a progressive disease. Humans are susceptible to reinfection with ORFV and rare cases of persistent infection have been reported. ORFV encodes several immunomodulators, including a homologue of interleukin-10 (ORFV IL-10), that may explain these phenomena. The immunosuppressive effects of ORFV IL-10 on immature human dendritic cells (DCs) cultured from blood-derived monocytes (MoDCs) were investigated. MoDCs exposed simultaneously to lipopolysaccharide and ORFV IL-10 showed enhanced ovalbumin-FITC uptake and reduced IL-12 expression, indicating inhibition of maturation. Moreover, ORFV IL-10 inhibited the upregulation of DC cell-surface activation and maturation markers MHC II, CD80, CD83 and CD86 and inhibited the capacity of MoDCs to activate CD4(+) T cells in an oxidative mitogenesis assay. These findings suggest that ORFV IL-10 may influence the development of acquired immunity in humans by impairing DC function.
Collapse
Affiliation(s)
- Anna Chan
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Margaret Baird
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Andrew A Mercer
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Stephen B Fleming
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
46
|
Ragde H, Cavanagh WA, Tjoa BA. Dendritic cell based vaccines: progress in immunotherapy studies for prostate cancer. J Urol 2006; 172:2532-8. [PMID: 15538202 DOI: 10.1097/01.ju.0000144211.51111.e4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE No effective treatment is currently available for metastatic prostate cancer. Dendritic cell (DC) based cancer vaccine research has emerged from the laboratories to human clinical trials. We describe progress in the development of DC based prostate cancer vaccine. MATERIALS AND METHODS The literature was reviewed for major contributions to a growing number of studies that demonstrate the potential of DC based immunotherapeutics for prostate cancer. Background topics relating to DC based immunotherapy theory and practice are also addressed. RESULTS DCs have been recognized as the most efficient antigen presenting cells that have the capacity to initiate naive T cell response in vitro and in vivo. During their differentiation and maturation pathways, dendritic cells can efficiently capture, process and present antigens for T cell activation. These characteristics make DC an attractive choice as the cellular adjuvant for cancer vaccines. Advances in DC generation, loading, and maturation methodologies have made it possible to generate clinical grade vaccines for various human trials. More than 100 DC vaccine trials, including 7 studies of patients with advanced prostate cancer have been reported to date. These vaccines were generally well tolerated with no significant adverse toxicity reported. Clinical responders have been identified in these studies. CONCLUSIONS The new prospects opened by DC based vaccines for prostate cancer are fascinating. When compared to conventional treatments, DC vaccinations have few side effects. Improvements in patient selection, vaccine delivery strategies, immune monitoring and vaccine manufacturing will be crucial in moving DC based prostate cancer vaccines closer to the clinics.
Collapse
Affiliation(s)
- Haakon Ragde
- Haakon Ragde Foundation for Advanced Cancer Studies, Seattle, Washington, USA.
| | | | | |
Collapse
|
47
|
Abstract
The mucosal lining of the respiratory and digestive systems contains the largest and most complex immune system in the body, but surprisingly little is known of the immune system that serves the oral mucosa. This review focuses on dendritic cells, particularly powerful arbiters of immunity, in response to antigens of microbial or tumor origin, but also of tolerance to self-antigens and commensal microbes. Although first discovered in 1868, the epidermal dendritic Langerhans cells remained enigmatic for over a century, until they were identified as the most peripheral outpost of the immune system. Investigators' ability to isolate, enrich, and culture dendritic cells has led to an explosion in the field. Presented herein is a review of dendritic cell history, ontogeny, function, and phenotype, and the role of different dendritic cell subsets in the oral mucosa and its diseases. Particular emphasis is placed on the mechanisms of recognition and capture of microbes by dendritic cells. Also emphasized is how dendritic cells may regulate immunity/tolerance in response to oral microbes.
Collapse
Affiliation(s)
- C W Cutler
- Department of Periodontics, 110 Rockland Hall, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8703, USA.
| | | |
Collapse
|
48
|
Foti M, Granucci F, Pelizzola M, Beretta O, Ricciardi-Castagnoli P. Dendritic cells in pathogen recognition and induction of immune responses: a functional genomics approach. J Leukoc Biol 2006; 79:913-6. [PMID: 16641136 DOI: 10.1189/jlb.1005547] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
At the 38th Annual Meeting of the Society for Leukocyte Biology held in Oxford this year, the biology of dendritic cells (DCs) and macrophages was discussed. In particular, functional genomics approaches were presented to investigate transcriptional changes during microbe and phagocytes interactions. Here, we report functional genomics studies likely to be of interest to the Journal of Leukocyte Biology readers with a particular emphasis on DC biology. DCs are professional antigen-presenting cells, which are essential for the initiation and regulation of natural killer, T, and T regulatory cell responses. Immature DCs, resident in peripheral sites, are specialized in antigen capture and continually sample soluble and particulate antigens in their local environment. DCs express receptors for cytokines, chemokines, endogenous danger signals, and microbial structures. The interactions between DCs and microorganism are complex, but progress in the past few years has shed light on several aspects of these processes. Infectious disease is the result of an intimate relationship between pathogens and hosts. Thus, understanding the cross-talk between host and pathogen is essential to improve our knowledge of infectious disease. Functional genomics and proteomics applied to DCs and macrophage biology are now providing powerful tools to dissect, at the molecular level, host-pathogen interactions.
Collapse
Affiliation(s)
- Maria Foti
- Department of Biotechnology and bioscience, University of Milano-Bicocca, Milano, Italy
| | | | | | | | | |
Collapse
|
49
|
Abstract
The capacity of antigen presenting dendritic cells (DC) to function in both tolerance and immunity is now well documented. The function and characteristics of different DC subsets are reviewed here and their capacity to activate T cells under different conditions of maturation and activation is discussed. The immunogenic potential of exosomes produced by DC is also considered in light of evidence that the capacity of exosomes to activate T cells for tolerance or immunity appears to mirror that of the parent DC. A model is proposed whereby exosomes produced by immature DC can function to maintain peripheral tolerance, while exosomes produced by more mature DC can stimulate effector T cells.
Collapse
Affiliation(s)
- Ben J C Quah
- School of Biochemistry & Molecular Biology, Australian National University, Canberra, ACT, 0200, Australia
| | | |
Collapse
|
50
|
Rousseau RF, Biagi E, Dutour A, Yvon ES, Brown MP, Lin T, Mei Z, Grilley B, Popek E, Heslop HE, Gee AP, Krance RA, Popat U, Carrum G, Margolin JF, Brenner MK. Immunotherapy of high-risk acute leukemia with a recipient (autologous) vaccine expressing transgenic human CD40L and IL-2 after chemotherapy and allogeneic stem cell transplantation. Blood 2005; 107:1332-41. [PMID: 16249392 PMCID: PMC1895421 DOI: 10.1182/blood-2005-03-1259] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD40L generates immune responses in leukemia-bearing mice, an effect that is potentiated by IL-2. We studied the feasibility, safety, and immunologic efficacy of an IL-2- and CD40L-expressing recipient-derived tumor vaccine consisting of leukemic blasts admixed with skin fibroblasts transduced with adenoviral vectors encoding human IL-2 (hIL-2) and hCD40L. Ten patients (including 7 children) with high-risk acute myeloid (n = 4) or lymphoblastic (n = 6) leukemia in cytologic remission (after allogeneic stem cell transplantation [n = 9] or chemotherapy alone [n = 1]) received up to 6 subcutaneous injections of the IL-2/CD40L vaccine. None of the patients were receiving immunosuppressive drugs. No severe adverse reactions were noted. Immunization produced a 10- to 890-fold increase in the frequencies of major histocompatibility complex (MHC)-restricted T cells reactive against recipient-derived blasts. These leukemia-reactive T cells included both T-cytotoxic/T-helper 1 (Th1) and Th2 subclasses, as determined from their production of granzyme B, interferon-gamma, and interleukin-5. Two patients produced systemic IgG antibodies that bound to their blasts. Eight patients remained disease free for 27 to 62 months after treatment (5-year overall survival, 90%). Thus, even in heavily treated patients, including recipients of allogeneic stem cell transplants, recipient-derived antileukemia vaccines can induce immune responses reactive against leukemic blasts. This approach may be worthy of further study, particularly in patients with a high risk of relapse.
Collapse
Affiliation(s)
- Raphaël F Rousseau
- Center for Cell and Gene Therapy, 6621 Fannin St, MC3-3320, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|