1
|
Chang YC, Lee PH, Hsu CL, Wang WD, Chang YL, Chuang HW. Decoding the Impact of a Bacterial Strain of Micrococcus luteus on Arabidopsis Growth and Stress Tolerance. Microorganisms 2024; 12:2283. [PMID: 39597672 PMCID: PMC11596720 DOI: 10.3390/microorganisms12112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Microbes produce various bioactive metabolites that can influence plant growth and stress tolerance. In this study, a plant growth-promoting rhizobacterium (PGPR), strain S14, was identified as Micrococcus luteus (designated as MlS14) using de novo whole-genome assembly. The MlS14 genome revealed major gene clusters for the synthesis of indole-3-acetic acid (IAA), terpenoids, and carotenoids. MlS14 produced significant amounts of IAA, and its volatile organic compounds (VOCs), specifically terpenoids, exhibited antifungal activity, suppressing the growth of pathogenic fungi. The presence of yellow pigment in the bacterial colony indicated carotenoid production. Treatment with MlS14 activated the expression of β-glucuronidase (GUS) driven by a promoter containing auxin-responsive elements. The application of MlS14 reshaped the root architecture of Arabidopsis seedlings, causing shorter primary roots, increased lateral root growth, and longer, denser root hairs; these characteristics are typically controlled by elevated exogenous IAA levels. MlS14 positively regulated seedling growth by enhancing photosynthesis, activating antioxidant enzymes, and promoting the production of secondary metabolites with reactive oxygen species (ROS) scavenging activity. Pretreatment with MlS14 reduced H2O2 and malondialdehyde (MDA) levels in seedlings under drought and heat stress, resulting in greater fresh weight during the post-stress period. Additionally, exposure to MlS14 stabilized chlorophyll content and growth rate in seedlings under salt stress. MlS14 transcriptionally upregulated genes involved in antioxidant defense and photosynthesis. Furthermore, genes linked to various hormone signaling pathways, such as abscisic acid (ABA), auxin, jasmonic acid (JA), and salicylic acid (SA), displayed increased expression levels, with those involved in ABA synthesis, using carotenoids as precursors, being the most highly induced. Furthermore, MlS14 treatment increased the expression of several transcription factors associated with stress responses, with DREB2A showing the highest level of induction. In conclusion, MlS14 played significant roles in promoting plant growth and stress tolerance. Metabolites such as IAA and carotenoids may function as positive regulators of plant metabolism and hormone signaling pathways essential for growth and adaptation to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan; (Y.-C.C.); (P.-H.L.); (C.-L.H.); (W.-D.W.); (Y.-L.C.)
| |
Collapse
|
2
|
Xia Y, Zhao J, Saeed M, Hussain N, Chen X, Guo Z, Yong Y, Chen H. Molecular Modification Strategies of Nitrilase for Its Potential Application in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15106-15121. [PMID: 38949086 DOI: 10.1021/acs.jafc.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Some feed source plants will produce secondary metabolites such as cyanogenic glycosides during metabolism, which will produce some poisonous nitrile compounds after hydrolysis and remain in plant tissues. The consumption of feed-source plants without proper treatment affect the health of the animals' bodies. Nitrilases can convert nitriles and have been used in industry as green biocatalysts. However, due to their bottleneck problems, their application in agriculture is still facing challenges. Acid-resistant nitrilase preparations, high-temperature resistance, antiprotease activity, strong activity, and strict reaction specificity urgently need to be developed. In this paper, the application potential of nitrilase in agriculture, especially in feed processing industry was explored, the source properties and catalytic mechanism of nitrilase were reviewed, and modification strategies for nitrilase application in agriculture were proposed to provide references for future research and application of nitrilase in agricultural and especially in the biological feed scene.
Collapse
Affiliation(s)
- Yutong Xia
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Jia Zhao
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
- Department of Poultry Science, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Nazar Hussain
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Xihua Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Zhongjian Guo
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Yangchun Yong
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|
3
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
4
|
Dash L, Swaminathan S, Šimura J, Gonzales CLP, Montes C, Solanki N, Mejia L, Ljung K, Zabotina OA, Kelley DR. Changes in cell wall composition due to a pectin biosynthesis enzyme GAUT10 impact root growth. PLANT PHYSIOLOGY 2023; 193:2480-2497. [PMID: 37606259 PMCID: PMC10663140 DOI: 10.1093/plphys/kiad465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as β-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to β-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.
Collapse
Affiliation(s)
- Linkan Dash
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Caitlin Leigh P Gonzales
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Iowa City, IA 50011, USA
| | - Neel Solanki
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Ludvin Mejia
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| |
Collapse
|
5
|
Roman A, Montenegro J, Fraile L, Urra M, Buezo J, Cornejo A, Moran JF, Gogorcena Y. Indole-3-acetaldoxime delays root iron-deficiency responses and modify auxin homeostasis in Medicago truncatula. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111718. [PMID: 37105378 DOI: 10.1016/j.plantsci.2023.111718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/18/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Iron (Fe) is an essential plant micronutrient, being a major limiting growth factor in calcareous soils. To increase Fe uptake, plants induce lateral roots growth, the expression of a Fe(III)-chelate reductase (FCR), a Fe(II)-transporter and a H+-ATPase and the secretion of flavins. Furthermore, auxin hormone family is involved in the Fe-deficiency responses but the action mechanism remains elusive. In this work, we evaluated the effect of the auxin-precursor indole-3-acetaldoxime (IAOx) on hydroponically grown Medicago truncatula plants under different Fe conditions. Upon 4-days of Fe starvation, the pH of the nutrient solution decreased, while both the FCR activity and the presence of flavins increased. Exogenous IAOx increased lateral roots growth contributing to superroot phenotype, decreased chlorosis, and delayed up to 3-days the pH-decrease, the FCR-activity increase, and the presence of flavins, compared to Fe-deficient plants. Gene expression levels were in concordance with the physiological responses. RESULTS: showed that IAOx was immediately transformed to IAN in roots and shoots to maintain auxin homeostasis. IAOx plays an active role in iron homeostasis delaying symptoms and responses in Fe-deficient plants. We may speculate that IAOx or its derivatives remobilize Fe from root cells to alleviate Fe-deficiency. Overall, these results point out that the IAOx-derived phenotype may have advantages to overcome nutritional stresses.
Collapse
Affiliation(s)
- Angela Roman
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain
| | - Joaquín Montenegro
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain
| | - Laura Fraile
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain
| | - Marina Urra
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, E-31192 Mutilva, Spain
| | - Javier Buezo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, E-31192 Mutilva, Spain
| | - Alfonso Cornejo
- Institute for Advanced Materials and Mathematics (INAMAT2), Department of Sciences, Public University of Navarre (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Jose Fernando Moran
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, E-31192 Mutilva, Spain
| | - Yolanda Gogorcena
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain.
| |
Collapse
|
6
|
Shkryl Y, Yugay Y, Vasyutkina E, Chukhlomina E, Rusapetova T, Bulgakov V. The RolB/RolC homolog from sweet potato promotes early flowering and triggers premature leaf senescence in transgenic Arabidopsis thaliana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:50-60. [PMID: 36323197 DOI: 10.1016/j.plaphy.2022.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Expression of the root oncogenic loci (rol) genes from Agrobacterium rhizogenes provokes multiple divergent effects on physiological properties in transgenic plants and cell cultures. Recently, the homolog of the rolB and rolC oncogenes, named Ib-rolB/C, has been identified in the genome of a naturally transgenic food crop, i.e. sweet potato. In this study, we revealed that the Ipomoea batatas genome contains two full-length copies of Ib-rolB/C. The expression level of Ib-rolB/C in leaves of sweet potato showed a clear age-dependent pattern and increased as leaves senesce. Moreover, dark-induced senescence strongly up-regulates transcription of the Ib-rolB/C gene. Though Ib-rolB/C shares homology with its counterparts in A. rhizogenes, this gene was not capable to induce hairy roots or tumors in kalanchoe and tobacco plants. The Ib-rolB/C gene induced early-flowering phenotype, altered leaf morphology, and promoted premature leaf senescence in transgenic Arabidopsis thaliana plants. At the same time, Ib-rolB/C did not affect root morphology and biomass. Our results suggest that Ib-RolB/RolC participates in both age- and dark-triggered leaf senescence programs.
Collapse
Affiliation(s)
- Yury Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - Yulia Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Elena Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Ekaterina Chukhlomina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Tatiana Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Victor Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| |
Collapse
|
7
|
Yang S, Zhang T, Wang Z, Zhao X, Li R, Li J. Nitrilases NIT1/2/3 Positively Regulate Flowering by Inhibiting MAF4 Expression in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:889460. [PMID: 35665187 PMCID: PMC9157433 DOI: 10.3389/fpls.2022.889460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Three of the nitrilases (NITs), NIT1, NIT2, and NIT3, are ubiquitously existing in plant kingdom, which catalyze indole-3-acetonitrile into the most important auxin indole-3-acetic acid. Auxin is an indispensable hormone, which plays the important roles in almost all processes of plant growth and development. However, there are few reports on the regulation of flowering-time mediated by auxin. Here, we found that in Arabidopsis, nit1/2/3 showed a late flowering phenotype in short days. To explore the molecular mechanism by which NIT1/2/3 regulate flowering time, we performed transcriptome sequencing of nit1/2/3. The results showed that the expression of a MADS-box transcription factor gene MADS AFFECTING FLOWERING4 (MAF4) was dramatically increased in nit1/2/3 comparing to wild type (WT). MAF4 is one of the paralogs of the potent flowering inhibitor FLOWERING LOCUS C (FLC). There are four other paralogs in FLC clade in Arabidopsis, including FLOWERING LOCUS M (FLM/MAF1), MAF2, MAF3, and MAF5. The late flowering phenotype of nit1/2/3 could not be observed in the maf4 background, indicating that the phenotype was specifically dependent on MAF4 rather than other FLC clade members. Interestingly, the expression of a lncRNA gene MAS, which is transcribed in the opposite direction of MAF4, was found significantly increased in nit1/2/3. Also, MAS has been reported to activate MAF4 transcription by promoting histone 3 lysine 4 trimethylation (H3K4me3). As expected, H3K4me3 deposition at MAF4 locus in nit1/2/3 was highly enriched and significantly higher than that of WT. In summary, we show that NITs, NIT1/2/3, positively regulate flowering by repressing MAF4 through manipulating H3K4me3 modification. Further study needs to be performed to explore the largely unknown mechanisms behind it.
Collapse
|
8
|
Jawahir V, Zolman BK. Long chain acyl CoA synthetase 4 catalyzes the first step in peroxisomal indole-3-butyric acid to IAA conversion. PLANT PHYSIOLOGY 2021; 185:120-136. [PMID: 33631795 PMCID: PMC8133310 DOI: 10.1093/plphys/kiaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Indole-3-butyric acid (IBA) is an endogenous storage auxin important for maintaining appropriate indole-3-acetic acid (IAA) levels, thereby influencingprimary root elongation and lateral root development. IBA is metabolized into free IAA in peroxisomes in a multistep process similar to fatty acid β-oxidation. We identified LONG CHAIN ACYL-COA SYNTHETASE 4 (LACS4) in a screen for enhanced IBA resistance in primary root elongation in Arabidopsis thaliana. LACSs activate substrates by catalyzing the addition of CoA, the necessary first step for fatty acids to participate in β-oxidation or other metabolic pathways. Here, we describe the novel role of LACS4 in hormone metabolism and postulate that LACS4 catalyzes the addition of CoA onto IBA, the first step in its β-oxidation. lacs4 is resistant to the effects of IBA in primary root elongation and dark-grown hypocotyl elongation, and has reduced lateral root density. lacs6 also is resistant to IBA, although both lacs4 and lacs6 remain sensitive to IAA in primary root elongation, demonstrating that auxin responses are intact. LACS4 has in vitro enzymatic activity on IBA, but not IAA or IAA conjugates, and disruption of LACS4 activity reduces the amount of IBA-derived IAA in planta. We conclude that, in addition to activity on fatty acids, LACS4 and LACS6 also catalyze the addition of CoA onto IBA, the first step in IBA metabolism and a necessary step in generating IBA-derived IAA.
Collapse
Affiliation(s)
- Vanessica Jawahir
- Department of Biology, University of Missouri – St Louis, St Louis, Missouri 63121, USA
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri – St Louis, St Louis, Missouri 63121, USA
| |
Collapse
|
9
|
Rasul F, Gupta S, Olas JJ, Gechev T, Sujeeth N, Mueller-Roeber B. Priming with a Seaweed Extract Strongly Improves Drought Tolerance in Arabidopsis. Int J Mol Sci 2021; 22:1469. [PMID: 33540571 PMCID: PMC7867171 DOI: 10.3390/ijms22031469] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Drought represents a major threat to plants in natural ecosystems and agricultural settings. The biostimulant Super Fifty (SF), produced from the brown alga Ascophyllum nodosum, enables ecologically friendly stress mitigation. We investigated the physiological and whole-genome transcriptome responses of Arabidopsis thaliana to drought stress after a treatment with SF. SF strongly decreased drought-induced damage. Accumulation of reactive oxygen species (ROS), which typically stifle plant growth during drought, was reduced in SF-primed plants. Relative water content remained high in SF-treated plants, whilst ion leakage, a measure of cell damage, was reduced compared to controls. Plant growth requires a functional shoot apical meristem (SAM). Expression of a stress-responsive negative growth regulator, RESPONSIVE TO DESICCATION 26 (RD26), was repressed by SF treatment at the SAM, consistent with the model that SF priming maintains the function of the SAM during drought stress. Accordingly, expression of the cell cycle marker gene HISTONE H4 (HIS4) was maintained at the SAMs of SF-primed plants, revealing active cell cycle progression after SF priming during drought. In accordance with this, CYCP2;1, which promotes meristem cell division, was repressed by drought but enhanced by SF. SF also positively affected stomatal behavior to support the tolerance to drought stress. Collectively, our data show that SF priming mitigates multiple cellular processes that otherwise impair plant growth under drought stress, thereby providing a knowledge basis for future research on crops.
Collapse
Affiliation(s)
- Fiaz Rasul
- Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany; (F.R.); (S.G.); (J.J.O.)
- BioAtlantis Ltd., Clash Industrial Estate, V92 RWV5 Tralee, Ireland
| | - Saurabh Gupta
- Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany; (F.R.); (S.G.); (J.J.O.)
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Justyna Jadwiga Olas
- Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany; (F.R.); (S.G.); (J.J.O.)
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
| | | | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany; (F.R.); (S.G.); (J.J.O.)
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
10
|
Robin AHK, Saha G, Laila R, Park JI, Kim HT, Nou IS. Expression and Role of Biosynthetic, Transporter, Receptor, and Responsive Genes for Auxin Signaling during Clubroot Disease Development. Int J Mol Sci 2020; 21:ijms21155554. [PMID: 32756478 PMCID: PMC7432499 DOI: 10.3390/ijms21155554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 01/07/2023] Open
Abstract
Auxins play a pivotal role in clubroot development caused by the obligate biotroph Plasmodiophora brassicae. In this study, we investigated the pattern of expression of 23 genes related to auxin biosynthesis, reception, and transport in Chinese cabbage (Brassica rapa) after inoculation with P. brassicae. The predicted proteins identified, based on the 23 selected auxin-related genes, were from protein kinase, receptor kinase, auxin responsive, auxin efflux carrier, transcriptional regulator, and the auxin-repressed protein family. These proteins differed in amino acids residue, molecular weights, isoelectric points, chromosomal location, and subcellular localization. Leaf and root tissues showed dynamic and organ-specific variation in expression of auxin-related genes. The BrGH3.3 gene, involved in auxin signaling, exhibited 84.4-fold increase in expression in root tissues compared to leaf tissues as an average of all samples. This gene accounted for 4.8-, 2.6-, and 5.1-fold higher expression at 3, 14, and 28 days post inoculation (dpi) in the inoculated root tissues compared to mock-treated roots. BrNIT1, an auxin signaling gene, and BrPIN1, an auxin transporter, were remarkably induced during both cortex infection at 14 dpi and gall formation at 28 dpi. BrDCK1, an auxin receptor, was upregulated during cortex infection at 14 dpi. The BrLAX1 gene, associated with root hair development, was induced at 1 dpi in infected roots, indicating its importance in primary infection. More interestingly, a significantly higher expression of BrARP1, an auxin-repressed gene, at both the primary and secondary phases of infection indicated a dynamic response of the host plant towards its resistance against P. brassicae. The results of this study improve our current understanding of the role of auxin-related genes in clubroot disease development.
Collapse
Affiliation(s)
- Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea; (A.H.K.R.); (G.S.); (R.L.); (J.-I.P.); (H.-T.K.)
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 02202, Bangladesh
| | - Gopal Saha
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea; (A.H.K.R.); (G.S.); (R.L.); (J.-I.P.); (H.-T.K.)
- Department of Agronomy, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Rawnak Laila
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea; (A.H.K.R.); (G.S.); (R.L.); (J.-I.P.); (H.-T.K.)
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea; (A.H.K.R.); (G.S.); (R.L.); (J.-I.P.); (H.-T.K.)
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea; (A.H.K.R.); (G.S.); (R.L.); (J.-I.P.); (H.-T.K.)
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea; (A.H.K.R.); (G.S.); (R.L.); (J.-I.P.); (H.-T.K.)
- Correspondence: ; Tel.: +82-617-503-249
| |
Collapse
|
11
|
Gao Y, Dai X, Aoi Y, Takebayashi Y, Yang L, Guo X, Zeng Q, Yu H, Kasahara H, Zhao Y. Two homologous INDOLE-3-ACETAMIDE (IAM) HYDROLASE genes are required for the auxin effects of IAM in Arabidopsis. J Genet Genomics 2020; 47:157-165. [PMID: 32327358 DOI: 10.1016/j.jgg.2020.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/31/2019] [Accepted: 02/20/2020] [Indexed: 11/27/2022]
Abstract
Indole-3-acetamide (IAM) is the first confirmed auxin biosynthetic intermediate in some plant pathogenic bacteria. Exogenously applied IAM or production of IAM by overexpressing the bacterial iaaM gene in Arabidopsis causes auxin overproduction phenotypes. However, it is still inconclusive whether plants use IAM as a key precursor for auxin biosynthesis. Herein, we reported the isolation IAMHYDROLASE1 (IAMH1) gene in Arabidopsis from a forward genetic screen for IAM-insensitive mutants that display normal auxin sensitivities. IAMH1 has a close homolog named IAMH2 that is located right next to IAMH1 on chromosome IV in Arabidopsis. We generated iamh1 iamh2 double mutants using our CRISPR/Cas9 gene editing technology. We showed that disruption of the IAMH genes rendered Arabidopsis plants resistant to IAM treatments and also suppressed the iaaM overexpression phenotypes, suggesting that IAMH1 and IAMH2 are the main enzymes responsible for converting IAM into indole-3-acetic acid (IAA) in Arabidopsis. The iamh double mutants did not display obvious developmental defects, indicating that IAM does not play a major role in auxin biosynthesis under normal growth conditions. Our findings provide a solid foundation for clarifying the roles of IAM in auxin biosynthesis and plant development.
Collapse
Affiliation(s)
- Yangbin Gao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Xinhua Dai
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Yuki Aoi
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045, Japan
| | - Liping Yang
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA; School of Life Sciences, Jilin Normal University, Siping, 136000, China
| | - Xiaorui Guo
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA; Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Qiwei Zeng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA; State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400716, China
| | - Hanchuanzhi Yu
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Hiroyuki Kasahara
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA.
| |
Collapse
|
12
|
Yuan J, Sun X, Guo T, Chao Y, Han L. Global transcriptome analysis of alfalfa reveals six key biological processes of senescent leaves. PeerJ 2020; 8:e8426. [PMID: 32002335 PMCID: PMC6979412 DOI: 10.7717/peerj.8426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Leaf senescence is a complex organized developmental stage limiting the yield of crop plants, and alfalfa is an important forage crop worldwide. However, our understanding of the molecular mechanism of leaf senescence and its influence on biomass in alfalfa is still limited. In this study, RNA sequencing was utilized to identify differentially expressed genes (DEGs) in young, mature, and senescent leaves, and the functions of key genes related to leaf senescence. A total of 163,511 transcripts and 77,901 unigenes were identified from the transcriptome, and 5,133 unigenes were differentially expressed. KEGG enrichment analyses revealed that ribosome and phenylpropanoid biosynthesis pathways, and starch and sucrose metabolism pathways are involved in leaf development and senescence in alfalfa. GO enrichment analyses exhibited that six clusters of DEGs are involved in leaf morphogenesis, leaf development, leaf formation, regulation of leaf development, leaf senescence and negative regulation of the leaf senescence biological process. The WRKY and NAC families of genes mainly consist of transcription factors that are involved in the leaf senescence process. Our results offer a novel interpretation of the molecular mechanisms of leaf senescence in alfalfa.
Collapse
Affiliation(s)
- Jianbo Yuan
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Key Laboratory of Crop Growth Regulation of Hebei Province, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yuehui Chao
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Casanova-Sáez R, Voß U. Auxin Metabolism Controls Developmental Decisions in Land Plants. TRENDS IN PLANT SCIENCE 2019; 24:741-754. [PMID: 31230894 DOI: 10.1016/j.tplants.2019.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
Unlike animals, whose body plans are set during embryo development, plants maintain the ability to initiate new organs throughout their life cycle. Auxin is a key regulator of almost all aspects of plant development, including morphogenesis and adaptive responses. Cellular auxin concentrations influence whether a cell will divide, grow, or differentiate, thereby contributing to organ formation, growth, and ultimately plant shape. Auxin gradients are established and maintained by a tightly regulated interplay between metabolism, signalling, and transport. Auxin is synthesised, stored, and inactivated by a multitude of parallel pathways that are all tightly regulated. Here we summarise the remarkable progress that has been achieved in identifying some key components of these pathways and the genetic complexity underlying their precise regulation.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - Ute Voß
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
14
|
Yang H, Shi G, Li X, Hu D, Cui Y, Hou J, Yu D, Huang F. Overexpression of a soybean YABBY gene, GmFILa, causes leaf curling in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:234. [PMID: 31159746 PMCID: PMC6547562 DOI: 10.1186/s12870-019-1810-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/29/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND YABBY genes play important roles in the growth and polar establishment of lateral organs such as leaves and floral organs in angiosperms. However, the functions of YABBY homologous genes are largely unknown in soybean. RESULTS In this study, we identified GmFILa encoding a YABBY transcription factor belonging to FIL subfamily. In situ mRNA hybridization analysis indicated that GmFILa had specific expression patterns in leaf as well as in flower bud primordia. Ectopic expression of GmFILa in Arabidopsis thaliana altered the partial abaxialization of the adaxial epidermises of leaves. Besides, GmFILa transgenic plants also exhibited longer flowering period and inhibition of shoot apical meristem (SAM) development compared to the wild type plants. Digital expression data and quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that the expression of GmFILa was induced by biotic and abiotic stresses and hormone treatments. Transcriptome analysis suggested that overexpressing GmFILa yielded 82 significant differentially expressed genes (DEGs) in Arabidopsis leaves, which can be classified into transcription factors, transporters, and genes involved in growth and development, metabolism, signal transduction, redox reaction and stress response. CONCLUSIONS These results not only demonstrate the roles of GmFILa involved in leaf adaxial-abaxial polarity in Arabidopsis, but also help to reveal the molecular regulatory mechanism of GmFILa based on the transcriptomic data.
Collapse
Affiliation(s)
- Hui Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Guixia Shi
- Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanmei Cui
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinfeng Hou
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
15
|
Plant nitrilase: a new job for an old enzyme. Biochem J 2019; 476:1105-1107. [PMID: 30971459 DOI: 10.1042/bcj20190060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/17/2022]
Abstract
Nitrilases are versatile enzymes that hydrolyze nitriles to carboxylic acids and ammonia, but many members of this family lack defined biological functions. In plants, nitrilases have been associated with detoxification of cyanide-containing compounds and auxin biosynthesis; however, recent work suggests that the chemical versatility of these proteins contributes to metabolite repair. In this issue of the Biochemical Journal, Niehaus et al. demonstrate that the Nit1 nitrilase from Arabidopsis thaliana functions as a metabolite repair enzyme that removes deaminated glutathione from the cytoplasm and plastids.
Collapse
|
16
|
Woodward JD, Trompetter I, Sewell BT, Piotrowski M. Substrate specificity of plant nitrilase complexes is affected by their helical twist. Commun Biol 2018; 1:186. [PMID: 30417123 PMCID: PMC6214922 DOI: 10.1038/s42003-018-0186-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023] Open
Abstract
Nitrilases are oligomeric, helix-forming enzymes from plants, fungi and bacteria that are involved in the metabolism of various natural and artificial nitriles. These biotechnologically important enzymes are often specific for certain substrates, but directed attempts at modifying their substrate specificities by exchanging binding pocket residues have been largely unsuccessful. Thus, the basis for their selectivity is still unknown. Here we show, based on work with two highly similar nitrilases from the plant Capsella rubella, that modifying nitrilase helical twist, either by exchanging an interface residue or by imposing a different twist, without altering any binding pocket residues, changes substrate preference. We reveal that helical twist and substrate size correlate and when binding pocket residues are exchanged between two nitrilases that show the same twist but different specificities, their specificities change. Based on these findings we propose that helical twist influences the overall size of the binding pocket.
Collapse
Affiliation(s)
- Jeremy D Woodward
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,Department of Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Inga Trompetter
- Department of Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - B Trevor Sewell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Markus Piotrowski
- Department of Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
17
|
Günther J, Irmisch S, Lackus ND, Reichelt M, Gershenzon J, Köllner TG. The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa. BMC PLANT BIOLOGY 2018; 18:251. [PMID: 30348089 PMCID: PMC6196558 DOI: 10.1186/s12870-018-1478-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/10/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Nitrilases are nitrile-converting enzymes commonly found within the plant kingdom that play diverse roles in nitrile detoxification, nitrogen recycling, and phytohormone biosynthesis. Although nitrilases are present in all higher plants, little is known about their function in trees. Upon herbivory, poplars produce considerable amounts of toxic nitriles such as benzyl cyanide, 2-methylbutyronitrile, and 3-methylbutyronitrile. In addition, as byproduct of the ethylene biosynthetic pathway upregulated in many plant species after herbivory, toxic β-cyanoalanine may accumulate in damaged poplar leaves. In this work, we studied the nitrilase gene family in Populus trichocarpa and investigated the potential role of the nitrilase PtNIT1 in the catabolism of herbivore-induced nitriles. RESULTS A BLAST analysis revealed three putative nitrilase genes (PtNIT1, PtNIT2, PtNIT3) in the genome of P. trichocarpa. While PtNIT1 was expressed in poplar leaves and showed increased transcript accumulation after leaf herbivory, PtNIT2 and PtNIT3 appeared not to be expressed in undamaged or herbivore-damaged leaves. Recombinant PtNIT1 produced in Escherichia coli accepted biogenic nitriles such as β-cyanoalanine, benzyl cyanide, and indole-3-acetonitrile as substrates in vitro and converted them into the corresponding acids. In addition to this nitrilase activity, PtNIT1 showed nitrile hydratase activity towards β-cyanoalanine, resulting in the formation of the amino acid asparagine. The kinetic parameters of PtNIT1 suggest that the enzyme utilizes β-cyanoalanine and benzyl cyanide as substrates in vivo. Indeed, β-cyanoalanine and benzyl cyanide were found to accumulate in herbivore-damaged poplar leaves. The upregulation of ethylene biosynthesis genes after leaf herbivory indicates that herbivore-induced β-cyanoalanine accumulation is likely caused by ethylene formation. CONCLUSIONS Our data suggest a role for PtNIT1 in the catabolism of herbivore-induced β-cyanoalanine and benzyl cyanide in poplar leaves.
Collapse
Affiliation(s)
- Jan Günther
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Sandra Irmisch
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
- Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Nathalie D. Lackus
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| |
Collapse
|
18
|
Urbancsok J, Bones AM, Kissen R. Benzyl Cyanide Leads to Auxin-Like Effects Through the Action of Nitrilases in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1240. [PMID: 30197652 PMCID: PMC6117430 DOI: 10.3389/fpls.2018.01240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/06/2018] [Indexed: 05/19/2023]
Abstract
Plants within the Brassicales order generate glucosinolate hydrolysis products that can exert different biological effects on several organisms. Here, we evaluated the physiological effects of one of these compounds, benzyl cyanide (phenylacetonitrile), when exogenously applied on Arabidopsis thaliana. Treatment with benzyl cyanide led to a dose-dependent reduction of primary root length and total biomass. Further morphological changes like elongated hypocotyls, epinastic cotyledons, and increased formation of adventitious roots resembled a severe auxin-overproducer phenotype. The elevated auxin response was confirmed by histochemical staining and gene expression analysis of auxin-responsive genes. Nitriles are converted by specific enzymes, nitrilases (NIT1-3), to their corresponding carboxylic acids. The nitrilase mutants nit1 and nit2 tolerated benzyl cyanide treatments better than the wild type, with nit2 being less resistant than nit1. A NIT2RNAi line suppressing several nitrilases was resistant to all tested benzyl cyanide concentrations. When exposed to phenylacetic acid (PAA) - the corresponding carboxylic acid of benzyl cyanide - wild type and mutant seedlings were, however, equally susceptible and showed a more severe auxin phenotype than upon cyanide treatment. Here, we demonstrate that the auxin-like effects triggered by benzyl cyanide on Arabidopsis are due to its nitrilase-mediated conversion to the natural auxin PAA.
Collapse
Affiliation(s)
| | | | - Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
19
|
Malka SK, Cheng Y. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin. FRONTIERS IN PLANT SCIENCE 2017; 8:2131. [PMID: 29312389 PMCID: PMC5735125 DOI: 10.3389/fpls.2017.02131] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GLS) are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase), and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx) and indole-3-acetonitrile (IAN). IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.
Collapse
Affiliation(s)
- Siva K. Malka
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Olatunji D, Geelen D, Verstraeten I. Control of Endogenous Auxin Levels in Plant Root Development. Int J Mol Sci 2017; 18:E2587. [PMID: 29194427 PMCID: PMC5751190 DOI: 10.3390/ijms18122587] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture.
Collapse
Affiliation(s)
- Damilola Olatunji
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Inge Verstraeten
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
21
|
Exogenous Auxin Elicits Changes in the Arabidopsis thaliana Root Proteome in a Time-Dependent Manner. Proteomes 2017; 5:proteomes5030016. [PMID: 28698516 PMCID: PMC5620533 DOI: 10.3390/proteomes5030016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022] Open
Abstract
Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400.
Collapse
|
22
|
Rehman HM, Shah ZH, Nawaz MA, Ahmad MQ, Yang SH, Kho KH, Chung G. RETRACTED ARTICLE: Beta-cyanoalanine synthase pathway as a homeostatic mechanism for cyanide detoxification as well as growth and development in higher plants. PLANTA 2017; 245:235. [PMID: 27744484 DOI: 10.1007/s00425-016-2606-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Zahid Hussain Shah
- Department of Arid Land Agriculture, King Abdul-Aziz University, Jeddah, 21577, Saudi Arabia
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 6000, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Kang Hee Kho
- Department of Aquatic Biology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea.
| |
Collapse
|
23
|
Lehmann T, Janowitz T, Sánchez-Parra B, Alonso MMP, Trompetter I, Piotrowski M, Pollmann S. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28174581 DOI: 10.3389/fpls.2017.00036.ecollection] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.
Collapse
Affiliation(s)
- Thomas Lehmann
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Tim Janowitz
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Marta-Marina Pérez Alonso
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Inga Trompetter
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Markus Piotrowski
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Stephan Pollmann
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany; Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| |
Collapse
|
24
|
Lehmann T, Janowitz T, Sánchez-Parra B, Alonso MMP, Trompetter I, Piotrowski M, Pollmann S. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:36. [PMID: 28174581 PMCID: PMC5258727 DOI: 10.3389/fpls.2017.00036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.
Collapse
Affiliation(s)
- Thomas Lehmann
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Tim Janowitz
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Marta-Marina Pérez Alonso
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Inga Trompetter
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Markus Piotrowski
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Stephan Pollmann
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
- *Correspondence: Stephan Pollmann
| |
Collapse
|
25
|
Katsarou D, Omirou M, Liadaki K, Tsikou D, Delis C, Garagounis C, Krokida A, Zambounis A, Papadopoulou KK. Glucosinolate biosynthesis in Eruca sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:452-466. [PMID: 27816826 DOI: 10.1016/j.plaphy.2016.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/06/2016] [Accepted: 10/25/2016] [Indexed: 05/27/2023]
Abstract
Glucosinolates (GSLs) are a highly important group of secondary metabolites in the Caparalles order, both due to their significance in plant-biome interactions and to their chemoprotective properties. This study identified genes involved in all steps of aliphatic and indolic GSL biosynthesis in Eruca sativa, a cultivated plant closely related to Arabidopsis thaliana with agronomic and nutritional value. The impact of nitrogen (N) and sulfur (S) availability on GSL biosynthetic pathways at a transcriptional level, and on the final GSL content of plant leaf and root tissues, was investigated. N and S supply had a significant and interactive effect on the GSL content of leaves, in a structure-specific and tissue-dependent manner; the metabolites levels were significantly correlated with the relative expression of the genes involved in their biosynthesis. A more complex effect was observed in roots, where aliphatic and indolic GSLs and related biosynthetic genes responded differently to the various nutritional treatments suggesting that nitrogen and sulfur availability are important factors that control plant GSL content at a transcriptional level. The biological activity of extracts derived from these plants grown under the specific nutritional schemes was examined. N and S availability were found to significantly affect the cytotoxicity of E. sativa extracts on human cancer cells, supporting the notion that carefully designed nutritional schemes can promote the accumulation of chemoprotective substances in edible plants.
Collapse
Affiliation(s)
- Dimitra Katsarou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Michalis Omirou
- Agricultural Research Institute, Ministry of Agriculture, Natural Resources and Environment, Nicosia, Cyprus
| | - Kalliopi Liadaki
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Daniela Tsikou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Costas Delis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | | | - Afrodite Krokida
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Antonis Zambounis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | | |
Collapse
|
26
|
Choi DS, Lim CW, Hwang BK. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens. PLANTA 2016; 244:449-465. [PMID: 27095107 DOI: 10.1007/s00425-016-2525-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
Proteomics and functional analyses of the Arabidopsis - Pseudomonas syringae pv. tomato interactions reveal that Arabidopsis nitrilases are required for plant defense and R gene-mediated resistant responses to microbial pathogens. A high-throughput in planta proteome screen has identified Arabidopsis nitrilase 2 (AtNIT2), which was de novo-induced by Pseudomonas syringae pv. tomato (Pst) infection. The AtNIT2, AtNIT3, and AtNIT4 genes, but not AtNIT1, were distinctly induced in Arabidopsis leaves by Pst infection. Notably, avirulent Pst DC3000 (avrRpt2) infection led to significant induction of AtNIT2 and AtNIT4 in leaves. Pst DC3000 and Pst DC3000 (avrRpt2) significantly grew well in leaves of nitrilase transgenic (nit2i-2) and mutant (nit1-1 and nit3-1) lines compared to the wild-type leaves. In contrast, NIT2 overexpression in nit2 mutants led to significantly high growth of the two Pst strains in leaves. The nitrilase transgenic and mutant lines exhibited enhanced susceptibility to Hyaloperonospora arabidopsidis infection. The nit2 mutation enhanced Pst DC3000 (avrRpt2) growth in salicylic acid (SA)-deficient NahG transgenic and sid2 and npr1 mutant lines. Infection with Pst DC3000 or Pst DC3000 (avrRpt2) induced lower levels of indole-3-acetic acid (IAA) in nit2i and nit2i NahG plants than in wild-type plants, but did not alter the IAA level in NahG transgenic plants. This suggests that Arabidopsis nitrilase 2 is involved in IAA signaling of defense and R gene-mediated resistance responses to Pst infection. Quantification of SA in these transgenic and mutant plants demonstrates that Arabidopsis nitrilase 2 is not required for SA-mediated defense response to the virulent Pst DC3000 but regulates SA-mediated resistance to the avirulent Pst DC3000 (avrRpt2). These results collectively suggest that Arabidopsis nitrilase genes are involved in plant defense and R gene-mediated resistant responses to microbial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA, 92521, USA
| | - Chae Woo Lim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Divi UK, Rahman T, Krishna P. Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:419-32. [PMID: 25973891 PMCID: PMC11389030 DOI: 10.1111/pbi.12396] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 05/07/2023]
Abstract
The plant hormone brassinosteroid (BR) plays essential roles in plant growth and development, while also controlling plant stress responses. This dual ability of BR is intriguing from a mechanistic point of view and as a viable solution for stabilizing crop yields under the changing climatic conditions. Here we report a time course analysis of BR responses under both stress and no-stress conditions, the results of which establish that BR incorporates many stress-related features even under no-stress conditions, which are then accompanied by a dynamic stress response under unfavourable conditions. Found within the BR transcriptome were distinct molecular signatures of two stress hormones, abscisic acid and jasmonic acid, which were correlated with enhanced endogenous levels of the two hormones in BR-treated seedlings. The marked presence of genes related to protein metabolism and modification, defence responses and calcium signalling highlights the significance of their associated mechanisms and roles in BR processes. Functional analysis of loss-of-function mutants of a subset of genes selected from the BR transcriptome identified abiotic stress-related roles for ACID PHOSPHATASE5 (ACP5), WRKY33, JACALIN-RELATED LECTIN1-3 (JAC-LEC1-3) and a BR-RESPONSIVE-RECEPTOR-LIKE KINASE (BRRLK). Overall, the results of this study provide a clear link between the molecular changes impacted by BR and its ability to confer broad-range stress tolerance, emphasize the importance of post-translational modification and protein turnover as BR regulatory mechanisms and demonstrate the BR transcriptome as a repertoire of new stress-related regulatory and structural genes.
Collapse
Affiliation(s)
- Uday K Divi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tawhidur Rahman
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Priti Krishna
- Department of Biology, University of Western Ontario, London, ON, Canada
- The School of Environmental and Rural Sciences, The University of New England, Armidale, NSW, Australia
| |
Collapse
|
28
|
Abstract
Auxin is an important plant hormone essential for many aspects of plant growth and development. Indole-3-acetic acid (IAA) is the most studied auxin in plants, and its biosynthesis pathway has been investigated for over 70 years. Although the complete picture of auxin biosynthesis remains to be elucidated, remarkable progress has been made recently in understanding the mechanism of IAA biosynthesis. Genetic and biochemical studies demonstrate that IAA is mainly synthesized from l-tryptophan (Trp) via indole-3-pyruvate by two-step reactions in Arabidopsis. While IAA is also produced from Trp via indole-3-acetaldoxime in Arabidopsis, this pathway likely plays an auxiliary role in plants of the family Brassicaceae. Recent studies suggest that the Trp-independent pathway is not a major route for IAA biosynthesis, but they reveal an important role for a cytosolic indole synthase in this pathway. In this review, I summarize current views and future prospects of IAA biosynthesis research in plants.
Collapse
|
29
|
Jia X, Ding N, Fan W, Yan J, Gu Y, Tang X, Li R, Tang G. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:11-21. [PMID: 25711809 DOI: 10.1016/j.plantsci.2014.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 05/20/2023]
Abstract
MicroRNA 165 and 166 (miR165/166) is composed of nine members and targets five members (PHB, PHV, REV, ATHB8 and ATHB15) of the HD-ZIP III transcription factor family. Mutants generated by traditional methods could hardly reveal the overall functions of miR165/166 in plant development. In this study, the expressions of all miR165/166 members were simultaneously blocked by over-expressing STTM165/166-31 in Arabidopsis and tomato for functional dissection of miR165/166 family. Following a down-regulation of over 90% endogenous miR165/166, the target HD-ZIP III genes were correspondingly up-regulated in the STTM transgenic Arabidopsis and tomato plants. Notably, the STTM165/166-31 over-expressed Arabidopsis and tomato displayed pleiotropic effects on development which were not frequently observed in previously identified genetic mutants of either individual miR165/166 gene or any of the five target genes. Furthermore, the transgenic Arabidopsis showed increased IAA content and decreased IAA sensitivity accompanied by enhanced expressions of genes responsible for auxin biosynthesis and signaling, suggesting possible roles of auxin in mediation of miR165/166-regulated processes. Importantly, the transgenic Arabidopsis exhibited the improved behavior under salt stress. Overall, such diverse variations in plant development and physiological process revealed by STTM165/166 demonstrate a key role of miR165/166-mediated network in regulating plant development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Xiaoyun Jia
- Shanxi Agricultural University, Taigu 030801, Shanxi, China; Gene Suppression Laboratory, Department of Plant and Soil Sciences and Kentucky Tobacco and Research Development Center, University of Kentucky, Lexington, KY 40546 USA
| | - Na Ding
- Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Weixin Fan
- Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jun Yan
- Gene Suppression Laboratory, Department of Plant and Soil Sciences and Kentucky Tobacco and Research Development Center, University of Kentucky, Lexington, KY 40546 USA
| | - Yiyou Gu
- Gene Suppression Laboratory, Department of Plant and Soil Sciences and Kentucky Tobacco and Research Development Center, University of Kentucky, Lexington, KY 40546 USA; Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Xiaoqing Tang
- Gene Suppression Laboratory, Department of Plant and Soil Sciences and Kentucky Tobacco and Research Development Center, University of Kentucky, Lexington, KY 40546 USA; Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Runzhi Li
- Shanxi Agricultural University, Taigu 030801, Shanxi, China; Gene Suppression Laboratory, Department of Plant and Soil Sciences and Kentucky Tobacco and Research Development Center, University of Kentucky, Lexington, KY 40546 USA.
| | - Guiliang Tang
- Shanxi Agricultural University, Taigu 030801, Shanxi, China; Gene Suppression Laboratory, Department of Plant and Soil Sciences and Kentucky Tobacco and Research Development Center, University of Kentucky, Lexington, KY 40546 USA; Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
30
|
Influences of halogen atoms on indole-3-acetonitrile (IAN): Crystal structure and Hirshfeld surfaces analysis. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.07.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Agarwal A, Nigam VK. Nitrilase mediated conversion of Indole-3-acetonitrile to Indole-3-acetic acid. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Smékalová V, Luptovčiak I, Komis G, Šamajová O, Ovečka M, Doskočilová A, Takáč T, Vadovič P, Novák O, Pechan T, Ziemann A, Košútová P, Šamaj J. Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. THE NEW PHYTOLOGIST 2014; 203:1175-1193. [PMID: 24923680 PMCID: PMC4414326 DOI: 10.1111/nph.12880] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
The role of YODA MITOGEN ACTIVATED PROTEIN KINASE KINASE KINASE 4 (MAPKKK4) upstream of MITOGEN ACTIVATED PROTEIN KINASE 6 (MPK6) was studied during post-embryonic root development of Arabidopsis thaliana. Loss- and gain-of-function mutants of YODA (yda1 and ΔNyda1) were characterized in terms of root patterning, endogenous auxin content and global proteomes. We surveyed morphological and cellular phenotypes of yda1 and ΔNyda1 mutants suggesting possible involvement of auxin. Endogenous indole-3-acetic acid (IAA) levels were up-regulated in both mutants. Proteomic analysis revealed up-regulation of auxin biosynthetic enzymes tryptophan synthase and nitrilases in these mutants. The expression, abundance and phosphorylation of MPK3, MPK6 and MICROTUBULE ASSOCIATED PROTEIN 65-1 (MAP65-1) were characterized by quantitative polymerase chain reaction (PCR) and western blot analyses and interactions between MAP65-1, microtubules and MPK6 were resolved by quantitative co-localization studies and co-immunoprecipitations. yda1 and ΔNyda1 mutants showed disoriented cell divisions in primary and lateral roots, abortive cytokinesis, and differential subcellular localization of MPK6 and MAP65-1. They also showed deregulated expression of TANGLED1 (TAN1), PHRAGMOPLAST ORIENTING KINESIN 1 (POK1), and GAMMA TUBULIN COMPLEX PROTEIN 4 (GCP4). The findings that MPK6 localized to preprophase bands (PPBs) and phragmoplasts while the mpk6-4 mutant transformed with MPK6AEF (alanine (A)-glutamic acid (E)-phenylanine (F)) showed a root phenotype similar to that of yda1 demonstrated that MPK6 is an important player downstream of YODA. These data indicate that YODA and MPK6 are involved in post-embryonic root development through an auxin-dependent mechanism regulating cell division and mitotic microtubule (PPB and phragmoplast) organization.
Collapse
Affiliation(s)
- Veronika Smékalová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Ivan Luptovčiak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Anna Doskočilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Pavol Vadovič
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, 2 Research Boulevard, Starkville, MS 39762, USA
| | - Anja Ziemann
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Petra Košútová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| |
Collapse
|
33
|
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. BIOINFORMATICS (OXFORD, ENGLAND) 2014; 151:3-12. [PMID: 24695404 DOI: 10.1111/ppl.12098] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 05/09/2023]
Abstract
MOTIVATION Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. RESULTS The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. AVAILABILITY AND IMPLEMENTATION Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic CONTACT usadel@bio1.rwth-aachen.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anthony M Bolger
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, GermanyDepartment Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany
| | - Marc Lohse
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany
| | - Bjoern Usadel
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, GermanyDepartment Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany
| |
Collapse
|
34
|
Phylogenetic analysis of putative genes involved in the tryptophan-dependent pathway of auxin biosynthesis in rice. Appl Biochem Biotechnol 2014; 172:2480-95. [PMID: 24398922 DOI: 10.1007/s12010-013-0710-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/25/2013] [Indexed: 12/31/2022]
Abstract
Plant proteome databases were mined for a flavin monooxygenase (YUCCA), tryptophan decarboxylase (TDC), nitrilase (NIT), and aldehyde oxidase (AO) enzymes that could be involved in the tryptophan-dependent pathway of auxin biosynthesis. Phylogenetic trees for enzyme sequences obtained were constructed. The YUCCA and TDC trees showed that these enzymes were conserved across the plant kingdom and therefore could be involved in auxin synthesis. YUCCAs branched into two clades. Most experimentally studied YUCCAs were found in the first clade. The second clade which has representatives from only seed plants contained Arabidopsis sequences linked to embryonic development. Therefore, sequences in this clade were suggested to be evolved with seed development. Examination of TDC activity and expression had previously linked this enzyme to secondary products synthesis. However, the phylogenetic finding of a conserved TDC clade across land plants suggested its essential role in plant growth. Phylogenetic analysis of AOs showed that plants inherited one AO. Recent gene duplication was suggested as AO sequences from each species were similar to each other rather than to AO from other species. Taken together and based on the experimental support of the involvement of AO in abscisic synthesis, AO was excluded as an intermediate in IAA production. Phylogenetic tree for NIT showed that the first clade contained sequences from species across the plant kingdom whereas the second branch contained sequences from only Brassicaceae. Even though NIT4 orthologues were conserved in the second clade, their major role seems to be detoxification of hydrogen cyanide rather than producing IAA.
Collapse
|
35
|
Dam S, Dyrlund TF, Ussatjuk A, Jochimsen B, Nielsen K, Goffard N, Ventosa M, Lorentzen A, Gupta V, Andersen SU, Enghild JJ, Ronson CW, Roepstorff P, Stougaard J. Proteome reference maps of the Lotus japonicus nodule and root. Proteomics 2014; 14:230-40. [PMID: 24293220 DOI: 10.1002/pmic.201300353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/11/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022]
Abstract
Legume symbiosis with rhizobia results in the formation of a specialized organ, the root nodule, where atmospheric dinitrogen is reduced to ammonia. In Lotus japonicus (Lotus), several genes involved in nodule development or nodule function have been defined using biochemistry, genetic approaches, and high-throughput transcriptomics. We have employed proteomics to further understand nodule development. Two developmental stages representing nodules prior to nitrogen fixation (white) and mature nitrogen fixing nodules (red) were compared with roots. In addition, the proteome of a spontaneous nodule formation mutant (snf1) was determined. From nodules and roots, 780 and 790 protein spots from 2D gels were identified and approximately 45% of the corresponding unique gene accessions were common. Including a previous proteomics set from Lotus pod and seed, the common gene accessions were decreased to 7%. Interestingly, an indication of more pronounced PTMs in nodules than in roots was determined. Between the two nodule developmental stages, higher levels of pathogen-related 10 proteins, HSPs, and proteins involved in redox processes were found in white nodules, suggesting a higher stress level at this developmental stage. In contrast, protein spots corresponding to nodulins such as leghemoglobin, asparagine synthetase, sucrose synthase, and glutamine synthetase were prevalent in red nodules. The distinct biochemical state of nodules was further highlighted by the conspicuous presence of several nitrilases, ascorbate metabolic enzymes, and putative rhizobial effectors.
Collapse
Affiliation(s)
- Svend Dam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moubayidin L, Di Mambro R, Sozzani R, Pacifici E, Salvi E, Terpstra I, Bao D, van Dijken A, Dello Ioio R, Perilli S, Ljung K, Benfey PN, Heidstra R, Costantino P, Sabatini S. Spatial coordination between stem cell activity and cell differentiation in the root meristem. Dev Cell 2013; 26:405-15. [PMID: 23987513 DOI: 10.1016/j.devcel.2013.06.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 05/20/2013] [Accepted: 06/26/2013] [Indexed: 01/06/2023]
Abstract
A critical issue in development is the coordination of the activity of stem cell niches with differentiation of their progeny to ensure coherent organ growth. In the plant root, these processes take place at opposite ends of the meristem and must be coordinated with each other at a distance. Here, we show that in Arabidopsis, the gene SCR presides over this spatial coordination. In the organizing center of the root stem cell niche, SCR directly represses the expression of the cytokinin-response transcription factor ARR1, which promotes cell differentiation, controlling auxin production via the ASB1 gene and sustaining stem cell activity. This allows SCR to regulate, via auxin, the level of ARR1 expression in the transition zone where the stem cell progeny leaves the meristem, thus controlling the rate of differentiation. In this way, SCR simultaneously controls stem cell division and differentiation, ensuring coherent root growth.
Collapse
Affiliation(s)
- Laila Moubayidin
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza, via dei Sardi, 70-00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Puga-Freitas R, Barot S, Taconnat L, Renou JP, Blouin M. Signal molecules mediate the impact of the earthworm Aporrectodea caliginosa on growth, development and defence of the plant Arabidopsis thaliana. PLoS One 2012; 7:e49504. [PMID: 23226498 PMCID: PMC3513312 DOI: 10.1371/journal.pone.0049504] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/09/2012] [Indexed: 12/23/2022] Open
Abstract
Earthworms have generally a positive impact on plant growth, which is often attributed to a trophic mechanism: namely, earthworms increase the release of mineral nutrients from soil litter and organic matter. An alternative hypothesis has been proposed since the discovery of a signal molecule (Indole Acetic Acid) in earthworm faeces. In this study, we used methodologies developed in plant science to gain information on ecological mechanisms involved in plant-earthworm interaction, by looking at plant response to earthworm presence at a molecular level. First, we looked at plant overall response to earthworm faeces in an in vitro device where only signal molecules could have an effect on plant growth; we observed that earthworms were inducing positive or negative effects on different plant species. Then, using an Arabidopsis thaliana mutant with an impaired auxin transport, we demonstrated the potential of earthworms to stimulate root growth and to revert the dwarf mutant phenotype. Finally, we performed a comparative transcriptomic analysis of Arabidopsis thaliana in the presence and absence of earthworms; we found that genes modulated in the presence of earthworms are known to respond to biotic and abiotic stresses, or to the application of exogenous hormones. A comparison of our results with other studies found in databases revealed strong analogies with systemic resistance, induced by signal molecules emitted by Plant Growth Promoting Rhizobacteria and/or elicitors emitted by non-virulent pathogens. Signal molecules such as auxin and ethylene, which are considered as major in plant-microorganisms interactions, can also be of prior importance to explain plant-macroinvertebrates interactions. This could imply revisiting ecological theories which generally stress on the role of trophic relationships.
Collapse
Affiliation(s)
- Ruben Puga-Freitas
- UMR Biogéochimie et Ecologie des Milieux Continentaux, Université Paris-Est Créteil, Créteil, France
| | - Sébastien Barot
- UMR Biogéochimie et Ecologie des Milieux Continentaux, Institut de Recherche pour le Développement, Ecole Normale Supérieure, Paris, France
| | | | | | - Manuel Blouin
- UMR Biogéochimie et Ecologie des Milieux Continentaux, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
38
|
Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet 2012; 8:e1002911. [PMID: 22927830 PMCID: PMC3426549 DOI: 10.1371/journal.pgen.1002911] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/04/2012] [Indexed: 11/19/2022] Open
Abstract
In plants, multiple detached tissues are capable of forming a pluripotent cell mass, termed callus, when cultured on media containing appropriate plant hormones. Recent studies demonstrated that callus resembles the root-tip meristem, even if it is derived from aerial organs. This finding improves our understanding of the regeneration process of plant cells; however, the molecular mechanism that guides cells of different tissue types to form a callus still remains elusive. Here, we show that genome-wide reprogramming of histone H3 lysine 27 trimethylation (H3K27me3) is a critical step in the leaf-to-callus transition. The Polycomb Repressive Complex 2 (PRC2) is known to function in establishing H3K27me3. By analyzing callus formation of mutants corresponding to different histone modification pathways, we found that leaf blades and/or cotyledons of the PRC2 mutants curly leaf swinger (clf swn) and embryonic flower2 (emf2) were defective in callus formation. We identified the H3K27me3-covered loci in leaves and calli by a ChIP-chip assay, and we found that in the callus H3K27me3 levels decreased first at certain auxin-pathway genes. The levels were then increased at specific leaf genes but decreased at a number of root-regulatory genes. Changes in H3K27me3 levels were negatively correlated with expression levels of the corresponding genes. One possible role of PRC2-mediated H3K27me3 in the leaf-to-callus transition might relate to elimination of leaf features by silencing leaf-regulatory genes, as most leaf-preferentially expressed regulatory genes could not be silenced in the leaf explants of clf swn. In contrast to the leaf explants, the root explants of both clf swn and emf2 formed calli normally, possibly because the root-to-callus transition bypasses the leaf gene silencing process. Furthermore, our data show that PRC2-mediated H3K27me3 and H3K27 demethylation act in parallel in the reprogramming of H3K27me3 during the leaf-to-callus transition, suggesting a general mechanism for cell fate transition in plants.
Collapse
|
39
|
He C, Chen X, Huang H, Xu L. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet 2012. [PMID: 22927830 DOI: 10.1371/journal.pgen.1002911pgenetics-d-12-00157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
In plants, multiple detached tissues are capable of forming a pluripotent cell mass, termed callus, when cultured on media containing appropriate plant hormones. Recent studies demonstrated that callus resembles the root-tip meristem, even if it is derived from aerial organs. This finding improves our understanding of the regeneration process of plant cells; however, the molecular mechanism that guides cells of different tissue types to form a callus still remains elusive. Here, we show that genome-wide reprogramming of histone H3 lysine 27 trimethylation (H3K27me3) is a critical step in the leaf-to-callus transition. The Polycomb Repressive Complex 2 (PRC2) is known to function in establishing H3K27me3. By analyzing callus formation of mutants corresponding to different histone modification pathways, we found that leaf blades and/or cotyledons of the PRC2 mutants curly leaf swinger (clf swn) and embryonic flower2 (emf2) were defective in callus formation. We identified the H3K27me3-covered loci in leaves and calli by a ChIP-chip assay, and we found that in the callus H3K27me3 levels decreased first at certain auxin-pathway genes. The levels were then increased at specific leaf genes but decreased at a number of root-regulatory genes. Changes in H3K27me3 levels were negatively correlated with expression levels of the corresponding genes. One possible role of PRC2-mediated H3K27me3 in the leaf-to-callus transition might relate to elimination of leaf features by silencing leaf-regulatory genes, as most leaf-preferentially expressed regulatory genes could not be silenced in the leaf explants of clf swn. In contrast to the leaf explants, the root explants of both clf swn and emf2 formed calli normally, possibly because the root-to-callus transition bypasses the leaf gene silencing process. Furthermore, our data show that PRC2-mediated H3K27me3 and H3K27 demethylation act in parallel in the reprogramming of H3K27me3 during the leaf-to-callus transition, suggesting a general mechanism for cell fate transition in plants.
Collapse
Affiliation(s)
- Chongsheng He
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
40
|
Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2853-72. [PMID: 22447967 DOI: 10.1093/jxb/ers091] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.
Collapse
Affiliation(s)
- Yoshihiro Mano
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan.
| | | |
Collapse
|
41
|
Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. MOLECULAR PLANT 2012; 5:334-8. [PMID: 22155950 PMCID: PMC3309920 DOI: 10.1093/mp/ssr104] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/21/2011] [Indexed: 05/18/2023]
Abstract
Indole-3-acetic acid (IAA), the main naturally occurring auxin, is essential for almost every aspect of plant growth and development. However, only recently have studies finally established the first complete auxin biosynthesis pathway that converts tryptophan (Trp) to IAA in plants. Trp is first converted to indole-3-pyruvate (IPA) by the TAA family of amino transferases and subsequently IAA is produced from IPA by the YUC family of flavin monooxygenases. The two-step conversion of Trp to IAA is the main auxin biosynthesis pathway that plays an essential role in many developmental processes.
Collapse
Affiliation(s)
- Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
42
|
Khan BR, Zolman BK. pex5 Mutants that differentially disrupt PTS1 and PTS2 peroxisomal matrix protein import in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1602-15. [PMID: 20974890 PMCID: PMC2996013 DOI: 10.1104/pp.110.162479] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/11/2010] [Indexed: 05/21/2023]
Abstract
PEX5 and PEX7 are receptors required for the import of peroxisome-bound proteins containing one of two peroxisomal targeting signals (PTS1 or PTS2). To better understand the role of PEX5 in plant peroxisomal import, we characterized the Arabidopsis (Arabidopsis thaliana) pex5-10 mutant, which has a T-DNA insertion in exon 5 of the PEX5 gene. Sequencing results revealed that exon 5, along with the T-DNA, is removed in this mutant, resulting in a truncated pex5 protein. The pex5-10 mutant has germination defects and is completely dependent on exogenous Suc for early seedling establishment, based on poor utilization of seed-storage fatty acids. This mutant also has delayed development and reduced fertility, although adult pex5-10 plants appear normal. Peroxisomal metabolism of indole-3-butyric acid, propionate, and isobutyrate also is disrupted. The pex5-10 mutant has reduced import of both PTS1 and PTS2 proteins, and enzymatic processes that occur in peroxisomes are disrupted. To specifically study the import and importance of PTS1 proteins, we made a truncated PEX5 construct lacking the PTS1-binding region (PEX5(454)). Transformation of this construct into pex5-10 resulted in the rescue of PTS2 import, thereby creating a line with PTS1-specific import defects. The pex5-10 (PEX5(454)) plants still had developmental defects, although restoring PTS2 import resulted in a less severe mutant phenotype. Comparison of pex5-10 and pex5-10 (PEX5(454)) phenotypes can separate the import mechanisms for enzymes acting in different peroxisomal processes, including indole-3-butyric acid/2,4-dichlorophenoxybutyric acid oxidation, isobutyrate and propionate metabolism, and photorespiration.
Collapse
|
43
|
Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1360-70. [PMID: 20619485 DOI: 10.1016/j.jplph.2010.05.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/07/2010] [Indexed: 05/03/2023]
Abstract
In order to test the possibility of improving tolerance to heat and drought (alone and in combination) by elevation of the osmoprotectant proline (Pro) content, stress responses were compared in tobacco plants constitutively over-expressing a gene for the Pro biosynthetic enzyme Δ(2)-pyrroline-5-carboxylate synthetase (P5CSF129A; EC 2.7.2.11/1.2.1.41) and in the corresponding wild-type. Significantly enhanced Pro production in the transformant coincided with a more negative leaf osmotic potential (both at control conditions and following stress) and enhanced production of protective xanthophyll cycle pigments. Heat stress (40 °C) caused a transient increase in the level of bioactive cytokinins, predominantly N(6)-(2-isopentenyl)adenosine, accompanied by down-regulation of the activity of the main cytokinin degrading enzyme cytokinin oxidase/dehydrogenase (EC 1.4.3.18/1.5.99.12). No significant differences were found between the tested genotypes. In parallel, a transient decrease of abscisic acid was observed. Following drought stress, bioactive cytokinin levels decreased in the whole plants, remaining relatively higher in preferentially protected upper leaves and in roots. Cytokinin suppression was less pronounced in Pro transformants. Exposure to heat stress (40 °C for 2h) at the end of 10-d drought period strongly enhanced the severity of the water stress, as indicated by a drop in leaf water potential. The activity of cytokinin oxidase/dehydrogenase was strongly stimulated in upper leaves and roots of stressed plants, coinciding with strong down-regulation of bioactive cytokinins in whole plants. Combined heat and drought stress resulted in a minor decrease in abscisic acid, but only in non-wilty upper leaves. Both stresses as well as their combination were associated with elevation of free auxin, indolylacetic acid, in lower leaves and/or in roots. Auxin increase was dependent on the stress strength. After rehydration, a marked elevation of bioactive cytokinins in leaves was observed. A greater increase in cytokinin content in Pro transformants indicated a mild elevation of their stress tolerance.
Collapse
Affiliation(s)
- Jana Dobra
- Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic; Department of Biochemistry, Charles University, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Like animals, plants have evolved into complex organisms. Developmental cohesion between tissues and cells is possible due to signaling molecules (messengers) like hormones. The first hormone discovered in plants was auxin. This phytohormone was first noticed because of its involvement in the response to directional light. Nowadays, auxin has been established as a central key player in the regulation of plant growth and development and in responses to environmental changes. At the cellular level, auxin controls division, elongation, and differentiation as well as the polarity of the cell. Auxin, to integrate so many different signals, needs to be regulated at many different levels. A tight regulation of auxin synthesis, activity, degradation as well as transport has been demonstrated. Another possibility to modulate auxin signaling is to modify the capacity of response of the cells by expressing differentially the signaling components. In this review, we provide an overview of the present knowledge in auxin biology, with emphasis on root development.
Collapse
Affiliation(s)
- Alexandre Tromas
- Centre National de la Recherche Scientifique, UPR 2355, institut des sciences du végétal, 1 avenue de la Terrasse, Gif-sur-Yvette cedex, France
| | | |
Collapse
|
45
|
Strader LC, Beisner ER, Bartel B. Silver ions increase auxin efflux independently of effects on ethylene response. THE PLANT CELL 2009; 21:3585-90. [PMID: 19903871 PMCID: PMC2798329 DOI: 10.1105/tpc.108.065185] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 09/26/2009] [Accepted: 10/25/2009] [Indexed: 05/21/2023]
Abstract
Silver nitrate and aminoethoxyvinylglycine (AVG) are often used to inhibit perception and biosynthesis, respectively, of the phytohormone ethylene. In the course of exploring the genetic basis of the extensive interactions between ethylene and auxin, we compared the effects of silver nitrate (AgNO(3)) and AVG on auxin responsiveness. We found that although AgNO(3) dramatically decreased root indole-3-acetic acid (IAA) responsiveness in inhibition of root elongation, promotion of DR5-beta-glucuronidase activity, and reduction of Aux/IAA protein levels, AVG had more mild effects. Moreover, we found that that silver ions, but not AVG, enhanced IAA efflux similarly in root tips of both the wild type and mutants with blocked ethylene responses, indicating that this enhancement was independent of ethylene signaling. Our results suggest that the promotion of IAA efflux by silver ions is independent of the effects of silver ions on ethylene perception. Although the molecular details of this enhancement remain unknown, our finding that silver ions can promote IAA efflux in addition to blocking ethylene signaling suggest that caution is warranted in interpreting studies using AgNO(3) to block ethylene signaling in roots.
Collapse
|
46
|
Janowitz T, Trompetter I, Piotrowski M. Evolution of nitrilases in glucosinolate-containing plants. PHYTOCHEMISTRY 2009; 70:1680-6. [PMID: 19698961 DOI: 10.1016/j.phytochem.2009.07.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 05/08/2023]
Abstract
Nitrilases, enzymes that catalyze the hydrolysis of organic cyanides, are ubiquitous in the plant kingdom. The typical plant nitrilase is a nitrilase 4 homolog which is involved in the cyanide detoxification pathway. In this pathway, nitrilase 4 converts beta-cyanoalanine, the intermediate product of cyanide detoxification, into asparagine, aspartic acid and ammonia. In the Brassicaceae, a new family of nitrilases has evolved, the nitrilase 1 homologs. These enzymes are not able to use beta-cyanoalanine as a substrate. Instead, they display rather broad substrate specificities and are able to hydrolyze nitriles that result from the decomposition of glucosinolates, the typical secondary metabolites of the Brassicaceae. Here we summarize and discuss data indicating that nitrilase 1 homologs have evolved to function in glucosinolate catabolism.
Collapse
Affiliation(s)
- Tim Janowitz
- Department of Plant Physiology, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
47
|
Strader LC, Bartel B. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. THE PLANT CELL 2009; 21:1992-2007. [PMID: 19648296 PMCID: PMC2729616 DOI: 10.1105/tpc.109.065821] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/27/2009] [Accepted: 07/14/2009] [Indexed: 05/18/2023]
Abstract
Plants have developed numerous mechanisms to store hormones in inactive but readily available states, enabling rapid responses to environmental changes. The phytohormone auxin has a number of storage precursors, including indole-3-butyric acid (IBA), which is apparently shortened to active indole-3-acetic acid (IAA) in peroxisomes by a process similar to fatty acid beta-oxidation. Whereas metabolism of auxin precursors is beginning to be understood, the biological significance of the various precursors is virtually unknown. We identified an Arabidopsis thaliana mutant that specifically restores IBA, but not IAA, responsiveness to auxin signaling mutants. This mutant is defective in PLEIOTROPIC DRUG RESISTANCE8 (PDR8)/PENETRATION3/ABCG36, a plasma membrane-localized ATP binding cassette transporter that has established roles in pathogen responses and cadmium transport. We found that pdr8 mutants display defects in efflux of the auxin precursor IBA and developmental defects in root hair and cotyledon expansion that reveal previously unknown roles for IBA-derived IAA in plant growth and development. Our results are consistent with the possibility that limiting accumulation of the IAA precursor IBA via PDR8-promoted efflux contributes to auxin homeostasis.
Collapse
Affiliation(s)
- Lucia C Strader
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
48
|
Abstract
Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant-microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth-promoting microorganisms, and their activities may have a significant impact on the outcome of plant-microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant-associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture.
Collapse
Affiliation(s)
- Andrew J M Howden
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | |
Collapse
|
49
|
Thuku R, Brady D, Benedik M, Sewell B. Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 2009; 106:703-27. [DOI: 10.1111/j.1365-2672.2008.03941.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Howden AJM, Harrison CJ, Preston GM. A conserved mechanism for nitrile metabolism in bacteria and plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:243-253. [PMID: 18786181 DOI: 10.1111/j.1365-313x.2008.03682.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pseudomonas fluorescens SBW25 is a plant growth-promoting bacterium that efficiently colonizes the leaf surfaces and rhizosphere of a range of plants. Previous studies have identified a putative plant-induced nitrilase gene (pinA) in P. fluorescens SBW25 that is expressed in the rhizosphere of sugar beet plants. Nitrilase enzymes have been characterised in plants, bacteria and fungi and are thought to be important in detoxification of nitriles, utilisation of nitrogen and synthesis of plant hormones. We reveal that pinA is a NIT4-type nitrilase that catalyses the hydrolysis of beta-cyano-L-alanine, a nitrile common in the plant environment and an intermediate in the cyanide detoxification pathway in plants. In plants cyanide is converted to beta-cyano-L-alanine, which is subsequently detoxified to aspartic acid and ammonia by NIT4. In P. fluorescens SBW25 pinA is induced in the presence of beta-cyano-L-alanine, and the beta-cyano-L-alanine precursors cyanide and cysteine. pinA allows P. fluorescens SBW25 to use beta-cyano-L-alanine as a nitrogen source and to tolerate toxic concentrations of this nitrile. In addition, pinA is shown to complement a NIT4 mutation in Arabidopsis thaliana, enabling plants to grow in concentrations of beta-cyano-L-alanine that would otherwise prove lethal. Interestingly, over-expression of pinA in wild-type A. thaliana not only resulted in increased growth in high concentrations of beta-cyano-L-alanine, but also resulted in increased root elongation in the absence of exogenous beta-cyano-L-alanine, demonstrating that beta-cyano-L-alanine nitrilase activity can have a significant effect on root physiology and root development.
Collapse
Affiliation(s)
- Andrew J M Howden
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | |
Collapse
|