1
|
Li S, Feng X. Dynamic quantitative monitoring of cerebrospinal fluid monoamine neurotransmitter markers during the modeling process of chronic stress-induced depression in monkeys (Macaca mulatta). Brain Behav 2024; 14:e3636. [PMID: 39169445 PMCID: PMC11338840 DOI: 10.1002/brb3.3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Depression is known as the "mental cold" and is also considered a major cause of disability worldwide. It is estimated that over 300 million people worldwide suffer from severe depression, equivalent to 4.4% of the world's population. The monoamine hypothesis of depression predicts the underlying pathophysiological mechanisms of depression, but in-depth research has failed to find convincing evidence. METHOD In this study, we will dynamically and strictly quantitatively monitor the concentration changes of monoamine transmitters in the cerebrospinal fluid (CSF) of macaques, based on our previous work. In the experiment, timed and quantitative collection of CSF samples from macaques was performed and the concentration of monoamine transmitters was determined. RESULT The results showed that after 2 months of chronic stress, the concentrations of high vanillin acid (HVA) and 3,4-dihydroxy-phenylacetic acid were significantly higher in the maternal separation (MS) group, whereas there was no significant difference in dopamine and 5-hydroxyindoleacetic acid. CONCLUSION This study is the first to observe the long-term dynamic relationship between early adversity, chronic stress, adolescent depression, and CSF monoamine concentrations. The research suggests that MS and chronic stress play an undeniable role in the pathogenesis of depression and that concentrations of HVA and dihydroxyphenylacetic acid are likely to serve as early markers of depressive-like symptoms in macaques.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physiology, Faculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
| | - Xiaoli Feng
- Department of Physiology, Faculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
2
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
3
|
van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort TAMJ, Booij J, de Haan L, Selten JP, Giessen EVD. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol 2023; 68:57-77. [PMID: 36640734 DOI: 10.1016/j.euroneuro.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Dysregulation of striatal dopamine is considered to be an important driver of pathophysiological processes in schizophrenia. Despite being one of the main origins of dopaminergic input to the striatum, the (dys)functioning of the substantia nigra (SN) has been relatively understudied in schizophrenia. Hence, this paper aims to review different molecular aspects of nigral functioning in patients with schizophrenia compared to healthy controls by integrating post-mortem and molecular imaging studies. We found evidence for hyperdopaminergic functioning in the SN of patients with schizophrenia (i.e. increased AADC activity in antipsychotic-free/-naïve patients and elevated neuromelanin accumulation). Reduced GABAergic inhibition (i.e. decreased density of GABAergic synapses, lower VGAT mRNA levels and lower mRNA levels for GABAA receptor subunits), excessive glutamatergic excitation (i.e. increased NR1 and Glur5 mRNA levels and a reduced number of astrocytes), and several other disturbances implicating the SN (i.e. immune functioning and copper concentrations) could potentially underlie this nigral hyperactivity and associated striatal hyperdopaminergic functioning in schizophrenia. These results highlight the importance of the SN in schizophrenia pathology and suggest that some aspects of molecular functioning in the SN could potentially be used as treatment targets or biomarkers.
Collapse
Affiliation(s)
- Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands.
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Iris Bosch
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
4
|
Iqbal M, Cox SML, Jaworska N, Tippler M, Castellanos-Ryan N, Parent S, Dagher A, Vitaro F, Brendgen MR, Boivin M, Pihl RO, Côté SM, Tremblay RE, Séguin JR, Leyton M. A three-factor model of common early onset psychiatric disorders: temperament, adversity, and dopamine. Neuropsychopharmacology 2022; 47:752-758. [PMID: 34625707 PMCID: PMC8783001 DOI: 10.1038/s41386-021-01187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Commonly comorbid early onset psychiatric disorders might reflect the varying expression of overlapping risk factors. The mediating processes remain poorly understood, but three factors show some promise: adolescent externalizing traits, early life adversity, and midbrain dopamine autoreceptors. To investigate whether these features acquire greater predictive power when combined, a longitudinal study was conducted in youth who have been followed since birth. Cohort members were invited to participate based on externalizing scores between 11 to 16 years of age. At age 18 (age 18.5 ± 0.6 y.o.), 52 entry criteria meeting volunteers had a 90-min positron emission tomography scan with [18F]fallypride, completed the Childhood Trauma Questionnaire, and were assessed with the Structured Clinical Interview for DSM-5. The three-factor model identified those with a lifetime history of DSM-5 disorders with an overall accuracy of 90.4% (p = 2.4 × 10-5) and explained 91.5% of the area under the receiver operating characteristic curve [95% CI: .824, 1.000]. Targeting externalizing disorders specifically did not yield a more powerful model than targeting all disorders (p = 0.54). The model remained significant when including data from participants who developed their first disorders during a three-year follow-up period (p = 3.5 × 10-5). Together, these results raise the possibility that a combination of temperamental traits, childhood adversity, and poorly regulated dopamine transmission increases risk for diverse, commonly comorbid, early onset psychiatric problems, predicting this susceptibility prospectively.
Collapse
Affiliation(s)
- Maisha Iqbal
- grid.416102.00000 0004 0646 3639Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | | | - Natalia Jaworska
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255University of Ottawa Institute of Mental Health Research, Ottawa, ON Canada
| | - Maria Tippler
- grid.416102.00000 0004 0646 3639Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Natalie Castellanos-Ryan
- grid.14848.310000 0001 2292 3357School of Psychoeducation, Université de Montréal, Montreal, QC Canada
| | - Sophie Parent
- grid.14848.310000 0001 2292 3357School of Psychoeducation, Université de Montréal, Montreal, QC Canada
| | - Alain Dagher
- grid.416102.00000 0004 0646 3639Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Frank Vitaro
- grid.14848.310000 0001 2292 3357School of Psychoeducation, Université de Montréal, Montreal, QC Canada ,grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada
| | - Mara R. Brendgen
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.38678.320000 0001 2181 0211Department of Psychology, Université de Québec à Montréal, Montreal, QC Canada
| | - Michel Boivin
- grid.23856.3a0000 0004 1936 8390Department of Psychology, Université Laval, Quebec, ON Canada ,grid.77602.340000 0001 1088 3909Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Siberia, Russia
| | - Robert O. Pihl
- grid.77602.340000 0001 1088 3909Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Siberia, Russia
| | - Sylvana M. Côté
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Department of Social & Preventative Medicine, Université de Montréal, Montreal, QC Canada
| | - Richard E. Tremblay
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Departments of Pediatrics & Psychology, Université de Montréal, Montreal, QC Canada ,grid.7886.10000 0001 0768 2743School of Public Health and Sports Science, University College Dublin, Dublin, Ireland ,grid.7429.80000000121866389INSERM, U669 Paris, France
| | - Jean R. Séguin
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada
| | - Marco Leyton
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, McGill University, Montreal, QC, Canada. .,CHU Ste-Justine Research Center, Montreal, QC, Canada. .,Department of Psychology, McGill University, Montreal, QC, Canada. .,Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Torrisi SA, Geraci F, Contarini G, Salomone S, Drago F, Leggio GM. Dopamine D3 Receptor, Cognition and Cognitive Dysfunctions in Neuropsychiatric Disorders: From the Bench to the Bedside. Curr Top Behav Neurosci 2022; 60:133-156. [PMID: 35435642 DOI: 10.1007/7854_2022_326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dopamine D3 receptor (D3R) plays a prominent role in the modulation of cognition in healthy individuals, as well as in the pathophysiological mechanism underlying the cognitive deficits affecting patients suffering from neuropsychiatric disorders. At a therapeutic level, a growing body of evidence suggests that the D3R blockade enhances cognitive and thus it may be an optimal therapeutic strategy against cognitive dysfunctions. However, this is not always the case because other ligands targeting the D3R, and behaving as partial agonists or biased agonists, may exert their pro-cognitive effect by maintaining adequate level of dopamine in key brain areas tuning cognitive performances. In this chapter, we review and discuss preclinical and clinical findings with the aim to remark the crucial role of the D3R in cognition and to strengthen the message that drugs targeting D3R may be excellent cognitive enhancers for the treatment of several neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gabriella Contarini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salomone Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
6
|
Extra-striatal D 2/3 receptor availability in youth at risk for addiction. Neuropsychopharmacology 2020; 45:1498-1505. [PMID: 32259831 PMCID: PMC7360619 DOI: 10.1038/s41386-020-0662-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/18/2022]
Abstract
The neurobiological traits that confer risk for addictions remain poorly understood. However, dopaminergic function throughout the prefrontal cortex, limbic system, and upper brainstem has been implicated in behavioral features that influence addiction vulnerability, including poor impulse control, and altered sensitivity to rewards and punishments (i.e., externalizing features). To test these associations in humans, we measured type-2/3 dopamine receptor (DA2/3R) availability in youth at high vs. low risk for substance use disorders (SUDs). In this study, N = 58 youth (18.5 ± 0.6 years) were recruited from cohorts that have been followed since birth. Participants with either high (high EXT; N = 27; 16 F/11 M) or low pre-existing externalizing traits (low EXT; N = 31; 20 F/11 M) underwent a 90-min positron emission tomography [18F]fallypride scan, and completed the Barratt Impulsiveness Scale (BIS-11), Substance Use Risk Profile scale (SURPS), and Sensitivity to Punishment (SP) and Sensitivity to Reward (SR) questionnaire. We found that high vs. low EXT trait participants reported elevated substance use, BIS-11, SR, and SURPS impulsivity scores, had a greater prevalence of psychiatric disorders, and exhibited higher [18F]fallypride binding potential (BPND) values in prefrontal, limbic and paralimbic regions, even when controlling for substance use. Group differences were not evident in midbrain dopamine cell body regions, but, across all participants, low midbrain BPND values were associated with low SP scores. Together, the results suggest that altered DA2/3R availability in terminal extra-striatal and dopamine cell body regions might constitute biological vulnerability traits, generating an EXT trajectory for addictions with and without co-occurring alterations in punishment sensitivity (i.e., an internalizing feature).
Collapse
|
7
|
Wang Y, Bouabid S, Darvas M, Zhou FM. The antiparkinson drug ropinirole inhibits movement in a Parkinson's disease mouse model with residual dopamine neurons. Exp Neurol 2020; 333:113427. [PMID: 32735872 DOI: 10.1016/j.expneurol.2020.113427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
The dopamine (DA) D2-like receptor (D2R) agonist ropinirole is often used for early and middle stage Parkinson's disease (PD). However, this D2-like agonism-based strategy has a complicating problem: D2-like agonism may activate D2 autoreceptors on the residual DA neurons in the PD brain, potentially inhibiting these residual DA neurons and motor function. We have examined this possibility by using systemic and local drug administration in transcription factor Pitx3 null mutant (Pitx3Null) mice that mimic the DA denervation in early and middle stage PD and in DA neuron tyrosine hydroxylase (TH) gene knockout (KO) mice that mimic the severe DA loss in late stage PD. We found that in Pitx3Null mice with residual DA neurons and normal mice with normal DA system, systemically injected ropinirole inhibited locomotion, whereas bilateral dorsal striatal-microinjected ropinirole stimulated movement in Pitx3Null mice; bilateral microinjection of ropinirole into the ventral tegmental area also inhibited movement in Pitx3Null mice; we further determined that ropinirole inhibited nigral DA neuron spike firing in WT mice. In contrast, both systemically and striatum-locally administered ropinirole increased movements in TH KO mice, but produced relatively more dyskinesia than L-dopa. Although requiring confirmation in non-human primates and PD patients, these data suggest that while activating D2-like receptors in striatal projection neurons and hence stimulating movements, D2-like agonists can inhibit residual DA neurons and cause akinesia when the residual DA neurons and motor functions are still substantial, and this motor-inhibitory effect disappears when almost all DA neurons are lost such as in late stage PD.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Safa Bouabid
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| |
Collapse
|
8
|
Tseng HH, Watts JJ, Kiang M, Suridjan I, Wilson AA, Houle S, Rusjan PM, Mizrahi R. Nigral Stress-Induced Dopamine Release in Clinical High Risk and Antipsychotic-Naïve Schizophrenia. Schizophr Bull 2018; 44:542-551. [PMID: 29036383 PMCID: PMC5890468 DOI: 10.1093/schbul/sbx042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Striatal dopamine (DA) synthesis capacity and release are elevated in schizophrenia (SCZ) and its putative prodrome, the clinical high risk (CHR) state. Striatal DA function results from the activity of midbrain DA neurons projecting mainly from the substantia nigra (SN). Elevated stress-induced DA release in SCZ and CHR was observed in the striatum; however, whether it is also elevated in the SN is unclear. The current study aims to determine whether nigral DA release in response to a validated stress task is altered in CHR and in antipsychotic-naïve SCZ. Further, we explore how DA release in the SN and striatum might be related. Methods 24 CHR subjects, 9 antipsychotic-naïve SCZ and 25 healthy volunteers (HV) underwent 2 positron emission tomography (PET) scans using the DA D2/3 agonist radiotracer, [11C]-(+)-PHNO, which allows simultaneous investigations of DA in the SN and striatum. Psychosocial stress-induced DA release was estimated as the percentage differences in BPND (%[11C]-(+)-PHNO displacement) between stress and sensory-motor control sessions. Results We observed a significant diagnostic group by session interaction, such that SCZ exhibited greater stress-induced [11C]-(+)-PHNO % displacement (25.90% ± 32.2%; mean ± SD), as compared to HVs (-10.94% ± 27.1%). Displacement in CHRs (-1.13% ± 32.2%) did not differ significantly from either HV or SCZ. Conclusion Our findings suggest that elevated nigral DA responsiveness to stress is observed in antipsychotic-naïve SCZ.
Collapse
Affiliation(s)
- Huai-Hsuan Tseng
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeremy J Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ivonne Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Siciliano CA, Karkhanis AN, Holleran KM, Melchior JR, Jones SR. Cross-Species Alterations in Synaptic Dopamine Regulation After Chronic Alcohol Exposure. Handb Exp Pharmacol 2018; 248:213-238. [PMID: 29675581 PMCID: PMC6195853 DOI: 10.1007/164_2018_106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders are a leading public health concern, engendering enormous costs in terms of both economic loss and human suffering. These disorders are characterized by compulsive and excessive alcohol use, as well as negative affect and alcohol craving during abstinence. Extensive research has implicated the dopamine system in both the acute pharmacological effects of alcohol and the symptomology of alcohol use disorders that develop after extended alcohol use. Preclinical research has shed light on many mechanisms by which chronic alcohol exposure dysregulates the dopamine system. However, many of the findings are inconsistent across experimental parameters such as alcohol exposure length, route of administration, and model organism. We propose that the dopaminergic alterations driving the core symptomology of alcohol use disorders are likely to be relatively stable across experimental settings. Recent work has been aimed at using multiple model organisms (mouse, rat, monkey) across various alcohol exposure procedures to search for commonalities. Here, we review recent advances in our understanding of the effects of chronic alcohol use on the dopamine system by highlighting findings that are consistent across experimental setting and species.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James R Melchior
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
10
|
Huang YR, Shih JM, Chang KW, Huang C, Wu YL, Chen CC. [123I]Epidepride neuroimaging of dopamine D2/D3 receptor in chronic MK-801-induced rat schizophrenia model. Nucl Med Biol 2012; 39:826-32. [PMID: 22464847 DOI: 10.1016/j.nucmedbio.2012.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 11/17/2022]
Abstract
PURPOSE [(123)I]Epidepride is a radio-tracer with very high affinity for dopamine D(2)/D(3) receptors in brain. The importance of alteration in dopamine D(2)/D(3) receptor binding condition has been wildly verified in schizophrenia. In the present study we set up a rat schizophrenia model by chronic injection of a non-competitive NMDA receptor antagonist, MK-801, to examine if [(123)I]epidepride could be used to evaluate the alterations of dopamine D(2)/D(3) receptor binding condition in specific brain regions. METHOD Rats were given repeated injection of MK-801 (dissolved in saline, 0.3mg/kg) or saline for 1month. Afterwards, total distance traveled (cm) and social interaction changes were recorded. Radiochemical purity of [(123)I]epidepride was analyzed by Radio-Thin-Layer Chromatography (chloroform: methanol, 9:1, v/v) and [(123)I]epidepride neuroimages were obtained by ex vivo autoradiography and small animal SPECT/CT. Data obtained were then analyzed to determine the changes of specific binding ratio. RESULT Chronic MK-801 treatment for a month caused significantly increased local motor activity and induced an inhibition of social interaction. As shown in [(123)I]epidepride ex vivo autoradiographs, MK-801 induced a decrease of specific binding ratio in the striatum (24.01%), hypothalamus (35.43%), midbrain (41.73%) and substantia nigra (37.93%). In addition, [(123)I]epidepride small animal SPECT/CT neuroimaging was performed in the striatum and midbrain. There were statistically significant decreases in specific binding ratio in both the striatum (P<.01) and midbrain (P<.05) between the saline and MK-801 group. CONCLUSION These results suggest that [(123)I]epidepride is a useful radio-tracer to reveal the alterations of dopamine D(2)/D(3) receptor binding in a rat schizophrenia model and is also helpful to evaluate therapeutic effects of schizophrenia in the future.
Collapse
Affiliation(s)
- Yuan-Ruei Huang
- Institute of Nuclear Energy Research, Taoyuan 325, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
11
|
Radulescu AR. Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model. PLoS One 2010; 5:e12695. [PMID: 20877649 PMCID: PMC2943909 DOI: 10.1371/journal.pone.0012695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 08/13/2010] [Indexed: 11/18/2022] Open
Abstract
Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior. Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three equations. Extending such models to study the collective behavior of neural populations involves thousands of equations and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical aspects of networks are needed. The present paper uses a firing-rate model to study mechanisms that trigger and stop transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system, which can potentially be extended to include interactions between different areas of the nervous system with a small number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to illustrate and interpret our results. The model presented here can be used as a building block to study interactions between networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating burst firing in populations and how it may modulate distinct aspects of behavior.
Collapse
Affiliation(s)
- Anca R Radulescu
- Department of Psychology, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
12
|
Tuppurainen H, Kuikka JT, Viinamäki H, Husso M, Tiihonen J. Extrapyramidal side-effects and dopamine D(2/3) receptor binding in substantia nigra. Nord J Psychiatry 2010; 64:233-8. [PMID: 20629610 DOI: 10.3109/08039480903484076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The exact mechanisms for antipsychotic-induced extrapyramidal side-effects have remained obscure despite intensive research. Previous studies have highlighted a central role for nigral dopamine D(2) receptors in the control of motor functions. AIMS The aim of the present study was to examine relationships between dopamine D(2) receptor binding in both substantia nigra and temporal cortex with extrapyramidal symptoms among antipsychotic-treated patients with schizophrenia. METHODS Single-photon emission-computed tomography (SPECT) ligand [(123)I]epidepride was used to determine dopamine D(2/3) apparent binding potential in 13 antipsychotic-treated (seven with clozapine, four with olanzapine and two with haloperidol) patients with schizophrenia. Extrapyramidal symptoms were assessed with the Simpson and Angus Scale (SAS). RESULTS A statistically significant correlation was observed between dopamine D(2/3) receptor apparent binding potential in the substantia nigra and extrapyramidal side-effects (r = -0.62, P = 0.024). No correlations were detected in the temporal cortex between dopamine D(2/3) receptor binding and extrapyramidal side-effects. CONCLUSIONS These findings support the role of dopamine D(2) autoreceptors in substantia nigra regarding drug-induced movement disorders.
Collapse
Affiliation(s)
- Heli Tuppurainen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, FI-70240 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
13
|
Model-based parametric study of frontostriatal abnormalities in schizophrenia patients. BMC Psychiatry 2010; 10:17. [PMID: 20187970 PMCID: PMC2848218 DOI: 10.1186/1471-244x-10-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 02/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies have suggested that the activity of the prefrontal cortex (PFC) and the dopamine (DA) release in the striatum has an inverse relationship. One would attribute this relationship primarily to the circuitry comprised of the glutamatergic projection from the PFC to the striatum and the GABAergic projection from the striatum to the midbrain DA nucleus. However, this circuitry has not characterized satisfactorily yet, so that no quantitative analysis has ever been made on the activities of the PFC and the striatum and also the DA release in the striatum. METHODS In this study, a system dynamics model of the corticostriatal system with dopaminergic innervations is constructed to describe the relationships between the activities of the PFC and the striatum and the DA release in the striatum. By taking published receptor imaging data from schizophrenia patients and healthy subjects into this model, this article analyzes the effects of striatal D2 receptor activation on the balance of the activity and neurotransmission in the frontostriatal system of schizophrenic patients in comparison with healthy controls. RESULTS The model predicts that the suppressive effect by D2 receptors at the terminals of the glutamatergic afferents to the striatum from the PFC enhances the hypofrontality-induced elevation of striatal DA release by at most 83%. The occupancy-based estimation of the 'optimum' D2 receptor occupancy by antipsychotic drugs is 52%. This study further predicts that patients with lower PFC activity tend to have greater improvement of positive symptoms following antipsychotic medication. CONCLUSION This model-based parametric study would be useful for system-level analysis of the brains with psychiatric diseases. It will be able to make reliable prediction of clinical outcome when sufficient data will be available.
Collapse
|
14
|
Camara E, Kramer UM, Cunillera T, Marco-Pallares J, Cucurell D, Nager W, Mestres-Misse A, Bauer P, Schule R, Schols L, Tempelmann C, Rodriguez-Fornells A, Munte TF. The Effects of COMT (Val108/158Met) and DRD4 (SNP -521) Dopamine Genotypes on Brain Activations Related to Valence and Magnitude of Rewards. Cereb Cortex 2009; 20:1985-96. [DOI: 10.1093/cercor/bhp263] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Wahlstrom D, Collins P, White T, Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn 2009; 72:146-59. [PMID: 19944514 DOI: 10.1016/j.bandc.2009.10.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 10/22/2009] [Indexed: 12/28/2022]
Abstract
Adolescence is characterized by increased risk-taking, novelty-seeking, and locomotor activity, all of which suggest a heightened appetitive drive. The neurotransmitter dopamine is typically associated with behavioral activation and heightened forms of appetitive behavior in mammalian species, and this pattern of activation has been described in terms of a neurobehavioral system that underlies incentive-motivated behavior. Adolescence may be a time of elevated activity within this system. This review provides a summary of changes within cortical and subcortical dopaminergic systems that may account for changes in cognition and affect that characterize adolescent behavior. Because there is a dearth of information regarding neurochemical changes in human adolescents, models for assessing links between neurochemical activity and behavior in human adolescents will be described using molecular genetic techniques. Furthermore, we will suggest how these techniques can be combined with other methods such as pharmacology to measure the impact of dopamine activity on behavior and how this relation changes through the lifespan.
Collapse
Affiliation(s)
- Dustin Wahlstrom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
16
|
Easton N, Marshall FH, Marsden CA, Fone KCF. Mapping the central effects of methylphenidate in the rat using pharmacological MRI BOLD contrast. Neuropharmacology 2009; 57:653-64. [PMID: 19733553 DOI: 10.1016/j.neuropharm.2009.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022]
Abstract
Methylphenidate (Ritalin) is a selective dopamine reuptake inhibitor and an effective treatment for attention deficit hyperactivity disorder (ADHD) however the anatomical foci and neuronal circuits involved in these therapeutic benefits are unclear. This study determines the temporal pattern of brain regional activity change produced by systemic administration of a therapeutically relevant dose of methylphenidate in anaesthetised Sprague-Dawley rats using BOLD MRI and a 2.35T Bruker magnet. Following 60 min basal recording separate rats received saline (n = 9) or +/- methylphenidate hydrochloride (2 mg/kg, i.p., n = 9) and BOLD changes were recorded for 90 min using statistical parametric maps. Methylphenidate produced significant positive random BOLD effects in the nucleus accumbens, substantia nigra, entorhinal cortex and medial orbital cortex. Negative random BOLD effects were more widespread and intense, occurring in the motor and somatosensory cortices, caudate putamen, lateral globus pallidus and bed nucleus of the stria terminalis, without accompanying changes in blood pressure or respiratory rate. Methylphenidate-induced negative BOLD in the striatum, and other dopamine terminal areas, may reflect post-synaptic changes produced by blockade of the neuronal dopamine reuptake transporter. While increased positive BOLD in the medial orbital cortex may reflect altered dopamine and/or noradrenaline release indirectly altering striatal activity. The overall pattern of BOLD changes is comparable to that seen in previous studies using guanfacine, amphetamine and atomoxetine, and suggests that although these compounds operate through distinct pharmacological mechanisms the BOLD changes may represent a 'fingerprint pattern' predictive of therapeutic benefit in ADHD.
Collapse
Affiliation(s)
- Neil Easton
- School of Biomedical Sciences, Medical School, Institute of Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
17
|
Genetic variability in the dopamine system (dopamine receptor D4, catechol-O-methyltransferase) modulates neurophysiological responses to gains and losses. Biol Psychiatry 2009; 66:154-61. [PMID: 19251248 DOI: 10.1016/j.biopsych.2009.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND Interindividual variability in the processing of reward might be partially explained by genetic differences in the dopamine system. Here, we study whether brain responses (event-related potentials [ERPs], oscillatory activity) to monetary gains and losses in normal human subjects are modulated as a function of two dopaminergic polymorphisms (catechol-O-methyltransferase [COMT] valine [Val]158methionine [Met], dopamine receptor D4 [DRD4] single nucleotide polymorphism [SNP] -521). METHODS Forty participants homozygous for the different alleles of both polymorphisms were selected from a larger population to assess the main effects and interactions. Based on the phasic/tonic dopamine hypothesis, we expected increased brain responses to losses and gains in participants homozygous for the Val/Val variant of the COMT polymorphism (related to higher enzyme activity). RESULTS The medial frontal negativity (MFN) of the ERP and the increase in beta power for gains were enhanced for participants homozygous for the COMT ValVal allele when compared with homozygous MetMet participants. In contrast, no modulations in gain- and loss-related brain activity were found to be a function of the DRD4 SNP -521 polymorphism. CONCLUSIONS The results demonstrate the role of the COMT Val/Met polymorphism in the processing of reward, consistent with theoretical explanations that suggest the possible role of dopamine in the MFN and beta power increase generation. In addition, the present results might agree with the phasic/tonic dopamine theory that predicts higher phasic dopamine responses in ValVal participants.
Collapse
|
18
|
Pollak L, Dobronevsky Y, Prohorov T, Bahunker S, Rabey JM. Low dose methylphenidate improves freezing in advanced Parkinson's disease during off-state. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:145-8. [PMID: 17982887 DOI: 10.1007/978-3-211-73574-9_17] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Five men with advanced idiopathic Parkinson's disease (PD) were examined to assess the effect of low dose methylphenidate (MPD) on gait. The patients were tested during "off" state before and two hours after the intake of 10 mg MPD while walking an "8 trajectory". The total walking time, total freezing time, number of freezing episodes and the non-freezing walking time were assessed. The obtained data were compared by the Wilcoxon Signed Rank test with a type I error rate of 0.05. The results showed a statistically significant improvement in all gait parameters after MPD intake. Moreover, a good correlation in the grade of improvement for each individual gait characteristic was found. The study demonstrates that low dose of MPD may improve gait, and especially freezing, in patients with severe PD, without the need for exogenous L-dopa. The mechanism of MPD action in patients with advanced PD is further discussed.
Collapse
Affiliation(s)
- L Pollak
- Assaf Harofeh Medical Center, Department of Neurology, Zerifin, Israel.
| | | | | | | | | |
Collapse
|
19
|
Andersen ML, Perry JC, Tufik S. Possible participation of D3 and D4 dopaminergic receptors on genital reflexes induced by cocaine in paradoxical sleep deprived male rats. Scand J Psychol 2007; 48:443-7. [PMID: 18028066 DOI: 10.1111/j.1467-9450.2007.00613.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have demonstrated that paradoxical sleep deprivation (PSD) potentiates cocaine-induced genital reflexes in male rats and both D1 and D2 receptors may play a role in those effects, and to examine the possibility that such might involve other dopaminergic receptors, we investigated the effects of D3 and D4 receptor subtype antagonists on cocaine-induced reflexes in sleep-deprived rats. Separate groups of PSD rats received saline, D3 (U9919A; 0.75, 1.5 and 3 mg/kg) or D4 (L745870; 0.75, 1.5 and 3 mg/kg) antagonists prior to acute cocaine challenge. Results demonstrated that U9919A induced significant reduction in the number of animals that displayed erection and the frequency of erection at two smaller doses, while no significant difference was reported for the D4 receptor antagonist. Although our studies indicate that there is a relevant participation of D3 receptors in male sexual function, D4 receptors seem not to exert an essential role in this model.
Collapse
Affiliation(s)
- Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.
| | | | | |
Collapse
|
20
|
Flores-Tochihuitl J, Vargas G, Morales-Medina JC, Rivera G, De La Cruz F, Zamudio S, Flores G. Enhanced apomorphine sensitivity and increased binding of dopamine D2 receptors in nucleus accumbens in prepubertal rats after neonatal blockade of the dopamine D3 receptors by (+)-S14297. Synapse 2007; 62:40-9. [DOI: 10.1002/syn.20463] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
McCullumsmith RE, Kristiansen LV, Beneyto M, Scarr E, Dean B, Meador-Woodruff JH. Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 2006; 1127:108-18. [PMID: 17113057 PMCID: PMC2900828 DOI: 10.1016/j.brainres.2006.09.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 08/30/2006] [Accepted: 09/06/2006] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Schizophrenia is associated with dysfunction of glutamatergic neurotransmission, and several studies have suggested glutamatergic abnormalities in bipolar disorder. Recent data suggest involvement of the NMDA receptor signaling complex, which includes NMDA receptor subunits as well as associated intracellular interacting proteins critical for NMDA receptor assembly, trafficking, and activation; the most well-characterized being PSD93, PSD95, SAP102, and NF-L. Previously, studies from our laboratories have described changes in glutamate receptor subunit transcript and binding site expression in schizophrenia and changes in NMDA receptor binding site expression in bipolar disorder in postmortem brain tissue. In the present work, we focus on the expression of these molecules in hippocampus in schizophrenia and bipolar affective disorder I. METHODS We performed in situ hybridization to assess hippocampal expression of the transcripts encoding NMDA receptor subunits NR1, 2A, 2B, 2C and 2D, and the transcripts for the NMDA receptor associated PSD proteins PSD95, PSD93, NF-L, and SAP102 in subjects with schizophrenia, bipolar affective disorder I, and a comparison group. We also measured [(3)H]CGP39653 and [(3)H]MK-801 binding site expression in the hippocampus in schizophrenia. RESULTS There was a significant decrease in the expression of transcripts for NR1 and NR2A subunits and SAP102 in bipolar disorder. We did not detect any changes in these transcripts or in binding site expression in the hippocampus in schizophrenia. CONCLUSIONS We propose that the NMDA receptor signaling complex, including the intracellular machinery that is coupled to the NMDA receptor subunits, is abnormal in the hippocampus in bipolar disorder. These data suggest that bipolar disorder might be associated with abnormalities of glutamate-linked intracellular signaling and trafficking processes.
Collapse
Affiliation(s)
- Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, CIRC 576A 0021, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Tuppurainen H, Kuikka JT, Laakso MP, Viinamäki H, Husso M, Tiihonen J. Midbrain dopamine D2/3 receptor binding in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2006; 256:382-7. [PMID: 16783502 DOI: 10.1007/s00406-006-0649-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 01/24/2006] [Indexed: 10/24/2022]
Abstract
Several studies suggest that dysregulation of dopaminergic transmission in the midbrain and thalamus may contribute to the symptomatology of schizophrenia. The objective of this study was to examine the putative alteration of dopamine D(2/3 )receptor densities in the thalamus and midbrain of drug-naïve schizophrenic patients. We used the high-affinity single-photon emission tomography ligand [(123)I]epidepride for imaging D(2/3 )receptor binding sites in six neuroleptic-naïve schizophrenic patients, and seven healthy controls. Schizophrenic symptoms were evaluated by the Positive and Negative Syndrome Scale. Significantly lower D(2/3 )values were observed in the midbrain of patients with schizophrenia compared to controls (P = 0.02). No statistically significant difference was observed in the thalamus between two groups. Negative correlations were found between thalamic D(2/3 )receptor binding and general psychopathological schizophrenic symptoms (r from -0.78 to -0.92). These observations implicate altered dopaminergic activity in the midbrain of schizophrenic patients.
Collapse
Affiliation(s)
- Heli Tuppurainen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, 70240, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
23
|
Jørgensen JR, Juliusson B, Henriksen KF, Hansen C, Knudsen S, Petersen TN, Blom N, Seiger A, Wahlberg LU. Identification of novel genes regulated in the developing human ventral mesencephalon. Exp Neurol 2006; 198:427-37. [PMID: 16473350 DOI: 10.1016/j.expneurol.2005.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/18/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
In the human embryo, from approximately 6 weeks gestational age (GA), dopaminergic (DA) neurons can be found in the ventral mesencephalon (VM). More specifically, the post-mitotic neurons are located in the ventral part of the tegmentum (VT), whereas no mature DA neurons are found in the neighboring dorsal part. We used Affymetrix HG-U133 GeneChip technology to compare genome-wide expression profiles of ventral and dorsal tegmentum from 8 weeks GA human embryos, in order to identify genes involved in specification, differentiation, and survival of mesencephalic DA (mDA) neurons. Known mDA marker genes including ALDH1A1, DAT1, VMAT2, TH, CALB1, NURR1, FOXA1, GIRK2, PITX3, RET, and DRD2 topped the list of 96 genes from HG-U133A with higher expression in VT, validating the experimental set-up. In addition, 28 probes from HG-U133B were identified whereof most are annotated to UniGene clusters with no gene associated or to genes of unknown function. Of these, the fifteen most regulated transcripts, representing changes down to 56% could be verified by quantitative real-time PCR (Q-PCR) on a developmental series of subdissected human embryonic and fetal brain material, resulting in not only a regional but also a temporal expression profile. This revealed a distinct DA-associated profile for in particular a putative transcription factor (FLJ45455) and the uncharacterized transmembrane proteins KIAA1145 and SLC10A4. The data presented here may help to device cell replacement and regenerative therapies for Parkinson's disease (PD).
Collapse
|
24
|
Grund T, Lehmann K, Bock N, Rothenberger A, Teuchert-Noodt G. Influence of methylphenidate on brain development--an update of recent animal experiments. Behav Brain Funct 2006; 2:2. [PMID: 16403217 PMCID: PMC1363724 DOI: 10.1186/1744-9081-2-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 01/10/2006] [Indexed: 01/26/2023] Open
Abstract
Methylphenidate (MPH) is the most commonly used drug to treat attention deficit/hyperactivity disorder (ADHD) in children effectively and safely. In spite of its widespread application throughout one of the most plastic and sensitive phases of brain development, very little is known to date about its long-term effects on brain structure and function. Hence, this short review updates the influence of MPH on brain development, since recent human and animal studies suggest that MPH alters the dopaminergic system with long-term effects beyond the termination of treatment. Animal studies imply that the effects of MPH may depend on the neural responder system: Whereas structural and functional parameters are improved by MPH in animals with psychomotor impairments, they remain unaltered or get worse in healthy controls. While recent behavioural studies do not fully support such a differential effect of MPH in ADHD, the animal studies certainly prompt for further investigation of this issue. Furthermore, the abuse of MPH, when (rarely) intravenously applied, may even impair the maturation of dopaminergic fibres in subcortical brain areas. This argues for careful clinical assessment and diagnostics of ADHD symptomatology not only in conjunction with the prescription of MPH. Hence, one should be assured that MPH is only given to children with clear ADHD symptomatology leading to psychosocial impairment. The animal data suggest that under these conditions MPH is supportive for brain development and the related behaviour in children with ADHD.
Collapse
Affiliation(s)
- Thorsten Grund
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Konrad Lehmann
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Nathalie Bock
- Child and Adolescent Psychiatry, University of Göttingen, von-Siebold-Strasse 5, D-37075 Göttingen, Germany
| | - Aribert Rothenberger
- Child and Adolescent Psychiatry, University of Göttingen, von-Siebold-Strasse 5, D-37075 Göttingen, Germany
| | - Gertraud Teuchert-Noodt
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
25
|
Parish CL, Drago J, Stanic D, Borrelli E, Finkelstein DI, Horne MK. Haloperidol treatment reverses behavioural and anatomical changes in cocaine-dependent mice. Neurobiol Dis 2005; 19:301-11. [PMID: 15837586 DOI: 10.1016/j.nbd.2005.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/09/2004] [Accepted: 01/12/2005] [Indexed: 11/17/2022] Open
Abstract
Abnormal dopamine (DA) transmission occurs in many pathological conditions, including drug addiction. Previously, we showed DA D2 receptor (D2R) activation results in pruning of the axonal arbour of DA neurones that innervate the dorsal striatum. Thus, we hypothesised that long-term D2R stimulation through drugs of addiction should cause arbour pruning of neurones that innervate the ventral striatum and thus reduce DA release and contribute to craving. If so, D2R blockade should return these arbours to normal size and may overcome craving. We show that long-term treatment with a D2R antagonist (haloperidol) reverses behavioural and anatomical effects of cocaine dependence in mice, including relapse. This change in arbour size reflects new synapse formation and our data suggest this must occur in the presence of increased DA activity to reverse cocaine-seeking behaviour. These findings hold significant implications for the understanding and treatment of cocaine addiction.
Collapse
Affiliation(s)
- C L Parish
- Department of Medicine, Monash University, Monash Medical Centre, Clayton 3168, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Anderson SM, Pierce RC. Cocaine-induced alterations in dopamine receptor signaling: Implications for reinforcement and reinstatement. Pharmacol Ther 2005; 106:389-403. [PMID: 15922019 DOI: 10.1016/j.pharmthera.2004.12.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2004] [Indexed: 11/24/2022]
Abstract
The transition from casual drug use to addiction, and the intense drug craving that accompanies it, has been postulated to result from neuroadaptations within the limbic system caused by repeated drug exposure. This review will examine the implications of cocaine-induced alterations in mesolimbic dopamine receptor signaling within the context of several widely used animal models of addiction. Extensive evidence indicates that dopaminergic mechanisms critically mediate behavioral sensitization to cocaine, cocaine-induced conditioned place preference, cocaine self-administration, and the drug prime-induced reinstatement of cocaine-seeking behavior. The propagation of the long-term neuronal changes associated with recurring cocaine use appears to occur at the level of postreceptor signal transduction. Repeated cocaine treatment causes an up-regulation of the 3',5'-cyclic adenosine monophosphate (cAMP)-signaling pathway within the nucleus accumbens, resulting in a dys-regulation of balanced D1/D2 dopamine-like receptor signaling. The intracellular events arising from enhanced D1-like postsynaptic signaling mediate both facilitatory and compensatory responses to the further reinforcing effects of cocaine.
Collapse
Affiliation(s)
- S M Anderson
- Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
27
|
Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R, Weinberger DR, Berman KF. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 2005; 8:594-6. [PMID: 15821730 DOI: 10.1038/nn1438] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 03/22/2005] [Indexed: 11/08/2022]
Abstract
Using multimodal neuroimaging in humans, we demonstrate specific interactions between prefrontal activity and midbrain dopaminergic synthesis. A common V(108/158)M substitution in the gene for catecholamine-O-methyltransferase (COMT), an important enzyme regulating prefrontal dopamine turnover, predicted reduced dopamine synthesis in midbrain and qualitatively affected the interaction with prefrontal cortex. These data implicate a dopaminergic tuning mechanism in prefrontal cortex and suggest a systems-level mechanism for cognitive and neuropsychiatric associations with COMT.
Collapse
Affiliation(s)
- Andreas Meyer-Lindenberg
- Section on Integrative Neuroimaging, National Institute for Mental Health, National Institutes of Health, Department of Health and Human Services, 9000 Rockville Pike, Bethesda, Maryland 20892-1365, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Adell A, Artigas F. The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev 2004; 28:415-31. [PMID: 15289006 DOI: 10.1016/j.neubiorev.2004.05.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 05/12/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
The release of dopamine in the ventral tegmental area (VTA) plays an important role in the autoinhibition of the dopamine neurons of the mesocorticolimbic system through the activation of somatodendritic dopamine D2 autoreceptors. Accordingly, the intra-VTA application of dopamine D2 receptor agonists reduces the firing rate and release of dopamine in the VTA, and this control appears to possess a tonic nature because the corresponding antagonists enhance the somatodendritic release of the transmitter. In addition, the release of dopamine in the VTA is increased by potassium or veratridine depolarization and abolished by tetrodotoxin and calcium omission. Overall, it appears that the somatodendritic release of dopamine is consistently lower than that in nerve endings. Apart from intrinsic dopaminergic mechanisms, other transmitter systems such as serotonin, noradrenaline, acetylcholine, GABA and glutamate play a role in the control of the activity of dopaminergic neurons of the VTA, although the final action depends on the particular receptor involved as well as the neuronal type where it is localized. Given the involvement of the mesocorticolimbic dopaminergic systems in the pathogenesis of severe neuropsychiatric disorders such as schizophrenia, the knowledge of the factors that regulate the release of dopamine in the VTA could provide new insight into the ethiogenesis of the disease as well as its implication on the mechanisms of action of therapeutic drugs.
Collapse
Affiliation(s)
- Albert Adell
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), Carrer Rosselló 161, 6th floor, E-08036 Barcelona, Spain.
| | | |
Collapse
|
29
|
Mueller HT, Haroutunian V, Davis KL, Meador-Woodruff JH. Expression of the ionotropic glutamate receptor subunits and NMDA receptor-associated intracellular proteins in the substantia nigra in schizophrenia. ACTA ACUST UNITED AC 2004; 121:60-9. [PMID: 14969737 DOI: 10.1016/j.molbrainres.2003.11.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
Multiple neurotransmitter systems have been implicated in the pathophysiology of schizophrenia. Dopamine hyperactivity has often been implicated in this illness. More recently, the glutamate hypothesis of schizophrenia suggests that NMDA receptor (NMDAR) hypofunction may also play a role in this illness. This is based primarily on studies showing that phencyclidine, an NMDAR antagonist, can induce a schizophreniform psychosis. While NMDAR dysfunction is most often implicated in schizophrenia, other components of the glutamate system, such as the AMPA and kainate receptors, as well as NMDAR-associated intracellular proteins, may also play a role in regulating NMDA receptor activity and glutamate neurotransmission. There is growing interest in the hypothesis that the pathophysiology of schizophrenia involves alterations in dopamine-glutamate interactions. The glutamate system is anatomically and functionally linked to the dopamine system, and glutamate can modulate dopaminergic activity and release by stimulating various glutamate receptor subtypes expressed by dopaminergic neurons in the substantia nigra/ventral tegmental area. In this study, we investigated dopamine-glutamate interactions by measuring the expression of transcripts encoding the subunits for the ionotropic glutamate receptors (NMDA, AMPA and kainate) and five NMDAR-associated intracellular proteins, PSD-93, PSD-95, SAP102, NF-L and yotiao in the dopaminergic neurons in the substantia nigra pars compacta (SNc) of subjects with schizophrenia and a comparison group. Tyrosine hydroxylase (TH, a marker of dopamine-synthesizing cells), NR1 (an NMDA receptor subunit) and GluR5 (a kainate subunit) transcript levels were significantly increased in the SNc in schizophrenia. These data support the hypothesis that schizophrenia may involve alterations in dopamine-glutamate interactions.
Collapse
Affiliation(s)
- Helena T Mueller
- Department of Psychiatry and Mental Health Research Institute, University of Michigan, Medical School, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA.
| | | | | | | |
Collapse
|
30
|
McCullumsmith RE, Stincic TL, Agrawal SM, Meador-Woodruff JH. Differential effects of antipsychotics on haloperidol-induced vacuous chewing movements and subcortical gene expression in the rat. Eur J Pharmacol 2003; 477:101-12. [PMID: 14519413 DOI: 10.1016/j.ejphar.2003.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The behavioral and neurochemical effects of switching from typical to atypical medications have not been evaluated in the rodent models of tardive dyskinesia. Thus, we treated rats with haloperidol-decanoate for 12 weeks, and assessed the effects of additional treatment with olanzapine, haloperidol, clozapine, or vehicle on vacuous chewing movements and expression of transcripts for dopamine receptors, tyrosine hydroxylase, delta-opioid receptor, prodynorphin, preproenkephalin, glutamic acid decarboxylase-65 (glutamic acid decarboxylase (GAD)-65) and GAD-67 and N-methyl-D-aspartate (NMDA) receptor subunits in the striatum and its efferent pathways. Haloperidol-decanoate induced vacuous chewing movements extinguished following an additional 4 weeks of treatment with vehicle, olanzapine or haloperidol, but not clozapine. Post-treatment, vacuous chewing movements in the clozapine group were significantly higher than the vehicle, olanzapine and haloperidol groups. GAD-67 mRNA expression in the globus pallidus was decreased following additional treatment with olanzapine or haloperidol, but not clozapine. Changes in expression of other transcripts were not detected. These findings demonstrate important differences in the effects of typical and atypical antipsychotics on chronic vacuous chewing movements.
Collapse
Affiliation(s)
- Robert E McCullumsmith
- Department of Psychiatry and Mental Health Research Institute, University of Michigan Medical School, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA.
| | | | | | | |
Collapse
|
31
|
Eliava M, Yilmazer-Hanke D, Asan E. Interrelations between monoaminergic afferents and corticotropin-releasing factor-immunoreactive neurons in the rat central amygdaloid nucleus: ultrastructural evidence for dopaminergic control of amygdaloid stress systems. Histochem Cell Biol 2003; 120:183-97. [PMID: 12910346 DOI: 10.1007/s00418-003-0557-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2003] [Indexed: 10/26/2022]
Abstract
Ample evidence implicates corticotropin-releasing factor (CRF)-producing neurons of the central amygdaloid nucleus (CeA) in vegetative, endocrine, and behavioral responses to stress and anxiety in laboratory rats. Monoaminergic systems are involved in modulating these responses. In the present paper, interrelations between CRF-immunoreactive (ir) neurons, and noradrenergic, serotonergic, and dopaminergic afferents were studied using single and double immunolabeling for light and electron microscopy in the rat CeA. Dopaminergic axons formed dense plexus in the CeA overlapping with the localization of CRF-ir neurons, and their terminals formed frequent associations with CRF-ir somata. Contacts of serotonergic axons on CRF-ir neurons were few, and contacts of noradrenergic axons were the exception. Ultrastructurally, symmetric synapses of dopaminergic terminals on CRF-ir somata and dendrites were found. More than 83% of CRF-ir somata were contacted in single ultrathin sections. About half of these possessed two or more contacts. Of non-ir somata, 37% were contacted by dopaminergic terminals, and only 13% of these had two or more contacts. Correlative in situ hybridization indicated that CeA CRF-ir neurons may express receptor subtype dopamine receptor subtype 2. In conclusion, dopaminergic afferents appear to specifically target CeA CRF neurons. They are thus in a position to exert significant influence on the rat amygdaloid CRF stress system.
Collapse
Affiliation(s)
- Marina Eliava
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany
| | | | | |
Collapse
|
32
|
Abstract
There is strong evidence that the catecholamines dopamine and norepinephrine are both important in the pathophysiology of ADHD, as well as in the mechanism of therapeutic action of stimulant drugs. Due to the known effects of stimulants in blocking reuptake of catecholamines and (in the case of D-amphetamine) facilitating their release, it has traditionally been believed that the stimulants compensate for catecholamine deficiency in ADHD. More recently, however, alternate hypotheses of a hyperdopaminergic and/or hyper-noradrenergic state in ADHD have been suggested. This paper will be limited to a review of the evidence for involvement of dopamine in mediating behavioral and cognitive symptoms and response to stimulants in ADHD, with implications for possible mechanisms.
Collapse
Affiliation(s)
- Mary V Solanto
- Division of Child and Adolescent Psychiatry, Mount Sinai Medical Center, Box 1230, One Gustave L. Levy Place, New York, NY 10029-6574, USA.
| |
Collapse
|
33
|
Hurd YL, Suzuki M, Sedvall GC. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat 2001; 22:127-37. [PMID: 11470560 DOI: 10.1016/s0891-0618(01)00122-3] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding dopamine signaling in human behavior requires knowledge of the distribution of all molecular components involved in dopamine pathways throughout the human brain. In the present study, the relative distributions of D1 and D2 dopamine receptor mRNAs were determined by in situ hybridization histochemistry in whole hemisphere sections from normal human post mortem brains. The findings confirmed information documented from single structure examination that the highest expression of both the D1 and D2 mRNAs were localized to the striatum. The cerebral cortex expressed moderate D1 mRNA in all regions with the highest signal in the medial orbital frontal area (Brodmann areas 11, 14), the paraterminal gyrus (Brodmann area 32) and the insular cortex (Brodmann areas 13-16), whereas the D2 mRNA expression had very low cortical expression. The bed nucleus of the stria terminalis and islands of Calleja had high expression of the D1 mRNA and moderate D2 mRNA levels. Moderate to high expression of the D2 mRNA was evident in the hippocampal formation, parafascicular and paraventricular thalamic nuclei, geniculate bodies, subthalamic nucleus, and pineal gland, all of which were devoid of, or showed only faint, D1 mRNA expression. Brainstem regions, e.g. substantia nigra, red nucleus, inferior colliculus, medial lemniscus, and pontine nuclei expressed D2, but not D1, mRNA. These results emphasize the differential anatomical localization of D1 and D2 dopamine receptor mRNA neuronal populations in the human brain. The restricted expression of the D1 mRNA to the cortical mantle and to a few forebrain structures indicates a strong involvement of the D1 system in cognitive function.
Collapse
Affiliation(s)
- Y L Hurd
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Hospital, SE-171 76, Stockholm, Sweden.
| | | | | |
Collapse
|
34
|
Giedd JN, Blumenthal J, Molloy E, Castellanos FX. Brain imaging of attention deficit/hyperactivity disorder. Ann N Y Acad Sci 2001; 931:33-49. [PMID: 11462751 DOI: 10.1111/j.1749-6632.2001.tb05772.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in imaging technology allow unprecedented access to the anatomy and physiology of the living, growing human brain. Anatomical imaging studies of individuals with attention deficit/hyperactivity disorder (ADHD) consistently point to involvement of the frontal lobes, basal ganglia, corpus callosum, and cerebellum. Imaging studies of brain physiology also support involvement of right frontal-basal ganglia circuitry with a powerful modulatory influence from the cerebellum. Although not currently of diagnostic utility, further extension and refinement of these findings may offer hope for greater understanding of the core nature of ADHD and possible subtyping to inform treatment interventions.
Collapse
Affiliation(s)
- J N Giedd
- Child Psychiatry Branch, National Institute of Mental Health, Building 10, Room 4C110, 10 Center Drive, MSC 1367, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
35
|
Millan MJ, Lejeune F, Gobert A. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents. J Psychopharmacol 2000; 14:114-38. [PMID: 10890307 DOI: 10.1177/026988110001400202] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The frontal cortex (FCX) plays a key role in processes that control mood, cognition and motor behaviour, functions which are compromised in depression, schizophrenia and other psychiatric disorders. In this regard, there is considerable evidence that a perturbation of monoaminergic input to the FCX is involved in the pathogenesis of these states. Correspondingly, the modulation of monoaminergic transmission in the FCX and other corticolimbic structures plays an important role in the actions of antipsychotic and antidepressant agents. In order to further understand the significance of monoaminergic systems in psychiatric disorders and their treatment, it is essential to characterize mechanisms underlying their modulation. Within this framework, the present commentary focuses on our electrophysiological and dialysis analyses of the complex and reciprocal pattern of auto- and heteroreceptor mediated control of dopaminergic, noradrenergic and serotonergic transmission in the FCX. The delineation of such interactions provides a framework for an interpretation of the influence of diverse classes of antidepressant agent upon extracellular levels of dopamine, noradrenaline and serotonin in FCX. Moreover, it also generates important insights into strategies for the potential improvement in the therapeutic profiles of antidepressant agents.
Collapse
Affiliation(s)
- M J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | | | | |
Collapse
|
36
|
Abstract
The effects of toxicants depend on the dose and the time in the life span when exposure occurs. The biology of adolescence is distinctive and provides opportunities for unique actions of toxicants both in terms of disruption of function and disruption of maturation. Maturation of a number of organ systems occurs during this period, including not only the reproductive system but also the respiratory, skeletal, immune, and central nervous systems. Adolescence is a time of increased risk for infectious disease and accidental injury, making the effects of toxicants on the immune and central nervous systems particularly harmful. Differences in blood volume, respiratory parameters, metabolic needs, and capacity all contribute to altered pharmacokinetics. Exposures can also change. Increased food intake associated with rapid adolescent growth alters exposure to food contaminants. Voluntary drug consumption increases, including drinking; smoking; substance abuse; and the use of over-the-counter, prescription, and performance-enhancing drugs. At the same time, adolescents are introduced to toxicants in the workplace. Basic research in the toxicology of adolescence needs to take into account the appropriateness of animal models for this distinctive human developmental stage; risk assessment must take into account pharmacokinetic and lifestyle factors. Screening methodologies that would identify toxic effects unique to adolescence would also be valuable.
Collapse
Affiliation(s)
- M S Golub
- California Regional Primate Research Center, University of California Davis, 95616 USA.
| |
Collapse
|
37
|
Ondo WG, He Y, Rajasekaran S, Le WD. Clinical correlates of 6-hydroxydopamine injections into A11 dopaminergic neurons in rats: a possible model for restless legs syndrome. Mov Disord 2000; 15:154-8. [PMID: 10634257 DOI: 10.1002/1531-8257(200001)15:1<154::aid-mds1025>3.0.co;2-q] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pursuant to the clinical suspicion that restless legs syndrome (RLS) may involve dopaminergic diencephalic spinal neurons (A11), we performed stereotaxic bilateral 6-hydroxydopamine (6-OHDA) lesions into the A11 nucleus to observe for any behavioral correlates similar to this clinical condition. Pathologic examination demonstrated a 54% reduction in A11 tyrosine hydroxylase staining cells in rats injected with 6-OHDA versus sham treatment. Multiple blindly rated 90-120-minute video epochs demonstrated an increased average number of standing episodes (14.4+/-11.7 versus 7.3+/-5.5 episodes/epoch) and increased total standing time (38.9+/-20.5 versus 25.3+/-12.2 minutes/epoch) but similar total sleep time in four lesioned rats when compared with two sham rats. Treatment of the lesioned rats with intramuscular pramipexole subsequently resulted in fewer standing episodes (4.4+/-3.3 versus 14.4+/-11.7 episodes/epoch) and less total standing time (20.9+/-12.3 versus 38.9+/-20.5 minutes/epoch) when compared with untreated lesioned rats. Despite a large number of observations, the small number of lesioned animals precluded formal statistical analysis. These behaviors are consistent, although not specific, with what would be expected in an animal model of RLS.
Collapse
Affiliation(s)
- W G Ondo
- Baylor College of Medicine, Department of Neurology, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
38
|
Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 1998; 94:127-52. [PMID: 9708845 DOI: 10.1016/s0166-4328(97)00175-7] [Citation(s) in RCA: 483] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The psychostimulants, D-amphetamine (D-AMP) and methylphenidate (MPH), are widely used to treat attention-deficit hyperactivity disorder (ADHD) in both children and adults. The purpose of this paper is to integrate results of basic and clinical research with stimulants in order to enhance understanding of the neuropharmacological mechanisms of therapeutic action of these drugs. Neurochemical, neurophysiological and neuroimaging studies in animals reveal that the facilitative effects of stimulants on locomotor activity, reinforcement processes, and rate-dependency are mediated by dopaminergic effects at the nucleus accumbens, whereas effects on delayed responding and working memory are mediated by noradrenergic afferents from the locus coeruleus (LC) to prefrontal cortex (PFC). Enhancing effects of the stimulants on attention and stimulus control of behavior are mediated by both dopaminergic and noradrenergic systems. In humans, stimulants appear to exert rate-dependent effects on activity levels, and primarily enhance the motor output, rather than stimulus evaluation stages of information-processing. Similarity of response of individuals with and without ADHD suggests that the stimulants do not target a specific neurobiological deficit in ADHD, but rather exert compensatory effects. Integration of evidence from pre-clinical and clinical research suggests that these effects may involve stimulation of pre-synaptic inhibitory autoreceptors, resulting in reduced activity in dopaminergic and noradrenergic pathways. The implications of these and other hypotheses for further pre-clinical and clinical research are discussed.
Collapse
Affiliation(s)
- M V Solanto
- Division of Child and Adolescent Psychiatry, Schneider Children's Hospital, Long Island Jewish Medical Center, New Hyde Park, NY 11042, USA
| |
Collapse
|
39
|
L'hirondel M, Chéramy A, Godeheu G, Artaud F, Saiardi A, Borrelli E, Glowinski J. Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res 1998; 792:253-62. [PMID: 9593923 DOI: 10.1016/s0006-8993(98)00146-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mouse purified striatal synaptosomes were used to study the release of newly synthesised [3H]-dopamine ([3H]-DA) or of previously taken up [3H]-DA. Quinpirole (QP, 10 microM), a D2/D3 dopaminergic agonist, was found to reduce the release of newly synthesised [3H]-DA with a larger amplitude when 4-aminopyridine (100 microM) instead than veratridine (1 microM) or potassium (25 mM) was used to evoke DA release. Among the different D2/D3 dopaminergic agonists tested R(-)-propylnorapomorphine (NPA) and quinpirole were the most potent. These compounds reduced, in a concentration-dependent manner, the 4-aminopyridine-evoked release of [3H]-DA previously taken up by synaptosomes (50% maximal inhibition). In contrast, the D3 agonist PD-128,907 had little effect even when used at 100 nM. The QP (100 nM)-induced response was completely antagonised by sulpiride (1 microM). Strikingly, the NPA (100 nM) and PD-128,907 (100 nM)-evoked responses were completely suppressed in D2 receptor-deficient mice. This data strongly suggest that only D2 but not D3 receptors are involved in the autoreceptor-mediated inhibition of the evoked release of [3H]-DA. Interestingly, while amphetamine-induced release of [3H]-DA was not modified, a slight reduction of [3H]-DA efflux induced by the dopamine (DA) uptake inhibitor cocaine was observed in D2 receptor-deficient mice.
Collapse
Affiliation(s)
- M L'hirondel
- Chaire de Neuropharmacologie (INSERM U.114), Paris Cedex 75231, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 1998. [PMID: 9482807 DOI: 10.1523/jneurosci.18-06-02231.1998] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine (DA) autoreceptors expressed along the somatodendritic extent of midbrain DA neurons modulate impulse activity, whereas those expressed at DA nerve terminals regulate both DA synthesis and release. Considerable evidence has indicated that these DA autoreceptors are of the D2 subtype of DA receptors. However, many pharmacological studies have suggested an autoreceptor role for the DA D3 receptor. This possibility was tested with mice lacking the D3 receptor as a result of gene targeting. The basal firing rates of DA neurons within both the substantia nigra and ventral tegmental area were not different in D3 receptor mutant and wild-type mice. The putative D3 receptor-selective agonist R(+)-trans-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-(1)benzopyrano(4,3-b)-1,4-oxazin+ ++-9-ol (PD 128907) was equipotent at inhibiting the activity of both populations of midbrain DA neurons in the two groups of mice. In the gamma-butyrolactone (GBL) model of DA autoreceptor function, mutant and wild-type mice were identical with respect to striatal DA synthesis and its suppression by PD 128907. In vivo microdialysis studies of DA release in ventral striatum revealed higher basal levels of extracellular DA in mutant mice but similar inhibitory effects of PD 128907 in mutant and wild-type mice. These results suggest that the effects of PD 128907 on dopamine cell function reflect stimulation of D2 as opposed to D3 receptors. Although D3 receptors do not seem to be significantly involved in DA autoreceptor function, they may participate in postsynaptically activated short-loop feedback modulation of DA release.
Collapse
|
41
|
Koeltzow TE, Xu M, Cooper DC, Hu XT, Tonegawa S, Wolf ME, White FJ. Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 1998; 18:2231-8. [PMID: 9482807 PMCID: PMC6792939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dopamine (DA) autoreceptors expressed along the somatodendritic extent of midbrain DA neurons modulate impulse activity, whereas those expressed at DA nerve terminals regulate both DA synthesis and release. Considerable evidence has indicated that these DA autoreceptors are of the D2 subtype of DA receptors. However, many pharmacological studies have suggested an autoreceptor role for the DA D3 receptor. This possibility was tested with mice lacking the D3 receptor as a result of gene targeting. The basal firing rates of DA neurons within both the substantia nigra and ventral tegmental area were not different in D3 receptor mutant and wild-type mice. The putative D3 receptor-selective agonist R(+)-trans-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-(1)benzopyrano(4,3-b)-1,4-oxazin+ ++-9-ol (PD 128907) was equipotent at inhibiting the activity of both populations of midbrain DA neurons in the two groups of mice. In the gamma-butyrolactone (GBL) model of DA autoreceptor function, mutant and wild-type mice were identical with respect to striatal DA synthesis and its suppression by PD 128907. In vivo microdialysis studies of DA release in ventral striatum revealed higher basal levels of extracellular DA in mutant mice but similar inhibitory effects of PD 128907 in mutant and wild-type mice. These results suggest that the effects of PD 128907 on dopamine cell function reflect stimulation of D2 as opposed to D3 receptors. Although D3 receptors do not seem to be significantly involved in DA autoreceptor function, they may participate in postsynaptically activated short-loop feedback modulation of DA release.
Collapse
Affiliation(s)
- T E Koeltzow
- Department of Neuroscience, Finch University of Health Sciences, Chicago Medical School, North Chicago, Illinois 60064-3095, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res 1998; 779:58-74. [PMID: 9473588 DOI: 10.1016/s0006-8993(97)01078-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable attention has been given to the association of the D3 dopamine receptor subtype and limbic function based on the abundant localization of D3 receptor sites and mRNA expression in the islands of Calleja and nucleus accumbens in experimental animals. Though most human anatomical studies have focused on the role of D3 receptors in limited brain structures, detailed information about the overall anatomical organization of the D3 receptor in the human brain is still, however, not available. In the current study, we examined the anatomical distribution of D3 receptor mRNA expression at different levels of the human brain in whole hemisphere horizontal cryosections using in situ hybridization. This approach made it possible to establish for the first time the wide and heterogenous expression of the D3 receptor gene throughout the human brain. As expected, the most abundant D3 mRNA expression levels were found in the islands of Calleja and discrete cell cluster populations within the ventral striatum/nucleus accumbens region. High levels were also evident within the dentate gyrus and striate cortex. Low to moderate D3 mRNA expression levels were apparent in most brain areas including all other cortical regions (highest in the anterior cingulate/subcallosal gyrus), caudate nucleus, putamen, anterior and medial thalamic nucleus, mammillary body, amygdala, hippocampal CA region, lateral geniculate body, substantia nigra pars compacta, locus coeruleus, and raphe nuclei. While the current anatomical map of D3 receptor mRNA expression in the human brain does confirm previous reports that D3 receptors may play important roles in limbic-related functions such as emotion and cognition, the findings also suggest other non-limbic functions for D3 mRNA-expressing cell populations such as processing of motor and sensory information.
Collapse
Affiliation(s)
- M Suzuki
- Karolinska Institute, Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
43
|
Abstract
Converging insights into attention-deficit/hyperactivity disorder (ADHD) support the notion that ADHD is best characterized behaviorally as a disorder of self-regulation or executive functioning. Anatomic neuroimaging studies suggest that the relevant regulatory circuits include the prefrontal cortex and the basal ganglia, which are modulated by dopaminergic innervation from the midbrain and by stimulant medications. The emerging model proposed in this review encompasses a developmental perspective into this common condition.
Collapse
Affiliation(s)
- F X Castellanos
- Child Psychiatry Branch, National Institute of Mental Health (NIMH), Bethesda, MD, USA
| |
Collapse
|
44
|
Bischoff S, Barhanin J, Bettler B, Mulle C, Heinemann S. Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. J Comp Neurol 1997; 379:541-62. [PMID: 9067842 DOI: 10.1002/(sici)1096-9861(19970324)379:4<541::aid-cne6>3.0.co;2-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In an attempt to gain knowledge of the possible functions of kainate receptors, we have used in situ hybridization to examine the regional and cellular expression patterns of glutamate receptor subunits GluR5-7, KA1 and KA2 in the adult mouse basal ganglia, known to play a pivotal role in the translation of motivation into actions. Kainate receptor subunits were found to be differentially expressed in the circuitry forming the basal ganglia. They differ from each other in expression levels and their spatial localization. GluR6 appeared as the key subunit for the descending gamma-aminobutyric acid (GABA)ergic-glutamatergic pathways, with highest message levels in the caudate putamen, globus pallidus and subthalamic nucleus as well as in the nucleus accumbens and olfactory tubercle. GluR7 exhibited highest expression in the ascending nigrostriatal and mesolimbic dopaminergic neurons. GluR5 had a restricted distribution pattern, with high expression in the ventral pallidum, the islands of Calleja and pars compacta of the substantia nigra. KA2 was usually coexpressed with GluR6, although with a generally lower level of expression. Finally, KA1 mRNA was barely detectable in these neuronal circuits. These data suggest that kainate receptors in general may be involved in the functions associated with the basal ganglia, with a key role in the control of the central dopaminergic transmission. Thus, they might be implicated in the neurodegenerative and psychic disorders associated with an impairment of the basal ganglia.
Collapse
Affiliation(s)
- S Bischoff
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
45
|
Elsworth JD, Roth RH. Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson's disease. Exp Neurol 1997; 144:4-9. [PMID: 9126143 DOI: 10.1006/exnr.1996.6379] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This article gives a brief overview of the current understanding of the life cycle of the dopamine molecule, covering dopamine synthesis, storage, release, receptor and autoreceptor interactions, and reuptake. Special consideration is given to biochemical changes that occur in the nigrostriatal dopamine system in Parkinson's disease and how gene therapy may provide a new strategy for reversing parkinsonian biochemical deficits.
Collapse
Affiliation(s)
- J D Elsworth
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
46
|
Damask SP, Bovenkerk KA, de la Pena G, Hoversten KM, Peters DB, Valentine AM, Meador-Woodruff JH. Differential effects of clozapine and haloperidol on dopamine receptor mRNA expression in rat striatum and cortex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 41:241-9. [PMID: 8883957 DOI: 10.1016/0169-328x(96)00101-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The regulation of the dopamine (DA) receptors is of considerable interest, in part because treatment with antipsychotic drugs is known to upregulate striatal D2-like receptors. While previous studies have focused on the regulation of striatal DA receptors, less is known about the pharmacological regulation of cortical DA receptors. The purpose of this study was to examine the regulation of DA mRNA receptor expression in the cortex compared to the striatum following treatment with antipsychotic agents. Adult male Sprague-Dawley rats were injected daily with haloperidol (2 mg/kg/day), clozapine (20 mg/kg/day) or a control vehicle for a period of 14 days. Following treatment, brains were subjected to in situ hybridization for the mRNAs encoding the five dopamine receptors; only D1, D2, and D3 receptor mRNAs were detected in these regions. Haloperidol tended to either modestly upregulate or have no effect on dopamine receptor mRNAs detected in striatal structures, while clozapine generally downregulated these mRNAs. On the other hand, in the cortex, both drugs had striking effects on D1 and D2 mRNA levels. Cortical D1 mRNA was upregulated by haloperidol, but this effect was primarily restricted to cingulate cortex; clozapine also upregulated D1 mRNA, but primarily in parietal regions. Haloperidol downregulated D2 mRNA in the majority of cortical regions, but most dramatically in frontal and cingulate regions; clozapine typically upregulated this mRNA, but primarily in regions other than frontal and cingulate cortex. These results indicate that clozapine and haloperidol each have regionally-specific effects, and differentially regulate dopamine receptor mRNA expression in striatal and cortical regions of the rat brain.
Collapse
Affiliation(s)
- S P Damask
- Mental Health Research Institute, University of Michigan, Ann Arbor 48109-0720, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Demotes-Mainard J, Henry C, Jeantet Y, Arsaut J, Arnauld E. Postnatal ontogeny of dopamine D3 receptors in the mouse brain: autoradiographic evidence for a transient cortical expression. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0165-3806(96)80008-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Stockton ME, Rasmussen K. Olanzapine, a novel atypical antipsychotic, reverses d-amphetamine-induced inhibition of midbrain dopamine cells. Psychopharmacology (Berl) 1996; 124:50-6. [PMID: 8935800 DOI: 10.1007/bf02245605] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study compared the ability of the novel atypical antipsychotic olanzapine with that of clozapine to reverse the d-amphetamine-induced inhibition of substantia nigra (A9) and ventral tegmental area (A10) dopamine (DA) cells. Extracellular single-unit recordings were made from A9 and A10 DA cells in anesthetized rats. When administered alone, neither olanzapine nor clozapine altered the firing rate of A9 or A10 DA cells. Administration of d-amphetamine (0.5, 1.0 and 2.0 mg/kg, IV, decreased the firing rate of A9 and A10 DA cells. Olanzapine completely reversed the inhibitory effects of d-amphetamine on A10 DA cells (ED100 = 0.18 mg/kg, IV) and on A9 DA cells (ED100 = 1.0 mg/mg, IV). Clozapine completely reversed the inhibitory effects of d-amphetamine on A10 DA cells (ED100 = 3.8 mg/kg, IV), but only partially reversed the effects of d-amphetamine on A9 DA cells at the highest dose tested (8.0 mg/kg, IV). Thus, olanzapine, like clozapine, was more potent in reversing the effects of d-amphetamine on A10 than A9 DA cells. In addition, olanzapine was more potent than clozapine in the reversal of d-amphetamine effects on A9 and A10 DA cells. These results indicate that olanzapine and clozapine have similar effects on DA unit activity and predict that olanzapine should have an atypical antipsychotic profile in man.
Collapse
Affiliation(s)
- M E Stockton
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | |
Collapse
|
49
|
Haber SN, Ryoo H, Cox C, Lu W. Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 1995; 362:400-10. [PMID: 8576447 DOI: 10.1002/cne.903620308] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The midbrain dopamine system can be divided into two groups of cells based on chemical characteristics and connectivity. The dorsal tier neurons, which include the dorsal pars compacta and the ventral tegmental area, are calbindin-positive, and project to the shell of the nucleus accumbens. The ventral tier neurons are calbindin-negative and project to the sensorimotor striatum. This study examined the distribution of the mRNAs for the dopamine transporter molecule (DAT) and the D2 receptor in the midbrain of monkeys by using in situ hybridization. The distribution patterns were compared to that of tyrosine hydroxylase and calbindin immunohistochemistry. The results show that high levels of hybridization for DAT and the D2 receptor mRNA are found in the ventral tier, calbindin-negative neurons and relatively low levels are found in the dorsal, calbindin-positive tier. Within the dorsal tier, the dorsal substantia nigra pars compacta has the least amount of both messages. These results show that in monkeys, the ventral tegmental area and the dorsal pars compacta form a dorsal continuum of dopamine neurons which express lower levels of mRNA for DAT and D2 receptor than the ventral tier. DAT has been shown to be involved in the selective neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Different levels of DAT mRNA and calbindin may explain the differential effects of MPTP neurotoxicity.
Collapse
Affiliation(s)
- S N Haber
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642, USA
| | | | | | | |
Collapse
|