1
|
Rathnayake UM, Wada J, Wall VE, Jones J, Jenkins LM, Andreotti AH, Samelson LE. Purification and characterization of full-length monomeric TEC family kinase, ITK. Protein Expr Purif 2025; 229:106682. [PMID: 39894064 PMCID: PMC11875054 DOI: 10.1016/j.pep.2025.106682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
An early step in the activation of T cells via the T cell antigen receptor is the phosphorylation and activation of phospholipase C-γ1 (PLC-γ1) by the TEC family tyrosine kinase, interleukin-2 (IL-2) inducible T cell kinase (ITK). PLC-γ1 activation occurs within a multi-protein complex comprised of the enzymes ITK, PLC-γ1, and VAV, and the adapter molecules, LAT, Gads, SLP-76, and NCK. Studies of ITK activation and the role of this heptameric complex in regulating ITK activation and function have not been possible due to the lack of success in the expression and purification of full-length, monomeric ITK protein. In this study, we have produced soluble full-length wild-type ITK protein by co-expressing an N-terminal solubility-tagged ITK construct with a kinase-specific co-chaperone CDC37 in an insect cell line. Although the majority of the purified ITK protein is oligomerized, there is a 13-fold increase in the yield of monomeric protein production compared to the last reported purification. Previous studies suggest that the ITK oligomerization is mediated by intermolecular interactions. We created several mutants to disrupt these self-associations. Expression of one of these, the C96E/T110I mutant, produced 20 times more monomer than the wild-type construct. The in vitro characterization of these protein constructs showed that the purified protein is stable and functional. This successful purification and in vitro characterization of full-length monomeric ITK protein will aid in understanding the mechanism by which ITK is recruited into the heptameric complex and is enabled to phosphorylate and activate PLC-γ1.
Collapse
Affiliation(s)
- Udumbara M Rathnayake
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Junya Wada
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vanessa E Wall
- Protein Expression Laboratory and RAS Reagents Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jane Jones
- Protein Expression Laboratory and RAS Reagents Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50014, USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Afridi R, Bhusal A, Lee SE, Hwang EM, Ryu H, Kim JH, Suk K. A microglial kinase ITK mediating neuroinflammation and behavioral deficits in traumatic brain injury. Mol Cell Neurosci 2025; 132:103994. [PMID: 39864680 DOI: 10.1016/j.mcn.2025.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Microglia-mediated neuroinflammation has been implicated in the neuropathology of traumatic brain injuries (TBI). Recently, the expression of interleukin-2-inducible T-cell kinase (ITK) has been detected in brain microglia, regulating their inflammatory activities. However, the role of microglial ITK in TBI has not been investigated. In this study, we demonstrate that ITK expression and activation are upregulated in microglia following an injury caused by controlled cortical impact (CCI) - a mouse model of TBI. Pharmacological inhibition of ITK protein or knockdown of microglial ITK gene expression using adeno-associated virus mitigates neuroinflammation and improves neurological outcomes in the CCI model. Additionally, ITK mRNA expression was found to be increased in the brains of patients with chronic traumatic encephalopathy. An ITK inhibitor reduced the activation of inflammatory responses in both human and mouse microglia in vitro. Collectively, these results suggest that microglial ITK plays a pivotal role in neuroinflammation and mediating behavioral deficits following TBI. Thus, targeting the signaling pathway of microglial ITK may exert protective effects by alleviating neuroinflammation associated with TBI.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Anup Bhusal
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
3
|
Basu I, Li H, Trease AJ, Sorgen PL. Regulation of Cx43 Gap Junction Intercellular Communication by Bruton's Tyrosine Kinase and Interleukin-2-Inducible T-Cell Kinase. Biomolecules 2023; 13:biom13040660. [PMID: 37189407 DOI: 10.3390/biom13040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
T and B cell receptor signaling involves the activation of Akt, MAPKs, and PKC as well as an increase in intracellular Ca2+ and calmodulin activation. While these coordinate the rapid turnover of gap junctions, also implicated in this process is Src, which is not activated as part of T and B cell receptor signaling. An in vitro kinase screen identified that Bruton's tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) phosphorylate Cx43. Mass spectroscopy revealed that BTK and ITK phosphorylate Cx43 residues Y247, Y265, and Y313, which are identical to the residues phosphorylated by Src. Overexpression of BTK or ITK in the HEK-293T cells led to increased Cx43 tyrosine phosphorylation as well as decreased gap junction intercellular communication (GJIC) and Cx43 membrane localization. In the lymphocytes, activation of the B cell receptor (Daudi cells) or T cell receptor (Jurkat cells) increased the BTK and ITK activity, respectively. While this led to increased tyrosine phosphorylation of Cx43 and decreased GJIC, the cellular localization of Cx43 changed little. We have previously identified that Pyk2 and Tyk2 also phosphorylate Cx43 at residues Y247, Y265, and Y313 with a similar cellular fate to that of Src. With phosphorylation critical to Cx43 assembly and turnover, and kinase expression varying between different cell types, there would be a need for different kinases to achieve the same regulation of Cx43. The work presented herein suggests that in the immune system, ITK and BTK have the capacity for the tyrosine phosphorylation of Cx43 to alter the gap junction function in a similar manner as Pyk2, Tyk2, and Src.
Collapse
Affiliation(s)
- Ishika Basu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Lechner K, Mott S, Al-Saifi R, Knipfer L, Wirtz S, Atreya R, Vieth M, Rath T, Fraass T, Winter Z, August A, Luban J, Zimmermann VS, Weigmann B, Neurath MF. Targeting of the Tec Kinase ITK Drives Resolution of T Cell-Mediated Colitis and Emerges as Potential Therapeutic Option in Ulcerative Colitis. Gastroenterology 2021; 161:1270-1287.e19. [PMID: 34224738 DOI: 10.1053/j.gastro.2021.06.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The molecular checkpoints driving T cell activation and cytokine responses in ulcerative colitis (UC) are incompletely understood. Here, we studied the Tec kinase ITK in UC. METHODS We analyzed patients with inflammatory bowel disease (n = 223) and evaluated ITK activity as well as the functional effects of cyclosporine-A (CsA). In addition, 3 independent murine colitis models were used to investigate the functional role of ITK. Finally, the activity of ITK was blocked via pharmacological inhibitors and genetically engineered mice. Readout parameters were mini-endoscopy, histopathology, mucosal T cell apoptosis, and cytokine production. RESULTS We found an expansion of pITK-expressing mucosal CD4+ T cells in UC rather than Crohn's disease that correlated with disease severity. CsA suppressed activation of ITK in cultured CD4+ T cells and calcineurin-containing microclusters adjacent to the T cell receptor signaling complex. Functionally, the capacity of CsA to suppress activity of experimental colitis was critically dependent on ITK. Genetic inactivation of Itk via gene targeting or induction of allele-sensitive Itk mutants prevented experimental colitis in 3 colitis models, and treatment with pharmacological ITK blockers suppressed established colitis. In addition, ITK controlled apoptosis and activation of mucosal Th2 and Th17 lymphocytes via NFATc2 signaling pathways. CONCLUSIONS ITK activation was detected in UC and could be down-regulated in cultured T cells by CsA administration. Selective targeting of ITK emerges as an attractive approach for treatment of chronic intestinal inflammation and potentially UC by driving resolution of mucosal inflammation.
Collapse
Affiliation(s)
- Kristina Lechner
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Stefanie Mott
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Ragheed Al-Saifi
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Lisa Knipfer
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, University of Erlangen-Nuremberg, Erlangen Germany
| | - Timo Rath
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | | | | | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York
| | - Jeremy Luban
- Program in Molecular Medicine and Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Le Centre National de la Recherche Scientifique, Montpellier, France
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
5
|
Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med (Berl) 2020; 98:1385-1395. [PMID: 32808093 PMCID: PMC7524833 DOI: 10.1007/s00109-020-01958-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 01/18/2023]
Abstract
ITK (IL-2-inducible tyrosine kinase) belongs to the Tec family kinases and is mainly expressed in T cells. It is involved in TCR signalling events driving processes like T cell development as well as Th2, Th9 and Th17 responses thereby controlling the expression of pro-inflammatory cytokines. Studies have shown that ITK is involved in the pathogenesis of autoimmune diseases as well as in carcinogenesis. The loss of ITK or its activity either by mutation or by the use of inhibitors led to a beneficial outcome in experimental models of asthma, inflammatory bowel disease and multiple sclerosis among others. In humans, biallelic mutations in the ITK gene locus result in a monogenetic disorder leading to T cell dysfunction; in consequence, mainly EBV infections can lead to severe immune dysregulation evident by lymphoproliferation, lymphoma and hemophagocytic lymphohistiocytosis. Furthermore, patients who suffer from angioimmunoblastic T cell lymphoma have been found to express significantly more ITK. These findings put ITK in the strong focus as a target for drug development.
Collapse
Affiliation(s)
- Kristina S Lechner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany
- Ludwig Demling Endoscopy Center of Excellence, Ulmenweg 18, 91054, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, 91052, Erlangen, Germany.
| |
Collapse
|
6
|
Lipid-targeting pleckstrin homology domain turns its autoinhibitory face toward the TEC kinases. Proc Natl Acad Sci U S A 2019; 116:21539-21544. [PMID: 31591208 PMCID: PMC6815127 DOI: 10.1073/pnas.1907566116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is targeted in treatment of immune cancers. As patients experience drug resistance, there is a need for alternative approaches to inhibit BTK. Other recently published findings clarify the role of the BTK pleckstrin homology (PH) domain in mediating activation via dimerization and sensing of ligand concentration at the membrane. Work presented here provides insight into the autoinhibitory BTK structure that has so far been elusive via crystallographic methods. In the resting state, the BTK PH domain binds to the activation loop face of the kinase domain and allosterically alters key sites within the kinase domain. The findings define a new regulatory site, the PH/kinase interface, that can be exploited in drug discovery efforts. The pleckstrin homology (PH) domain is well known for its phospholipid targeting function. The PH-TEC homology (PHTH) domain within the TEC family of tyrosine kinases is also a crucial component of the autoinhibitory apparatus. The autoinhibitory surface on the PHTH domain has been previously defined, and biochemical investigations have shown that PHTH-mediated inhibition is mutually exclusive with phosphatidylinositol binding. Here we use hydrogen/deuterium exchange mass spectrometry, nuclear magnetic resonance (NMR), and evolutionary sequence comparisons to map where and how the PHTH domain affects the Bruton’s tyrosine kinase (BTK) domain. The data map a PHTH-binding site on the activation loop face of the kinase C lobe, suggesting that the PHTH domain masks the activation loop and the substrate-docking site. Moreover, localized NMR spectral changes are observed for non–surface-exposed residues in the active site and on the distal side of the kinase domain. These data suggest that the association of PHTH induces allosteric conformational shifts in regions of the kinase domain that are critical for catalysis. Through statistical comparisons of diverse tyrosine kinase sequences, we identify residues unique to BTK that coincide with the experimentally determined PHTH-binding surface on the kinase domain. Our data provide a more complete picture of the autoinhibitory conformation adopted by full-length TEC kinases, creating opportunities to target the regulatory domains to control the function of these kinases in a biological setting.
Collapse
|
7
|
Andreotti AH, Joseph RE, Conley JM, Iwasa J, Berg LJ. Multidomain Control Over TEC Kinase Activation State Tunes the T Cell Response. Annu Rev Immunol 2019; 36:549-578. [PMID: 29677469 DOI: 10.1146/annurev-immunol-042617-053344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling through the T cell antigen receptor (TCR) activates a series of tyrosine kinases. Directly associated with the TCR, the SRC family kinase LCK and the SYK family kinase ZAP-70 are essential for all downstream responses to TCR stimulation. In contrast, the TEC family kinase ITK is not an obligate component of the TCR cascade. Instead, ITK functions as a tuning dial, to translate variations in TCR signal strength into differential programs of gene expression. Recent insights into TEC kinase structure have provided a view into the molecular mechanisms that generate different states of kinase activation. In resting lymphocytes, TEC kinases are autoinhibited, and multiple interactions between the regulatory and kinase domains maintain low activity. Following TCR stimulation, newly generated signaling modules compete with the autoinhibited core and shift the conformational ensemble to the fully active kinase. This multidomain control over kinase activation state provides a structural mechanism to account for ITK's ability to tune the TCR signal.
Collapse
Affiliation(s)
- Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - James M Conley
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA;
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| |
Collapse
|
8
|
Hopkins BT, Bame E, Bell N, Bohnert T, Bowden-Verhoek JK, Bui M, Cancilla MT, Conlon P, Cullen P, Erlanson DA, Fan J, Fuchs-Knotts T, Hansen S, Heumann S, Jenkins TJ, Marcotte D, McDowell B, Mertsching E, Negrou E, Otipoby KL, Poreci U, Romanowski MJ, Scott D, Silvian L, Yang W, Zhong M. Optimization of novel reversible Bruton's tyrosine kinase inhibitors identified using Tethering-fragment-based screens. Bioorg Med Chem 2019; 27:2905-2913. [PMID: 31138459 DOI: 10.1016/j.bmc.2019.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023]
Abstract
Since the approval of ibrutinib for the treatment of B-cell malignancies in 2012, numerous clinical trials have been reported using covalent inhibitors to target Bruton's tyrosine kinase (BTK) for oncology indications. However, a formidable challenge for the pharmaceutical industry has been the identification of reversible, selective, potent molecules for inhibition of BTK. Herein, we report application of Tethering-fragment-based screens to identify low molecular weight fragments which were further optimized to improve on-target potency and ADME properties leading to the discovery of reversible, selective, potent BTK inhibitors suitable for pre-clinical proof-of-concept studies.
Collapse
Affiliation(s)
- Brian T Hopkins
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States.
| | - Eris Bame
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Noah Bell
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Tonika Bohnert
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | | | - Minna Bui
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Mark T Cancilla
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Patrick Conlon
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Patrick Cullen
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Daniel A Erlanson
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Junfa Fan
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Tarra Fuchs-Knotts
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Stig Hansen
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Stacey Heumann
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Tracy J Jenkins
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Douglas Marcotte
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Bob McDowell
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | | | - Ella Negrou
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Kevin L Otipoby
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Urjana Poreci
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Michael J Romanowski
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Daniel Scott
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Laura Silvian
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Wenjin Yang
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| | - Min Zhong
- Sunesis Pharmaceuticals, Inc., 395 Oyster Point Boulevard, South San Francisco, CA 94080, United States
| |
Collapse
|
9
|
Allchin RL, Kelly ME, Mamand S, Doran AG, Keane T, Ahearne MJ, Wagner SD. Structural and diffusion weighted MRI demonstrates responses to ibrutinib in a mouse model of follicular helper (Tfh) T-cell lymphoma. PLoS One 2019; 14:e0215765. [PMID: 31013298 PMCID: PMC6478326 DOI: 10.1371/journal.pone.0215765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/07/2019] [Indexed: 01/22/2023] Open
Abstract
Recent analyses of the genetics of peripheral T-cell lymphoma (PTCL) have shown that a large proportion of cases are derived from normal follicular helper (Tfh) T-cells. The sanroque mouse strain bears a mutation that increases Tfh cell number and heterozygous animals (Roquinsan/+) develop lymphomas similar to human Tfh lymphoma. Here we demonstrate the usefulness of Roquinsan/+ animals as a pre-clinical model of Tfh lymphoma. Long latency of development and incomplete penetrance in this strain suggests the lymphomas are genetically diverse. We carried out preliminary genetic characterisation by whole exome sequencing and detected tumor specific mutations in Hsp90ab1, Ccnb3 and RhoA. Interleukin-2-inducible kinase (ITK) is expressed in Tfh lymphoma and is a potential therapeutic agent. A preclinical study of ibrutinib, a small molecule inhibitor of mouse and human ITK, in established lymphoma was carried out and showed lymphoma regression in 8/12 (67%) mice. Using T2-weighted MRI to assess lymph node volume and diffusion weighted MRI scanning as a measure of function, we showed that treatment increased mean apparent diffusion coefficient (ADC) suggesting cell death, and that change in ADC following treatment correlated with change in lymphoma volume. We suggest that heterozygous sanroque mice are a useful model of Tfh cell derived lymphomas in an immunocompetent animal.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Administration, Oral
- Animals
- Antineoplastic Agents/administration & dosage
- Disease Models, Animal
- Drug Evaluation, Preclinical/methods
- Heterozygote
- Humans
- Lymph Nodes/cytology
- Lymph Nodes/diagnostic imaging
- Lymph Nodes/drug effects
- Lymphoma, T-Cell, Peripheral/diagnostic imaging
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/genetics
- Magnetic Resonance Imaging
- Mice
- Piperidines
- Primary Cell Culture
- Pyrazoles/administration & dosage
- Pyrimidines/administration & dosage
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/pathology
- Treatment Outcome
- Tumor Cells, Cultured
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Rebecca L. Allchin
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Michael E. Kelly
- Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Sami Mamand
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Anthony G. Doran
- European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Thomas Keane
- European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Matthew J. Ahearne
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Simon D. Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as selective covalent irreversible inhibitors of interleukin-2-inducible T-cell kinase (Itk). Eur J Med Chem 2019; 173:167-183. [PMID: 30999237 DOI: 10.1016/j.ejmech.2019.03.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/10/2019] [Accepted: 03/23/2019] [Indexed: 01/30/2023]
Abstract
Interleukin-2-inducible T-cell kinase (Itk) plays an important role in multiple signal transduction pathways in T and mast cells, and is a potential drug target for treating inflammatory diseases, autoimmune diseases, and T cell leukemia/lymphoma. Herein, we describe the discovery of a series of covalent Itk inhibitors based on the 7H-pyrrolo[2,3-d]pyrimidine scaffold. Placing an appropriate substitution group at a hydration site of the ATP binding pocket of Itk and using a saturated heterocyclic ring as a linker to the reactive group were crucial for selectivity. The optimized compound 9 showed potent activity against Itk, excellent selectivity for Itk over Btk and other structurally related kinases, inhibition of phospholipase C-γ1 (PLC-γ1) phosphorylation in cells, and anti-proliferative effects against multiple T leukemia/lymphoma cell lines. Compound 9 can serve as a valuable compound for further determination of functions of Itk.
Collapse
|
11
|
Interleukin-2-inducible T-cell kinase inhibitors modify functional polarization of human peripheral T-cell lymphoma cells. Blood Adv 2019; 3:705-710. [PMID: 30814054 DOI: 10.1182/bloodadvances.2018027821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/07/2019] [Indexed: 11/20/2022] Open
Abstract
Key Points
ITK inhibitors perturb functional changes due to polarizing culture conditions in normal human tonsil CD4+ T cells. Primary human PTCL cells alter their functional properties in culture and ITK inhibitors modify these changes.
Collapse
|
12
|
Comparison of interleukin-2-inducible kinase (ITK) inhibitors and potential for combination therapies for T-cell lymphoma. Sci Rep 2018; 8:14216. [PMID: 30242208 PMCID: PMC6154993 DOI: 10.1038/s41598-018-32634-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
Patients with peripheral T-cell lymphomas generally have poor clinical outcomes with conventional chemotherapy. Recent advances have demonstrated that a large subgroup of PTCL are derived from follicular helper (Tfh) T-cells. These cases show a characteristic pattern of gene expression, which includes high-level protein expression of interleukin-2-inducible kinase (ITK). ITK is a member of the TEC family of kinases and normally has essential functions in regulating T-cell receptor signalling and T-cell differentiation. Here we report a side-by-side comparison of four ITK inhibitors. We investigate effects on apoptosis, phosphorylation of signaling molecules, calcium flux and migration. In line with a specific mechanism of action ONO7790500 and BMS509744 did not inhibit MEK1/2 or AKT phosphorylation although other ITK inhibitors, ibrutinib and PF-06465469, did have this effect. Specific ITKi had modest effects on apoptosis alone but there was definite synergy with doxorubicin, pictilisib (PI3Ki) and idelalisib (PI3Kδi). ITKi repressed migration of Jurkat cells caused by CXCL12 and the CXCR4 antagonist, plerixafor enhanced this effect. Overall ITKi may have several mechanisms of action that will be therapeutically useful in PTCL including reduction in survival and perturbation of trafficking.
Collapse
|
13
|
Benn BS, Lehman Z, Kidd SA, Ho M, Sun S, Ramstein J, Arger NK, Nguyen CP, Su R, Gomez A, Gelfand JM, Koth LL. Clinical and Biological Insights from the University of California San Francisco Prospective and Longitudinal Cohort. Lung 2017; 195:553-561. [PMID: 28707108 DOI: 10.1007/s00408-017-0037-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Sarcoidosis is a systemic inflammatory disease characterized by non-necrotizing granulomas in involved organs, most commonly the lung. Description of patient characteristics in the Western United States is limited. Furthermore, blood-based measures that relate to clinical sarcoidosis phenotypes are lacking. We present an analysis of a prospective, longitudinal sarcoidosis cohort at a Northern Californian academic medical center. METHODS We enrolled 126 sarcoidosis subjects and 64 healthy controls and recorded baseline demographic and clinical characteristics. We used regression models to identify factors independently associated with pulmonary physiology. We tested whether blood transcript levels at study entry could relate to longitudinal changes in pulmonary physiology. RESULTS White, non-Hispanics composed ~70% of subjects. Hispanics and Blacks had a diagnostic biopsy at an age ~7 years younger than whites. Obstructive, but not restrictive, physiology characterized Scadding Stage IV patients. Subjects reporting use of immunosuppression had worse FEV1%p, FVC%p, and DLCO%p compared to subjects never treated, regardless of Scadding stage. We defined sarcoidosis disease activity by a drop in pulmonary function over 36 months and found that subjects meeting this definition had significant repression of blood gene transcripts related to T cell receptor signaling pathways, referred to as the "TCR factor." CONCLUSION Obstructive pulmonary physiology defined Stage IV patients which were mostly white, non-Hispanics. Genes comprising the composite gene expression score, TCR factor, may represent a blood-derived measure of T-cell activity and an indirect measure of active sarcoidosis inflammation. Validation of this measure could translate into individualized treatment for sarcoidosis patients.
Collapse
Affiliation(s)
- Bryan S Benn
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Zoe Lehman
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sharon A Kidd
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Melissa Ho
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sara Sun
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Joris Ramstein
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nicholas K Arger
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Christine P Nguyen
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Robert Su
- Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Antonio Gomez
- Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital & Trauma Center, San Francisco, CA, USA
| | - Jeffrey M Gelfand
- Department of Neurology, Multiple Sclerosis and Neuroinflammation Center, University of California, San Francisco, San Francisco, CA, USA
| | - Laura L Koth
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
14
|
Sun Y, Peng I, Webster JD, Suto E, Lesch J, Wu X, Senger K, Francis G, Barrett K, Collier JL, Burch JD, Zhou M, Chen Y, Chan C, Eastham-Anderson J, Ngu H, Li O, Staton T, Havnar C, Jaochico A, Jackman J, Jeet S, Riol-Blanco L, Wu LC, Choy DF, Arron JR, McKenzie BS, Ghilardi N, Ismaili MHA, Pei Z, DeVoss J, Austin CD, Lee WP, Zarrin AA. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response. Sci Signal 2015; 8:ra122. [PMID: 26628680 DOI: 10.1126/scisignal.aab0949] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2 (IL-2)-inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C-γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.
Collapse
Affiliation(s)
- Yonglian Sun
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ivan Peng
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Eric Suto
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Justin Lesch
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - George Francis
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kathy Barrett
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jenna L Collier
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason D Burch
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Meijuan Zhou
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Connie Chan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Hai Ngu
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Olga Li
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Tracy Staton
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Charles Havnar
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Allan Jaochico
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Janet Jackman
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Surinder Jeet
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lorena Riol-Blanco
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Immunology, Tissue Growth, and Repair Diagnostics Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Brent S McKenzie
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Zhonghua Pei
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
15
|
Kokhaei P, Jadidi-Niaragh F, Sotoodeh Jahromi A, Osterborg A, Mellstedt H, Hojjat-Farsangi M. Ibrutinib-A double-edge sword in cancer and autoimmune disorders. J Drug Target 2015; 24:373-85. [DOI: 10.3109/1061186x.2015.1086357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Parviz Kokhaei
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran,
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden,
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | | | - Anders Osterborg
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden,
- Departments of Hematology and Oncology, Karolinska University Hospital Solna, Stockholm, Sweden, and
| | - Håkan Mellstedt
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden,
- Departments of Hematology and Oncology, Karolinska University Hospital Solna, Stockholm, Sweden, and
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden,
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
16
|
Granum S, Sundvold-Gjerstad V, Gopalakrishnan RP, Berge T, Koll L, Abrahamsen G, Sorlie M, Spurkland A. The kinase Itk and the adaptor TSAd change the specificity of the kinase Lck in T cells by promoting the phosphorylation of Tyr192. Sci Signal 2014; 7:ra118. [DOI: 10.1126/scisignal.2005384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Zhong Y, Johnson AJ, Byrd JC, Dubovsky JA. Targeting Interleukin-2-Inducible T-cell Kinase (ITK) in T-Cell Related Diseases. ACTA ACUST UNITED AC 2014; 2:1-11. [PMID: 27917390 DOI: 10.14304/surya.jpr.v2n6.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL2-inducible T-cell kinase (ITK), a member of the Tec family tyrosine kinases, is the predominant Tec kinase in T cells and natural killer (NK) cells mediating T cell receptor (TCR) and Fc receptor (Fc R) initiated signal transduction. ITK deficiency results in impaired T and NK cell functions, leading to various disorders including malignancies, inflammation, and autoimmune diseases. In this mini-review, the role of ITK in T cell signaling and the development of small molecule inhibitors of ITK for the treatment of T-cell related disorders is examined.
Collapse
Affiliation(s)
- Yiming Zhong
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - Jason A Dubovsky
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Vargas L, Hamasy A, Nore BF, E. Smith CI. Inhibitors of BTK and ITK: State of the New Drugs for Cancer, Autoimmunity and Inflammatory Diseases. Scand J Immunol 2013; 78:130-9. [DOI: 10.1111/sji.12069] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/05/2013] [Indexed: 01/01/2023]
Affiliation(s)
- L. Vargas
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| | | | | | - C. I. E. Smith
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| |
Collapse
|
19
|
3D-QSAR analysis of benzimidazole inhibitors of interleukin-2 inducible T cell kinase (ITK) considering receptor flexibility and water importance for molecular alignment. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0548-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Guo W, Liu R, Ono Y, Ma AH, Martinez A, Sanchez E, Wang Y, Huang W, Mazloom A, Li J, Ning J, Maverakis E, Lam KS, Kung HJ. Molecular characteristics of CTA056, a novel interleukin-2-inducible T-cell kinase inhibitor that selectively targets malignant T cells and modulates oncomirs. Mol Pharmacol 2012; 82:938-47. [PMID: 22899868 PMCID: PMC3477223 DOI: 10.1124/mol.112.079889] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/16/2012] [Indexed: 12/19/2022] Open
Abstract
Interleukin-2-inducible T-cell kinase (Itk) is a member of the Btk (Bruton's tyrosine kinase) family of tyrosine kinases. Itk plays an important role in normal T-cell functions and in the pathophysiology of both autoimmune diseases and T-cell malignancies. Here, we describe the initial characterization of a selective inhibitor, 7-benzyl-1-(3-(piperidin-1-yl)propyl)-2-(4-(pyridin-4-yl)phenyl)-1H-imidazo[4,5-g]quinoxalin-6(5H)-one (CTA056), that was developed through screening a 9600-compound combinatorial solution phase library, followed by molecular modeling, and extensive structure-activity relationship studies. CTA056 exhibits the highest inhibitory effects toward Itk, followed by Btk and endothelial and epithelial tyrosine kinase. Among the 41 cancer cell lines analyzed, CTA056 selectively targets acute lymphoblastic T-cell leukemia and cutaneous T-cell lymphoma. Normal T cells are minimally affected. Incubation of Jurkat and MOLT-4 cells with CTA056 resulted in the inhibition of the phosphorylation of Itk and its effectors including PLC-γ, Akt, and extracellular signal-regulated kinase, as well as the decreased secretion of targeted genes such as interleukin-2 and interferon-γ. Jurkat cells also underwent apoptosis in a dose-dependent manner when incubated with CTA056. The potent apoptosis-inducing potential of CTA056 is reflected by the significant modulation of microRNAs involved in survival pathways and oncogenesis. The in vitro cytotoxic effect on malignant T cells is further validated in a xenograft model. The selective expression and activation of Itk in malignant T cells, as well as the specificity of CTA056 for Itk, make this molecule a potential therapeutic agent for the treatment of T-cell leukemia and lymphoma.
Collapse
Affiliation(s)
- Wenchang Guo
- Department of Biochemistry and Molecular Medicine,,University of California Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Block H, Zarbock A. The role of the tec kinase Bruton's tyrosine kinase (Btk) in leukocyte recruitment. Int Rev Immunol 2012; 31:104-18. [PMID: 22449072 DOI: 10.3109/08830185.2012.668982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recruitment of leukocytes into inflamed tissue is a key component of the immune system. The activation of integrins on leukocytes is required for their recruitment into the inflamed tissue. Btk is a cytoplasmic nonreceptor tyrosine kinase belonging to the Tec-kinase family. It plays a key role in B-cell development and function, and recently published studies revealed important roles of Btk in myeloid cells. Btk might be activated through a variety of receptors leading to activation of integrins as the pivotal element in leukocyte recruitment. This review focuses on the role of Btk in B-lymphocyte homing and in neutrophil recruitment.
Collapse
Affiliation(s)
- Helena Block
- Department of Anesthesiology and Critical Care Medicine, University of Muenster, Muenster, Germany
| | | |
Collapse
|
22
|
Kaur M, Bahia MS, Silakari O. Inhibitors of interleukin-2 inducible T-cell kinase as potential therapeutic candidates for the treatment of various inflammatory disease conditions. Eur J Pharm Sci 2012; 47:574-88. [PMID: 22820564 DOI: 10.1016/j.ejps.2012.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 12/19/2022]
Abstract
Interleukin-2 inducible T-cell kinase (ITK), a member of Tec family of non-receptor protein tyrosine kinases plays a domineering role in the T-cell development, differentiation and production of pro-inflammatory cytokines such as IL-2, IL-4, IL-5, IL-10, IL-13 and IL-17. This kinase is also an important contributor in Th 2 cells mediated autoimmune and allergic disease conditions, e.g. psoriasis, atopic dermatitis and allergic asthma. ITK modulates T-cell signaling by activating PLCγ1 and regulating the extent of Ca²⁺ flux. It contributes in prolific T-cell responses by maintaining cellular adhesion and cytoskeleton reorganization via actin polymerization and integrin binding. This review article describes the structure of ITK and its role in T-cell signaling. In addition to this, data regarding small molecule inhibitors of ITK has also been reviewed from different papers and patents published.
Collapse
Affiliation(s)
- Maninder Kaur
- Molecular Modeling Lab-MML, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | | | | |
Collapse
|
23
|
Boucheron N, Ellmeier W. The Role of Tec Family Kinases in the Regulation of T-helper-cell Differentiation. Int Rev Immunol 2012; 31:133-54. [DOI: 10.3109/08830185.2012.664798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Fan K, Jia Y, Wang S, Li H, Wu D, Wang G, Chen JL. Role of Itk signalling in the interaction between influenza A virus and T-cells. J Gen Virol 2012; 93:987-997. [PMID: 22302878 DOI: 10.1099/vir.0.041228-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although the T-cell-mediated immune response to influenza virus has been studied extensively, little information is available on the direct interaction between influenza virus and T-cells that pertains to severe diseases in humans and animals. To address these issues, we utilized the BALB/c mouse model combined with primary T-cells infected with A/WSN/33 influenza virus to investigate whether influenza virus has an affinity for T-cells in vivo. We observed that small proportions of CD4(+) T-cells and CD8(+) T-cells in spleen and thymus expressed viral proteins in infected mice. A significant proportion of mouse primary T-cells displayed expression of α-2,6 sialic acid-linked influenza virus receptor and were infected directly by influenza A virus. These experiments reveal that there exists a population of T-cells that is susceptible to influenza A virus infection. Furthermore, we employed human Jurkat T-cells to investigate the virus-T-cell interaction, with particular emphasis on understanding whether Itk (interleukin-2-inducible T-cell kinase), a Tec family tyrosine kinase that regulates T-cell activation, is involved in virus infection of T-cells. Interestingly, influenza virus infection resulted in an increased recruitment of Itk to the plasma membrane and an increased level of phospholipase C-γ1 (PLC-γ1) phosphorylation, suggesting that Itk/PLC-γ1 signalling is activated by the virus infection. We demonstrated that depletion of Itk inhibited the replication of influenza A virus, whereas overexpression of Itk increased virus replication. These results indicate that Itk is required for efficient replication of influenza virus in infected T-cells.
Collapse
Affiliation(s)
- Kewei Fan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Yinping Jia
- College of Animal Science and Technology, Southwest University, Chongqing, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Hua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Defeng Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Guoshun Wang
- Gene Therapy Program, Department of Medicine and Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| |
Collapse
|
25
|
Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 2012; 26:963-71. [PMID: 22289921 DOI: 10.1038/leu.2011.371] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this study was the appraisal of the clinical and functional consequences of germline mutations within the gene for the IL-2 inducible T-cell kinase, ITK. Among patients with Epstein-Barr virus-driven lymphoproliferative disorders (EBV-LPD), negative for mutations in SH2D1A and XIAP (n=46), we identified two patients with R29H or D500T,F501L,M503X mutations, respectively. Human wild-type (wt) ITK, but none of the mutants, was able to rescue defective calcium flux in murine Itk(-/-) T cells. Pulse-chase experiments showed that ITK mutations lead to varying reductions of protein half-life from 25 to 69% as compared with wt ITK (107 min). The pleckstrin homology domain of wt ITK binds most prominently to phosphatidylinositol monophosphates (PI(3)P, PI(4)P, PI(5)P) and to lesser extend to its double or triple phosphorylated derivates (PIP2, PIP3), interactions which were dramatically reduced in the patient with the ITK(R29H) mutant. ITK mutations are distributed over the entire protein and include missense, nonsense and indel mutations, reminiscent of the situation in its sister kinase in B cells, Bruton's tyrosine kinase.
Collapse
|
26
|
Qi Q, Kannan AK, August A. Structure and function of Tec family kinase Itk. Biomol Concepts 2011; 2:223-32. [PMID: 25962031 DOI: 10.1515/bmc.2011.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/11/2011] [Indexed: 11/15/2022] Open
Abstract
Itk is a member of the Tec family of kinases that is expressed predominantly in T cells. Itk regulates the T cell receptor signaling pathway to modulate T cell development and T helper cell differentiation, particularly Th2 differentiation. Itk is also important for the development and function of iNKT cells. In this review we discuss current progress on our understanding of the structure, activation and signaling pathway of Itk, in addition to inhibitors that have been developed, which target this kinase. We also place in context the function of Itk, available inhibitors and potential use in treating disease.
Collapse
|
27
|
Hussain A, Yu L, Faryal R, Mohammad DK, Mohamed AJ, Smith CIE. TEC family kinases in health and disease--loss-of-function of BTK and ITK and the gain-of-function fusions ITK-SYK and BTK-SYK. FEBS J 2011; 278:2001-10. [PMID: 21518255 DOI: 10.1111/j.1742-4658.2011.08134.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The TEC family is ancient and constitutes the second largest family of cytoplasmic tyrosine kinases. In 1993, loss-of-function mutations in the BTK gene were reported as the cause of X-linked agammaglobulinemia. Of all the existing 90 tyrosine kinases in humans, Bruton's tyrosine kinase (BTK) is the kinase for which most mutations have been identified. These experiments of nature collectively provide a form of mutation scanning with direct implications for the several hundred endogenous signaling proteins carrying domains also found in BTK. In 2009, an inactivating mutation in the ITK gene was shown to cause susceptibility to lethal Epstein-Barr virus infection. Both kinases represent interesting targets for inhibition: in the case of BTK, as an immunosuppressant, whereas there is evidence that the inhibition of inducible T-cell kinase (ITK) could influence the infectivity of HIV and also have anti-inflammatory activity. Since 2006, several patients carrying a fusion protein, originating from a translocation joining genes encoding the kinases ITK and spleen tyrosine kinase (SYK), have been shown to develop T-cell lymphoma. We review these disease processes and also describe the role of the N-terminal pleckstrin homology-Tec homology (PH-TH) domain doublet of BTK and ITK in the downstream intracellular signaling of such fusion proteins.
Collapse
Affiliation(s)
- Alamdar Hussain
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Chang JT, Ciocca ML, Kinjyo I, Palanivel VR, McClurkin CE, Dejong CS, Mooney EC, Kim JS, Steinel NC, Oliaro J, Yin CC, Florea BI, Overkleeft HS, Berg LJ, Russell SM, Koretzky GA, Jordan MS, Reiner SL. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 2011; 34:492-504. [PMID: 21497118 DOI: 10.1016/j.immuni.2011.03.017] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 01/04/2011] [Accepted: 02/04/2011] [Indexed: 01/18/2023]
Abstract
Polarized segregation of proteins in T cells is thought to play a role in diverse cellular functions including signal transduction, migration, and directed secretion of cytokines. Persistence of this polarization can result in asymmetric segregation of fate-determining proteins during cell division, which may enable a T cell to generate diverse progeny. Here, we provide evidence that a lineage-determining transcription factor, T-bet, underwent asymmetric organization in activated T cells preparing to divide and that it was unequally partitioned into the two daughter cells. This unequal acquisition of T-bet appeared to result from its asymmetric destruction during mitosis by virtue of concomitant asymmetric segregation of the proteasome. These results suggest a mechanism by which a cell may unequally localize cellular activities during division, thereby imparting disparity in the abundance of cell fate regulators in the daughter cells.
Collapse
Affiliation(s)
- John T Chang
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Itk: the rheostat of the T cell response. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:297868. [PMID: 21747996 PMCID: PMC3116522 DOI: 10.1155/2011/297868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
The nonreceptor tyrosine kinase Itk plays a key role in TCR-initiated signaling that directly and significantly affects the regulation of PLCγ1 and the consequent mobilization of Ca2+. Itk also participates in the regulation of cytoskeletal reorganization as well as cellular adhesion, which is necessary for a productive T cell response. The functional cellular outcome of these molecular regulations by Itk renders it an important mediator of T cell development and differentiation. This paper encompasses the structure of Itk, the signaling parameters leading to Itk activation, and Itk effects on molecular pathways resulting in functional cellular outcomes. The incorporation of these factors persuades one to believe that Itk serves as a modulator, or rheostat, critically fine-tuning the T cell response.
Collapse
|
30
|
Ellmeier W, Abramova A, Schebesta A. Tec family kinases: regulation of FcεRI-mediated mast-cell activation. FEBS J 2011; 278:1990-2000. [PMID: 21362140 DOI: 10.1111/j.1742-4658.2011.08073.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mast cells express the high-affinity receptor for IgE (FcεRI) and are key players in type I hypersensitivity reactions. They are critically involved in the development of allergic rhinitis, allergic asthma and systemic anaphylaxis, however, they also regulate normal physiological processes that link innate and adaptive immune responses. Thus, their activation has to be tightly controlled. One group of signaling molecules that are activated upon FcεRI stimulation is formed by Tec family kinases, and three members of this kinase family (Btk, Itk and Tec) are expressed in mast cells. Many studies have revealed important functions of Tec kinases in signaling pathways downstream of the antigen receptors in lymphocytes. This review summarizes the current knowledge about the function of Tec family kinases in FcεRI-mediated signaling pathways in mast cell.
Collapse
Affiliation(s)
- Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.
| | | | | |
Collapse
|
31
|
Herdemann M, Weber A, Jonveaux J, Schwoebel F, Stoeck M, Heit I. Optimisation of ITK inhibitors through successive iterative design cycles. Bioorg Med Chem Lett 2011; 21:1852-6. [DOI: 10.1016/j.bmcl.2011.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
32
|
Herdemann M, Heit I, Bosch FU, Quintini G, Scheipers C, Weber A. Identification of potent ITK inhibitors through focused compound library design including structural information. Bioorg Med Chem Lett 2010; 20:6998-7003. [PMID: 20965724 DOI: 10.1016/j.bmcl.2010.09.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
A series of novel compound libraries inhibiting interleukin-2 inducible T cell kinase (ITK) were designed, synthesized and evaluated. In the first design cycle two library scaffolds were identified showing low micromolar inhibition of ITK. Further iterative design cycles including crystal structure information of ITK and structurally related kinases led to the identification of indolylindazole and indolylpyrazolopyridine compounds with low nanomolar ITK inhibition.
Collapse
|
33
|
Andreotti AH, Schwartzberg PL, Joseph RE, Berg LJ. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2010; 2:a002287. [PMID: 20519342 DOI: 10.1101/cshperspect.a002287] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-gamma. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both alphabeta and gammadelta T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.
Collapse
Affiliation(s)
- Amy H Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
34
|
Berge T, Sundvold-Gjerstad V, Granum S, Andersen TCB, Holthe GB, Claesson-Welsh L, Andreotti AH, Inngjerdingen M, Spurkland A. T cell specific adapter protein (TSAd) interacts with Tec kinase ITK to promote CXCL12 induced migration of human and murine T cells. PLoS One 2010; 5:e9761. [PMID: 20305788 PMCID: PMC2841202 DOI: 10.1371/journal.pone.0009761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/28/2010] [Indexed: 01/30/2023] Open
Abstract
Background The chemokine CXCL12/SDF-1α interacts with its G-protein coupled receptor CXCR4 to induce migration of lymphoid and endothelial cells. T cell specific adapter protein (TSAd) has been found to promote migration of Jurkat T cells through interaction with the G protein β subunit. However, the molecular mechanisms for how TSAd influences cellular migration have not been characterized in detail. Principal Findings We show that TSAd is required for tyrosine phosphorylation of the Lck substrate IL2-inducible T cell kinase (Itk). Presence of Itk Y511 was necessary to boost TSAd's effect on CXCL12 induced migration of Jurkat T cells. In addition, TSAd's ability to promote CXCL12-induced actin polymerization and migration of Jurkat T lymphocytes was dependent on the Itk-interaction site in the proline-rich region of TSAd. Furthermore, TSAd-deficient murine thymocytes failed to respond to CXCL12 with increased Itk phosphorylation, and displayed reduced actin polymerization and cell migration responses. Conclusion We propose that TSAd, through its interaction with both Itk and Lck, primes Itk for Lck mediated phosphorylation and thereby regulates CXCL12 induced T cell migration and actin cytoskeleton rearrangements.
Collapse
Affiliation(s)
- Tone Berge
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Stine Granum
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thorny C. B. Andersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gunn B. Holthe
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lena Claesson-Welsh
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Amy H. Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Marit Inngjerdingen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anne Spurkland
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
35
|
Min L, Wu W, Joseph RE, Fulton DB, Berg L, Andreotti AH. Disrupting the intermolecular self-association of Itk enhances T cell signaling. THE JOURNAL OF IMMUNOLOGY 2010; 184:4228-35. [PMID: 20237289 DOI: 10.4049/jimmunol.0901908] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Tec family tyrosine kinase (Itk), is a key component of the TCR signaling pathway. Biochemical studies have shown that Itk activation requires recruitment of Itk to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. However, the regulation of Itk enzymatic activity by Itk domain interactions is not yet well understood. In this study, we show that full-length Itk self-associates in an intermolecular fashion. Using this information, we have designed an Itk variant that exhibits reduced self-association but maintains normal binding to exogenous ligands via each of its regulatory domains. When expressed in insect cells, the Itk substrate phospholipase Cgamma1 is phosphorylated more efficiently by the Itk variant than by wild-type Itk. Furthermore, expression of the Itk variant in primary murine T cells induced higher ERK activation and increased calcium flux following TCR stimulation compared with that of wild-type Itk. Our results indicate that the Tec kinase Itk is negatively regulated by intermolecular clustering and that disruption of this clustering leads to increased Itk kinase activity following TCR stimulation.
Collapse
Affiliation(s)
- Lie Min
- Department of Biochemistry, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
36
|
The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 2010; 22:1175-84. [PMID: 20206686 DOI: 10.1016/j.cellsig.2010.03.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/01/2010] [Indexed: 01/03/2023]
Abstract
The Src, Syk, and Tec family kinases are three of the most well characterized tyrosine kinase families found in the human genome. Members of these kinase families function downstream of antigen and F(c) receptors in hematopoietic cells and transduce signals leading to calcium mobilization, altered gene expression, cytokine production, and cell proliferation. Over the last several years, structural and biochemical studies have begun to uncover the molecular mechanisms regulating activation of these kinases. It appears that each kinase family functions as a distinct type of molecular switch. This review discusses the activation of the Src, Syk, and Tec kinases from the perspective of structure, phosphorylation, allosteric regulation, and kinetics. The multiple factors that regulate the Src, Syk, and Tec families illustrate the important role played by each of these kinases in immune cell signaling.
Collapse
|
37
|
Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCgamma1. Proc Natl Acad Sci U S A 2009; 106:21143-8. [PMID: 19955438 DOI: 10.1073/pnas.0911309106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.
Collapse
|
38
|
Sahu N, August A. ITK inhibitors in inflammation and immune-mediated disorders. Curr Top Med Chem 2009; 9:690-703. [PMID: 19689375 DOI: 10.2174/156802609789044443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2-inducible T cell kinase (ITK) is a non-receptor tyrosine kinase expressed in T cells, NKT cells and mast cells which plays a crucial role in regulating the T cell receptor (TCR), CD28, CD2, chemokine receptor CXCR4, and FcepsilonR-mediated signaling pathways. In T cells, ITK is an important mediator for actin reorganization, activation of PLCgamma, mobilization of calcium, and activation of the NFAT transcription factor. ITK plays an important role in the secretion of IL-2, but more critically, also has a pivotal role in the secretion of Th2 cytokines, IL-4, IL-5 and IL-13. As such, ITK has been shown to regulate the development of effective Th2 response during allergic asthma as well as infections of parasitic worms. This ability of ITK to regulate Th2 responses, along with its pattern of expression, has led to the proposal that it would represent an excellent target for Th2-mediated inflammation. We discuss here the possibilities and pitfalls of targeting ITK for inflammatory disorders.
Collapse
Affiliation(s)
- Nisebita Sahu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
39
|
Abstract
The control of cellular signaling cascades is of utmost importance in regulating the immune response. Exquisitely precise protein-protein interactions and chemical modification of substrates by enzymatic catalysis are the fundamental components of the signals that alert immune cells to the presence of a foreign antigen. In particular, the phosphorylation events induced by protein kinase activity must be spatially and temporally regulated by specific interactions to maintain a normal and effective immune response. High resolution structures of many protein kinases along with supporting biochemical data are providing significant insight into the intricate regulatory mechanisms responsible for controlling cellular signaling. The Tec family kinases are immunologically important kinases for which regulatory details are beginning to emerge. This review focuses on bringing together structural insights gained over the years to develop an understanding of how domain interactions both within the Tec kinases and between the Tec kinases and other signaling molecules control immune cell function.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50010, USA
| | | |
Collapse
|
40
|
Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S, Coustan-Smith E, Howard V, Campana D. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol 2009; 27:199-227. [PMID: 19302039 DOI: 10.1146/annurev.immunol.021908.132649] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sophisticated genetic tools have made possible the identification of the genes responsible for most well-described immunodeficiencies in the past 15 years. Mutations in Btk, components of the pre-B cell and B cell receptor (lambda5, Igalpha, Igbeta), or the scaffold protein BLNK account for approximately 90% of patients with defects in early B cell development. Hyper-IgM syndromes result from mutations in CD40 ligand, CD40, AID, or UNG in 70-80% of affected patients. Rare defects in ICOS or CD19 can result in a clinical picture that is consistent with common variable immunodeficiency, and as many as 10% of patients with this disorder have heterozygous amino acid substitutions in TACI. For all these disorders, there is considerable clinical heterogeneity in patients with the same mutation. Identifying the genetic and environmental factors that influence the clinical phenotype may enhance patient care and our understanding of normal B cell development.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Calhoun CC, Lu YC, Song J, Chiu R. Knockdown endogenous CypA with siRNA in U2OS cells results in disruption of F-actin structure and alters tumor phenotype. Mol Cell Biochem 2008; 320:35-43. [PMID: 18704644 DOI: 10.1007/s11010-008-9896-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
Cyclophilin A (CypA) was originally identified as a cytosolic protein possessing peptidyl-prolyl isomerase activity. CypA has been shown to play a pivotal role in the immune response, but little is known about other molecular mechanisms of CypA-mediated biologic events. In our present study, we demonstrate that knockdown CypA expression using RNAi in U2OS cells resulted in disruption of the F-actin structure, as well as decreased anchorage-independent growth, proliferation, and migration. Wild-type U2OS cells treated with cyclosporine A (CsA), a peptidyl-prolyl isomerase inhibitor, displayed the same phenotype as knockdown CypA cells, suggesting that the isomerase activity of CypA is required to maintain a normal phenotype. In vitro and in vivo binding assays revealed that CypA binds to N-WASP, which functions in the nucleation of actin via the Arp2/3 complex. Pulse-chase labeling study indicated an enhanced degradation of N-WASP in cell lacking CypA, suggesting that CypA is required for stabilizing N-WASP to form a N-WASP/Arp2/3 complex for the nucleation/initiation of F-actin polymerization.
Collapse
Affiliation(s)
- Colonya C Calhoun
- Dental Research Institute, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
42
|
Hu J, August A. Naive and innate memory phenotype CD4+ T cells have different requirements for active Itk for their development. THE JOURNAL OF IMMUNOLOGY 2008; 180:6544-52. [PMID: 18453573 DOI: 10.4049/jimmunol.180.10.6544] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tec family kinase Itk regulates the development of conventional and innate CD8(+) T cells. However, little is known about the role of Itk in the development of CD4(+) T cell lineages, although the role of Itk in the T cell activation and function is well defined. We show in this study that Itk null mice have increased percentage of CD62L(low)CD44(high) memory phenotype CD4(+) T cells compared with wild-type mice. These cells arise directly in the thymus, express high levels of transcripts for the T-bet and IFN-gamma and are able to produce IFN-gamma directly ex vivo in response to stimulation. Itk deficiency greatly decreases the number of CD4(+) T cells with CD62L(high)CD44(low) naive phenotype, but has no effect on the number of memory phenotype CD4(+) T cells, indicating that the development of memory phenotype CD4(+) T cells is Itk-independent. We further show that the development of the naive phenotype CD4(+) T cells is dependent on active Itk signals and can be rescued by expression of Itk specifically in T cells. Our data also show that Itk is required for functional TCR signaling in these cells, but not for the innate function in response to IL-12/IL-18 or Listeria monocytogenes stimulation. These results indicate that CD62L(high)CD44(low) "naive" CD4(+) and CD62L(low)CD44(high) "innate memory phenotype" CD4(+) T cells may be independent populations that differ in their requirement for Itk signals for development. Our data also suggest that CD4(+)CD62L(low)CD44(high) memory phenotype T cells have innate immune function.
Collapse
Affiliation(s)
- Jianfang Hu
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
43
|
Burkhardt AL, Bolen JB. Immune-complex assays for tyrosine protein kinases. ACTA ACUST UNITED AC 2008; Chapter 11:Unit 11.4. [PMID: 18432705 DOI: 10.1002/0471142735.im1104s07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tyrosine protein kinases (TPKs) represent a diverse group of enzymes that contribute to cellular signal transduction. The generally low abundance of TPKs, coupled with their rapid activation and deactivation, usually precludes their purification through conventional biochemical means. Using immune-complex protein kinase assays, the presence or absence of a given TPK can be established and an estimation of its functional state obtained. In the Basic Protocol of this unit, TPKs are immunoprecipitated, allowed to autophosphorylate in the presence of labeled ATP, run out on an SDS-PAGE gel, and detected by autoradiography. Alternate protocols are provided for the assessment of the functional state of TPKs by providing a potential substrate along with the labeled ATP in the reaction mixture. In the first alternate protocol, the exogenous substrate is a protein, permitting simultaneous assessment of autophosphorylation and exogenous substrate phosphorylation. The second alternate protocol utilizes a peptide substrate, resulting in a rapid, high-throughput assay that evaluates only exogenous substrate phosphorylation.
Collapse
Affiliation(s)
- A L Burkhardt
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey, USA
| | | |
Collapse
|
44
|
Phylogeny of Tec Family Kinases: Identification of a Premetazoan Origin of Btk, Bmx, Itk, Tec, Txk, and the Btk Regulator SH3BP5. ADVANCES IN GENETICS 2008; 64:51-80. [DOI: 10.1016/s0065-2660(08)00803-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Hit-to-lead studies on benzimidazole inhibitors of ITK: discovery of a novel class of kinase inhibitors. Bioorg Med Chem Lett 2007; 17:3660-5. [PMID: 17499505 DOI: 10.1016/j.bmcl.2007.04.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/06/2007] [Accepted: 04/16/2007] [Indexed: 11/16/2022]
Abstract
Benzimidazole 1 was identified as a selective inhibitor of ITK by high throughput screening. Hit-to-lead studies defined the SAR at all three substituents. Reversing the amide linkage at C6 led to 16, with a fivefold improvement of potency. This enhancement is rationalized by the conformational preference of the substituent. A model for the binding of the benzimidazoles to the ATP-binding site of ITK is proposed.
Collapse
|
46
|
Abstract
The Tec family of tyrosine kinases consists of five members (Itk, Rlk, Tec, Btk, and Bmx) that are expressed predominantly in hematopoietic cells. The exceptions, Tec and Bmx, are also found in endothelial cells. Tec kinases constitute the second largest family of cytoplasmic protein tyrosine kinases. While B cells express Btk and Tec, and T cells express Itk, Rlk, and Tec, all four of these kinases (Btk, Itk, Rlk, and Tec) can be detected in mast cells. This chapter will focus on the biochemical and cell biological data that have been accumulated regarding Itk, Rlk, Btk, and Tec. In particular, distinctions between the different Tec kinase family members will be highlighted, with a goal of providing insight into the unique functions of each kinase. The known functions of Tec kinases in T cell and mast cell signaling will then be described, with a particular focus on T cell receptor and mast cell Fc epsilon RI signaling pathways.
Collapse
Affiliation(s)
- Martin Felices
- Department of Pathology, University of Massachusetts Medical School, Massachusetts, USA
| | | | | | | |
Collapse
|
47
|
Brown K, Cheetham GMT. Crystal structures and inhibitors of proteins involved in IL-2 release and T cell signaling. VITAMINS AND HORMONES 2006; 74:31-59. [PMID: 17027510 DOI: 10.1016/s0083-6729(06)74002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Kieron Brown
- Vertex Pharmaceuticals (Europe) Ltd., Abingdon Oxfordshire OX14 4RY, United Kingdom
| | | |
Collapse
|
48
|
Pletneva EV, Sundd M, Fulton DB, Andreotti AH. Molecular details of Itk activation by prolyl isomerization and phospholigand binding: the NMR structure of the Itk SH2 domain bound to a phosphopeptide. J Mol Biol 2006; 357:550-61. [PMID: 16436281 DOI: 10.1016/j.jmb.2005.12.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 12/13/2022]
Abstract
The Src homology 2 (SH2) domain of interleukin-2 tyrosine kinase (Itk) is a critical component of the regulatory apparatus controlling the activity of this immunologically important enzyme. To gain insight into the structural features associated with the activated form of Itk, we have solved the NMR structure of the SH2 domain bound to a phosphotyrosine-containing peptide (pY) and analyzed changes in trans-hydrogen bond scalar couplings ((3h)J(NC')) that result from pY binding. Isomerization of a single prolyl imide bond in this domain is responsible for simultaneous existence of two distinct SH2 conformers. Prolyl isomerization directs ligand recognition: the trans conformer preferentially binds pY. The structure of the SH2/pY complex provides insight into the ligand specificity; the BG loop in the ligand-free trans SH2 conformer is pre-arranged for optimal contacts with the pY+3 residue of the ligand. Analysis of (3h)J(NC') couplings arising from hydrogen bonds has revealed propagation of structural changes from the pY binding pocket to the CD loop containing conformationally heterogeneous proline as well as to the alphaB helix, on the opposite site of the domain. These findings offer a structural framework for understanding the roles of prolyl isomerization and pY binding in Itk regulation.
Collapse
Affiliation(s)
- Ekaterina V Pletneva
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
49
|
Conley ME, Broides A, Hernandez-Trujillo V, Howard V, Kanegane H, Miyawaki T, Shurtleff SA. Genetic analysis of patients with defects in early B-cell development. Immunol Rev 2005; 203:216-34. [PMID: 15661032 DOI: 10.1111/j.0105-2896.2005.00233.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Approximately 85% of patients with defects in early B-cell development have X-linked agammaglobulinemia (XLA), a disorder caused by mutations in the cytoplasmic Bruton's tyrosine kinase (Btk). Although Btk is activated by cross-linking of a variety of cell-surface receptors, the most critical signal transduction pathway is the one initiated by the pre-B cell and B-cell antigen receptor complex. Mutations in Btk are highly diverse, and no single mutation accounts for more than 3% of patients. Although there is no strong genotype/phenotype correlation in XLA, the specific mutation in Btk is one of the factors that influences the severity of disease. Mutations in the components of the pre-B cell and B-cell antigen receptor complex account for an additional 5-7% of patients with defects in early B-cell development. Patients with defects in these proteins are clinically indistinguishable from those with XLA. However, they tend to be younger at the time of diagnosis, and whereas most patients with XLA have a small number of B cells in the peripheral circulation, these cells are not found in patients with defects in micro heavy chain or Igalpha. Polymorphic variants in the components of the pre-B cell and B-cell receptor complex, particularly micro heavy chain and lambda5, may contribute to the severity of XLA.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN 38105, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Adapter molecules are multidomain proteins lacking intrinsic catalytic activity, functioning instead by nucleating molecular complexes during signal transduction. The SLP-76 family of adapters includes SH2 domain-containing leukocyte phosphoprotein of 76kDa (SLP-76), B cell linker protein (BLNK), and cytokine-dependent hematopoietic cell linker (Clnk). These proteins are critical for integration of numerous signaling cascades downstream of immunotyrosine-based activation motif (ITAM)-bearing receptors and integrins in diverse hematopoietic cell types. Mutations in genes encoding SLP-76 family adapters result in severe phenotypes, underscoring the critical role these proteins play in cellular development and function by directing formation of signaling complexes in a temporally- and spatially-specific manner.
Collapse
Affiliation(s)
- Jennifer N Wu
- Department of Laboratory Medicine and Pathology, School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 415 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|