1
|
Liao Y, Ayala-Lujan JL, Liu L, Gong W, Zhu G, Nataro JP, Santiago AE, Ruiz-Perez F. CD45-mediated apoptosis and IL-2 receptor downregulation by serine proteases secreted from diarrheagenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644266. [PMID: 40166318 PMCID: PMC11957166 DOI: 10.1101/2025.03.20.644266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Most enteropathogens secrete one or more members of the serine protease autotransporters of Enterobacteriaceae (SPATE). We previously demonstrated that SPATE cleaves various O-linked glycoproteins on leukocytes, including the tyrosine phosphatase CD45RO. SPATE impairs leukocyte functions and triggers apoptosis in activated T cells in vitro. Here, we show that SPATE produced by pathogenic E. coli, Shigella , and the mouse pathogen Citrobacter rodentium cleaves not only CD45RO but also CD45 isoforms containing exons A and B. We found that the cleavage of CD45 in primary T cells from both human and murine sources correlated with decreased IL2RA (CD25) surface expression in a concentration-dependent manner. SPATE did not cleave CD25 or affect T cell activation. However, SPATE requires CD45 expression for the depletion of CD25 in activated T cells, as SPATE did not significantly impact CD25 in the Jurkat J45.01 cell line, which lacks CD45. More importantly, we discovered that J45.01 cells resisted SPATE-mediated apoptosis, whereas apoptotic wild-type Jurkat cells exhibited decreased surface expression of CD25. Furthermore, we observed that mice infected with C. rodentium lacking SPATE displayed lower mortality, delayed intestinal colonization, reduced inflammatory cytokines, and decreased leukocyte infiltration in the lamina propria while having a higher number of CD25+ T cells compared to mice infected with wild-type CR or the CR SPATE mutant expressing Crc2 in trans. Our data suggest that SPATE-producing pathogens trigger T-cell apoptosis through CD45 via a mechanism akin to IL2 deprivation, demonstrating that SPATE can act as immunomodulators at various levels of the immune system. SIGNIFICANCE We have demonstrated for the first time that serine proteases (C2S) from clinically relevant pathogens, such as E. coli pathotypes and Shigella , can cleave leukocyte glycoproteins, including the tyrosine phosphatase CD45, which play crucial roles in cellular and immune functions. In this study, we discovered that C2S induces apoptosis in activated T cells through a previously unknown mechanism resembling IL-2 deprivation, mediated by CD45. Furthermore, we found that C2S is essential for bacterial virulence in vivo. This suggests that pathogens producing C2S may possess previously undescribed immunoregulatory functions that enhance their survival in the host and contribute to the disease process by eliminating T cells through the targeting of CD45 and the IL-2 receptor.
Collapse
|
2
|
Hildenbrand A, Cramer P, Bertolotti M, Kaiser NS, Kläsener K, Nickel CM, Reth M, Heim A, Hengel H, Burgert HG, Ruzsics Z. Inhibition of B cell receptor signaling induced by the human adenovirus species D E3/49K protein. Front Immunol 2024; 15:1432226. [PMID: 39139562 PMCID: PMC11321000 DOI: 10.3389/fimmu.2024.1432226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The early transcription unit 3 (E3) of human adenoviruses (HAdVs) encodes several immunoevasins, including the E3/49K protein, which is unique for species D of HAdVs. It is expressed as surface transmembrane protein and shed. E3/49K of HAdV-D64 binds to the protein tyrosine phosphatase surface receptor CD45, thereby modulating activation of T and NK cells. Methods Considering that E3/49K represents the most polymorphic viral protein among species D HAdVs, we demonstrate here that all tested E3/49K orthologs bind to the immunologically important regulator CD45. Thus, this feature is conserved regardless of the pathological associations of the respective HAdV types. Results It appeared that modulation of CD45 is a unique property restricted to HAdVs of species D. Moreover, E3/49K treatment inhibited B cell receptor (BCR) signaling and impaired BCR signal phenotypes. The latter were highly comparable to B cells having defects in the expression of CD45, suggesting E3/49K as a potential tool to investigate CD45 specific functions. Conclusion We identified B cells as new direct target of E3/49K-mediated immune modulation, representing a novel viral immunosubversive mechanism.
Collapse
Affiliation(s)
- Andreas Hildenbrand
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Precious Cramer
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Milena Bertolotti
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Nathalie Sophia Kaiser
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Kläsener
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clara Muriel Nickel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Heim
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gerhard Burgert
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Weiss A. Peeking Into the Black Box of T Cell Receptor Signaling. Annu Rev Immunol 2024; 42:1-20. [PMID: 37788477 DOI: 10.1146/annurev-immunol-090222-112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
I have spent more than the last 40 years at the University of California, San Francisco (UCSF), studying T cell receptor (TCR) signaling. I was blessed with supportive mentors, an exceptionally talented group of trainees, and wonderful collaborators and colleagues during my journey who have enabled me to make significant contributions to our understanding of how the TCR initiates signaling. TCR signaling events contribute to T cell development as well as to mature T cell activation and differentiation.
Collapse
Affiliation(s)
- Arthur Weiss
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA;
| |
Collapse
|
4
|
Kruglova NA, Mazurov DV, Filatov AV. Lymphocyte Phosphatase-Associated Phosphoprotein (LPAP) as a CD45 Protein Stability Regulator. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:912-922. [PMID: 38880651 DOI: 10.1134/s0006297924050110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 06/18/2024]
Abstract
Lymphocyte phosphatase-associated phosphoprotein (LPAP) is a binding partner of the phosphatase CD45, but its function remains poorly understood. Its close interaction with CD45 suggests that LPAP may potentially regulate CD45, but direct biochemical evidence for this has not yet been obtained. We found that in the Jurkat lymphoid cells the levels of LPAP and CD45 proteins are interrelated and well correlated with each other. Knockout of LPAP leads to the decrease in the surface expression of CD45, while its overexpression, on the contrary, caused its increase. No such correlation was found in the non-lymphoid K562 cells. We hypothesize that LPAP regulates expression level of CD45 and thus can affect lymphocyte activation.
Collapse
Affiliation(s)
- Natalia A Kruglova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Dmitriy V Mazurov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
| | - Alexander V Filatov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia.
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
5
|
Koretzky GA. Building on the Past, Meeting the Moment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:849-854. [PMID: 36947823 DOI: 10.4049/jimmunol.2390003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Affiliation(s)
- Gary A Koretzky
- Department of Internal Medicine, Weill Cornell Medicine, New York, NY
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY
| |
Collapse
|
6
|
Tauber PA, Kratzer B, Schatzlmaier P, Smole U, Köhler C, Rausch L, Kranich J, Trapin D, Neunkirchner A, Zabel M, Jutz S, Steinberger P, Gadermaier G, Brocker T, Stockinger H, Derdak S, Pickl WF. The small molecule inhibitor BX-795 uncouples IL-2 production from inhibition of Th2 inflammation and induces CD4 + T cells resembling iTreg. Front Immunol 2023; 14:1094694. [PMID: 37090735 PMCID: PMC10117943 DOI: 10.3389/fimmu.2023.1094694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Background Treg cells have been shown to be an important part of immune-homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent activation of T lymphocytes has been demonstrated to critically participate in Treg development. Objective To evaluate small molecule inhibitors (SMI) for the identification of novel IL-2/Treg enhancing compounds. Materials and methods We used TCR-dependent and allergen-specific cytokine secretion of human and mouse T cells, next generation messenger ribonucleic acid sequencing (RNA-Seq) and two different models of allergic airway inflammation to examine lead SMI-compounds. Results We show here that the reported 3-phosphoinositide dependent kinase-1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells, human peripheral blood mononuclear cells (hPBMC) and allergen-specific mouse T cells upon TCR-dependent and allergen-specific stimulation while concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the presence of BX-795 during allergen-specific activation of T cells induces a bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression. When applied in mugwort pollen and house dust mite extract-based models of airway inflammation, BX-795 significantly inhibited Th2 inflammation including expression of Th2 signature transcription factors and cytokines and influx into the lungs of type 2-associated inflammatory cells such as eosinophils. Conclusions BX-795 potently uncouples IL-2 production from Th2 inflammation and induces Th-IL-2 cells, which highly resemble induced (i)Tregs. Thus, BX-795 may be a useful new compound for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Peter A. Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Philipp Schatzlmaier
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cordula Köhler
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Rausch
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Neunkirchner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Brocker
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Hannes Stockinger
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Healthcare, Krems, Austria
- *Correspondence: Winfried F. Pickl,
| |
Collapse
|
7
|
Abstract
As the targets of chimeric antigen receptor (CAR)-T cells expand to a variety of cancers, autoimmune diseases, viral infections, and fibrosis, there is an increasing demand for identifying new antigens and designing new CARs that can be effectively activated. However, the rational selection of antigens and the design of CARs are limited by a lack of knowledge regarding the molecular mechanism by which CARs are activated by antigens. Here, we present data supporting a "size exclusion" model explaining how antigen signals are transmitted across the plasma membrane to activate the intracellular domains of CARs. In this model, antigen engagement with CAR results in a narrow intermembrane space that physically excludes CD45, a bulky phosphatase, out of the CAR zone, thus favoring CAR phosphorylation by kinases, which further triggers downstream pathways leading to T cell activation. Aligned with this model, increasing the size of CAR extracellular domains diminished CAR-T activation both in vitro and in a mouse lymphoma model; membrane-proximal epitopes activated CAR-Ts better than membrane-distal epitopes. Moreover, increasing the size of CD45 by antibody conjugation enhanced the activation of CARs that recognize membrane-distal epitopes. Consistently, CAR-Ts expressing CD45RABC, the larger isoform, were activated to a higher level than those expressing a smaller isoform CD45RO. Together, our work revealed that CAR-T activation depends on the size difference between the CAR-antigen pair and CD45; the size of CAR, antigen, and CD45 can thus be targets for tuning CAR-T activation.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Xinyan Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Liqun Tu
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Jian Cao
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Christian S. Hinrichs
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
8
|
Singh K, Kumari S, Singh B, Choubey RB, Mitra DK, Rai AK. Jurkat T cells are immunophenotypically distinct from T-cell acute lymphoblastic leukemia cells due to high-level surface expression of CD5. Cancer Invest 2022; 40:675-679. [PMID: 35758332 DOI: 10.1080/07357907.2022.2095397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human leukemic T cells show decreased surface CD5 (sCD5) and increased cytoplasmic CD5 (cCD5). When we examined their expressions in the Jurkat T cells, it showed increased sCD5 and decreased cCD5, which is in sharp contrast with the pattern of CD5 expression observed for human leukemic T cells. Furthermore, this opposite pattern was due to the absence of an exonal switch between E1A and E1B. This study suggests that Jurkat cell does not retain all characteristics of T-ALL cells; thus, we should carefully interpret the data obtained using Jurkat T cell as a model cell line of T-ALL.
Collapse
Affiliation(s)
- Kulwant Singh
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post Graduate Institute Medical Sciences, Lucknow-226014, India
| | - Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad-211004, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad-211004, India
| | - Ranjeet Bahadur Choubey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad-211004, India
| | - Dipendra Kumar Mitra
- Cellular Immunology Laboratory, Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad-211004, India
| |
Collapse
|
9
|
Imbery JF, Heinzelbecker J, Jebsen JK, McGowan M, Myklebust C, Bottini N, Stanford SM, Skånland SS, Tveita A, Tjønnfjord GE, Munthe LA, Szodoray P, Nakken B. T‐helper cell regulation of
CD45
phosphatase activity by galectin‐1 and
CD43
governs chronic lymphocytic leukaemia proliferation. Br J Haematol 2022; 198:556-573. [PMID: 35655388 PMCID: PMC9329260 DOI: 10.1111/bjh.18285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by malignant mature‐like B cells. Supportive to CLL cell survival is chronic B‐cell receptor (BCR) signalling; however, emerging evidence demonstrates CLL cells proliferate in response to T‐helper (Th) cells in a CD40L‐dependent manner. We showed provision of Th stimulation via CD40L upregulated CD45 phosphatase activity and BCR signalling in non‐malignant B cells. Consequently, we hypothesised Th cell upregulation of CLL cell CD45 activity may be an important regulator of CLL BCR signalling and proliferation. Using patient‐derived CLL cells in a culture system with activated autologous Th cells, results revealed increases in both Th and CLL cell CD45 activity, which correlated with enhanced downstream antigen receptor signalling and proliferation. Concomitantly increased was the surface expression of Galectin‐1, a CD45 ligand, and CD43, a CLL immunophenotypic marker. Galectin‐1/CD43 double expression defined a proliferative CLL cell population with enhanced CD45 activity. Targeting either Galectin‐1 or CD43 using silencing, pharmacology, or monoclonal antibody strategies dampened CD45 activity and CLL cell proliferation. These results highlight a mechanism where activated Th cells drive CLL cell BCR signalling and proliferation via Galectin‐1 and CD43‐mediated regulation of CD45 activity, identifying modulation of CD45 phosphatase activity as a potential therapeutic target in CLL.
Collapse
Affiliation(s)
- John F. Imbery
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Julia Heinzelbecker
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Jenny K. Jebsen
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Marc McGowan
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Camilla Myklebust
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of Medicine University of California, San Diego La Jolla California USA
| | - Stephanie M. Stanford
- Division of Rheumatology, Allergy and Immunology, Department of Medicine University of California, San Diego La Jolla California USA
| | - Sigrid S. Skånland
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo University Hospital Oslo Norway
| | - Anders Tveita
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Geir E. Tjønnfjord
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
- Department of Haematology Oslo University Hospital Oslo Norway
| | - Ludvig A. Munthe
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Peter Szodoray
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Britt Nakken
- Department of Immunology Oslo University Hospital Oslo Norway
- Faculty of Medicine, KG Jebsen Centre for B Cell Malignances, Institute of Clinical Medicine University of Oslo Oslo Norway
| |
Collapse
|
10
|
Hernandez Bücher JE, Staufer O, Ostertag L, Mersdorf U, Platzman I, Spatz JP. Bottom-up assembly of target-specific cytotoxic synthetic cells. Biomaterials 2022; 285:121522. [DOI: 10.1016/j.biomaterials.2022.121522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/23/2022]
|
11
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Shen H, Shen X, Feng M, Wu D, Zhang C, Yang Y, Yang M, Hu J, Liu J, Wang W, Li Y, Zhang Q, Yang J, Chen K, Li X. A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings. Brief Bioinform 2022; 23:6511497. [PMID: 35048121 DOI: 10.1093/bib/bbab573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Advancement in single-cell RNA sequencing leads to exponential accumulation of single-cell expression data. However, there is still lack of tools that could integrate these unlimited accumulations of single-cell expression data. Here, we presented a universal approach iSEEEK for integrating super large-scale single-cell expression via exploring expression rankings of top-expressing genes. We developed iSEEEK with 11.9 million single cells. We demonstrated the efficiency of iSEEEK with canonical single-cell downstream tasks on five heterogenous datasets encompassing human and mouse samples. iSEEEK achieved good clustering performance benchmarked against well-annotated cell labels. In addition, iSEEEK could transfer its knowledge learned from large-scale expression data on new dataset that was not involved in its development. iSEEEK enables identification of gene-gene interaction networks that are characteristic of specific cell types. Our study presents a simple and yet effective method to integrate super large-scale single-cell transcriptomes and would facilitate translational single-cell research from bench to bedside.
Collapse
Affiliation(s)
- Hongru Shen
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xilin Shen
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mengyao Feng
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Dan Wu
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yichen Yang
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Meng Yang
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jiani Hu
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jilei Liu
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Li
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangchun Li
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Kim HS, Grimes SM, Hooker AC, Lau BT, Ji HP. Single-cell characterization of CRISPR-modified transcript isoforms with nanopore sequencing. Genome Biol 2021; 22:331. [PMID: 34872615 PMCID: PMC8647366 DOI: 10.1186/s13059-021-02554-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
We developed a single-cell approach to detect CRISPR-modified mRNA transcript structures. This method assesses how genetic variants at splicing sites and splicing factors contribute to alternative mRNA isoforms. We determine how alternative splicing is regulated by editing target exon-intron segments or splicing factors by CRISPR-Cas9 and their consequences on transcriptome profile. Our method combines long-read sequencing to characterize the transcript structure and short-read sequencing to match the single-cell gene expression profiles and gRNA sequence and therefore provides targeted genomic edits and transcript isoform structure detection at single-cell resolution.
Collapse
Affiliation(s)
- Heon Seok Kim
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 1115, 269 Campus Drive, Stanford, CA-94305, USA
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 1115, 269 Campus Drive, Stanford, CA-94305, USA
| | - Anna C Hooker
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 1115, 269 Campus Drive, Stanford, CA-94305, USA
| | - Billy T Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 1115, 269 Campus Drive, Stanford, CA-94305, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 1115, 269 Campus Drive, Stanford, CA-94305, USA.
| |
Collapse
|
14
|
Abstract
Like all herpesviruses, the roseoloviruses (HHV6A, -6B, and -7) establish lifelong infection within their host, requiring these viruses to evade host antiviral responses. One common host-evasion strategy is the downregulation of host-encoded, surface-expressed glycoproteins. Roseoloviruses have been shown to evade the host immune response by downregulating NK-activating ligands, class I MHC, and the TCR/CD3 complex. To more globally identify glycoproteins that are differentially expressed on the surface of HHV6A-infected cells, we performed cell surface capture of N-linked glycoproteins present on the surface of T cells infected with HHV6A, and compared these to proteins present on the surface of uninfected T cells. We found that the protein tyrosine phosphatase CD45 is downregulated in T cells infected with HHV6A. We also demonstrated that CD45 is similarly downregulated in cells infected with HHV7. CD45 is essential for signaling through the T cell receptor and, as such, is necessary for developing a fully functional immune response. Interestingly, the closely related betaherpesviruses human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) have also separately evolved unique mechanisms to target CD45. While HCMV and MCMV target CD45 signaling and trafficking, HHV6A acts to downregulate CD45 transcripts. IMPORTANCE Human herpesviruses-6 and -7 infect essentially 100% of the world's population before the age of 5 and then remain latent or persistent in their host throughout life. As such, these viruses are among the most pervasive and stealthy of all viruses. Host immune cells rely on the presence of surface-expressed proteins to identify and target virus-infected cells. Here, we investigated the changes that occur to proteins expressed on the cell surface of T cells after infection with human herpesvirus-6A. We discovered that HHV-6A infection results in a reduction of CD45 on the surface of infected T cells and impaired activation in response to T cell receptor stimulation.
Collapse
|
15
|
Barreira M, Rodríguez-Fdez S, Bustelo XR. New insights into the Vav1 activation cycle in lymphocytes. Cell Signal 2018; 45:132-144. [PMID: 29410283 PMCID: PMC7615736 DOI: 10.1016/j.cellsig.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
Vav1 is a hematopoietic-specific Rho GDP/GTP exchange factor and signaling adaptor. Although these activities are known to be stimulated by direct Vav1 phosphorylation, little information still exists regarding the regulatory layers that influence the overall Vav1 activation cycle. Using a collection of cell models and activation-mimetic Vav1 mutants, we show here that the dephosphorylated state of Vav1 in nonstimulated T cells requires the presence of a noncatalytic, phospholipase Cγ1-Slp76-mediated inhibitory pathway. Upon T cell stimulation, Vav1 becomes rapidly phosphorylated via the engagement of Lck and, to a much lesser extent, other Src family kinases and Zap70. In this process, Lck, Zap70 and the adaptor protein Lat contribute differently to the dynamics and amplitude of the Vav1 phosphorylated pool. Consistent with a multiphosphosite activation mechanism, the optimal stimulation of Vav1 can only be recapitulated by the combination of several activation-mimetic phosphosite mutants. The analysis of these mutants has also unveiled the presence of different Vav1 signaling competent states that are influenced by phosphosites present in the N- and C-terminal domains of the protein.
Collapse
Affiliation(s)
- María Barreira
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
16
|
Greenplate A, Wang K, Tripathi RM, Palma N, Ali SM, Stephens PJ, Miller VA, Shyr Y, Guo Y, Reddy NM, Kozhaya L, Unutmaz D, Chen X, Irish JM, Davé UP. Genomic Profiling of T-Cell Neoplasms Reveals Frequent JAK1 and JAK3 Mutations With Clonal Evasion From Targeted Therapies. JCO Precis Oncol 2018; 2018. [PMID: 30079384 PMCID: PMC6072266 DOI: 10.1200/po.17.00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose The promise of precision oncology is that identification of genomic alterations will direct the rational use of molecularly targeted therapy. This approach is particularly applicable to neoplasms that are resistant to standard cytotoxic chemotherapy, like T-cell leukemias and lymphomas. In this study, we tested the feasibility of targeted next-generation sequencing in profiles of diverse T-cell neoplasms and focused on the therapeutic utility of targeting activated JAK1 and JAK3 in an index case. Patients and Methods Using Foundation One and Foundation One Heme assays, we performed genomic profiling on 91 consecutive T-cell neoplasms for alterations in 405 genes. The samples were sequenced to high uniform coverage with an Illumina HiSeq and averaged a coverage depth of greater than 500× for DNA and more than 8M total pairs for RNA. An index case of T-cell prolymphocytic leukemia (T-PLL), which was analyzed by targeted next-generation sequencing, is presented. T-PLL cells were analyzed by RNA-seq, in vitro drug testing, mass cytometry, and phospho-flow. Results One third of the samples had genomic aberrations in the JAK-STAT pathway, most often composed of JAK1 and JAK3 gain-of-function mutations. We present an index case of a patient with T-PLL with a clonal JAK1 V658F mutation that responded to ruxolitinib therapy. After relapse developed, an expanded clone that harbored mutant JAK3 M511I and downregulation of the phosphatase, CD45, was identified. We demonstrate that the JAK missense mutations were activating, caused pathway hyperactivation, and conferred cytokine hypersensitivity. Conclusion These results underscore the utility of profiling occurrences of resistance to standard regimens and support JAK enzymes as rational therapeutic targets for T-cell leukemias and lymphomas.
Collapse
Affiliation(s)
| | - Kai Wang
- Foundation Medicine, Cambridge, MA. Origimed, Shanghai, China
| | | | | | | | | | | | - Yu Shyr
- Vanderbilt University Medical Center, Nashville, TN
| | - Yan Guo
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | - Xueyan Chen
- University of Washington Medical Center, Seattle, WA
| | | | - Utpal P Davé
- R.L. Roudebush Veterans Affairs Medical Center and Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
17
|
Deng CY, Wang XF, Qi H, Li FR. Effects of Anti-CD45RB Monoclonal Antibody for T Lymphocyte Subsets in Mice Heart Transplantation Model. Scand J Immunol 2016; 84:86-94. [PMID: 27146476 DOI: 10.1111/sji.12446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/03/2016] [Indexed: 01/11/2023]
Affiliation(s)
- C.-Y. Deng
- The Key Laboratory of stem cell and Cellular therapy; The Second Clinical Medical College (Shenzhen People's Hospital); Jinan University; Shenzhen China
| | - X.-F. Wang
- The Key Laboratory of stem cell and Cellular therapy; The Second Clinical Medical College (Shenzhen People's Hospital); Jinan University; Shenzhen China
| | - H. Qi
- The Key Laboratory of stem cell and Cellular therapy; The Second Clinical Medical College (Shenzhen People's Hospital); Jinan University; Shenzhen China
| | - F.-R. Li
- The Key Laboratory of stem cell and Cellular therapy; The Second Clinical Medical College (Shenzhen People's Hospital); Jinan University; Shenzhen China
| |
Collapse
|
18
|
Chang X. RNA-binding protein hnRNPLL as a critical regulator of lymphocyte homeostasis and differentiation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:295-302. [PMID: 26821996 DOI: 10.1002/wrna.1335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
RNA-binding proteins orchestrate posttranscriptional regulation of gene expression, such as messenger RNA (mRNA) splicing, RNA stability regulation, and translation regulation. Heterogeneous nuclear RNA-binding proteins (hnRNPs) refer to a collection of unrelated RNA-binding proteins predominantly located in the nucleus (Han et al. Biochem J 2010, 430:379-392). Although canonical functions of hnRNPs are to promote pre-mRNA splicing, they are involved in all the processes of RNA metabolism through recognizing specific cis-elements on RNA (Dreyfuss et al. Annu Rev Biochem 1993, 62:289-321; Huelga et al. Cell Rep 2012, 1:167-178; Krecic and Swanson. Curr Opin Cell Biol 1999, 11:363-371). Heterogeneous nuclear RNA-binding protein L like (hnRNPLL) is a tissue-specific hnRNP, which was identified as a regulator of CD45RA to CD45RO switching during memory T-cell development (Oberdoerffer et al. Science 2008, 321:686-691; Topp et al. RNA 2008, 14:2038-2049; Wu et al. Immunity 2008, 29:863-875). Since then, hnRNPLL has emerged as a critical regulator of lymphocyte homeostasis and terminal differentiation, controlling alternative splicing or expression of critical genes for the lymphocytes development (Wu et al. Immunity 2008, 29:863-875; Chang et al. Proc Natl Acad Sci USA 2015, 112:E1888-E1897). This review will summarize recent advances in understanding the functions of hnRNPLL, focusing on its biochemical functions and physiological roles in lymphocyte differentiation and homeostasis. WIREs RNA 2016, 7:295-302. doi: 10.1002/wrna.1335 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xing Chang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
19
|
Insights into the initiation of TCR signaling. Nat Immunol 2014; 15:798-807. [PMID: 25137454 DOI: 10.1038/ni.2940] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022]
Abstract
The initiation of T cell antigen receptor signaling is a key step that can result in T cell activation and the orchestration of an adaptive immune response. Early events in T cell receptor signaling can distinguish between agonist and endogenous ligands with exquisite selectivity, and show extraordinary sensitivity to minute numbers of agonists in a sea of endogenous ligands. We review our current knowledge of models and crucial molecules that aim to provide a mechanistic explanation for these observations. Building on current understanding and a discussion of unresolved issues, we propose a molecular model for initiation of T cell receptor signaling that may serve as a useful guide for future studies.
Collapse
|
20
|
Perron MD, Chowdhury S, Aubry I, Purisima E, Tremblay ML, Saragovi HU. Allosteric noncompetitive small molecule selective inhibitors of CD45 tyrosine phosphatase suppress T-cell receptor signals and inflammation in vivo. Mol Pharmacol 2014; 85:553-63. [PMID: 24473749 DOI: 10.1124/mol.113.089847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD45 is a receptor-like member of the protein tyrosine phosphatase (PTP) family. We screened in silico for small molecules binding at a predicted allosteric pocket unique to the CD45 intracellular domain, and validated inhibitors by in vitro phosphatase assays. Compound 211 exhibited a CD45 IC50 value of 200 nM and had >100-fold selectivity over six related PTPs. The relevance of the allosteric pocket was verified through site-directed mutagenesis. Compound 211 has a noncompetitive mechanism of action, and it is extremely effective at preventing dephosphorylation of substrate Lck phosphotyrosine (pY)-505 versus preventing dephosphorylation of Lck pY-393. In cultured primary T cells, compound 211 prevents T-cell receptor-mediated activation of Lck, Zap-70, and mitogen-activated protein kinase, and interleukin-2 production. In a delayed-type hypersensitivity reaction in vivo, compound 211 abolished inflammation. This work demonstrates a novel approach to develop effective allosteric inhibitors that can be expanded to target the corresponding allosteric domains of other receptor PTPs.
Collapse
Affiliation(s)
- Michael D Perron
- Lady Davis Institute-Jewish General Hospital (M.P., S.C., H.U.S.), Departments of Pharmacology and Therapeutics (M.P., H.U.S.), Biochemistry (I.A., E.P., M.L.T.), and Oncology (H.U.S.), Goodman Cancer Research Center (M.L.T.), and Segal Cancer Center, McGill University, Montreal, Quebec, Canada (H.U.S.); and Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada (E.P.)
| | | | | | | | | | | |
Collapse
|
21
|
Chesneau M, Michel L, Degauque N, Brouard S. Regulatory B cells and tolerance in transplantation: from animal models to human. Front Immunol 2013; 4:497. [PMID: 24427159 PMCID: PMC3876023 DOI: 10.3389/fimmu.2013.00497] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/17/2013] [Indexed: 12/23/2022] Open
Abstract
Until recently, the role of B cells in transplantation was thought to be restricted to producing antibodies that have been clearly shown to be deleterious in the long-term, but, in fact, B cells are also able to produce cytokine and to present antigen. Their role as regulatory cells in various pathological situations has also been highlighted, and their role in transplantation is beginning to emerge in animal, and also in human, models. This review summarizes the different studies in animals and humans that suggest a B-cell regulatory role in the transplant tolerance mechanisms.
Collapse
Affiliation(s)
- Mélanie Chesneau
- Institut National de la Santé et de la Recherche Médicale U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Université de Nantes , Nantes , France
| | - Laure Michel
- Institut National de la Santé et de la Recherche Médicale U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Centre Hospitalier Universitaire , Nantes , France
| | - Nicolas Degauque
- Institut National de la Santé et de la Recherche Médicale U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France
| | - Sophie Brouard
- Institut National de la Santé et de la Recherche Médicale U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Université de Nantes , Nantes , France ; Centre Hospitalier Universitaire , Nantes , France
| |
Collapse
|
22
|
A unique secreted adenovirus E3 protein binds to the leukocyte common antigen CD45 and modulates leukocyte functions. Proc Natl Acad Sci U S A 2013; 110:E4884-93. [PMID: 24218549 DOI: 10.1073/pnas.1312420110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The E3 transcription unit of human adenoviruses (Ads) encodes immunomodulatory proteins. Interestingly, the size and composition of the E3 region differs considerably among Ad species, suggesting that distinct sets of immunomodulatory E3 proteins may influence their interaction with the human host and the disease pattern. However, to date, only common immune evasion functions of species C E3 proteins have been described. Here we report on the immunomodulatory activity of a species D-specific E3 protein, E3/49K. Unlike all other E3 proteins that act on infected cells, E3/49K seems to target uninfected cells. Initially synthesized as an 80- to 100-kDa type I transmembrane protein, E3/49K is subsequently cleaved, with the large ectodomain (sec49K) secreted. We found that purified sec49K exhibits specific binding to lymphoid cell lines and all primary leukocytes, but not to fibroblasts or epithelial cells. Consistent with this binding profile and the molecular mass, the sec49K receptor was identified as the cell surface protein tyrosine phosphatase CD45. Antibody-blocking studies suggested that sec49K binds to the membrane proximal domains present in all CD45 isoforms. Functional studies showed that sec49K can suppress the activation and cytotoxicity of natural killer cells as well as the activation, signaling, and cytokine production of T cells. Thus, we have discovered an adenovirus protein that is actively secreted and describe immunomodulatory activities of an E3 protein uniquely expressed by a single Ad species.
Collapse
|
23
|
Tan YX, Zikherman J, Weiss A. Novel tools to dissect the dynamic regulation of TCR signaling by the kinase Csk and the phosphatase CD45. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 78:131-139. [PMID: 24100586 DOI: 10.1101/sqb.2013.78.020347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Although the biochemical events induced by T-cell receptor (TCR) triggering have been well studied, both the mediators and function of basal signaling in T cells remain poorly understood. Furthermore, the precise mechanisms by which MHC-peptide interaction with the TCR disrupt the basal equilibrium to induce downstream signaling are also unclear. Here we describe novel approaches to understand the basal state of T cells and the mechanisms of TCR triggering by perturbing regulation of the Src family kinases (SFKs). The SFKs are critical proximal mediators of TCR signaling that are in turn tightly regulated by the tyrosine kinase Csk and the receptor-like tyrosine phosphatase CD45. We have developed a small-molecule analog-sensitive allele of Csk and an allelic series of mice in which expression of CD45 is varied across a broad range. Our studies have unmasked contributions of Csk and CD45 to maintain the basal state of T cells and also suggest that dynamic regulation of Csk may be involved in TCR triggering.
Collapse
Affiliation(s)
- Ying Xim Tan
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA, 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA, 94143, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA, 94143, USA.,Howard Hughes Medical Institute, UCSF, San Francisco, CA, 94143, USA
| |
Collapse
|
24
|
Byrum JN, Van Komen JS, Rodgers W. CD28 sensitizes TCR Ca²⁺ signaling during Ag-independent polarization of plasma membrane rafts. THE JOURNAL OF IMMUNOLOGY 2013; 191:3073-81. [PMID: 23966623 DOI: 10.4049/jimmunol.1300485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T cells become polarized during initial interactions with an APC to form an Ag-independent synapse (AIS) composed of membrane rafts, TCR, and TCR-proximal signaling molecules. AISs occur temporally before TCR triggering, but their role in downstream TCR signaling is not understood. Using both human and murine model systems, we studied the signals that activate AIS formation and the effect of these signals on TCR-dependent responses. We show that CD28 produces AISs detectable by spinning disc confocal microscopy seconds following initial interactions between the T cell and APC. AIS formation by CD28 coincided with costimulatory signaling, evidenced by a cholesterol-sensitive activation of the MAPK ERK that potentiated Ca²⁺ signaling in response to CD3 cross-linking. CD45 also enriched in AISs but to modulate Src kinase activity, because localization of CD45 at the cell interface reduced the activation of proximal Lck. In summary, we show that signaling by CD28 during first encounters between the T cell and APC both sensitizes TCR Ca²⁺ signaling by an Erk-dependent mechanism and drives formation of an AIS that modulates the early signaling until TCR triggering occurs. Thus, early Ag-independent encounters are an important window for optimizing T cell responses to Ag by CD28.
Collapse
Affiliation(s)
- Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
25
|
High-throughput screen using a single-cell tyrosine phosphatase assay reveals biologically active inhibitors of tyrosine phosphatase CD45. Proc Natl Acad Sci U S A 2012; 109:13972-7. [PMID: 22891353 DOI: 10.1073/pnas.1205028109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many cellular signaling events are regulated by tyrosine phosphorylation and mediated by the opposing actions of protein tyrosine kinases and phosphatases. Protein tyrosine phosphatases are emerging as drug targets, but poor cell permeability of inhibitors has limited the development of drugs targeting these enzymes [Tautz L, et al. (2006) Expert Opin Ther Targets 10:157-177]. Here we developed a method to monitor tyrosine phosphatase activity at the single-cell level and applied it to the identification of cell-permeable inhibitors. The method takes advantage of the fluorogenic properties of phosphorylated coumaryl amino propionic acid (pCAP), an analog of phosphotyrosine, which can be incorporated into peptides. Once delivered into cells, pCAP peptides were dephosphorylated by protein tyrosine phosphatases, and the resulting cell fluorescence could be monitored by flow cytometry and high-content imaging. The robustness and sensitivity of the assay was validated using peptides preferentially dephosphorylated by CD45 and T-cell tyrosine phosphatase and available inhibitors of these two enzymes. The assay was applied to high-throughput screening for inhibitors of CD45, an important target for autoimmunity and infectious diseases [Hermiston ML, et al. (2003) Annu Rev Immunol 21:107-137]. We identified four CD45 inhibitors that showed activity in T cells and macrophages. These results indicate that our assay can be applied to primary screening for inhibitors of CD45 and of other protein tyrosine phosphatases to increase the yield of biologically active inhibitors.
Collapse
|
26
|
Chichili GR, Cail RC, Rodgers W. Cytoskeletal modulation of lipid interactions regulates Lck kinase activity. J Biol Chem 2012; 287:24186-94. [PMID: 22613726 DOI: 10.1074/jbc.m111.320747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The actin cytoskeleton promotes clustering of proteins associated with cholesterol-dependent rafts, but its effect on lipid interactions that form and maintain rafts is not understood. We addressed this question by determining the effect of disrupting the cytoskeleton on co-clustering of dihexadecyl-(C(16))-anchored DiO and DiI, which co-enrich in ordered lipid environments such as rafts. Co-clustering was assayed by fluorescence resonance energy transfer (FRET) in labeled T cells, where rafts function in the phosphoregulation of the Src family kinase Lck. Our results show that probe co-clustering was sensitive to depolymerization of actin filaments with latrunculin B (Lat B), inhibition of myosin II with blebbistatin, and treatment with neomycin to sequester phosphatidylinositol 4,5-bisphosphate. Cytoskeletal effects on lipid interactions were not restricted to order-preferring label because co-clustering of C(16)-anchored DiO with didodecyl (C(12))-anchored DiI, which favors disordered lipids, was also reduced by Lat B and blebbistatin. Furthermore, conditions that disrupted probe co-clustering resulted in activation of Lck. These data show that the cytoskeleton globally modulates lipid interactions in the plasma membrane, and this property maintains rafts that function in Lck regulation.
Collapse
Affiliation(s)
- Gurunadh R Chichili
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
27
|
Qi H, Liu JP, Deng CY, Zhou HX, Deng SP, Li FR. A role for anti-CD45RB monoclonal antibody treatment upon dendritic cells. Immunol Res 2012; 52:250-7. [DOI: 10.1007/s12026-012-8336-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Waterman PM, Marschner S, Brandl E, Cambier JC. The inositol 5-phosphatase SHIP-1 and adaptors Dok-1 and 2 play central roles in CD4-mediated inhibitory signaling. Immunol Lett 2012; 143:122-30. [PMID: 22370159 DOI: 10.1016/j.imlet.2012.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/30/2012] [Accepted: 02/14/2012] [Indexed: 11/26/2022]
Abstract
CD4 functions to enhance the sensitivity of T cells to antigenic peptide/MHC class II. However, if aggregated in isolation, e.g. in the absence of T cell receptor (TCR), CD4 can transduce yet undefined signals that lead to T cell unresponsiveness to antigen and apoptosis. In Human Immunodeficiency Virus-1 (HIV-1) disease, CD4(+) T cell loss can result from gp120-induced CD4 signaling in uninfected cells. We show here that CD4 aggregation leads to Lck-dependent phosphorylation of the RasGAP adaptors Downstream of kinase-1/2 (Dok-1/2) and the inositol 5-phosphatase-1 (SHIP-1) and association of the two molecules. Studies using SHIP-1 shRNA, knockout mice and decoy inhibitors further indicate that CD4-mediated inhibition of TCR-mediated T cell activation is SHIP-1 and Dok-1/2 dependent, and involves SHIP-1 hydrolysis of Phosphatidylinositol 3,4,5-trisphosophate (PI(3,4,5)P3) needed for TCR signaling. Our studies provide evidence for a novel mechanism by which ill-timed CD4-mediated signals activated by ligands such as HIV-1 gp120 lead to disarmament of the immune system.
Collapse
Affiliation(s)
- Paul M Waterman
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, United States
| | | | | | | |
Collapse
|
29
|
Schoenborn JR, Tan YX, Zhang C, Shokat KM, Weiss A. Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci Signal 2012; 4:ra59. [PMID: 21917715 DOI: 10.1126/scisignal.2001893] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Src family kinase Lck is crucial for the initiation of TCR signaling. The activity of Lck is tightly controlled to prevent erroneous immune activation, yet it enables rapid cellular responses over a range of sensitivities to antigens. Here, in experiments with an analog-sensitive variant of the tyrosine kinase Csk, we report that Lck in T cells is dynamically controlled by an equilibrium between Csk and the tyrosine phosphatase CD45. By rapidly inhibiting Csk, we showed that changes in this equilibrium were sufficient to activate canonical TCR signaling pathways independently of ligand binding to the TCR. The activated signaling pathways showed sustained and enhanced phosphorylation compared to that in TCR-stimulated cells, revealing a feedback circuit that was sensitive to the basal signaling machinery. We identified the inhibitory adaptor molecule Dok-1 (downstream of kinase 1) as a candidate that may respond to alterations in basal signaling activity. Our results also suggest a role for Csk in the termination or dampening of TCR signals.
Collapse
Affiliation(s)
- Jamie R Schoenborn
- Rosalind Russell Medical Research Center for Arthritis, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
30
|
James JR, McColl J, Oliveira MI, Dunne PD, Huang E, Jansson A, Nilsson P, Sleep DL, Gonçalves CM, Morgan SH, Felce JH, Mahen R, Fernandes RA, Carmo AM, Klenerman D, Davis SJ. The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J Biol Chem 2011; 286:31993-2001. [PMID: 21757710 PMCID: PMC3173209 DOI: 10.1074/jbc.m111.219212] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding the component stoichiometry of the T cell antigen receptor (TCR) triggering apparatus is essential for building realistic models of signal initiation. Recent studies suggesting that the TCR and other signaling-associated proteins are preclustered on resting T cells relied on measurements of the behavior of membrane proteins at interfaces with functionalized glass surfaces. Using fluorescence recovery after photobleaching, we show that, compared with the apical surface, the mobility of TCRs is significantly reduced at Jurkat T cell/glass interfaces, in a signaling-sensitive manner. Using two biophysical approaches that mitigate these effects, bioluminescence resonance energy transfer and two-color coincidence detection microscopy, we show that, within the uncertainty of the methods, the membrane components of the TCR triggering apparatus, i.e. the TCR complex, MHC molecules, CD4/Lck and CD45, are exclusively monovalent or monomeric in human T cell lines, implying that TCR triggering depends only on the kinetics of TCR/pMHC interactions. These analyses also showed that constraining proteins to two dimensions at the cell surface greatly enhances random interactions versus those between the membrane and the cytoplasm. Simulations of TCR-pMHC complex formation based on these findings suggest how unclustered TCR triggering-associated proteins might nevertheless be capable of generating complex signaling outputs via the differential recruitment of cytosolic effectors to the cell membrane.
Collapse
Affiliation(s)
- John R James
- Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stepanek O, Kalina T, Draber P, Skopcova T, Svojgr K, Angelisova P, Horejsi V, Weiss A, Brdicka T. Regulation of Src family kinases involved in T cell receptor signaling by protein-tyrosine phosphatase CD148. J Biol Chem 2011; 286:22101-12. [PMID: 21543337 DOI: 10.1074/jbc.m110.196733] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CD148 is a receptor-like protein-tyrosine phosphatase known to inhibit transduction of mitogenic signals in non-hematopoietic cells. Similarly, in the hematopoietic lineage, CD148 inhibited signal transduction downstream of T cell receptor. However, it also augmented immunoreceptor signaling in B cells and macrophages via dephosphorylating C-terminal tyrosine of Src family kinases (SFK). Accordingly, endogenous CD148 compensated for the loss of the main SFK activator CD45 in murine B cells and macrophages but not in T cells. Hypothetical explanations for the difference between T cells and other leukocyte lineages include the inability of CD148 to dephosphorylate a specific set of SFKs involved in T cell activation or the lack of CD148 expression during critical stages of T cell development. Here we describe striking differences in CD148 expression between human and murine thymocyte subsets, the only unifying feature being the absence of CD148 during the positive selection when the major developmental block occurs under CD45 deficiency. Moreover, we demonstrate that similar to CD45, CD148 has both activating and inhibitory effects on the SFKs involved in TCR signaling. However, in the absence of CD45, activating effects prevail, resulting in functional complementation of CD45 deficiency in human T cell lines. Importantly, this is independent of the tyrosines in the CD148 C-terminal tail, contradicting the recently proposed phosphotyrosine displacement model as a mechanism of SFK activation by CD148. Collectively, our data suggest that differential effects of CD148 in T cells and other leukocyte subsets cannot be explained by the CD148 inability to activate T cell SFKs but rather by its dual inhibitory/activatory function and specific expression pattern.
Collapse
Affiliation(s)
- Ondrej Stepanek
- Institute of Molecular Genetics, Academy of Sciences of Czech Republic, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pericolini E, Gabrielli E, Bistoni G, Cenci E, Perito S, Chow SK, Riuzzi F, Donato R, Casadevall A, Vecchiarelli A. Role of CD45 signaling pathway in galactoxylomannan-induced T cell damage. PLoS One 2010; 5:e12720. [PMID: 20856869 PMCID: PMC2939064 DOI: 10.1371/journal.pone.0012720] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/20/2010] [Indexed: 11/19/2022] Open
Abstract
Previously, we reported that Galactoxylomannan (GalXM) activates the extrinsic and intrinsic apoptotic pathways through an interaction with the glycoreceptors on T cells. In this study we establish the role of the glycoreceptor CD45 in GalXM-induced T cell apoptosis, using CD45(+/+) and CD45(-/-) cell lines, derived from BW5147 murine T cell lymphoma. Our results show that whereas CD45 expression is not required for GalXM association by the cells, it is essential for apoptosis induction. In CD45(+/+) cells, CD45 triggering by GalXM reduces the activation of Lck, ZAP70 and Erk1/2. Conversely, in CD45(-/-) cells, Lck was hyperphosphorylated and did not show any modulation after GalXM stimulation. On the whole, our findings provide evidence that the negative regulation of Lck activation occurs via CD45 engagement. This appears to be related to the capacity of GalXM to antagonize T cell activation and induce T cell death. Overall this mechanism may be responsible for the immune paralysis that follows GalXM administration and could explain the powerful immunosuppression that accompanies cryptococcosis.
Collapse
Affiliation(s)
- Eva Pericolini
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Bistoni
- Department of Plastic and Reconstructive Surgery, University of Rome “La Sapienza” Medical School, Rome, Italy
| | - Elio Cenci
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Perito
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Siu-Kei Chow
- Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Francesca Riuzzi
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Rosario Donato
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Arturo Casadevall
- Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anna Vecchiarelli
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
33
|
Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 2010; 32:766-77. [PMID: 20541955 PMCID: PMC2996607 DOI: 10.1016/j.immuni.2010.05.011] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/15/2010] [Accepted: 04/20/2010] [Indexed: 11/20/2022]
Abstract
T cell antigen receptor (TCR) and coreceptor ligation is thought to initiate signal transduction by inducing activation of the kinase Lck. Here we showed that catalytically active Lck was present in unstimulated naive T cells and thymocytes and was readily detectable in these cells in lymphoid organs. In naive T cells up to ∼40% of total Lck was constitutively activated, part of which was also phosphorylated on the C-terminal inhibitory site. Formation of activated Lck was independent of TCR and coreceptors but required Lck catalytic activity and its maintenance relied on monitoring by the HSP90-CDC37 chaperone complex to avoid degradation. The amount of activated Lck did not change after TCR and coreceptor engagement; however it determined the extent of TCR-ζ phosphorylation. Our findings suggest a dynamic regulation of Lck activity that can be promptly utilized to initiate T cell activation and have implications for signaling by other immune receptors.
Collapse
|
34
|
Dupéré-Minier G, Desharnais P, Bernier J. Involvement of tyrosine phosphatase CD45 in apoptosis. Apoptosis 2010; 15:1-13. [PMID: 19856105 DOI: 10.1007/s10495-009-0413-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD45 is a transmembrane molecule with phosphatase activity expressed in all nucleated haematopoietic cells and plays a major role in immune cells. It is a protein tyrosine phosphatase that is essential for antigen-receptor-mediated signal transduction by regulating Src family members that initiate TCR signaling. CD45 is being attributed a new emerging role as an apoptosis regulator. Cross-linking of the extracellular portion of the CD45 by monoclonal antibodies and by galectin-1, can induce apoptosis in T and B cells. Interestingly, this phosphatase has also been involved in nuclear apoptosis induced by mitochondrial perturbing agents. Furthermore, it is involved in apoptosis induced by HIV-1. CD45 defect is implicated in various diseases such as severe-combined immunodeficiency disease (SCID), acquired immunodeficiency syndrome (AIDS), lymphoma and multiple myelomas. The understanding of the mechanisms by which CD45 regulates apoptosis would be very useful in disease treatment.
Collapse
|
35
|
Merchant M, Mead S, McAdon C, McFatter J, Wasilewski J. Identification and characterization of dipeptidyl peptidase IV enzyme activity in the American crocodile (Crocodylus acutus). Vet Immunol Immunopathol 2010; 136:28-33. [PMID: 20227771 DOI: 10.1016/j.vetimm.2010.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/21/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
Serum from the American crocodile was assayed for dipeptidyl peptidase IV (DPP4) activity. We measured the DPP4-mediated hydrolysis of Ala-Pro-AFC. The generation of AFC was dependent on the titer of serum, with significant DPP4 activity (0.20 + or - 0.03 nmol product formed) measured using only 2 microL of crocodile serum, with maximum activity measured using 500 microL of serum. The hydrolysis of substrate was inhibited in a concentration-dependent manner by diprotin A, a specific inhibitor of DPP4 activity, indicating that this activity was due to the presence of DPP4. The crocodile serum DPP4 exhibited classical Michaelis-Menten kinetics, with K(m) and V(max) extrapolated, by double-reciprocal plot, to be 14.7 + or - 1.3 microM and 75.5 + or - 4.3 nmol/min, respectively. Crocodile DPP4 catalyzed the hydrolysis of Ala-Pro-AFC rapidly, with substantial activity measured within 5 min of the addition of substrate. After an initial rapid increase in activity, near maximal activity (7.43 + or - 0.24 nmol product formed) measured at 180 min. Crocodile serum DPP4 activity was temperature-dependent, with steadily increased activity from 5 to 40 degrees C.
Collapse
Affiliation(s)
- Mark Merchant
- Department of Chemistry, McNeese State University, 450 Beauregard, 225 Kirkman Hall, Lake Charles, LA 70609, USA.
| | | | | | | | | |
Collapse
|
36
|
Stanford SM, Mustelin TM, Bottini N. Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases. Semin Immunopathol 2010; 32:127-36. [PMID: 20204370 DOI: 10.1007/s00281-010-0201-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 01/28/2010] [Indexed: 01/22/2023]
Abstract
A relatively large number of protein tyrosine phosphatases (PTPs) are known to regulate signaling through the T cell receptor (TCR). Recent human genetics studies have shown that several of these PTPs are encoded by major autoimmunity genes. Here, we will focus on the lymphoid tyrosine phosphatase (LYP), a critical negative modulator of TCR signaling encoded by the PTPN22 gene. The functional analysis of autoimmune-associated PTPN22 genetic variants suggests that genetic variability of TCR signal transduction contributes to the pathogenesis of autoimmunity in humans.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
37
|
Chichili GR, Westmuckett AD, Rodgers W. T cell signal regulation by the actin cytoskeleton. J Biol Chem 2010; 285:14737-46. [PMID: 20194498 DOI: 10.1074/jbc.m109.097311] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T cells form an immunological synapse (IS) that sustains and regulates signals for cell stimulation. Enriched in the IS is the Src family kinase Lck. Conversely, the membrane phosphatase CD45, which activates Src family kinases, is excluded, and this is necessary to avoid quenching of T cell receptor phosphosignals. Data suggest that this arrangement occurs by an enrichment of cholesterol-dependent rafts in the IS. However, the role of rafts in structuring the IS remains unclear. To address this question, we used fluorescence resonance energy transfer (FRET) to interrogate the nanoscopic structure of the IS. The FRET probes consisted of membrane-anchored fluorescent proteins with distinct affinities for rafts. Both the raft and nonraft probes exhibited clustering in the IS. However, co-clustering of raft donor-acceptor pairs was 10-fold greater than co-clustering of raft-nonraft pairs. We measured the effect of disrupting rafts in the IS on CD45 localization and Lck regulation by treating stimulated T cells with filipin. The filipin specifically disrupted co-clustering of the raft FRET pairs in the IS and allowed targeting of CD45 to the IS and dephosphorylation of the regulatory tyrosine of Lck. Clustering of the raft probes was also sensitive to latrunctulin B, which disrupts actin filaments. Strikingly, enriching the cortical cytoskeleton using jasplakinolide maintained raft probe co-clustering, CD45 exclusion, and Lck regulation in the IS following the addition of filipin. These data show the actin cytoskeleton maintains a membrane raft environment in the IS that promotes Lck regulation by excluding CD45.
Collapse
Affiliation(s)
- Gurunadh R Chichili
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
38
|
Weiss A. TCR signal transduction: opening the black box. THE JOURNAL OF IMMUNOLOGY 2009; 183:4821-7. [PMID: 19801506 DOI: 10.4049/jimmunol.0990083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Arthur Weiss
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
39
|
Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. Differential stimulation of monocytic cells results in distinct populations of microparticles. J Thromb Haemost 2009; 7:1019-28. [PMID: 19548909 PMCID: PMC3242443 DOI: 10.1111/j.1538-7836.2009.03434.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Microparticles (MPs), small vesicles shed from stimulated cells, permit cross-talk between cells within a particular environment. Their composition is thought to reflect their cell of origin, and differs according to whether they are produced by stimulation or by apoptosis. Whether MP properties vary according to stimulus is not yet known. METHODS We studied the characteristics of MPs produced from monocytic THP-1 cells upon stimulation with lipopolysaccharide or a soluble P-selectin chimera, using proteomics, flow cytometry, western blotting, and electron microscopy. RESULTS Utilizing a novel criterion of calcein-AM staining to define MPs, we found that MP populations were similar with respect to size, presence and organization of cytoskeleton, and expression of certain antigens. The MPs shared the same level of procoagulant activity. We found that MPs also have distinct characteristics, depending on stimuli. These include differences in phosphatidylserine expression and expression of proteins from specific subcellular locations such as the mitochondria, and of unique antigens such as leukocyte-associated immunoglobin-like-receptor (LAIR)-1, which was found only upon stimulation with the soluble P-selectin chimera. CONCLUSION We found that the properties of MPs depend on the stimulus that produced them. This supports the concept that monocytic MPs differentially modulate thrombosis, inflammation and immune regulation according to stimulus.
Collapse
|
40
|
Polyclonal rabbit antithymocyte globulin exhibits consistent immunosuppressive capabilities beyond cell depletion. Transplantation 2009; 87:966-74. [PMID: 19352114 DOI: 10.1097/tp.0b013e31819c84b8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Polyclonal antithymocyte globulins (ATGs) are used clinically to prevent and treat acute allograft rejection and are believed to modulate the immune response primarily by depleting T cells. However, nondepleting mechanisms may also be important mediators of graft survival. In the present study, 14 lots of thymoglobulin (rabbit ATG) were analyzed and compared for nondepletive immunomodulatory activities in vitro. METHODS Coincubation of human peripheral blood mononuclear cells with thymoglobulin induces CD4+CD25(high)Foxp3+ regulatory T cells, which were evaluated for consistent ability to suppress T-cell activation in mixed lymphocyte reactions. The consistency of CD2, CD3, CD11a, and CD45 antigen specificities in thymoglobulin was determined using flow cytometry to measure inhibition of fluorescent monoclonal antibody binding to Jurkat T cells. A transwell chemotaxis assay was established and used to evaluate ATG-mediated inhibition of stromal cell-derived factor (SDF)-1alpha-driven Jurkat T-cell migration. RESULTS Physiologic levels of thymoglobulin produced nondepletive immunomodulatory activities, which were consistent from batch to batch. All lots of thymoglobulin induced functionally immunosuppressive regulatory T cells and inhibited monoclonal antibody binding to key T-cell surface antigens. In addition, these studies provide the first demonstration that thymoglobulin effectively inhibits CXCR4/SDF-1alpha-driven T-cell chemotaxis. CONCLUSIONS This novel, systematic in vitro analysis of 14 different manufactured lots of thymoglobulin demonstrates the overall consistency of this product and provides further insights into nondepletive mechanisms by which thymoglobulin may generate durable immunoregulation and allograft survival.
Collapse
|
41
|
Zhu JW, Brdicka T, Katsumoto TR, Lin J, Weiss A. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity 2008; 28:183-96. [PMID: 18249142 DOI: 10.1016/j.immuni.2007.11.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/25/2007] [Accepted: 11/15/2007] [Indexed: 12/22/2022]
Abstract
The receptor-type protein tyrosine phosphatase (RPTP) CD148 is thought to have an inhibitory function in signaling and proliferation in nonhematopoietic cells. However, its role in the immune system has not been thoroughly studied. Our analysis of CD148 loss-of-function mice showed that CD148 has a positive regulatory function in B cells and macrophages, similar to the role of CD45 as a positive regulator of Src family kinases (SFKs). Analysis of CD148 and CD45 doubly deficient B cells and macrophages revealed hyperphosphorylation of the C-terminal inhibitory tyrosine of SFKs accompanied by substantial alterations in B and myeloid lineage development and defective immunoreceptor signaling. Because these findings suggest the C-terminal tyrosine of SFKs is a common substrate for both CD148 and CD45 phosphatases and imply a level of redundancy not previously appreciated, a reassessment of the function of CD45 in the B and myeloid lineages based on prior data from the CD45-deficient mouse is warranted.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Crosses, Genetic
- Cytokines/metabolism
- Leukocyte Common Antigens/deficiency
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/immunology
- Leukocyte Common Antigens/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Phagocytosis
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/deficiency
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Jing W Zhu
- Departments of Medicine and of Microbiology and Immunology, Howard Hughes Medical Institute, Rosalind Russell Medical Research Center for Arthritis, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
42
|
Ivanov AS. Meldrum’s acid and related compounds in the synthesis of natural products and analogs. Chem Soc Rev 2008; 37:789-811. [DOI: 10.1039/b716020h] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Fischer EH, Charbonneau H, Cool DE, Tonks NK. Tyrosine phosphatases and their possible interplay with tyrosine kinases. CIBA FOUNDATION SYMPOSIUM 2007; 164:132-40; discussion 140-4. [PMID: 1395930 DOI: 10.1002/9780470514207.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein tyrosine phosphatases represent a new family of intracellular and receptor-linked enzymes. They are totally specific toward tyrosyl residues in proteins, and, with specific activities 10-1000-fold greater than those of the protein tyrosine kinases, they can be expected to tightly control the level of phosphotyrosine within the cell. Most transmembrane forms contain two conserved intracellular catalytic domains, as displayed by the leukocyte common antigen CD45, but highly variable external segments. Some are related to the neuronal cell adhesion molecules (NCAMs) or fasciclin II and others contain fibronectin III repeats; this suggests that these enzymes might be involved in cell-cell interaction. The intercellular enzymes appear to contain a highly conserved catalytic core linked to a regulatory segment. Deletion of the regulatory domain alters both substrate specificity and cellular localization. Likewise, overexpression of the full-length and truncated enzymes affects cell cycle progression and actin filament stability, respectively. The interplay between tyrosine kinases and phosphatases is considered. A hypothesis is presented suggesting that in some systems phosphatases might act synergistically with the kinases and elicit a physiological response, irrespective of the state of phosphorylation of the target protein.
Collapse
Affiliation(s)
- E H Fischer
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
44
|
A therapeutic anti-CD4 monoclonal antibody inhibits T cell receptor signal transduction in mouse autoimmune cardiomyopathy. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200708010-00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Deng S, Moore DJ, Huang X, Lian MM, Mohiuddin M, Velededeoglu E, Lee MK, Sonawane S, Kim J, Wang J, Chen H, Corfe SA, Paige C, Shlomchik M, Caton A, Markmann JF. Cutting edge: transplant tolerance induced by anti-CD45RB requires B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:6028-32. [PMID: 17475825 DOI: 10.4049/jimmunol.178.10.6028] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selective interference with the CD45RB isoform by mAb (anti-CD45RB) reliably induces donor-specific tolerance. Although previous studies suggest participation of regulatory T cells, a mechanistic understanding of anti-CD45RB-induced tolerance is lacking. We report herein the unexpected finding that tolerance induced by this agent is not established in B cell-deficient mice but can be recovered by preemptive B lymphocyte transfer to B cell-deficient hosts. Using B cells from genetically modified donors to reconstitute B cell-deficient recipients, we evaluate the role of B lymphocyte-expressed CD45RB, T cell costimulatory molecules, and the production of Abs in this novel tolerance mechanism. Our data document an Ab-induced tolerance regimen that is uniquely B lymphocyte-dependent and suggest mechanistic contributions to tolerance development from the B cell compartment through interactions with T cells.
Collapse
Affiliation(s)
- Shaoping Deng
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schneider OD, Weiss AA, Miller WE. Pertussis toxin utilizes proximal components of the T-cell receptor complex to initiate signal transduction events in T cells. Infect Immun 2007; 75:4040-9. [PMID: 17562776 PMCID: PMC1951969 DOI: 10.1128/iai.00414-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pertussis toxin (PTx) is an AB(5) toxin produced by the human pathogen Bordetella pertussis. Previous work demonstrates that the five binding (B) subunits of PTx can have profound effects on T lymphocytes independent of the enzymatic activity of the A subunit. Stimulation of T cells with holotoxin (PTx) or the B subunit alone (PTxB) rapidly induces signaling events resulting in inositol phosphate accumulation, Ca(2+) mobilization, interleukin-2 (IL-2) production, and mitogenic cell growth. Although previous reports suggest the presence of PTx signaling receptors expressed on T cells, to date, the receptor(s) and membrane proximal signaling events utilized by PTx remain unknown. Here we genetically and biochemically define the membrane proximal components utilized by PTx to initiate signal transduction in T cells. Using mutants of the Jurkat T-cell line deficient for key components of the T-cell receptor (TCR) pathway, we have compared stimulation with PTx to that of anti-CD3 monoclonal antibody (MAb), which directly interacts with and activates the TCR complex. Our genetic data in combination with biochemical analysis show that PTx (via the B subunit) activates TCR signaling similar to that of anti-CD3 MAb, including activation of key signaling intermediates such as Lck, ZAP-70, and phospholipase C-gamma1. Moreover, the data indicate that costimulatory activity, as provided by CD28 ligation, is required for PTx to fully stimulate downstream indicators of T-cell activation such as IL-2 gene expression. By illuminating the signaling pathways that PTx activates in T cells, we provide a mechanistic understanding for how these signals deregulate immune system functions during B. pertussis infection.
Collapse
Affiliation(s)
- Olivia D Schneider
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 2256 Medical Science Building, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|
47
|
Maksumova L, Le HT, Muratkhodjaev F, Davidson D, Veillette A, Pallen CJ. Protein Tyrosine Phosphatase α Regulates Fyn Activity and Cbp/PAG Phosphorylation in Thymocyte Lipid Rafts. THE JOURNAL OF IMMUNOLOGY 2005; 175:7947-56. [PMID: 16339530 DOI: 10.4049/jimmunol.175.12.7947] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A role for the receptor protein tyrosine phosphatase alpha (PTPalpha) in immune cell function and regulation of Src family kinases was investigated using thymocytes from PTPalpha-deficient mice. PTPalpha-null thymocytes develop normally, but unstimulated PTPalpha-/- cells exhibit increased tyrosine phosphorylation of specific proteins, increased Fyn activity, and hyperphosphorylation of Cbp/PAG that promotes its association with C-terminal Src kinase. Elevated Fyn activity in the absence of PTPalpha is due to enhanced phosphorylation of Fyn tyrosines 528 and 417. Some PTPalpha is localized in lipid rafts of thymocytes, and raft-associated Fyn is specifically activated in PTPalpha-/- cells. PTPalpha is not a Cbp/PAG phosphatase, because it is not required for Cbp/PAG dephosphorylation in unstimulated or anti-CD3-stimulated thymocytes. Together, our results indicate that PTPalpha, likely located in lipid rafts, regulates the activity of raft Fyn. In the absence of PTPalpha this population of Fyn is activated and phosphorylates Cbp/PAG to enhance association with C-terminal Src kinase. Although TCR-mediated tyrosine phosphorylation was apparently unaffected by the absence of PTPalpha, the long-term proliferative response of PTPalpha-/- thymocytes was reduced. These findings indicate that PTPalpha is a component of the complex Src family tyrosine kinase regulatory network in thymocytes and is required to suppress Fyn activity in unstimulated cells in a manner that is not compensated for by the major T cell PTP and SFK regulator, CD45.
Collapse
Affiliation(s)
- Lola Maksumova
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Katsiari CG, Kyttaris VC, Juang YT, Tsokos GC. Protein phosphatase 2A is a negative regulator of IL-2 production in patients with systemic lupus erythematosus. J Clin Invest 2005; 115:3193-204. [PMID: 16224536 PMCID: PMC1253625 DOI: 10.1172/jci24895] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 08/09/2005] [Indexed: 02/05/2023] Open
Abstract
Decreased IL-2 production in systemic lupus erythematosus (SLE) represents a central component of the disease immunopathology. We report that the message, protein, and enzymatic activity of the catalytic subunit of protein phosphatase 2A (PP2Ac), but not PP1, are increased in patients with SLE regardless of disease activity and treatment and in a disease-specific manner. Treatment of SLE T cells with PP2Ac-siRNA decreased the protein levels and activity of PP2Ac in a specific manner and increased the levels of phosphorylated cAMP response element-binding protein and its binding to the IL2 and c-fos promoters, as well as increased activator protein 1 activity, causing normalization of IL-2 production. Our data document increased activity of PP2A as a novel SLE disease-specific abnormality and define a distinct mechanism whereby it represses IL-2 production. We propose the use of PP2Ac-siRNA as a novel tool to correct T cell IL-2 production in SLE patients.
Collapse
Affiliation(s)
- Christina G Katsiari
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | |
Collapse
|
49
|
Paré ME, Gauthier S, Landry S, Sun J, Legault E, Leclerc D, Tanaka Y, Marriott SJ, Tremblay MJ, Barbeau B. A new sensitive and quantitative HTLV-I-mediated cell fusion assay in T cells. Virology 2005; 338:309-22. [PMID: 15963547 DOI: 10.1016/j.virol.2005.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 12/30/2004] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
Similar to several other viruses, human T cell leukemia virus type I (HTLV-I) induces the formation of multinucleated giant cells (also known as syncytium) when amplified in tissue culture. These syncytia result from the fusion of infected cells with uninfected cells. Due to the intrinsic difficulty of infecting cells with cell-free HTLV-I virions, syncytium formation has become an important tool in the study of HTLV-I infection and transmission. Since most HTLV-I-based cell fusion assays rely on the use of non-T cells, the aim of this study was to optimize a new HTLV-I-induced cell fusion assay in which HTLV-I-infected T cell lines are co-cultured with T cells that have been transfected with an HTLV-I long terminal repeat (LTR) luciferase reporter construct. We demonstrate that co-culture of various HTLV-I-infected T cells with different transfected T cell lines resulted in induction of luciferase activity. Cell-to-cell contact and expression of the viral gp46 envelope protein was crucial for this induction while other cell surface proteins (including HSC70) did not have a significant effect. This quantitative assay was shown to be very sensitive. In this assay, the cell fusion-mediated activation of NF-kappaB and the HTLV-I LTR occurred through previously described Tax-dependent signaling pathways. This assay also showed that cell fusion could activate Tax-inducible cellular promoters. These results thus demonstrate that this new quantitative HTLV-I-dependent cell fusion assay is versatile, highly sensitive, and can provide an important tool to investigate cellular promoter activation and intrinsic signaling cascades that modulate cellular gene expression.
Collapse
Affiliation(s)
- Marie-Eve Paré
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Paccani SR, Boncristiano M, Patrussi L, Ulivieri C, Wack A, Valensin S, Hirst TR, Amedei A, Del Prete G, Telford JL, D'Elios MM, Baldari CT. Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects. Blood 2005; 106:626-634. [PMID: 15817684 DOI: 10.1182/blood-2004-05-2051] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immune disorder characterized by impaired antibody production, which is in many instances secondary to defective T-cell function (T-CVID). We have previously identified a subset of patients with T-CVID characterized by defective T-cell receptor (TCR)-dependent protein tyrosine phosphorylation. In these patients, ZAP-70 fails to be recruited to the TCR as the result of impaired CD3zeta phosphorylation, which is, however, not dependent on defective Lck expression or activity. Here we show that neither Fyn nor CD45 is affected in these patients. On the other hand, T-CVID T cells show dramatic defects in the Vav/Rac pathway controlling F-actin dynamics. A significant deficiency in Vav protein was indeed observed; in 3 of 4 patients with T-CVID, it was associated with reduced VAV1 mRNA levels. The impairment in Vav expression correlated with defective F-actin reorganization in response to TCR/CD28 co-engagement. Furthermore, TCR/CD28-dependent up-regulation of lipid rafts at the cell surface, which requires F-actin dynamics, was impaired in these patients. The actin cytoskeleton defect could be reversed by reconstitution of Vav1 expression in the patients' T cells. Results demonstrate an essential role of Vav in human T cells and strongly suggest Vav insufficiency in T-CVID.
Collapse
Affiliation(s)
- Silvia Rossi Paccani
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|