1
|
Phillips S. Section Reviews: Biologicals & Immunologicals: Recent advances in non-viral gene therapy. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.9.1101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Ghods AJ, Irvin D, Liu G, Yuan X, Abdulkadir IR, Tunici P, Konda B, Wachsmann-Hogiu S, Black KL, Yu JS. Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 2007; 25:1645-53. [PMID: 17412894 DOI: 10.1634/stemcells.2006-0624] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rat 9L gliosarcoma is a widely used syngeneic rat brain tumor model that closely simulates glioblastoma multiforme when implanted in vivo. In this study, we sought to isolate and characterize a subgroup of cancer stem-like cells (CSLCs) from the 9L gliosarcoma cell line, which may represent the tumor-initiating subpopulation of cells. We demonstrate that these CSLCs form clonal-derived spheres in media devoid of serum supplemented with the mitogens epidermal growth factor and basic fibroblast growth factor, express the NSC markers Nestin and Sox2, self-renew, and differentiate into neuron-like and glial cells in vitro. More importantly, these cells can propagate and recapitulate tumors when implanted into the brain of syngeneic Fisher rats, and they display a more aggressive course compared with 9L gliosarcoma cells grown in monolayer cultures devoid of mitogens. Furthermore, we compare the chemosensitivity and proliferation rate of 9L gliosarcoma cells grown as a monolayer to those of cells grown as floating spheres and show that the sphere-generated cells have a lower proliferation rate, are more chemoresistant, and express several antiapoptosis and drug-related genes, which may prove to have important clinical implications. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
|
3
|
Abstract
Selective introduction of genes conferring chemosensitivity into proliferating tumor cells may be used to treat cancer. We investigated the bystander effect of retrovirus-mediated gene transfer of herpes simplex virus thymidine kinase (HSV-TK) gene to murine neuroblastoma cell line (neuro-2a) in vitro and in vivo, and we examined whether the mechanism of bystander effect in neuroblastoma would also depend on connexin-dependent gap junction and/or immune response. A strong bystander effect was observed in vitro, whereby nontransduced tumor cells in proximity to transduced cells acquired susceptibility to ganciclovir (GCV) killing. Implanted mixtures of wildtype cells and HSV-TK transduced cells showed a potent bystander effect upon administration of GCV in A/J mice. HSV-TK/GCV system in murine neuroblastoma induced systemic immunity. Immunohistochemical staining showed many CD4+ and CD8+ cell infiltration but did not show anti-connexin 43+ cells. In conclusion, a strong bystander effect was observed in vitro and in vivo. The bystander effect in murine neuroblastoma might be dependent on immune response and/or on other mechanism such as protein phosphorylation or transfer of apoptotic vesicle, rather than connexin-dependent gap junction.
Collapse
Affiliation(s)
- Hyun-Sang Cho
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| | - Hye-Ran Lee
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| | - Moon Kyu Kim
- Department of Pediatrics, Handong University Good Samaritan Hospital, Pohang, Korea
| |
Collapse
|
4
|
Abstract
Retrovirus (RV) has been one of the earliest recombinant vectors to be investigated in the context of cancer gene therapy. Experiments in cell culture and in animal brain tumor models have demonstrated the feasibility of RV mediated gene transduction and killing of glioma cells by toxicity generating transgenes. Phase I and II clinical studies in patients with recurrent malignant glioma have shown a favorable safety profile and some efficacy of RV mediated gene therapy. On the other hand, a prospective randomized phase III clinical study of RV gene therapy in primary malignant glioma failed to demonstrate significant extension of the progression-free or overall survival times in RV treated patients. The failure of this RV gene therapy study may be due to the low tumor cell transduction rate observed in vivo. The biological effects of the treatment may also heavily depend on the choice of transgene/prodrug system and on the vector delivery methods. Retrovirus clinical trials in malignant glioma have nevertheless produced a substantial amount of data and have contributed toward the identification of serious shortcomings of the non-replicating virus vector gene therapy strategy. Novel types of therapeutic virus vector systems are currently being designed and new clinical protocols are being created based on the lessons learned from the RV gene therapy trials in patients with malignant brain tumors.
Collapse
Affiliation(s)
- Nikolai G Rainov
- Department of Neurological Science, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
5
|
Rainov NG, Kramm CM. Recombinant retrovirus vectors for treatment of malignant brain tumors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:185-203. [PMID: 12968537 DOI: 10.1016/s0074-7742(03)01008-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Nikolai G Rainov
- Department of Neurological Science, University of Liverpool, Walton Centre for Neurology and Neurosurgery NHS Trust, Liverpool L9 7LJ, United Kingdom
| | | |
Collapse
|
6
|
Michailowsky C, Niura FK, do Valle AC, Sonohara S, Meneguin TD, Tsanaclis AMC. [Experimental tumors of the central nervous system: standardisation of a model in rats using the 9L glioma cells]. ARQUIVOS DE NEURO-PSIQUIATRIA 2003; 61:234-40. [PMID: 12806502 DOI: 10.1590/s0004-282x2003000200013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of experimental models have been established during the last decades in order to study tumor biology and the effects of treatment or manipulation of the microenvironment of malignant glial tumors. Even though those models have been well characterised and are, to a certain extent, easily reproducible, there are limitations as to their use and to the interpretation of the results. The aim of this study is to standardize a model of a malignant glial tumor and detect possible events able to modify its development. 9L cells were inoculated intracerebrally in 48 Sprague-Dawley rats; from these, 25 animals were also implanted with a device containing electrodes for the registration of the electroencephalogramm. Animals were daily evaluated by neurologic examination. Twenty four animals developed tumor - 10 animals died either in the immediate pos-operatory period or during evolution; 14 animals did not develop tumor. Macroscopically the tumor was well demarcated from the adjacent brain; by light microscopy the tumor exhibited malignant characteristics as well as extensive infiltration of the brain parenchyma. Diagnosis was that of a malignant astrocytoma. The use of the stereotaxic frame and care to infuse a small volume of liquid containing cells during a period of 120 seconds were the most important procedures to obtain sucess in the model. Additional care should be taken in counting cells in the Neubauer camera and in maintaining cells in constant agitation before injecting the tumor-containing solution. The model here developed was efficient besides being of low cost and of relatively easy execution.
Collapse
Affiliation(s)
- Custódio Michailowsky
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
OBJECT Findings in several clinical cases have suggested a correlation between tumor formation and previous injury to the central nervous system (CNS); however, the relationship between trauma and tumorigenesis has not been investigated well experimentally. In this study the authors provide evidence correlating tumorigenesis with trauma in the rat spinal cord. METHODS A glial cell line, C6R-G/H, which expresses green fluorescent protein (GFP) and hygromycin phosphotransferase (HPT), was implanted into normal and injured rat spinal cords. In all rats in which the cells were implanted into an injured site, locomotor function deteriorated and histological analysis demonstrated glioblastoma multiforme by 6 weeks; tumorigenesis was correlated with a loss of both GFP expression and resistance to hygromycin treatment. In contrast, no evidence of tumor formation was found at 6 weeks in rats in which the cells were implanted into healthy tissue. When C6R-G/H cells were treated with contused spinal cord extract in culture before implantation, they lost GFP expression and hygromycin resistance, and later formed tumors after implantation into normal spinal cord. CONCLUSIONS The findings of this study indicate that trauma can induce tumorigenesis. Implantation of C6R-G/H cells into traumatized spinal cords resulted in their transformation, which was signaled by loss of GFP expression and hygromycin resistance accompanied by tumor formation. Exposure to extracts derived from injured spinal cord produced similar transformation and gene expression changes, as well as tumor formation after such cells were implanted into normal cords. Care, therefore, should be taken when cells are implanted into an injured CNS because of potential mutagenesis due to trauma-induced factors.
Collapse
Affiliation(s)
- Koichi Hasegawa
- Department of Cell Biology and Neuroscience and W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA
| | | |
Collapse
|
8
|
Barth RF, Yang W, Coderre JA. Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation. J Neurooncol 2003; 62:61-74. [PMID: 12749703 DOI: 10.1007/bf02699934] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Development of any therapeutic modality can be facilitated by the use of the appropriate animal models to assess its efficacy. This report primarily will focus on our studies using the F98 and 9L rat glioma models to evaluate the effectiveness of boron neutron capture therapy (BNCT) of brain tumors. Following intracerebral implantation the biological behavior of each tumor resembles that of human high grade gliomas in a number of ways. In both models, glioma cells were implanted intracerebrally into syngeneic Fischer rats and approximately 10-14 days later BNCT was initiated at the Brookhaven National Laboratory Medical Research Reactor. Two low molecular weight (M(r) < 210Da) 10B-containing drugs, boronophenylalanine (BPA) and/or sodium borocaptate (BSH) were used as capture agents, either alone or in combination with each other. The 9L gliosarcoma, which has been difficult to cure by means of either chemo- or radiotherapy alone, was readily curable by BNCT. The best survival data were obtained using BPA at a dose of 1200 mg/kg (64.8mg 10B), administered intraperitoneally (i.p.), with a 100% survival rate at 8 months. In contrast, the F98 glioma has been refractory to all therapeutic modalities. Tumor bearing animals, which had received 500 mg/kg (27 mg 10B) of BPA, or an equivalent amount of BSH i.v., had mean survival time (MST) of 37 and 33 days, respectively, compared to 29 days for irradiated controls. The best survival data with the F98 glioma model were obtained using BPA + BSH in combination, administered intra-arterially via the internal carotid artery (i.c.) with hyperosmotic mannitol induced blood-brain barrier disruption (BBB-D). The MST was 140 days with a cure rate of 25%, compared to a MST of 73 days with a 5% cure rate without BBB-D, and 41 days following i.v. administration of both drugs. A modest but significant increase in MST also was observed in rats that received intracarotid (i.c.) BPA in combination with Cereport (RMP-7), which produced a pharmacologically mediated opening of the BBB. Studies also have been carried out with the F98 glioma to determine whether an X-ray boost could enhance the efficacy of BNCT, and it was shown that there was a significant therapeutic gain. Finally, molecular targeting of the epidermal growth factor receptor (EGFR) has been investigated using F98 glioma cells, which had been transfected with the gene encoding EGFR and, intratumoral injection of boronated EGF as the delivery agent, followed by BNCT. These studies demonstrated that there was specific targeting of EGFR and provided proof of principle for the use of high molecular weight, receptor targeting-boron delivery agents. Finally, a xenograft model for melanoma metastatic to the brain has been developed using a human melanoma (MRA27), stereotactically implanted into the brains of nude rats, and these studies demonstrated that BNCT either cured or significantly prolonged the survival of tumor-bearing rats. It remains to be determined, which, if any, of these experimental approaches will be translated into clinical studies. Be that as it may, rat brain tumor models already have made a significant contribution to the design of clinical BNCT protocols, and should continue to do so in the future.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
9
|
Gadi VK, Alexander SD, Waud WR, Allan PW, Parker WB, Sorscher EJ. A long-acting suicide gene toxin, 6-methylpurine, inhibits slow growing tumors after a single administration. J Pharmacol Exp Ther 2003; 304:1280-4. [PMID: 12604707 DOI: 10.1124/jpet.102.044743] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have demonstrated antitumor activity against refractory human glioma and pancreatic tumors with 6-methylpurine (MeP) using either a suicide gene therapy strategy to selectively release 6-methylpurine in tumor cells or direct intratumoral injection of 6-methylpurine itself. A single i.p. injection in mice of the prodrug 9-beta-D-[2-deoxyribofuranosyl]-6-methylpurine (MeP-dR; 134 mg/kg) caused sustained regression lasting over 70 days of D54 (human glioma) tumors transduced with the Escherichia coli purine nucleoside phosphorylase (PNP), and a single intratumoral injection of 6-methylpurine (5-10 mg/kg) elicited prolonged delays of the growth of D54 tumors and CFPAC human pancreatic carcinoma. Because the D54 tumor doubling time is >15 days, the experiments indicate that prodrug activation by E. coli PNP engenders destruction of both dividing and nondividing tumor compartments in vivo and, therefore, address a fundamental barrier that has limited the development of suicide gene strategies in the past. A prolonged retention time of 6-methylpurine metabolites in tumors was noted in vivo (T(1/2) >24 h compared with a serum half-life of <1 h). By high-pressure liquid chromatography, metabolites of [(3)H]MeP-dR were 5- to 6-fold higher in tumors expressing E. coli PNP. These experiments point to new endpoints for monitoring E. coli PNP suicide gene therapy, including intratumoral enzymatic activity, in situ (intratumoral) prodrug conversion, and tumor regressions after direct injection of a suicide gene toxin. The findings also help explain the strong in vivo bystander killing mechanism ascribed by several laboratories to E. coli PNP in the past.
Collapse
Affiliation(s)
- Vijayakrishna K Gadi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
10
|
Morris GM, Micca PL, Nawrocky MM, Weissfloch LE, Coderre JA. Long-term infusions of p-boronophenylalanine for boron neutron capture therapy: evaluation using rat brain tumor and spinal cord models. Radiat Res 2002; 158:743-52. [PMID: 12452777 DOI: 10.1667/0033-7587(2002)158[0743:ltiopb]2.0.co;2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rat 9L gliosarcoma cells infiltrating the normal brain have been shown previously to accumulate only approximately 30% as much boron as the intact tumor after administration of the boronated amino acid p-boronophenylalanine (BPA). Long-term i.v. infusions of BPA were shown previously to increase the boron content of these infiltrating tumor cells significantly. Experiments to determine whether this improved BPA distribution into infiltrating tumor cells after a long-term i.v. infusion improves tumor control after BNCT in this brain tumor model and whether it has any deleterious effects in the response of the rat spinal cord to BNCT are the subjects of the present report. BPA was administered in a fructose solution at a dose of 650 mg BPA/kg by single i.p. injection or by i.v. infusion for 2 h or 6 h, at 330 mg BPA/kg h(-1). At 1 h after the end of either the 2-h or the 6-h infusion, the CNS:blood (10)B partition ratio was 0.9:1. At 3 h after the single i.p. injection, the ratio was 0.6:1. After spinal cord irradiations, the ED(50) for myeloparesis was 14.7 +/- 0.4 Gy after i.p. administration of BPA and 12.9 +/- 0.3 Gy in rats irradiated after a 6-h i.v. infusion of BPA; these values were significantly different (P < 0.001). After irradiation with 100 kVp X rays, the ED(50) was 18.6 +/- 0.1 Gy. The boron compound biological effectiveness (CBE) factors calculated for the boron neutron capture dose component were 1.2 +/- 0.1 for the i.p. BPA administration protocol and 1.5 +/- 0.1 after irradiation using the 6-h i.v. BPA infusion protocol (P < 0.05). In the rat 9L gliosarcoma brain tumor model, the blood boron concentrations at 1 h after the end of the 2-h infusion (330 mg BPA/kg h(-1); n = 15) or after the 6-h infusion (190 mg BPA/kg h(-1); n = 13) were 18.9 +/- 2.2 microg 10B/g and 20.7 +/- 1.8 microg 10B/g, respectively. The irradiation times were adjusted individually, based on the preirradiation blood sample, to deliver a predicted 50% tumor control dose of 8.2 Gy ( approximately 30 photon-equivalent Gy) to all tumors. In the present study, the long-term survival was approximately 50% and was not significantly different between the 2-h and the 6-h infusion groups. The mode of BPA administration and the time between administration and irradiation influence the 10B partition ratio between the CNS and the blood, which in turn influences the measured CBE factor. These findings underline the need for clinical biodistribution studies to be carried out to establish 10B partition ratios as a key component in the evaluation of modified administration protocols involving BPA.
Collapse
Affiliation(s)
- G M Morris
- Research Institute (University of Oxford), Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Kokoris MS, Black ME. Characterization of herpes simplex virus type 1 thymidine kinase mutants engineered for improved ganciclovir or acyclovir activity. Protein Sci 2002; 11:2267-72. [PMID: 12192082 PMCID: PMC2373606 DOI: 10.1110/ps.2460102] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herpes Simplex Virus type 1 (HSV-1) thymidine kinase (TK) is currently the most widely used suicide agent for gene therapy of cancer. Tumor cells that express HSV-1 thymidine kinase are rendered sensitive to prodrugs due to preferential phosphorylation by this enzyme. Although ganciclovir (GCV) is the prodrug of choice for use with TK, this approach is limited in part by the toxicity of this prodrug. From a random mutagenesis library, seven thymidine kinase variants containing multiple amino acid substitutions were identified on the basis of activity towards ganciclovir and acyclovir based on negative selection in Escherichia coli. Using a novel affinity chromatography column, three mutant enzymes and the wild-type TK were purified to homogeneity and their kinetic parameters for thymidine, ganciclovir, and acyclovir determined. With ganciclovir as the substrate, one mutant (mutant SR39) demonstrated a 14-fold decrease in K(m) compared to the wild-type enzyme. The most dramatic change is displayed by mutant SR26, with a 124-fold decrease in K(m) with acyclovir as the substrate. Such new "prodrug kinases" could provide benefit to ablative gene therapy by now making it feasible to use the relatively nontoxic acyclovir at nanomolar concentrations or ganciclovir at lower, less immunosuppressive doses.
Collapse
Affiliation(s)
- Mark S Kokoris
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington 99164-6534, USA
| | | |
Collapse
|
12
|
Chen Y, Douglass T, Jeffes EWB, Xu Q, Williams CC, Arpajirakul N, Delgado C, Kleinman M, Sanchez R, Dan Q, Kim RC, Wepsic HT, Jadus MR. Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a "paraptosis"-induced pathway that promotes systemic immunity against intracranial T9 gliomas. Blood 2002; 100:1373-80. [PMID: 12149220 DOI: 10.1182/blood-2002-01-0174] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cloned T9-C2 glioma cells transfected with membrane macrophage colony-stimulating factor (mM-CSF) never formed subcutaneous tumors when implanted into Fischer rats, whereas control T9 cells did. The T9-C2 cells were completely killed within 1 day through a mechanism that resembled paraptosis. Vacuolization of the T9-C2 cell's mitochondria and endoplasmic reticulum started within 4 hours after implantation. By 24 hours, the dead tumor cells were swollen and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL)-positive. Bcl2-transduced T9-C2 cells failed to form tumors in rats. Both T9 and T9-C2 cells produced cytokine-induced neutrophil chemoattractant that recruited the granulocytes into the tumor injection sites, where they interacted with the tumor cells. Freshly isolated macrophages killed the T9-C2 cells in vitro by a mechanism independent of phagocytosis. Nude athymic rats treated with antiasialo GM1 antibody formed T9-C2 tumors, whereas rats treated with a natural killer cell (NK)-specific antibody failed to form tumors. When treated with antipolymorphonuclear leukocyte (anti-PMN) and antimacrophage antibodies, 80% of nude rats formed tumors, whereas only 40% of the rats developed a tumor when a single antibody was used. This suggests that both PMNs and macrophages are involved in the killing of T9-C2 tumor cells. Immunocompetent rats that rejected the living T9-C2 cells were immune to the intracranial rechallenge with T9 cells. No vaccinating effect occurred if the T9-C2 cells were freeze-thawed, x-irradiated, or treated with mitomycin-C prior to injection. Optimal tumor immunization using mM-CSF-transduced T9 cells requires viable tumor cells. In this study optimal tumor immunization occurred when a strong inflammatory response at the injection of the tumor cells was induced.
Collapse
Affiliation(s)
- Yijun Chen
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fareed MU, Moolten FL. Suicide gene transduction sensitizes murine embryonic and human mesenchymal stem cells to ablation on demand-- a fail-safe protection against cellular misbehavior. Gene Ther 2002; 9:955-62. [PMID: 12085244 DOI: 10.1038/sj.gt.3301771] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 02/11/2002] [Indexed: 11/08/2022]
Abstract
Stem cells and their progeny constitute a potential resource for replacing damaged tissues or supplying missing functions, but also pose a threat of aberrant behavior, including neoplastic growth or immunopathology. Suicide genes introduced into these cells before transplantation might provide a means of addressing this threat by permitting the ablation of the cells if they subsequently misbehave. Retroviral transduction of the E. coli gpt and herpes thymidine kinase (HSVtk) suicide genes was used to determine the degree to which stem cells could be sensitized to the prodrugs 6-thioxanthine (6TX) and ganciclovir (GCV) respectively, and whether this sensitivity could persist over many cell generations. The ES-E14TG2a murine embryonic stem cell line was rendered sensitive to quantitative ablation at prodrug concentrations well tolerated by untransduced cells (50 microM 6TX, 1 microg/ml GCV). The HSVtk gene also conferred GCV sensitivity on human mesenchymal stem cells and hematopoietic precursors derived from the murine cells, although ablation was not complete. Because ES-E14TG2a cells are deficient in the cellular enzyme HPRT, they are sensitive to hypoxanthine/aminopterin/thymidine (HAT). This property enhanced the persistence of chemosensitivity in gpt-transduced cells by permitting cells that lost 6TX sensitivity to be ablated with HAT.
Collapse
Affiliation(s)
- M U Fareed
- Research Service, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA
| | | |
Collapse
|
14
|
Hormigo A, Friedlander DR, Brittis PA, Zagzag D, Grumet M. Reduced tumorigenicity of rat glioma cells in the brain when mediated by hygromycin phosphotransferase. J Neurosurg 2001; 94:596-604. [PMID: 11302658 DOI: 10.3171/jns.2001.94.4.0596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT A variant of C6 glioma cells, C6R-G/H cells express hygromycin phosphotransferase (HPT) and appear to have reduced tumorigenicity in the embryonic brain. The goal of this study was to investigate their reduced capacity to generate tumors in the adult rat brain. METHODS Cell lines were implanted into rat brains and tumorigenesis was evaluated. After 3 weeks, all rats with C6 cells showed signs of neurological disease, whereas rats with C6R-G/H cells did not and were either killed then or allowed to survive until later. Histological studies were performed to analyze tumor size, malignancy, angiogenesis, and cell proliferation. Cells isolated from rat brain tumors were analyzed for mutation to HPT by testing their sensitivity to hygromycin. CONCLUSIONS The results indicate that HPT suppresses tumor formation. Three weeks after implantation, only 44% of animals implanted with C6R-G/H cells developed tumors, whereas all animals that received C6 glioma cells developed high-grade gliomas. The C6R-G/H cells filled a 20-fold smaller maximal cross-sectional area than the C6 cells, and exhibited less malignant characteristics, including reduced angiogenesis, mitosis, and cell proliferation. Similar results were obtained in the brain of nude rats, indicating that the immune system did not play a significant role in suppressing tumor growth. The combination of green fluorescent protein (GFP) and HPT was more effective in suppressing tumorigenesis than either plasmid by itself, indicating that the GFP may protect against inactivation of the HPT. Interestingly. hygromycin resistance was lost in tumor cells that were recovered from a group of animals in which C6R-G/H cells formed tumors, confirming the correlation of HPT with reduced tumorigenicity.
Collapse
Affiliation(s)
- A Hormigo
- Department of Pharmacology, and Kaplan Comprehensive Cancer Center, New York University Medical Center, New York, USA
| | | | | | | | | |
Collapse
|
15
|
Gadi VK, Alexander SD, Kudlow JE, Allan P, Parker WB, Sorscher EJ. In vivo sensitization of ovarian tumors to chemotherapy by expression of E. coli purine nucleoside phosphorylase in a small fraction of cells. Gene Ther 2000; 7:1738-43. [PMID: 11083495 DOI: 10.1038/sj.gt.3301286] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This report examines a major barrier to suicide gene therapy in cancer and other diseases: namely, bystander cell killing. Existing vectors for in vivo gene delivery are inefficient and often transduce or transfect less than 1% of target cells. The E. coli PNP gene brings about cellular necrosis under conditions when 1 in 100 to 1 in 1000 cells express the gene product in vitro. In vivo bystander killing at or near this magnitude has not been reported previously. In the present experiments, transfection of cells with the E. coli PNP gene controlled by a SV40 promoter resulted in 30 nmol 6-methyl purine deoxyriboside (MeP-dR) converted per milligram tumor cell extract per hour (or conversion units (CU)). This level of expression led to elimination of entire populations of tumor cells in vitro after treatment with MeP-dR. Much earlier killing was observed using a tat transactivated E. coli PNP vector (approximately seven-fold higher activity, 230 CU). In vivo effects on tumor growth were next examined. Human ovarian tumors transfected with E. coli PNP were excised 5 days after i.p. implantation from the peritoneal cavities of mice in order to determine both E. coli PNP enzymatic activity and the fraction of cells expressing the gene. PNP activity at 5 days after gene transfer was approximately 170 CU and was expressed in approximately 0.1% of the tumor cells as judged by in situ hybridization. The expression of E. coli PNP at this level produced a 30% increase in life span (P < 0.001) and 49% reduction in tumor size (P < 0.005) after MeP-dR treatment, as compared with control tumors. Our observations lead to the conclusion that pronounced bystander killing by E. coli PNP is conferred in vivo, and that vectors capable of transgene expression in as few as one in 1000 cells can produce substantial antitumor effects if expression on a per cell basis is very high.
Collapse
Affiliation(s)
- V K Gadi
- Department of Physiology, University of Alabama at Birmingham, 35294-0005, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kawamura K, Namba H, Bahar R, Miyauchi M, Maeda T, Hamada H, Sakiyama S, Tagawa M. Transduction of the human deoxycytidine kinase gene in rodent tumor cells induces in vivo growth retardation in syngeneic hosts. Cancer Lett 2000; 156:151-7. [PMID: 10880764 DOI: 10.1016/s0304-3835(00)00454-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Deoxycytidine kinase (dCK) mediates the phosphorylation of nucleoside analogues that can be used as anti-cancer agents. We examined whether susceptibility of mouse colon carcinoma (Colon 26) and rat gliosarcoma (9L) cells to 1-beta-D-arabiofuranosylcytonsine (AraC), a chemotherapeutic agent, can be increased after the tumor cells were transduced with the human dCK gene. Expression of the dCK gene in both cell lines conferred increased sensitivity in vitro to AraC. Although their proliferation rates in vitro remained the same as those of parental cells, tumor growth of the transduced cells in syngeneic host animals was unexpectedly retarded compared with that of respective parental cells. In contrast, the growth of the transduced cells was not different from that of parental cells, when they were inoculated in T cell-defective nude mice. A histological examination revealed infiltration of eosinophils into the dCK gene-transduced but not into parental Colon 26 tumor. These data suggest that a therapeutic gene, when expressed in xenogenic animals, can be a tumor antigen which is recognized by a host defense system.
Collapse
Affiliation(s)
- K Kawamura
- Division of Pathology, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, 260-8717, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Herrlinger U, Jacobs A, Quinones A, Woiciechowsky C, Sena-Esteves M, Rainov NG, Fraefel C, Breakefield XO. Helper virus-free herpes simplex virus type 1 amplicon vectors for granulocyte-macrophage colony-stimulating factor-enhanced vaccination therapy for experimental glioma. Hum Gene Ther 2000; 11:1429-38. [PMID: 10910140 DOI: 10.1089/10430340050057503] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Subcutaneous vaccination therapy with glioma cells, which are retrovirally transduced to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF), has previously proven effective in C57BL/6 mice harboring intracerebral GL261 gliomas. However, clinical ex vivo gene therapy for human gliomas would be difficult, as transgene delivery via retroviral vectors occurs only in dividing cells and ex vivo glioma cells have a low growth fraction. To circumvent this problem, a helper virus-free herpes simplex virus type 1 (HSV-1) amplicon vector was used. When primary cultures of human glioblastoma cells were infected with HSV-1 amplicon vectors at an MOI of 1, more than 90% of both dividing and nondividing cells were transduced. When cells were infected with an amplicon vector, HSVGM, bearing the GM-CSF cDNA in the presence of Polybrene, GM-CSF secretion into the medium during the first 24 hr after infection was 1026 ng/10(6) cells, whereas mock-infected cells did not secrete detectable GM-CSF. Subcutaneous vaccination of C57BL/6 mice with 5 x 10(5) irradiated HSVGM-transduced GL261 cells 7 days prior to intracerebral implantation of 10(6) wild-type GL261 cells yielded 60% long-term survivors (>80 days), similar to the 50% long-term survivors obtained by vaccination with retrovirally GM-CSF-transduced GL261 cells. In contrast, animals vaccinated with the same number of nontranduced GL261 cells or with GL261 cells infected with helper virus-free packaged HSV-1 amplicon vectors carrying no transgene showed only 10% long-term survivors. In conclusion, helper virus-free HSV-1 amplicon vectors appear to be effective for cytokine-enhanced vaccination therapy of glioma, with the advantages that both dividing and nondividing tumor cells can be infected, no viral proteins are expressed, and these vectors are safe and compatible with clinical use.
Collapse
Affiliation(s)
- U Herrlinger
- Neurology Service, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Paul DB, Barth RF, Yang W, Shen GH, Kim J, Triozzi PL. B7.1 expression by the weakly immunogenic F98 rat glioma does not enhance immunogenicity. Gene Ther 2000; 7:993-9. [PMID: 10871746 DOI: 10.1038/sj.gt.3301209] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enhanced immunogenicity has been reported following transfection of a variety of immunogenic tumors with the B7.1 co-stimulatory molecule. The purpose of the present study was to determine if transfection of a weakly immunogenic rat brain tumor, the F98 glioma, with the gene encoding B7.1 could enhance its immunogenicity. F98 cells were transfected with a plasmid containing the B7.1 gene, and stable transfectants (F98/B7.1) were obtained. Flow cytometric analysis confirmed the expression of B7.1 and MHC class I antigens on the cell surface. To investigate the effects of B7.1 expression on the tumorigenicity of the F98 glioma, Fischer rats were implanted intracerebrally with either F98 (wild-type) or F98/B7.1 transfected cells. No significant differences in survival times were noted. Mean survival times of 21.8 and 24.0 days were observed for the respective groups at a challenge dose of 103 cells. These differences in survival time were not significant. To determine if expression of B7.1 enhanced the immunogenicity of the F98 glioma, rats were vaccinated weekly for 3 weeks with 107 mitomycin C-treated F98 or F98/B7.1 cells injected subcutaneously and then challenged intracerebrally with F98 cells 1 week later. Unvaccinated animals or those that received wild-type F98 cells as a vaccine had a survival time (mean +/- s.d.) of 22.3 +/- 1.5 days following tumor challenge versus 20.0 +/- 1.7 days for rats that had been vaccinated with F98/B7.1. Although we recognize that it might be possible to design more effective vaccination regimes, nevertheless, our data indicate that transfection of the B7.1 gene into the F98 rat glioma did not enhance its immunogenicity, and that other approaches will be required.
Collapse
Affiliation(s)
- D B Paul
- Department of Pathology, The Ohio State University, Columbus 43210, USA
| | | | | | | | | | | |
Collapse
|
19
|
Barth RF, Yang W, Rotaru JH, Moeschberger ML, Boesel CP, Soloway AH, Joel DD, Nawrocky MM, Ono K, Goodman JH. Boron neutron capture therapy of brain tumors: enhanced survival and cure following blood-brain barrier disruption and intracarotid injection of sodium borocaptate and boronophenylalanine. Int J Radiat Oncol Biol Phys 2000; 47:209-18. [PMID: 10758326 DOI: 10.1016/s0360-3016(00)00421-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Boronophenylalanine (BPA) and sodium borocaptate (Na(2)B(12)H(11)SH or BSH) have been used clinically for boron neutron capture therapy (BNCT) of high-grade gliomas. These drugs appear to concentrate in tumors by different mechanisms and may target different subpopulations of glioma cells. The purpose of the present study was to determine if the efficacy of BNCT could be further improved in F98-glioma-bearing rats by administering both boron compounds together and by improving their delivery by means of intracarotid (i.c.) injection with or without blood-brain barrier disruption (BBB-D). METHODS AND MATERIALS For biodistribution studies, 10(5) F98 glioma cells were implanted stereotactically into the brains of syngeneic Fischer rats. Eleven to 13 days later animals were injected intravenously (i.v.) with BPA at doses of either 250 or 500 mg/kg body weight (b.w.) in combination with BSH at doses of either 30 or 60 mg/kg b.w. or i.c. with or without BBB-D, which was accomplished by i.c. infusion of a hyperosmotic (25%) solution of mannitol. For BNCT studies, 10(3) F98 glioma cells were implanted intracerebrally, and 14 days later animals were transported to the Brookhaven National Laboratory (BNL). They received BPA (250 mg/kg b.w.) in combination with BSH (30 mg/kg b.w. ) by i.v. or i.c. injection with or without BBB-D, and 2.5 hours later they were irradiated with a collimated beam of thermal neutrons at the BNL Medical Research Reactor. RESULTS The mean tumor boron concentration +/- standard deviation (SD) at 2.5 hours after i. c. injection of BPA (250 mg/kg b.w.) and BSH (30 mg/kg b.w.) was 56. 3 +/- 37.8 microgram/g with BBB-D compared to 20.8 +/- 3.9 microgram/g without BBB-D and 11.2 +/- 1.8 microgram/g after i.v. injection. Doubling the dose of BPA and BSH produced a twofold increase in tumor boron concentrations, but also concomitant increases in normal brain and blood levels, which could have adverse effects. For this reason, the lower boron dose was selected for BNCT studies. The median survival time was 25 days for untreated control rats, 29 days for irradiated controls, 42 days for rats that received BPA and BSH i.v., 53 days following i.c. injection, and 72 days following i.c. injection + BBB-D with subsets of long-term survivors and/or cured animals in the latter two groups. No histopathologic evidence of residual tumor was seen in the brains of cured animals. CONCLUSIONS The combination of BPA and BSH, administered i.c. with BBB-D, yielded a 25% cure rate for the heretofore incurable F98 rat glioma with minimal late radiation-induced brain damage. These results demonstrate that using a combination of boron agents and optimizing their delivery can dramatically improve the efficacy of BNCT in glioma-bearing rats.
Collapse
Affiliation(s)
- R F Barth
- Department of Pathology, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dubowchik GM, Walker MA. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol Ther 1999; 83:67-123. [PMID: 10511457 DOI: 10.1016/s0163-7258(99)00018-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review is a survey of various approaches to targeting cytotoxic anticancer drugs to tumors primarily through biomolecules expressed by cancer cells or associated vasculature and stroma. These include monoclonal antibody immunoconjugates; enzyme prodrug therapies, such as antibody-directed enzyme prodrug therapy, gene-directed enzyme prodrug therapy, and bacterial-directed enzyme prodrug therapy; and metabolism-based therapies that seek to exploit increased tumor expression of, e.g., proteases, low-density lipoprotein receptors, hormones, and adhesion molecules. Following a discussion of factors that positively and negatively affect drug delivery to solid tumors, we concentrate on a mechanistic understanding of selective drug release or generation at the tumor site.
Collapse
Affiliation(s)
- G M Dubowchik
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492-7660, USA.
| | | |
Collapse
|
21
|
Kokoris MS, Sabo P, Adman ET, Black ME. Enhancement of tumor ablation by a selected HSV-1 thymidine kinase mutant. Gene Ther 1999; 6:1415-26. [PMID: 10467366 DOI: 10.1038/sj.gt.3300966] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the advent of gene therapy, herpes simplex virus type I (HSV-1) thymidine kinase (TK) has garnered much interest as a suicide gene for cancer ablation. As a means to improve the overall efficacy of the prodrug-gene activation approach, as well as to reduce ganciclovir-mediated toxicity, a large library of mutant thymidine kinases was generated and screened for the ability to enhance in vitro cell sensitivity to the prodrugs, ganciclovir (GCV) and acyclovir (ACV). Enzyme kinetics of one thymidine kinase mutant from this library that contains six amino acid substitutions at or near the active site reveals a distinct mechanism for providing enhanced prodrug-mediated killing in mammalian cells. In in vitro rat C6 cell prodrug sensitivity assays the TK mutant (mutant 30) achieves nanomolar IC50 values with GCV and ACV, in contrast to IC50values of 30 microM and >100 microM, respectively, for wild-type TK. In a mouse xenograft tumor model, growth of mutant 30 expressing tumors is restricted by ganciclovir at a dose at least 10- fold lower than one that impedes growth of wild-type TK-expressing tumors. Furthermore, in the presence of GCV a substantial bystander effect is observable when only 20% of the tumor cells express mutant 30 whereas no restriction in tumor growth is seen in tumors bearing the wild-type TK under the same conditions. The enhanced sensitization to prodrugs conferred by mutant 30 is apparently due to a 35-fold increase in thymidine Km which results in reduced competition between prodrug and thymidine at the active site. This provides mutant 30 a substantial kinetic advantage despite very high Kms for both ganciclovir and acyclovir. Molecular modeling of the mutations within the active site suggests that a tyrosine substitution at alanine 168 (A168) alters thymidine and prodrug interactions by causing catalytically important residues to move. The use of mutant 30 in place of the wild-type TK should provide a more effective gene therapy of cancer.
Collapse
Affiliation(s)
- M S Kokoris
- Chiroscience R & D, Inc., Bothell, WA 99164-6510, USA
| | | | | | | |
Collapse
|
22
|
Howard BD, Kalthoff H, Fong TC. Ablation of tumor cells in vivo by direct injection of HSV-thymidine kinase retroviral vector and ganciclovir therapy. Ann N Y Acad Sci 1999; 880:352-65. [PMID: 10415879 DOI: 10.1111/j.1749-6632.1999.tb09538.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The introduction of therapeutic genes into proliferating tumor cells in vivo by direct intralesional injection of retroviral vectors can provide an effective and valuable approach for the treatment of a variety of solid tumor types. Efficient transduction of tumor cells in situ by direct injection was demonstrated using a retroviral vector containing the beta-galactosidase (beta-gal) gene. Ablation therapy in vivo was demonstrated using a retroviral vector containing the Herpes simplex virus thymidine kinase gene (HSV-TK) to deliver the TK gene into the murine colorectal tumor cell line CT26. Ablation of CT26 tumor cells in situ was achieved by directly injecting high-titer HSV-TK retroviral vector preparations into the site of tumor cell inoculation followed by intraperitoneal (i.p.) delivery of ganciclovir (GCV). This gene therapy strategy demonstrated a markedly lower rate of tumor progression, with several complete regressions, compared to animals in control groups. We also demonstrated that resistance to subsequent challenges with unmodified CT26 cells and an enhanced cellular immune response is associated with tumor regression in immunocompetent animals. Our results demonstrate the feasibility of direct in situ administration of HSV-TK retroviral vectors for the treatment of cancer and suggest that a cellular immune response may be elicited by this therapy.
Collapse
Affiliation(s)
- B D Howard
- Molecular Oncology Research Laboratory, Clinic for General Surgery, Christian Albrechts University, Kiel, Federal Republic of Germany.
| | | | | |
Collapse
|
23
|
Satoh K, Narumi K, Abe T, Sakai T, Kikuchi T, Tanaka M, Shimo-Oka T, Uchida M, Tezuka F, Isemura M, Nukiwa T. Diminution of 37-kDa laminin binding protein expression reduces tumour formation of murine lung cancer cells. Br J Cancer 1999; 80:1115-22. [PMID: 10376960 PMCID: PMC2362373 DOI: 10.1038/sj.bjc.6690474] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Expression of the 37-kDa laminin binding protein (37LBP/p40), a precursor of the 67-kDa laminin receptor, is well-correlated with the biological aggressiveness of cancer cells. To elucidate the direct role played by 37LBP/p40 in cancer cells, a murine lung cancer cell line T11, the 37LBP/p40 expression of which was remarkably diminished, was established by the introduction of the antisense 37LBP/p40-RNA using a retroviral vector. As a result, the population doubling time of T11 was prolonged (60 h) compared with that of P29, the non-transfected parental cell line (42 h), and TN2, a transfectant with vehicle only (40 h). In-vitro studies also showed that T11 cells adhered to immobilized laminin less firmly than P29 cells did. When 5 x 10(5) cells were subcutaneously inoculated into syngenic mice, the mean survival time of T11-recipients (77.0+/-14.8 days) was also significantly prolonged compared with that for P29 (34.8+/-5.5 days) and TN2 (36.7+/-6.1 days) recipients (P < 0.001). The electron-microscopic view of the tumour tissue revealed that T11 cells were loosely apposed and their intercellular space was markedly widened. Some of the T11 cells sporadically degenerated with the infiltration of lymphocytes and neutrophils. These results suggest that the suppressed expression of 37LBP/p40 reduces the capability of lung cancer cell proliferation in vitro and tumour formation in vivo.
Collapse
Affiliation(s)
- K Satoh
- Department of Respiratory Oncology and Molecular Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bouali-Benazzouz R, Lainé M, Vicat JM, Boisseau S, Rémy C, Fouilhé N, Thomas F, Nissou MF, Benabid AL, Berger F. Therapeutic efficacy of the thymidine kinase/ganciclovir system on large experimental gliomas: a nuclear magnetic resonance imaging study. Gene Ther 1999; 6:1030-7. [PMID: 10455405 DOI: 10.1038/sj.gt.3300921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Contradictory experimental results and human trials have questioned the clinical relevance of the HSVtk/ganciclovir system. To bypass the problem of transfection efficiency, we used a glioma cell line stably expressing the HSVtk gene, which was also fully characterized from gene to protein. We also designed a more clinically relevant experimental protocol, consisting of late GCV delivery on large tumor formations. In short-term studies, histological examination revealed a significant decrease in tumor volume in GCV-treated animals from day 1 or from day 10 after cell inoculation. We observed that late GCV delivery is as efficient as early delivery, probably because GCV can reach tumor cells more easily when neoangiogenesis occurs. In long-term experiments, the survival of treated rats bearing 15-day tumors was improved by 60% compared with C6 control animals. Surprisingly, a 30% survival rate was observed in C6TK control animals. Nuclear magnetic resonance imaging demonstrated, in all surviving animals, a complete regression of tumors without mass effect. These results clearly demonstrate that the HSVtk/GCV system remains a potent therapeutic strategy, even when tested in large tumors, in contrast with the microscopic tumor formations previously reported.
Collapse
Affiliation(s)
- R Bouali-Benazzouz
- Laboratoire de Neurobiologie Préclinique, INSERM U 318, Institut Féderatif de Recherche No. 1, CHU, Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wei MQ, Lejnieks DV, Ramesh N, Lau S, Seppen J, Osborne WR. Sustained gene expression in transplanted skin fibroblasts in rats. Gene Ther 1999; 6:840-4. [PMID: 10505109 DOI: 10.1038/sj.gt.3300878] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retrovirus-mediated gene transfer into adult skin fibroblasts has provided measurable amounts of therapeutic proteins in animal models. However, the major problem emerging from these experiments was a limited time of vector encoded gene expression once transduced cells were engrafted. We hypothesized that sustained transduced gene expression in quiescent fibroblasts in vivo might be obtained by using a fibronectin (Fn) promoter. Fibronectin plays a key role in cell adhesion, migration and wound healing and is up-regulated in quiescent fibroblasts. Retroviral vectors containing human adenosine deaminase (ADA) cDNA linked to rat fibronectin promoter (LNFnA) or viral LTR promoter (LASN) were compared for their ability to express ADA from transduced primary rat skin fibroblasts in vivo. Skin grafts formed from fibroblasts transduced with LNFnA showed strong human ADA enzyme activity from 1 week to 3 months. In contrast, skin grafts containing LASN-transduced fibroblasts tested positive for human ADA for weeks 1 and 2, were faintly positive at week 3 and showed no human ADA expression at 1, 2 and 3 months. Thus, a fibronectin promoter provided sustained transduced gene expression at high levels for at least 3 months in transplanted rat skin fibroblasts, perhaps permitting the targeting of this tissue for human gene therapy.
Collapse
Affiliation(s)
- M Q Wei
- Department of Pediatrics, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
26
|
Farr-Jones MA, Parney IF, Petruk KC. Improved technique for establishing short term human brain tumor cultures. J Neurooncol 1999; 43:1-10. [PMID: 10448865 DOI: 10.1023/a:1006115608103] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Culturing human central nervous system tumors has been difficult compared to other neoplasms. We report improved success rates for establishing short term human brain tumor cultures using a modified tissue processing technique. Eighty-seven brain tumor specimens (56 glioblastomas, 8 mid grade astrocytomas, 8 oligodendrogliomas, 15 other) were obtained from June 1988 to March 1997. The first twenty-three samples were processed by dissection, partial enzyme dissociation, and filtration through a tissue culture sieve. Subsequent samples were processed identically except tumor cells were centrifuged on a density gradient prior to plating. Successful cultures were defined as those surviving greater than three passages in tissue culture and growing to sufficient numbers (>10(6) cells) to allow freezing. Success rate was 42% (10/23) using standard processing methods and 86% (55/64) with the addition of density gradient centrifugation. Glial fibrillary acidic protein (GFAP) and vimentin staining, karyotypes, and growth curves were obtained for representative glioma cultures. All cultures tested were positive for vimentin (29/29) while 62% (18/29) were positive for GFAP. Of four cultures karyotyped (two glioblastomas, two oligodendrogliomas), all but one oligodendroglioma culture exhibited clonal cytogenetic abnormalities. These immunohistochemical and karyotypic results are consistent with the malignant glial origin of these cells. Of note, low passage human glioma cultures grew slower and exhibited more contact inhibition than immortalized human glioblastoma cell lines. Nevertheless, this simple method for establishing short term human brain tumor cultures should aid in further developing human brain tumor pre-clinical models as well as enhancing clinical applications dependent on in vitro human brain tumor cell growth adjust.
Collapse
Affiliation(s)
- M A Farr-Jones
- Division of Neurosurgery, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
27
|
Saini M, Bellinzona M, Meyer F, Cali G, Samii M. Morphometrical characterization of two glioma models in the brain of immunocompetent and immunodeficient rats. J Neurooncol 1999; 42:59-67. [PMID: 10360479 DOI: 10.1023/a:1006128825766] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although several glioma models exist, systematic morphometrical studies on such experimental tumors are lacking. The purpose of this study was the quantitative assessment of how rat strains, cell lines, injection techniques and location affect tumors reproducibility and histopathological features. Glioma cells were implanted in 3 brain locations, with different injection techniques (free hand, stereotactic, water-tight device), variable volumes, cell concentrations and infusion rates. Tumors were developed from 2 rat glioma cell lines (9L and C6) in immunocompetent (Wistar and Fischer 344) and immunodeficient rats (New Zealand). Animals underwent daily neurological examination. At the scheduled time the tumors were macro and microscopically evaluated and a quantitative morphometrical analysis was performed. C6 gliomas appeared very infiltrative and irregularly shaped; 9L gliomas showed, by using the same injection technique, a grossly regular shape. Margins at the tumor-brain interface were macroscopically demarcated in the immunocompetent rats. In the nude rats, 9L tumors appeared microscopically more infiltrative, although regularly shaped, with a closer morphological resemblance to human gliomas. The implantation in the frontal area, anterior to the nucleus caudatus (3 mm anterior the coronal suture) gave reproducible tumor shape and size, no hydrocephalus and no early neurological deterioration. The use of a stereotactic technique or of a water-tight device, small volume (< 10 microl) of cell suspension, low infusion rate were useful to reduce morbidity and to improve data reproducibility. No difference in morbidity and mortality were observed in immunocompetent and immunodeficient rats. The 9L glioma model with stereotactic implantation constitutes a good option for reliable morphometrical evaluation of tumor growth. We propose a location for tumor implantation anterior to the nucleus caudatus. This produced the longest symptom-free survival.
Collapse
Affiliation(s)
- M Saini
- Center for Experimental Neurooncology, Neurosurgical Clinic, Nordstadt Hospital, Hannover, Germany.
| | | | | | | | | |
Collapse
|
28
|
Thymidine Kinases. Gene Ther 1999. [DOI: 10.1007/978-3-0348-7011-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Sasaki M, Plate KH. Gene therapy of malignant glioma: recent advances in experimental and clinical studies. Ann Oncol 1998; 9:1155-66. [PMID: 9862044 DOI: 10.1023/a:1008488709359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent advances in molecular tumor biology and gene technology have provided the possibility to treat patients with malignant brain tumors by altering gene expression in tumor cells. Tumor development and progression involves alterations in a wide spectrum of genes, therefore a variety of gene therapy approaches for malignant gliomas have been proposed. In this review article, we discuss some principles of current gene therapeutic strategies that are under investigation in laboratories and in clinics. In addition, some general issues that remain to be resolved for clinical application of gene therapy in patients with malignant gliomas will be addressed.
Collapse
Affiliation(s)
- M Sasaki
- Department of Neuropathology, Freiburg University Medical School, Germany
| | | |
Collapse
|
30
|
Abstract
To approach the goal of consistent long-term erythropoietin (Epo) expression in vivo, we developed an implantation procedure in which transduced autologous vascular smooth muscle was introduced into rats in a chamber created from a polytetrafluoroethylene (PTFE) ring placed under the serosa of the stomach. The implant became vascularized and permitted the long-term survival of smooth muscle cells expressing Epo. Hematocrits of treated animals increased rapidly and monitored over 12 months gave a mean value of 56.0 ± 4.0% (P < .001; n = 9), increased from a presurgery mean of 42.3 ± 1.6%. Hemoglobin levels rose from a presurgery mean of 15.2 ± 0.4 g/dL and for 12 months were significantly elevated with a mean value of 19.5 ± 1.3 g/dL (P < .001; n = 9). The hematocrit and hemoglobin levels of control animals receiving human adenosine deaminase (ADA)–expressing cells were not significantly different from baseline (P > .05; n = 5). In response to tissue oxygenation, kidney, and (to a lesser extent) liver are specific organs that synthesize Epo. Treated animals showed downregulation of endogenous Epo mRNA in kidney over a 12-month period. The PTFE implant provides sustained gene delivery, is safe, and is minimally invasive. It allows easy engraftment of transduced cells and may be applied generally to the systemic delivery of therapeutic proteins such as hormones and clotting factors.© 1998 by The American Society of Hematology.
Collapse
|
31
|
Abstract
AbstractTo approach the goal of consistent long-term erythropoietin (Epo) expression in vivo, we developed an implantation procedure in which transduced autologous vascular smooth muscle was introduced into rats in a chamber created from a polytetrafluoroethylene (PTFE) ring placed under the serosa of the stomach. The implant became vascularized and permitted the long-term survival of smooth muscle cells expressing Epo. Hematocrits of treated animals increased rapidly and monitored over 12 months gave a mean value of 56.0 ± 4.0% (P < .001; n = 9), increased from a presurgery mean of 42.3 ± 1.6%. Hemoglobin levels rose from a presurgery mean of 15.2 ± 0.4 g/dL and for 12 months were significantly elevated with a mean value of 19.5 ± 1.3 g/dL (P < .001; n = 9). The hematocrit and hemoglobin levels of control animals receiving human adenosine deaminase (ADA)–expressing cells were not significantly different from baseline (P > .05; n = 5). In response to tissue oxygenation, kidney, and (to a lesser extent) liver are specific organs that synthesize Epo. Treated animals showed downregulation of endogenous Epo mRNA in kidney over a 12-month period. The PTFE implant provides sustained gene delivery, is safe, and is minimally invasive. It allows easy engraftment of transduced cells and may be applied generally to the systemic delivery of therapeutic proteins such as hormones and clotting factors.© 1998 by The American Society of Hematology.
Collapse
|
32
|
Abstract
Gene therapy of neoplastic meningosis is a promising new approach that relies on introduction of 'suicide' genes into cancer cells. The most commonly used gene has been the herpes virus thymidine kinase gene (HSV-tk) which has been delivered to cancer cells via retroviral or adenoviral vectors. A bystander cytocidal effect to non-transduced tumor cells has been documented and is dependent upon intercellular communication via gap junctions. A variety of gene therapy approaches using the HSV-tk system have been used in experimental models of neoplastic meningosis with promising results. Optimizing vector design and bystander cytotoxicity is a prerequisite for successful gene therapy in patients with neoplastic meningosis.
Collapse
Affiliation(s)
- F D Vrionis
- Department of Neurosurgery, Tufts University School of Medicine and New England Medical Center, Boston, Massachusetts 02111, USA
| |
Collapse
|
33
|
Nanni P, De Giovanni C, Nicoletti G, Landuzzi L, Rossi I, Frabetti F, Giovarelli M, Forni G, Cavallo F, Di Carlo E, Musiani P, Lollini PL. The immune response elicited by mammary adenocarcinoma cells transduced with interferon-gamma and cytosine deaminase genes cures lung metastases by parental cells. Hum Gene Ther 1998; 9:217-24. [PMID: 9472781 DOI: 10.1089/hum.1998.9.2-217] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The parental cells of the TSA murine mammary adenocarcinoma (TSA-pc) were transfected with both the interferon-gamma (IFN-y) gene and the cytosine deaminase (CD) suicide gene to obtain a therapeutic vaccine active against TSA-pc lung metastases. Even in the absence of treatment with the prodrug 5-fluorocytosine (5-FC), the local growth of double transfectants (CD-y clones) was inhibited by a marked recruitment of granulocytes and macrophages. In mice harboring TSA-pc micrometastases, therapeutic vaccination with either IFN-gamma or CD single transfectants reduced the number of lung nodules, whereas CD-gamma double transfectants abrogated metastasis growth in up to 80% of mice. Treatment of mice with 5-FC did not alter the curative efficacy of CD-gamma double-transfectant cells. By contrast, in mice vaccinated with CD single-transfectant cells, 5-FC treatment caused a significant loss of their curative activity. Host T cells played an active role in the cure of lung metastases, because vaccination of nude mice with CD-gamma cells was uneffective.
Collapse
Affiliation(s)
- P Nanni
- Institute for Cancer Research and Centro Interdipartimentale di Ricerche sul Cancro G. Prodi, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Barth RF. Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol 1998; 36:91-102. [PMID: 9525831 DOI: 10.1023/a:1005805203044] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rat brain tumor models have been widely used in experimental neuro-oncology for almost three decades. The present review, which will be selective rather than comprehensive, will focus entirely on seven rat brain tumor models and their utility in evaluating the efficacy of various therapeutic modalities. Although no currently available animal brain tumor model exactly simulates human high grade brain tumors, the rat models that are currently available have provided a wealth of information on in vitro and in vivo biochemical and biological properties of brain tumors and their in vivo responses to various therapeutic modalities. Ideally, valid brain tumor models should be derived from glial cells, grow in vitro and in vivo with predictable and reproducible growth patterns that simulate human gliomas, be weakly or non-immunogenic, and their response to therapy, or lack thereof, should resemble human brain tumors. The following tumors will be discussed. The 9L gliosarcoma, which was chemically induced in an inbred Fischer rat, has been one of the most widely used of all rat brain tumor models and has provided much useful information relating to brain tumor biology and therapy. The T9 glioma, although generally unrecognized, was and probably still is the same as the 9L. Both of these tumors can be immunogenic under the appropriate circumstances, and this must be taken into consideration when using either of them for studies of therapeutic efficacy, especially if survival is used as an endpoint. The C6 glioma, which was chemically induced in an outbred Wistar rat, has been extensively used for a variety of studies, but is not syngeneic to any inbred strain. Its potential to evoke an alloimmune response is a serious limitation, if it is being used in survival studies. The F98 and RG2 (D74) gliomas were both chemically induced tumors that appear to be either weakly or non-immunogenic. These tumors have been refractory to a variety of therapeutic modalities and their invasive pattern of growth and uniform lethality following an innoculum of as few as 10 tumor cells make them particularly attractive models to test new therapeutic modalities. The Avian Sarcoma Virus induced tumors and a continuous cell line derived from one of them, designated RT-2, have been useful for studies in which de novo tumor induction is an important requirement. These tumors, however, are immunogenic and this may limit their usefulness for survival studies. Finally, a new chemically induced tumor recently has been described, the CNS-1, and it appears to have a number of properties that should make it useful in experimental neuro-oncology. It is essential to recognize, however, the limitations of each of the models that have been described, and depending upon the nature of the study to be conducted, it is important that the appropriate model be selected.
Collapse
Affiliation(s)
- R F Barth
- Department of Pathology, The Ohio State University, Columbus 43210, USA.
| |
Collapse
|
35
|
Niculescu-Duvaz I, Spooner R, Marais R, Springer CJ. Gene-directed enzyme prodrug therapy. Bioconjug Chem 1998; 9:4-22. [PMID: 9460542 DOI: 10.1021/bc970116t] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I Niculescu-Duvaz
- CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | |
Collapse
|
36
|
Ono Y, Ikeda K, Wei MX, Harsh GR, Tamiya T, Chiocca EA. Regression of experimental brain tumors with 6-thioxanthine and Escherichia coli gpt gene therapy. Hum Gene Ther 1997; 8:2043-55. [PMID: 9414253 DOI: 10.1089/hum.1997.8.17-2043] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The identification of transgenes with antitumor activity is critical to the development of gene therapy of cancer. Retrovirus-mediated transfer of the Escherichia coli gpt gene into rat C6 glioma cells without subsequent selection still inhibited the proliferation of this mixed polyclonal population upon addition of the prodrug, 6-thioxanthine, with an ID50 of 4.1 microM, whereas parental C6 cells were not affected at a concentration of 500 microM. In a time-course assay, effects of the prodrug on the mixed polyclonal cell proliferation required at least 10 days of exposure. In mixed co-cultures, a bystander effect was not present over the first 4 days of prodrug exposure, but required trypsinization of the co-cultures and replating at lower densities. This "modified" bystander assay thus revealed a 50% decrease in C6 cell proliferation, even when the initial ratio of gpt-expressing to parental C6 cells was as low as 1:19. In a nude mouse model of subcutaneous tumors, co-grafts of C6 glioma and gpt-retrovirus producer cells displayed retarded growth upon exposure to 6-thioxanthine (6-TX). In a nude mouse model of intracerebral tumors, grafting of the gpt-retrovirus producer cells leads to an 80% reduction in intracerebral tumor volumes after 6-TX treatment. This reduction results in a 28% increase in the mean time of survival of animals that harbor intracerebral tumors (p < 0.0005). These antitumor effects indicate that the gpt/6-TX enzyme/prodrug pair is a promising alternative to the thymidine kinase gene and ganciclovir combination in the gene therapy of cancer.
Collapse
Affiliation(s)
- Y Ono
- Department of Surgery & Molecular Neurooncology Laboratory, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | | | |
Collapse
|
37
|
Misawa T, Chiang MH, Pandit L, Gordon EM, Anderson WF, Parekh D. Development of systemic immunologic responses against hepatic metastases during gene therapy for peritoneal carcinomatosis with retroviral HS-tk and ganciclovir. J Gastrointest Surg 1997; 1:527-33. [PMID: 9834388 DOI: 10.1016/s1091-255x(97)80069-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gene therapy with retroviral mediated gene transfer of the herpes simplex thymidine kinase (HS-tk) gene into a tumor mass confers sensitivity of the tumor cells to ganciclovir (GCV). Tumor-specific immunologic responses may develop following treatment of the primary tumor with retroviral HS-tk and GCV. In the present study we assessed whether GCV treatment of HS-tk transduced colon cancer (TK+) implanted in the peritoneal cavity induced a systemic antitumor response that would inhibit growth of a second wild-type (TK-) tumor implanted in the liver. DHDK12 rat colon cancer cells were transduced in vitro with the retroviral HS-tk vector and established as a permanent cell line (TK+ cells). TK+ or TK- DHDK12 cells (6x10(6) cells) were injected intraperitoneally on day 0 into BD-IX rats. On day 10, TK- cells (3x10(6) cells) were injected into the liver in all the groups. The animals were then treated with GCV (150 mg/kg) for 13 days. TK+ peritoneal tumors underwent significant regression during therapy with GCV (0.05+/-0.004 g; n=7) compared to wild-type (TK-) tumors (2.2+/-0.7g; n=6) (P<0.05). The volume of TK- tumors in the liver was significantly lower in GCV-treated rats with TK+ peritoneal tumors (12.5+/-8.3 mm3) compared to rats with TK- peritoneal tumors (96.7+/-18.1 mm3) (P<0.05). Histology of the liver tumors in the TK+ groups showed a dense monocytic infiltrate with fibrosis and only occasional viable tumor cells. Gene therapy with retroviral HS-tk vectors may provide a novel approach to treatment of gastrointestinal cancer by both direct cytotoxicity and an indirect mechanism that may include enhanced immuno logic responses against disseminated disease.
Collapse
Affiliation(s)
- T Misawa
- Department of Surgery, University of Southern California School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
38
|
Parker WB, King SA, Allan PW, Bennett LL, Secrist JA, Montgomery JA, Gilbert KS, Waud WR, Wells AH, Gillespie GY, Sorscher EJ. In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase. Hum Gene Ther 1997; 8:1637-44. [PMID: 9322865 DOI: 10.1089/hum.1997.8.14-1637] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have developed a new strategy for the gene therapy of cancer based on the activation of purine nucleoside analogs by transduced E. coli purine nucleoside phosphorylase (PNP, E.C. 2.4.2.1). The approach is designed to generate antimetabolites intracellularly that would be too toxic for systemic administration. To determine whether this strategy could be used to kill tumor cells without host toxicity, nude mice bearing human malignant D54MG glioma tumors expressing E. coli PNP (D54-PNP) were treated with either 6-methylpurine-2'-deoxyriboside (MeP-dR) or arabinofuranosyl-2-fluoroadenine monophosphate (F-araAMP, fludarabine, a precursor of F-araA). Both prodrugs exhibited significant antitumor activity against established D54-PNP tumors at doses that produced no discernible systemic toxicity. Significantly, MeP-dR was curative against this slow growing solid tumor after only 3 doses. The antitumor effects showed a dose dependence on both the amount of prodrug given and the level of E. coli PNP expression within tumor xenografts. These results indicated that a strategy using E. coli PNP to create highly toxic, membrane permeant compounds that kill both replicating and nonreplicating cells is feasible in vivo, further supporting development of this cancer gene therapy approach.
Collapse
Affiliation(s)
- W B Parker
- Southern Research Institute, Birmingham, AL 35205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- O Isacson
- Neuroregeneration Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02178, USA
| | | |
Collapse
|
40
|
Benedetti S, Dimeco F, Pollo B, Cirenei N, Colombo BM, Bruzzone MG, Cattaneo E, Vescovi A, Didonato S, Colombo MP, Finocchiaro G. Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene. Hum Gene Ther 1997; 8:1345-53. [PMID: 9295129 DOI: 10.1089/hum.1997.8.11-1345] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The growth of U-87 or C6 gliomas co-implanted in nude mice with retroviral producer cells (VPC) expressing the herpes simplex virus-thymidine kinase (HSV-tk) gene is only partially impaired by treatment with ganciclovir (GCV). The effect of GCV is even less evident when C6 and VPC are co-implanted into the rat brain. Furthermore, tumors from C6 cells carrying the HSV-tk gene are not eradicated by GCV, although they remain sensitive to GCV when replated in vitro. These limits of the HSV-tk/GCV system in glioma gene therapy may be due to insufficient gene transfer and/or insufficient delivery of GCV to glioma cells. Combination of HSV-tk and one or more cytokines may improve the antitumor efficacy. Among cytokines, interleukin-4 (IL-4) has already been shown to be active against gliomas. In nude mice, GCV treatment inhibited tumor growth more effectively after co-injection of C6 cells with a mixture of VPC transducing IL-4 and HSV-tk genes than after co-injection with either IL-4 or HSV-tk VPC only. In immunocompetent Sprague-Dawley rats, co-injection of IL-4 VPC and C6 cells was also effective in inhibiting the growth of C6 brain tumors, 38% of the animals surviving for at least 2 months. Furthermore, increased and prolonged antitumor efficacy was obtained by transducing both IL-4 and HSV-tk genes.
Collapse
Affiliation(s)
- S Benedetti
- Istituto Nazionale Neurologico C. Besta, Department of Biochemistry and Genetics, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yu JS, Burwick JA, Dranoff G, Breakefield XO. Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 1997; 8:1065-72. [PMID: 9189764 DOI: 10.1089/hum.1997.8.9-1065] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have developed an ex vivo gene therapy paradigm for the treatment of brain tumors using granulocyte-macrophage colony-stimulating factor (GM-CSF). Murine B16 melanoma cells were infected with MFG recombinant retrovirus containing the mouse GM-CSF cDNA. Subcutaneous vaccination of syngeneic mice with irradiated GM-CSF-secreting B16 melanoma cells was capable of completely protecting animals against subsequent intracranial B16 tumor inoculation, with up to 5 x 10(3) cells. Histologic evaluation revealed the presence of neutrophils, eosinophils, and lymphocytes, including CD4+, CD8+, and CD45R+ cells, in the intracerebral inoculation site, peaking 4 days after intracranial inoculation. In contrast, nonvaccinated animals or animals vaccinated with irradiated, nontransduced B16 cells succumbed to intracranial tumor within 3 weeks after inoculation. Treatment of established intracranial B16 melanoma tumors with subcutaneous injection of irradiated GM-CSF-secreting B16 cells significantly delayed death, as compared to injection of irradiated nontransduced B16 cells or no treatment. In addition, treatment of established intracerebral GL261 gliomas by vaccination with irradiated GM-CSF-secreting B16 cells mixed with irradiated, transduced, or nontransduced GL261 cells also extended survival. These B16/GL261 co-vaccinations also improved outcome and, in some cases, induced immunological memory that protected survivors from subsequent intracranial challenge with GL261 tumor cells. These findings indicate that peripheral vaccination with irradiated tumor cells in the presence of GM-CSF-producing cells can initiate a potent antitumor immune response against intracranial neoplasms.
Collapse
Affiliation(s)
- J S Yu
- Neurosurgery Service, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND The suicide gene and prodrug, herpes simplex thymidine kinase (HStk) and ganciclovir (GCV), are now in clinical trials for recurrent malignancies. METHODS We evaluated in vitro and in vivo efficacy of HStk gene transfer and GCV treatment of colonic adenocarcinoma in a syngeneic murine model. RESULTS In vitro analysis demonstrated that CT-26 adenocarcinoma cells transduced with LTKOSN.2 retroviral vector inhibited the proliferation of wild-type CT-26 (nontransduced) cells after GCV exposure. Cooperative killing with HStk gene therapy was shown in vivo, mixtures of HStk CT-26 transduced cells (CT-26 TK), and nontransduced (CT-26 NV) cells and tumors containing only 9% CT-26 TK cells demonstrated complete regression after GCV (100 mg/kg). CONCLUSIONS This in vitro and in vivo demonstration suggests that metabolic cooperation permits destruction of tumors even when gene transfer is effective only to a relatively small portion of the tumor. These important results suggest new avenues can be developed for the treatment of this lethal malignancy.
Collapse
Affiliation(s)
- C J Link
- Human Gene Therapy Research Institute, Central Iowa Health Systems, Des Moines, USA. hgtriii.netins.net
| | | | | | | |
Collapse
|
43
|
Zhang L, Wikenheiser KA, Whitsett JA. Limitations of retrovirus-mediated HSV-tk gene transfer to pulmonary adenocarcinoma cells in vitro and in vivo. Hum Gene Ther 1997; 8:563-74. [PMID: 9095408 DOI: 10.1089/hum.1997.8.5-563] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The utility of conferring chemosensitivity to pulmonary adenocarcinoma tumor cells by retrovirus-mediated transfer of herpes simplex virus thymidine kinase (HSV-tk) gene was assessed in vitro and in vivo. Retrovirus-mediated HSV-tk gene transfer to human adenocarcinoma cells (A549 cells) or mouse lung epithelial carcinoma cells (MLE cells) resulted in expression of HSV-tk mRNA and sensitivity to ganciclovir (GCV) in vitro. In nude mice, tumors produced from HSV-tk transduced MLE-7 cells regressed after 14 days of GCV treatment. However, in residual tumors, the size of the HSV-tk mRNA was altered and the sensitivity to further GCV treatment decreased. Tumor regression following GCV treatment was not observed in nude mice bearing HSV-tk-infected adenocarcinoma cells, MLE-15 and A549. Intratumor injection of HSV-tk producer cells failed to transfer HSV-tk gene to the A549 tumor cells in vivo. The lack of a 'bystander' effect, failure to achieve tumor regression, and loss of GCV sensitivity in some tumors in vivo may limit the utility of HSV-tk for therapy of pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- L Zhang
- Children's Hospital Medical Center, Division of Pulmonary Biology, TCHRF, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
44
|
Whittle IR, Kimber WL, Li M, Bell HS, Ironside JW. Glioma cells transduced with selection transgenes may not form gliomas in vivo and can also inhibit glioma formation by admixed wild glioma cell lines. ACTA NEUROCHIRURGICA. SUPPLEMENT 1997; 68:139-43. [PMID: 9233430 DOI: 10.1007/978-3-7091-6513-3_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Following in vitro lipofection transfection of the rat glioma cell line A15A5 with the plasmid transgene CMV/HyTK, which confirms hygromycin resistance and ganciclovir sensitivity, a series of experiments was planned in which the "bystander" phenomenon would be evaluated using the rodent implantation glioma model. However examination of the brain of rodents in which the A15A5HyTK cells were implanted showed no evidence of glioma growth. Furthermore, rodents having intracerebral implantation of (i) wild A15A5 and A15A5HyTK cells in a 50/50 mix, (ii) wild A15A5 and A15A5HyTK cells in a 90/10 mixture and (iii) wild C6 and A15A5HyTK cells in a 50/50 mix all failed to grow macroscopic tumours by 15-17 days irrespective of whether the animals had been administered ganciclovir (GCV) in the week before sacrifice. Neuropathological and immunocytochemical analysis of the implantation sites showed no difference between the GCV and saline treated groups of animals for any implantation cell mix. These observations confirm previous results that suggest transduction of malignant rodent glioma cell lines with a variety of selection, oncogenic and marker genes significantly impairs their in vivo tumorigenic potential compared to the wild type cell lines. This study also demonstrates that even without GCV treatment the transduced cells inhibit, by an unknown mechanism(s), the tumorigenicity of other non transfected malignant cells. The implications of this study for gene therapy of human malignant glioma are discussed.
Collapse
Affiliation(s)
- I R Whittle
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|
45
|
Abstract
Gene therapy as an anti-tumor strategy is becoming a powerful tool for cytokine delivery to inhibit the growth of many tumors. Several delivery systems are being utilized and designed for the expression of specific genes to achieve a therapeutic result. Liposomes, retroviral vectors, and adenoviral vectors have all been used and eventual clinical application may depend on the type of tumor, the location, the specific gene carried, and the patient's health status. Novel expression vectors may eventually achieve tissue-specific targeting and low immuno-reactivity. Inactivation of mutated oncogenes, such as ras, or re-expression of inactive suppressor genes, such as p53 have been used as strategies for anti-tumor therapy. Additionally, exogenious genes, such as viral thymidine kinase that metabolize chemotherapeutic agents to achieve local cytotoxicity have also been employed. Neuro-endocrine tumors are targets of these gentic strategies since they are often difficult to treat by conventional methods because of their location (brain tumors) or because they have spread from the primary tumor (melanoma). Further advances in the design of these vectors may achieve safe targeting of a variety of malignant tumors.
Collapse
Affiliation(s)
- C Cirielli
- Laboratorio di Patologia Vascolare, IDI, Rome, Italy
| | | | | |
Collapse
|
46
|
Vrionis FD, Wu JK, Qi P, Cano WG, Cherington V. Preservation of the bystander cytocidal effect of irradiated herpes simplex virus thymidine kinase (HSV-tk) modified tumor cells. J Neurooncol 1996; 30:225-36. [PMID: 8943097 DOI: 10.1007/bf00177273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro and animal experiments have demonstrated the potential efficacy of using the bystander effect alone in the treatment of brain tumors. A known problem in some in vitro and in vivo experiments is that a fraction of cells engineered to express the herpes simplex virus thymidine kinase (HSV-tk) gene survive ganciclovir (GCV) treatment and undergo cell division. To prevent the recurrent growth of HSV-tk+ cells in the presence of GCV we examined the potential use of lethal or sublethal irradiation of Walker 256 carcinosarcoma cells selected for expression of the HSV-tk gene (Walker-tk+). Western blot analysis of Walter-tk+ cells showed similar levels of HSV-tk protein expression at 0, 1, 3, 6 and 9 days after lethal gamma-irradiation. In vitro, there was no difference in the bystander effect exerted by non-irradiated, sublethally irradiated or lethally irradiated Walker-tk+ cells on wild-type Walker cells in the presence of GCV. In vivo experiments demonstrated long-term survival (100 days) in rats implanted intrathecally with sublethally or lethally irradiated Walker-tk+ cells with GCV treatments. Intrathecal implantation of irradiated Walker-tk+ cells either pre-mixed with Walker cells or used in in situ treatment of established Walker tumors resulted in prolonged animal survival compared to controls (p < 0.05). These experiments suggest that the bystander tumoricidal effect is preserved despite gamma-irradiation of the HSV-tk modified tumor cells and that irradiation could be an effective method to prevent long-term resistance to GCV in HSV-tk+ tumor cells.
Collapse
Affiliation(s)
- F D Vrionis
- Department of Neurosurgery, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
47
|
Stegman LD, Ben-Yoseph O, Freyer JP, Ross BD. In vivo 31P MRS evaluation of ganciclovir toxicity in C6 gliomas stably expressing the herpes simplex thymidine kinase gene. NMR IN BIOMEDICINE 1996; 9:364-368. [PMID: 9176891 DOI: 10.1002/(sici)1099-1492(199612)9:8<364::aid-nbm436>3.0.co;2-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phosphorus MRS was evaluated as a monitor of tumour therapeutic response to the herpes simplex virus thymidine kinase suicide gene therapy paradigm. In vivo 31P spectra were obtained from subcutaneous rat C6 gliomas constitutively expressing the HSVtk gene post treatment with ganciclovir (GCV, 15 mg/kg i.p., twice-daily). Significant regression (p < 0.1) of tumour volume was observed 10 days after beginning GCV administration. However, no changes in tumour pH or energy metabolites from pre-treatment values were observed. High-resolution 31P spectra of tumour extracts revealed a statistically significant reduction in the phosphocholine to phosphoethanolamine ratio six days post-GCV administration. These results indicate that the HSVtk/GCV-induced killing of tumours is not associated with corresponding changes in 31P MRS-observable energy metabolites and pH. The observed reduction in the PE/PC ratio may provide a non-invasive in vivo indicator of therapeutic efficacy.
Collapse
Affiliation(s)
- L D Stegman
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
48
|
Chakrabarti BK, Maitra RK, Ma XZ, Kestler HW. A candidate live inactivatable attenuated vaccine for AIDS. Proc Natl Acad Sci U S A 1996; 93:9810-5. [PMID: 8790413 PMCID: PMC38511 DOI: 10.1073/pnas.93.18.9810] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The recent discovery of long term AIDS nonprogressors who harbor nef-attenuated HIV suggests that a naturally occurring live vaccine for AIDS may already exist. Animal models have shown that a live vaccine for AIDS, attenuated in nef, is the best candidate vaccine. There are considerable risks, real and perceived, with the use of live HIV vaccines. We have introduced a conditional lethal genetic element into HIV-1 and simian immunodeficiency virus (SIV) molecular clones deleted in nef. The antiviral strategy we employed targets both virus replication and the survival of the infected cell. The suicide gene, herpes simplex virus thymidine kinase (tk), was expressed and maintained in HIV over long periods of time. Herpes simplex virus tk confers sensitivity to the antiviral activity of acyclic nucleosides such as ganciclovir (GCV). HIV-tk and SIV-tk replication were sensitive to GCV at subtoxic concentrations, and virus-infected cells were eliminated from tumor cell lines as well as primary cell cultures. We found the HIV-tk virus to be remarkably stable even after being cultured in media containing a low concentration of GCV and then challenged with the higher dose and that while GCV resistant escape mutants did arise, a significant fraction of the virus remained sensitive to GCV.
Collapse
Affiliation(s)
- B K Chakrabarti
- Department of Molecular Biology, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | |
Collapse
|
49
|
Abstract
A new era has been reached in cancer therapeutics in which the techniques of molecular biology can be applied to human brain tumors. Ongoing studies are determining the best vector system with which to deliver genes to cells. Choices include the retroviral, adenoviral, and Herpes simplex virus vector systems. The optimum mode of delivering the vector specifically to the tumor is being explored through intravenous, intraarterial, and direct intra-tumoral injections. Finally, efforts to achieve adequate vector expression throughout an entire tumor are being realized with our greater understanding of vector design and gene expression. The PNET may be amenable in the future to gene therapy strategies because of its rapid proliferative potential, its tendency to spread within the CSF pathways, and its high recurrence rate. In this regard, a number of novel strategies for treating PNET are described herein.
Collapse
Affiliation(s)
- C Raffel
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
50
|
Moolten FL, Vonderhaar BK, Mroz PJ. Transduction of the herpes thymidine kinase gene into premalignant murine mammary epithelial cells renders subsequent breast cancers responsive to ganciclovir therapy. Hum Gene Ther 1996; 7:1197-204. [PMID: 8793544 DOI: 10.1089/hum.1996.7.10-1197] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Drug sensitivity ("suicide") genes can sensitize cancer cells to chemotherapy, but therapeutic use of these genes is limited by difficulties in delivering them to all areas of established cancers. An alternative strategy entails preemptive introduction of suicide genes into tissues at risk for cancer, thereby imparting drug sensitivity as a clonal property to cancers arising from sensitized cells. To test the preemptive approach, a retroviral vector was used to transduce the herpes thymidine kinase gene into the TM4 line of preneoplastic murine mammary epithelial cells to yield a clonal subline sensitized to the guanosine analog ganciclovir. Ganciclovir therapy of tumors that arose from the transduced cells retarded tumor growth and induced durable regressions in 7/20 mice; ganciclovir was ineffective against control tumors. The results imply the possibility of reducing cancer lethality by actions taken before cancers arise.
Collapse
Affiliation(s)
- F L Moolten
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA
| | | | | |
Collapse
|