1
|
Kume H, Kazama K, Sato R, Sato Y. Possible Involvement of Lysophospholipids in Severe Asthma as Novel Lipid Mediators. Biomolecules 2025; 15:182. [PMID: 40001485 PMCID: PMC11852450 DOI: 10.3390/biom15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025] Open
Abstract
In severe asthma, symptoms are unstable despite intensive treatment based on high doses of inhaled corticosteroids and on-demand use of oral corticosteroids. Although, recently, various biological agents related to Th2 cytokines have been added to intensive controller medications for severe asthma, a significant progress has not been observed in the management for symptoms (dyspnea, wheezing and cough). Medical treatment focused on Type 2 inflammation is probably insufficient to maintain good long-term management for severe asthma. Airway eosinophilia and decreased reversibility in forced expiratory volume in 1 second (FEV1) are listed as major predictors for exacerbation-prone asthma. However, it is generally considered that asthma is complex and heterogeneous. It is necessary to establish precision medicine using treatable traits based on a multidimensional approach related to asthma. Since phospholipids generate lysophospholipids and arachidonic acid by phospholipases, lysophospholipids can be associated with the pathogenesis of this disease via action on smooth muscle, endothelium, and epithelium in the airways. Lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), and sphingosine 1-phosphate (S1P) are increased in bronchoalveolar fluid after allergen challenge. LPA, LPC, and S1P recruit eosinophils to the lungs and cause β2-adrenergic desensitization. LAP and S1P cause contraction and hyperresponsiveness in airway smooth muscle. Moreover, lysophosphatidylserine and S1P are associated with the allergic reaction related to IgE/FcεRI in mast cells. Lysophospholipid action is probably comprised of corticosteroid resistance and is independent of Type 2 inflammation, and may be corelated with oxidative stress. Lysophospholipids may be a novel molecular target in advancing the management and treatment of asthma. This review discusses the clinical relevance of lysophospholipids in asthma.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Infectious Diseases and Respiratory Medicine, Fukushima Medical University Aizu Medical Center, 21-2 Maeda, Tanisawa, Kawahigashi, Aizuwakamatsu 969-3492, Japan; (K.K.); (R.S.); (Y.S.)
| | | | | | | |
Collapse
|
2
|
Busnelli M, Manzini S, Colombo A, Franchi E, Lääperi M, Laaksonen R, Chiesa G. Effect of diet and genotype on the lipidome of mice with altered lipoprotein metabolism. iScience 2024; 27:111051. [PMID: 39568621 PMCID: PMC11577568 DOI: 10.1016/j.isci.2024.111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
The present study describes and compares the impact of PCSK9 and LDLR, two pivotal players in cholesterol metabolism, on the whole lipidome of plasma, liver and aorta in different dietary conditions. This issue is relevant, since several lipid species, circulating at very low concentrations, have the ability to impair lipid metabolism and promote atherosclerosis development. To this aim, wild-type, hypercholesterolemic Ldlr-KO, and hypocholesterolemic Pcsk9-KO mice were fed a standard chow or a Western-type diet up to 30 and 16 weeks of age, respectively. 42 lipids including cholesterol, cholesteryl esters, several sphingolipids, phospholipids, and lysophospholipids, accumulated uniquely in the atherosclerotic aorta of Western-type diet-fed Ldlr-KO mice. In addition, multiple organ/tissue comparisons allowed us to identify 16 lipids whose plasma and hepatic patterns mirrored the lipidome of the atherosclerotic aorta. These lipid species, belonging to cholesteryl esters, glucosyl/galactosylceramide, lactosylceramide, globotriaosylceramide, sphingomyelin, and phosphatidylcholine could be further investigated as circulating biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| | | | - Reijo Laaksonen
- Zora Biosciences Oy, 02150 Espoo, Finland
- Finnish Cardiovascular Research Center, University of Tampere, 33520 Tampere, Finland
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| |
Collapse
|
3
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
4
|
Peschel G, Krautbauer S, Weigand K, Grimm J, Höring M, Liebisch G, Müller M, Buechler C. Rising Lysophosphatidylcholine Levels Post-Hepatitis C Clearance. Int J Mol Sci 2024; 25:1198. [PMID: 38256273 PMCID: PMC10816147 DOI: 10.3390/ijms25021198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatitis C virus (HCV) infection alters lysophosphatidylcholine (LPC) metabolism, enhancing viral infectivity and replication. Direct-acting antivirals (DAAs) effectively treat HCV and rapidly normalize serum cholesterol. In serum, LPC species are primarily albumin-bound but are also present in lipoprotein particles. This study aims to assess the impact of HCV eradication on serum LPC species levels in patients infected with HCV. Therefore, 12 different LPC species were measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the sera of 178 patients with chronic HCV infections at baseline, and in 176 of these patients after therapy with DAAs. All LPC species increased at 4 and 12 weeks post-initiation of DAA therapy. The serum profiles of the LPC species were similar before and after the viral cure. Patients with HCV and liver cirrhosis exhibited lower serum levels of all LPC species, except LPC 16:1, both before and after DAA treatment. Percentages of LPC 18:1 (relative to the total LPC level) were higher, and % LPC 22:5 and 22:6 were lower in cirrhotic compared to non-cirrhotic patients at baseline and at the end of therapy. LPC species levels inversely correlated with the model of end-stage liver disease score and directly with baseline and post-therapy albumin levels. Receiver operating characteristic curve analysis indicated an area under the curve of 0.773 and 0.720 for % LPC 18:1 (relative to total LPC levels) for classifying fibrosis at baseline and post-therapy, respectively. In summary, HCV elimination was found to increase all LPC species and elevated LPC 18:1 relative to total LPC levels may have pathological significance in HCV-related liver cirrhosis.
Collapse
Affiliation(s)
- Georg Peschel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Internal Medicine, Klinikum Fürstenfeldbruck, 82256 Fürstenfeldbruck, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Kilian Weigand
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Gastroenterology, Gemeinschaftsklinikum Mittelrhein, 56073 Koblenz, Germany
| | - Jonathan Grimm
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| |
Collapse
|
5
|
Kume H, Harigane R, Rikimaru M. Involvement of Lysophospholipids in Pulmonary Vascular Functions and Diseases. Biomedicines 2024; 12:124. [PMID: 38255229 PMCID: PMC10813361 DOI: 10.3390/biomedicines12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular lysophospholipids (lysophosphatidic acid, lysophosphatidylcholine, sphingosine 1-phosphate, etc.), which are synthesized from phospholipids in the cell membrane, act as lipid mediators, and mediate various cellular responses in constituent cells in the respiratory system, such as contraction, proliferation, migration, and cytoskeletal organization. In addition to these effects, the expression of the adhesion molecules is enhanced by these extracellular lysophospholipids in pulmonary endothelial cells. These effects are exerted via specific G protein-coupled receptors. Rho, Ras, and phospholipase C (PLC) have been proven to be their signaling pathways, related to Ca2+ signaling due to Ca2+ dynamics and Ca2+ sensitization. Therefore, lysophospholipids probably induce pulmonary vascular remodeling through phenotype changes in smooth muscle cells, endothelial cells, and fibroblasts, likely resulting in acute respiratory distress syndrome due to vascular leak, pulmonary hypertension, and pulmonary fibrosis. Moreover, lysophospholipids induce the recruitment of inflammatory cells to the lungs via the enhancement of adhesion molecules in endothelial cells, potentially leading to the development of asthma. These results demonstrate that lysophospholipids may be novel therapeutic targets not only for injury, fibrosis, and hypertension in the lung, but also for asthma. In this review, we discuss the mechanisms of the effects of lysophospholipids on the respiratory system, and the possibility of precision medicine targeting lysophospholipids as treatable traits of these diseases.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Infectious Diseases and Respiratory Medicine, Fukushima Medical University Aizu Medical Center, 21-2 Maeda, Tanisawa, Kawahigashi, Aizuwakamatsu City 969-3492, Fukushima, Japan; (R.H.); (M.R.)
| | | | | |
Collapse
|
6
|
Gao X, Liu X, Wang Y, Wang T, Fang D, Hu K. Effects of Clostridium butyricum on Intestinal Microflora and Metabolism of Eriocheir sinensis. Int J Mol Sci 2023; 24:13784. [PMID: 37762084 PMCID: PMC10531170 DOI: 10.3390/ijms241813784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Clostridium butyricum, a new probiotic in recent years, can produce butyric acid and short-chain fatty acids. It has the characteristics of strong acid and alkali resistance, high temperature resistance, and strong resistance to most antibiotics, and has more advantages than other probiotics. However, the action mechanism of C. butyricum on Eriocheir sinensis is still unclear and needs further study. In this study, when C. butyricum was added to the basic diet, the number of living bacteria was 0, 1 × 106 and 1 × 108 CFU/g, respectively. The E. sinensis were randomly divided into three groups: (blank control group, experimental group 1 (1 × 106 CFU/g) and experimental group 2 (1 × 108 CFU/g)). They were fed an experimental diet for 28 days. The effects of C. butyricum on E. sinensis were studied by detecting the differences in non-specific immune indexes, intestinal microflora, and metabolites between serum and hepatopancreas. The results showed that C. butyricum could improve the antioxidant ability of E. sinensis serum and hepatopancreas, protect intestinal tissues, and promote the absorption of nutrients. At the same time, it can enhance the microbial diversity and richness of the E. sinensis gut flora. LC-MS metabolomics was used to detect the metabolism of intestinal flora. It was found that C. butyricum could up-regulate lysophosphatidylcholine in the intestine. Through the KEGG enrichment pathway, it was found that significantly different metabolites were mainly concentrated in six metabolic pathways. The purine metabolism and alanine, aspartate, and glutamate metabolism pathways showed a downward trend, indicating that the addition of C. butyricum to feed could reduce purine metabolism, promote the water-salt balance of the organism's cells, and reduce inflammation. In this study, it was found that the addition of certain concentrations of C. butyricum to feed could improve the antioxidant ability of E. sinensis, improve the intestinal flora environment, and promote the growth of beneficial bacteria in the gut. This can promote the body's metabolism, which is more conducive to its growth.
Collapse
Affiliation(s)
- Xiaoning Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Xueting Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yali Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Tianwei Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Di Fang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Kun Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 2020; 247:117443. [DOI: 10.1016/j.lfs.2020.117443] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|
8
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Ye RD, Pan Z, Kravchenko VV, Browning DD, Prossnitz ER. Gene transcription through activation of G-protein-coupled chemoattractant receptors. Gene Expr 2018; 5:205-15. [PMID: 8723387 PMCID: PMC6138026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Receptors for leukocyte chemoattractants, including chemokines, are traditionally considered to be responsible for the activation of special leukocyte functions such as chemotaxis, degranulation, and the release of superoxide anions. Recently, these G-protein-coupled serpentine receptors have been found to transduce signals leading to gene transcription and translation in leukocytes. Transcription factors, such as NF kappa B and AP-1, are activated upon stimulation of the cells with several chemoattractants at physiologically relevant concentrations. Activation of transcription factors through these receptors involves G-protein coupling and the activation of protein kinases. The underlying signaling pathways appear to be different from those utilized by TNF-alpha, a better characterized cytokine that induces the transcription of immediate-early genes. Chemoattractants stimulate the expression of several inflammatory cytokines and chemokines, which in turn may activate their respective receptors and initiate an autocrine regulatory mechanism for persistent cytokine and chemokine gene expression.
Collapse
Affiliation(s)
- R D Ye
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
10
|
Kulkarni YM, Dutta S, Iyer AKV, Wright CA, Ramesh V, Kaushik V, Semmes OJ, Azad N. A Lipidomics Approach to Identifying Key Lipid Species Involved in VEGF-Inhibitor Mediated Attenuation of Bleomycin-Induced Pulmonary Fibrosis. Proteomics Clin Appl 2018; 12:e1700086. [PMID: 29283216 DOI: 10.1002/prca.201700086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/14/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Poor molecular characterization of idiopathic pulmonary fibrosis (IPF) has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies and poor prognosis. Particularly, the role of lipid imbalance due to impaired lipid metabolism in the pathogenesis of IPF has been poorly studied. EXPERIMENTAL DESIGN The authors have used shotgun lipidomics in a bleomycin (BLM) mouse model of pulmonary fibrosis with vascular endothelial growth factor (VEGF)-inhibitor CBO-P11 as a therapeutic measure, to identify a comprehensive set of lipids that contribute to the pathogenesis of pulmonary fibrosis. RESULTS The authors report that attenuation of BLM-induced fibrotic response with CBO-P11 cotreatment is accompanied by a decrease in total lipid content and specific downregulation of lipids, which are upregulated in response to BLM treatment. CONCLUSION AND CLINICAL RELEVANCE Dysregulated lipids identified in this study hold the potential of being future biomarkers for IPF.
Collapse
Affiliation(s)
- Yogesh M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Sucharita Dutta
- Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA,, USA
| | - Anand Krishnan V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Clayton A Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Vani Ramesh
- Department of Obstetrics and Gynecology, The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Oliver John Semmes
- Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA,, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| |
Collapse
|
11
|
Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel) 2013; 5:1180-1201. [PMID: 23888518 PMCID: PMC3717776 DOI: 10.3390/toxins5061180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) belongs to the EGF family of growth factors. It is biologically active either as a molecule anchored to the membrane or as a soluble form released by proteolytic cleavage of the extracellular domain. HB-EGF is involved in relevant physiological and pathological processes spanning from proliferation and apoptosis to morphogenesis. We outline here the main activities of HB-EGF in connection with normal or neoplastic differentiative or proliferative events taking place primitively in the hematopoietic microenvironment.
Collapse
|
12
|
Sato A, Aoki J, Ebina K. Synthetic biotinylated peptide compound, BP21, specifically recognizes lysophosphatidylcholine micelles. Chem Biol Drug Des 2012; 80:417-25. [PMID: 22591064 DOI: 10.1111/j.1747-0285.2012.01413.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lysophosphatidylcholine, a major phospholipid component of oxidized low-density lipoprotein, is implicated in many inflammatory diseases, including atherosclerosis. We previously reported that Asp-hemolysin-related synthetic peptide (P21) composed of 21 amino acid residues markedly inhibits the bioactivities of oxidized low-density lipoprotein and lysophosphatidylcholine, by directly binding to oxidized low-density lipoprotein and lysophosphatidylcholine. Here, to clarify whether P21 specifically binds to lysophosphatidylcholine and what forms of lysophosphatidylcholine with which P21 interact, we investigated the interaction between P21 containing two tryptophan residues and lysophosphatidylcholine by using fluorescence spectroscopy, polyacrylamide gel electrophoresis, and surface plasmon resonance. From tryptophan fluorescence measurements, N-terminally biotinylated P21 specifically interacted with lysophosphatidylcholine, at concentrations exceeding the critical micelle concentration. From tryptophan fluorescence quenching, the tryptophan residues in biotinylated P21 in the presence of lysophosphatidylcholine were mostly exposed on the outer side of the peptide. From polyacrylamide gel electrophoresis and surface plasmon resonance, bound to 1-palmitoyl-lysophosphatidylcholine at concentrations higher than 100 μm, ensuring stable micelles. These results indicate that biotinylated P21 specifically recognizes lysophosphatidylcholine micelles. Further study of the interaction between biotinylated P21 and lysophosphatidylcholine micelles may provide important information for the prevention and treatment for many inflammatory diseases caused by lysophosphatidylcholine micelles.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, Fukushima, Japan.
| | | | | |
Collapse
|
13
|
Flamant M, Bollee G, Henique C, Tharaux PL. Epidermal growth factor: a new therapeutic target in glomerular disease. Nephrol Dial Transplant 2012; 27:1297-304. [DOI: 10.1093/ndt/gfs030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
14
|
Cho WH, Park T, Park YY, Huh JW, Lim CM, Koh Y, Song DK, Hong SB. Clinical significance of enzymatic lysophosphatidylcholine (LPC) assay data in patients with sepsis. Eur J Clin Microbiol Infect Dis 2011; 31:1805-10. [PMID: 22167258 DOI: 10.1007/s10096-011-1505-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/23/2011] [Indexed: 01/06/2023]
Abstract
Lysophosphatidylcholine (LPC) has been suggested to serve as a useful prognostic marker for sepsis. However, existing LPC assays are complicated, time-consuming, and of limited application in real clinical situations. Thus, we investigated the serum LPC levels in sepsis patients using an enzymatic assay and analyzed the correlations between the serum LPC concentration and clinical characteristics. We prospectively collected blood samples from suspected sepsis patients, commencing on day 1 of sepsis. We analyzed all samples using an enzymatic assay. Additionally, we analyzed the serum LPC concentrations in a control group of 21 healthy blood donors. A total of 105 patients who fulfilled the sepsis criteria were included. The mean serum LPC concentration was 43.49 ± 33.09 μmol/L in sepsis patients, which was much lower than that of 21 healthy controls (234.68 ± 30.33 μmol/L, p<0.001). Bacteremic sepsis was associated with a lower serum LPC concentration than non-bacteremic sepsis (34.8 ± 26.85 vs. 49.05 ± 35.63 μmol/L, p<0.05). No difference in serum LPC concentration was evident between survivors and non-survivors. The serum LPC concentration tended to decrease with the severity of sepsis. The day 1 serum LPC concentration was decreased in patients with sepsis, especially when bacteremia was present. However, the serum LPC level did not correlate with disease severity and did not predict mortality from sepsis.
Collapse
Affiliation(s)
- W H Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
El Zein N, D'Hondt S, Sariban E. Crosstalks between the receptors tyrosine kinase EGFR and TrkA and the GPCR, FPR, in human monocytes are essential for receptors-mediated cell activation. Cell Signal 2010; 22:1437-47. [PMID: 20566383 DOI: 10.1016/j.cellsig.2010.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/18/2010] [Indexed: 12/22/2022]
Abstract
The G-protein coupled receptor (GPCR) fMLP receptor (FPR) and the two receptors tyrosine kinase (RTK), the nerve growth factor (NGF) receptor TrkA and the epidermal growth factor (EGF) receptor (EGFR) are involved in reactive oxygen species (ROS), matrix metalloproteinase-9 (MMP-9) production and CD11b membrane integrin upregulation. We show that in monocytes the three receptors crosstalk each other to modulate these pro-inflammatory mediators. Tyrphostin AG1478, the EGFR inhibitor, inhibits fMLP and NGF-associated ROS production, fMLP-associated CD11b upregulation and NGF-induced TrkA phosphorylation; K252a, the NGF receptor inhibitor, inhibits fMLP or EGF-associated ROS production, CD11b expression and EGF-induced EGFR phosphorylation; cyclosporine H, the FPR inhibitor inhibits EGF or NGF-associated ROS production, EGF-associated CD11b upregulation and prevents EGFR and TrkA phosphorylation by their respective ligand EGF and NGF. In response to fMLP, TrkA phosphorylation is inhibited by the EGFR inhibitor while EGFR phosphorylation is inhibited by the TrkA inhibitor. Receptor crosstalks are Src and ERK dependent. Down-regulation of each receptor by specific siRNA suppresses the ability of the two other receptors to promote ligand-mediated ERK phosphorylation and pro-inflammatory activities including ROS, MMP-9 production and CD11b upregulation. Thus, in monocytes GPCR ligands' activity involves activation of RTK while RTK-ligands activity engages GPCR-signalling molecules.
Collapse
Affiliation(s)
- Nabil El Zein
- Pediatric Oncology Laboratory, 1020 Brussels, Belgium.
| | | | | |
Collapse
|
16
|
Tan M, Hao F, Xu X, Chisolm GM, Cui MZ. Lysophosphatidylcholine activates a novel PKD2-mediated signaling pathway that controls monocyte migration. Arterioscler Thromb Vasc Biol 2009; 29:1376-82. [PMID: 19520973 PMCID: PMC3073140 DOI: 10.1161/atvbaha.109.191585] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Monocyte activation and migration are crucial events in the development of atherosclerosis and other inflammatory diseases. This study examined the role of protein kinase D (PKD) in monocyte migration. Method and Results- PKD2 is the predominant isoform of PKD expressed in monocytic THP-1 cells and primary human monocytes. Lysophosphatidylcholine (lysoPC), a prominent component of oxidized low-density lipoprotein, induces rapid and marked PKD activation in these cells. Using multiple approaches, including dominant-negative mutants and small interfering RNA knock-down, we found that lysoPC-induced PKD2 activation was required for the activation of both ERK and p38 MAPK. p38 MAPK mediation of lysoPC-induced monocytic cell migration was reported previously; our results reveal that the lysoPC-induced PKD2-p38 pathway controls monocyte migration. CONCLUSIONS This study provides the first evidence that (1) lysoPC activates PKD, (2) PKD2 has a novel role in p38 activation, and (3) the PKD2-activated p38 pathway is responsible for lysoPC-induced migration of THP-1 cells and human monocytes. Thus, PKD is a novel and functional intracellular regulator in both lysoPC signaling and monocyte migration. These results suggest a new role for PKD2 in the development of atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Mingqi Tan
- Department of Pathobiology, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
17
|
Kerachian MA, Cournoyer D, Harvey EJ, Chow TY, Neagoe PE, Sirois MG, Séguin C. Effect of high-dose dexamethasone on endothelial haemostatic gene expression and neutrophil adhesion. J Steroid Biochem Mol Biol 2009; 116:127-33. [PMID: 19442730 DOI: 10.1016/j.jsbmb.2009.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/22/2009] [Accepted: 05/04/2009] [Indexed: 12/25/2022]
Abstract
Glucocorticoid usage especially at high doses is complicated by adverse outcomes such as thrombotic events or acceleration of inflammatory response in conditions like myeloma and osteonecrosis. The mechanism(s) through which high-dose dexamethasone (HDDEXA) causes vascular injury remains unclear. We hypothesized that HDDEXA sensitizes endothelial cells (EC) to the effect of inflammatory mediators and modulates endothelial haemostatic gene expression and leukocyte adhesion. Human umbilical vein endothelial cells (HUVECs) were grown in the absence or presence of HDDEXA and were also tested in the presence or absence of tumor necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS) or thrombin. mRNA and protein expression were measured and the functional consequences of HDDEXA preconditioning on cell adhesion molecules (CAM) were determined by agonist-mediated leukocyte adhesion assay. Treatment with HDDEXA resulted in an increased induction of CAM, tissue factor and von Willebrand factor, while down-regulating thrombomodulin and urokinase. HDDEXA alone had no effect on adhesion but resulted in enhanced TNF-alpha- and LPS-mediated adhesion of neutrophils. Together, these findings suggest that HDDEXA sensitizes HUVEC to the effect of inflammatory mediators and induces a pro-adhesive environment in primary EC. This finding is of importance when glucocorticoid usage is required at therapeutic high doses in patients with or without thrombotic risk factors.
Collapse
|
18
|
Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis 2009; 208:10-8. [PMID: 19570538 DOI: 10.1016/j.atherosclerosis.2009.05.029] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 04/27/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Lysophosphatidylcholine (LPC) is a major plasma lipid that has been recognized as an important cell signalling molecule produced under physiological conditions by the action of phospholipase A(2) on phosphatidylcholine. LPC transports glycerophospholipid components such as fatty acids, phosphatidylglycerol and choline between tissues. LPC is a ligand for specific G protein-coupled signalling receptors and activates several second messengers. LPC is also a major phospholipid component of oxidized low-density lipoproteins (Ox-LDL) and is implicated as a critical factor in the atherogenic activity of Ox-LDL. Hence, LPC plays an important role in atherosclerosis and acute and chronic inflammation. In this review we focus in some detail on LPC function, biochemical pathways, sources and signal-transduction system. Moreover, we outline the detection of LPC by mass spectrometry which is currently the best method for accurate and simultaneous analysis of each individual LPC species and reveal the pathophysiological implication of LPC which makes it an interesting target for biomarker and drug development regarding atherosclerosis and cardiovascular disorders.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
19
|
Tanyi J, Rigó Jr. J. Lysophosphatidic acid as a potential target for treatment and molecular diagnosis of epithelial ovarian cancers. Orv Hetil 2009; 150:1109-18. [DOI: 10.1556/oh.2009.28631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Az ováriumtumorok mortalitása a legmagasabb a nőgyógyászati tumorok között. Ez egyrészt a késői diagnózisnak, másrészt a hatásos terápia hiányának következménye. Az ováriumtumorok karcinogenezise és metasztázisképzése egy komplikált genetikai, molekuláris és biokémiai folyamatsor eredménye. A lizofoszfátsav (LPA) termelésének, receptorstátusának és szignáltranszdukciós útvonalának abnormalitása gyakran megtalálható az ováriumtumorokban, ami azt sejteti, hogy az LPA nagyon fontos szerepet játszik ennek a betegségnek a kialakulásában és patofiziológiájában. Így jogosan feltételezhetjük, hogy az LPA-szignálkaszkád számos célpontot szolgáltat a molekuláris kezelési módok kialakítására és jó példát mutat arra, hogyan lehet új diagnosztikus és terápiás módszereket kialakítani egyes betegségek ellen. Az LPA-t lebontó és termelő enzimcsaládoknak csak a közelmúltban történt felfedezése és a receptorspecifikus molekulák kifejlesztése új fejezetet nyithat e potenciálisan halálos betegség kezelésében. Ebben az összefoglaló tanulmányban ismertetjük, hogy a tumorsejtekben lévő LPA-t lebontó enzimek aktivitása csökkent, és ez hozzájárul a tumor progressziójához. Ugyanezen enzimek mesterségesen létrehozott, fokozott aktivitása csökkenti a tumorsejtek növekedését és elősegíti a fiziológiás viszonyok helyreállását. Bemutatjuk azokat az irodalmi adatokat, amelyek egyértelműen bizonyítják, hogy a lipidfoszfát-foszfatáz enzimek hatásukat a sejten kívüli LPA lebontásával érik el. Minthogy ez a lebontás extracellulárisan történik, ez megmagyarázza a „bystander-effect” előfordulását, amit szintén ismertetünk. Az LPA-lebontás és -termelés enzimjei, illetve az LPA-t kötő receptorok kitűnő célpontok új molekuláris terápia kidolgozására. A különböző LPA-izoformák és más lizofoszfolipidek szintváltozásainak korai detektálása segíthet a tumor korai diagnosztizálásában, illetve később a kezelés hatékonyságának követésében. A közelmúlt jelentős LPA-szignálkaszkáddal kapcsolatos kutatási eredményei azt sejtetik, hogy azok jelentős szerepet fognak játszani ennek a még mindig halálos betegségnek a kezelésében, de további kutatások szükségesek a részletek pontos megértéséhez.
Collapse
Affiliation(s)
- János Tanyi
- 1 University of Pennsylvania Health System Department of Gynecologic Oncology Philadelphia
| | - János Rigó Jr.
- 2 Semmelweis Egyetem, Általános Orvostudományi Kar I. Szülészeti és Nőgyógyászati Klinika Budapest Baross u. 27. 1088
| |
Collapse
|
20
|
Ali M, Madjid M. Lipoprotein-associated phospholipase A2: a cardiovascular risk predictor and a potential therapeutic target. Future Cardiol 2009; 5:159-73. [DOI: 10.2217/14796678.5.2.159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lipoprotein-associated phospholipase A2 (Lp-PLA2), present in the circulation and in atherosclerotic plaque, is an inflammatory marker with potential use as a predictor of cardiovascular risk and as a therapeutic target. Although Lp-PLA2 is associated with both LDL and HDL, it is important to determine whether Lp-PLA2 has a predominantly pro- or anti-atherogenic effect. Increasing evidence suggests a proatherogenic role for Lp-PLA2. ©iEpidemiologic and clinical evidence suggests Lp-PLA2 is an independent predictor of risk and may be superior to other inflammatory markers owing to its specificity and minimal biovariation. Lp-PLA2 inhibitors currently being investigated in clinical trials are promising novel anti-inflammatory agents with a specificity for the vascular bed and a potential for decreasing plaque vulnerability.
Collapse
Affiliation(s)
- Muzammil Ali
- Texas Heart Institute, 6770 Bertner Ave, MC 2-255, Houston, TX 77030, USA
| | - Mohammad Madjid
- Texas Heart Institute at St Luke’s Episcopal Hospital, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
21
|
|
22
|
Lysophosphatidylcholine up-regulates human endothelial nitric oxide synthase gene transactivity by c-Jun N-terminal kinase signalling pathway. J Cell Mol Med 2008; 13:1136-48. [PMID: 18624763 PMCID: PMC4496109 DOI: 10.1111/j.1582-4934.2008.00394.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway.
Collapse
|
23
|
Bassa BV, Noh JW, Ganji SH, Shin MK, Roh DD, Kamanna VS. Lysophosphatidylcholine stimulates EGF receptor activation and mesangial cell proliferation: regulatory role of Src and PKC. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1364-71. [PMID: 17950662 DOI: 10.1016/j.bbalip.2007.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 09/06/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
Abstract
Lysophosphatidylcholine (LPC), a major component of oxidized-low density lipoproteins (ox-LDL), modulates various pathobiological processes involved in vascular and glomerular diseases. Although several studies have shown increased plasma concentrations of ox-LDL as well as LPC in patients with renal disease, the role of LPC in mesangial cell proliferation and associated signaling mechanisms are not clearly understood. In this study, we have shown that LPC induced the phosphorylation of epidermal growth factor receptor (EGFR), as well as the p42/44 MAP kinases. LPC activated Src-kinase and protein kinase C (PKC), and both Src kinase inhibitor PP-2 and PKC inhibitor inhibited the activation of EGFR by LPC. LPC (5-25 microM) stimulated human mesangial cell proliferation by 4-5 fold. Preincubation of mesangial cells with the Src inhibitor (PP-2), or PKC inhibitor (bisindolylmaleimide GF109203-X), or EGF receptor kinase inhibitor (AG1478), or MEK inhibitor (PD98059) significantly inhibited LPC-mediated mesangial cell proliferation. The data suggest that LPC, by activating Src and PKC signaling pathways, stimulates EGF receptor transactivation and down-stream MAP kinase signaling resulting in mesangial hypercellularity, which is a characteristic feature of diverse renal diseases.
Collapse
Affiliation(s)
- Babu V Bassa
- Medical Research Service, Department of Veterans Affairs Healthcare System, Long Beach, CA 90822, USA
| | | | | | | | | | | |
Collapse
|
24
|
Iwase M, Sonoki K, Sasaki N, Ohdo S, Higuchi S, Hattori H, Iida M. Lysophosphatidylcholine contents in plasma LDL in patients with type 2 diabetes mellitus: relation with lipoprotein-associated phospholipase A2 and effects of simvastatin treatment. Atherosclerosis 2007; 196:931-6. [PMID: 17350631 DOI: 10.1016/j.atherosclerosis.2007.02.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 02/08/2007] [Accepted: 02/13/2007] [Indexed: 11/23/2022]
Abstract
Increased lipoprotein-associated PLA(2) (Lp-PLA(2)) predicts the future development of cardiovascular diseases. Although lysophosphatidylcholine (lyso-PC) produced by Lp-PLA(2) may contribute to its proatherogenic activity, the relation between Lp-PLA(2) and lyso-PC content in LDL remains unclarified. We determined the correlation between lyso-PC content in LDL and serum concentrations of Lp-PLA(2), chemokines, oxidative and inflammatory markers and microvascular complications in 32 patients with type 2 diabetes mellitus free of macroangiopathy. We also investigated the effect of simvastatin treatment on Lp-PLA(2) and lyso-PC content in 26 hypercholesterolemic patients with type 2 diabetes mellitus. 1-palmitoyl lyso-PC was measured using electrospray ionization-liquid chromatography/mass spectrometry and Lp-PLA(2) by ELISA. Lyso-PC content in LDL was significantly higher in diabetic patients than in control healthy subjects. Lyso-PC content correlated significantly with Lp-PLA(2) levels (r=0.56, p<0.0001), and was significantly higher in patients with preproliferative or proliferative retinopathy and those with nephropathy than the control. Simvastatin treatment reduced serum Lp-PLA(2) and lyso-PC content in LDL. Our findings suggest that Lp-PLA(2) has the proatherogenic activity by contributing to the production of lyso-PC in circulating LDL.
Collapse
Affiliation(s)
- Masanori Iwase
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Oestvang J, Johansen B. PhospholipaseA2: A key regulator of inflammatory signalling and a connector to fibrosis development in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1309-16. [PMID: 16904370 DOI: 10.1016/j.bbalip.2006.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 06/23/2006] [Accepted: 06/24/2006] [Indexed: 11/23/2022]
Abstract
Atherosclerosis is a progressive inflammatory disease that takes place in the intima of the arterial wall. It is characterized by activation of endothelial cells, proliferation of smooth muscle cells and macrophages, accumulation of lipoproteins, deposition of extracellular matrix components and enhanced lipolytic enzyme activity. Phospholipase A(2) (PLA(2)) has been postulated to play an important role in the inflammatory process of atherosclerosis, but its molecular mechanism is uncertain. The secretory PLA(2) is expressed at increased levels in an atherosclerotic plaque and may hydrolyze low-density lipoproteins (LDL). This action promotes the production of pro-inflammatory lipids such as lysophospholipids, unsaturated fatty acids and eicosanoids. The current review highlights recent findings on how LDL-derived lipid mediators, generated by sPLA_2 modification of LDL, regulate pro-inflammatory activation and intracellular signaling in macrophages. Moreover, the review discusses how PLA_2 enzymes regulate signalling that promotes collagen accumulation and fibrotic plaque development. PLA_2 could therefore function as a connector between inflammation and fibrosis, the latter being an endpoint of chronic inflammation.
Collapse
Affiliation(s)
- Janne Oestvang
- Department of Biology, Section for Molecular Biology and Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | |
Collapse
|
26
|
Karasawa K. Clinical aspects of plasma platelet-activating factor-acetylhydrolase. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1359-72. [PMID: 17049457 DOI: 10.1016/j.bbalip.2006.06.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 06/15/2006] [Indexed: 11/25/2022]
Abstract
Plasma platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), which is characterized by tight association with plasma lipoproteins, degrades not only PAF but also phospholipids with oxidatively modified short fatty acyl chain esterified at the sn-2 position. Production and accumulation of these phospholipids are associated with the onset of inflammatory diseases and preventive role of this enzyme has been evidenced by many recent studies including prevalence of the genetic deficiency of the enzyme in the patients and therapeutic effects of treatment with recombinant protein or gene transfer. With respect to the atherosclerosis, however, it is not fully cleared whether this enzyme plays an anti-atherogenic role or pro-atherogenic role because plasma PAF-AH also might produce lysophosphatidylcholine (LysoPC) and oxidatively modified nonesterified fatty acids with potent pro-inflammatory and pro-atherogenic bioactivities. These dual roles of plasma PAF-AH might be regulated by the altered distribution of the enzyme between low density lipoprotein (LDL) and high density lipoprotein (HDL) particles because HDL-associated enzymes are considered to contribute to the protection of LDL from oxidative modification. This review focuses on the recent findings which address the role of this enzyme in the human diseases especially including asthma, septic shock and atherosclerosis.
Collapse
Affiliation(s)
- Ken Karasawa
- Laboratory of Molecular Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 199-0195, Japan.
| |
Collapse
|
27
|
Hou M, Xia M, Zhu H, Wang Q, Li Y, Xiao Y, Zhao T, Tang Z, Ma J, Ling W. Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells via PPARγ-LXRα-ABCA1-dependent pathway associated with apoE. Cell Biochem Funct 2006; 25:33-44. [PMID: 16981222 DOI: 10.1002/cbf.1374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Formation of macrophage-derived foam cells is a hallmark in earlier stages of atherosclerosis (AS). Increased cholesterol efflux from macrophage foam cells promote atherosclerotic regression. In the present study, lysophosphatidylcholine (LPC) promoting cholesterol efflux from macrophage foam cells was observed, and the mechanism underlying the action was investigated. Macrophage foam cells from mice were incubated with different concentrations of LPC (10, 20, 40, 80 microM), and the free cholesterol in medium increased but total intracellular cholesterol decreased. At the same time, the expression of PPARgamma, LXRalpha, ABCA1 was enhanced in a dose-dependent manner. The treatment of macrophage foam cells with 40 microM LPC for 12, 24 and 48 h promoted cellular cholesterol efflux in a time-dependent manner, meanwhile expression of PPARgamma, LXRalpha, ABCA1 was also raised respectively. Addition of different specific inhibitors of PPARgamma (GW9662), LXRalpha (GGPP), ABCA1 (DIDS) to the foam cells significantly suppressed LPC-induced cholesterol efflux. Also treatment with specific inhibitors of PPARgamma or LXRalpha decreased ABCA1 mRNA and protein expressions. LPC (40 microM)-induced cholesterol efflux was significantly lower in macrophage foam cells from apoE deficient mice than from normal C57BL/6J mice. In contrast, 10 microg apoAI-induced cholesterol efflux from foam cells remained in apoE deficient mice. The present results indicate that LPC promotes cholesterol efflux from macrophage foam cells via a PPARgamma-LXRalpha-ABCA1-dependent pathway. Furthermore, apoE may be involved in this process.
Collapse
Affiliation(s)
- Mengjun Hou
- School of Public Health, Zhongshan University (Northern Campus), Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dreux AC, Lamb DJ, Modjtahedi H, Ferns GAA. The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis 2005; 186:38-53. [PMID: 16076471 DOI: 10.1016/j.atherosclerosis.2005.06.038] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 12/12/2022]
Abstract
The epidermal growth factor receptor is a member of type-I growth factor receptor family with tyrosine kinase activity that is activated following the binding of multiple cognate ligands. Several members of the EGF family of ligands are expressed by cells involved in atherogenesis. EGF receptor mediated processes have been well characterised within epithelial, smooth muscle and tumour cell lines in vitro, and the EGF receptor has been identified immunocytochemically on intimal smooth muscle cells within atherosclerotic plaques. There is also limited evidence for the expression of the EGF receptor family on leukocytes, although their function has yet to be clarified. In this review, we will discuss the biological functions of this receptor and its ligands and their potential to modulate the function of cells involved in the atherosclerotic process.
Collapse
Affiliation(s)
- Alys C Dreux
- Centre for Clinical Science & Measurement, School of Biomedical & Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | |
Collapse
|
29
|
Chait A, Han CY, Oram JF, Heinecke JW. Thematic review series: The Immune System and Atherogenesis. Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease? J Lipid Res 2005; 46:389-403. [PMID: 15722558 DOI: 10.1194/jlr.r400017-jlr200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In humans, a chronically increased circulating level of C-reactive protein (CRP), a positive acute-phase reactant, is an independent risk factor for cardiovascular disease. This observation has led to considerable interest in the role of inflammatory proteins in atherosclerosis. In this review, after discussing CRP, we focus on the potential role in the pathogenesis of human vascular disease of inflammation-induced proteins that are carried by lipoproteins. Serum amyloid A (SAA) is transported predominantly on HDL, and levels of this protein increase markedly during acute and chronic inflammation in both animals and humans. Increased SAA levels predict the risk of cardiovascular disease in humans. Recent animal studies support the proposal that SAA plays a role in atherogenesis. Evidence is accruing that secretory phospholipase A(2), an HDL-associated protein, and platelet-activating factor acetylhydrolase, a protein associated predominantly with LDL in humans and HDL in mice, might also play roles both as markers and mediators of human atherosclerosis. In contrast to positive acute-phase proteins, which increase in abundance during inflammation, negative acute-phase proteins have received less attention. Apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, decreases during inflammation. Recent studies also indicate that HDL is oxidized by myeloperoxidase in patients with established atherosclerosis. These alterations may limit the ability of apoA-I to participate in reverse cholesterol transport. Paraoxonase-1 (PON1), another HDL-associated protein, also decreases during inflammation. PON1 is atheroprotective in animal models of hypercholesterolemia. Controversy over its utility as a marker of human atherosclerosis may reflect the fact that enzyme activity rather than blood level (or genotype) is the major determinant of cardiovascular risk. Thus, multiple lipoprotein-associated proteins that change in concentration during acute and chronic inflammation may serve as markers of cardiovascular disease. In future studies, it will be important to determine whether these proteins play a causal role in atherogenesis.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
30
|
Mukai E, Kume N, Hayashida K, Minami M, Yamada Y, Seino Y, Kita T. Heparin-binding EGF-like growth factor induces expression of lectin-like oxidized LDL receptor-1 in vascular smooth muscle cells. Atherosclerosis 2004; 176:289-96. [PMID: 15380451 DOI: 10.1016/j.atherosclerosis.2004.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 10/23/2003] [Accepted: 03/30/2004] [Indexed: 11/15/2022]
Abstract
Receptor-mediated endocytosis of oxidized LDL (Ox-LDL) has been implicated in lipid accumulation and vascular cell dysfunction. Lectin-like Ox-LDL receptor-1 (LOX-1) is highly inducible by proinflammatory cytokines, as well as angiotensin II and Ox-LDL in vitro. LOX-1 is expressed in macrophages and smooth muscle cells accumulated in the intima of advanced atherosclerotic plaques in vivo. Here we show that heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent mitogen for vascular smooth muscle cells, induces LOX-1 expression in cultured bovine aortic smooth muscle cells. HB-EGF (1-100 ng/ml) induced LOX-1 expression, which was peaked between 8 and 16 h after HB-EGF stimulation. HB-EGF-induced expression of LOX-1 was suppressed by ZD1839, an inhibitor of EGF receptor phosphorylation. Both MEK and p38 mitogen-activated protein kinase (MAPK) inhibitors significantly blocked LOX-1 upregulation induced by HB-EGF. Phosphatidylinositol 3-kinase (PI3K) inhibitors also blocked HB-EGF-induced LOX-1 expression. HB-EGF induced phosphorylation of ERK, p38 MAPK and Akt, which were suppressed by ZD1839. Upregulated expression of LOX-1 was associated with enhanced uptake of DiI-labeled Ox-LDL in smooth muscle cells. Taken together, HB-EGF can also act as an inducer of LOX-1 expression and play an integral role in foam cell transformation, cellular dysfunction, and proliferation of smooth muscle cells in atherogenesis.
Collapse
Affiliation(s)
- Eri Mukai
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Han KH, Hong KH, Ko J, Rhee KS, Hong MK, Kim JJ, Kim YH, Park SJ. Lysophosphatidylcholine up-regulates CXCR4 chemokine receptor expression in human CD4 T cells. J Leukoc Biol 2004; 76:195-202. [PMID: 15178707 DOI: 10.1189/jlb.1103563] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Oxidized low-density lipoprotein (OxLDL) is an inflammatory modulator in the atherosclerotic plaque. We examined the effect of lysophosphatidylcholine (lysoPC), a main phospholipid component of OxLDL, on inflammatory responses in human CD4 T cells. We found that lysoPC dose- and time-dependently increased expression of CXCR4, the chemokine receptor on CD4 T cells. This increase was inhibited by caffeic acid phenethyl ester or SN50, nuclear factor-kappaB inhibitors, and also by suppression of G2A expression, the specific receptor for lysoPC, using antisense oligonucleotide. lysoPC enhanced CD4 T cell chemotaxis in response to stromal cell-derived factor-1 (SDF-1), the exclusive ligand for CXCR4. lysoPC also enhanced SDF-1-stimulated production of inflammatory cytokines interleukin-2 and interferon-gamma by CD4 T cells activated by anti-CD3 immunoglobulin G. In conclusion, this study demonstrates that lysoPC directly modulates inflammatory responses in human CD4 T cells. The data suggest that the presence of lysoPC and SDF-1 in atherosclerotic lesions may trigger inflammatory responses mediated by CD4 T cells, which may play an important role in progression of atherosclerosis.
Collapse
Affiliation(s)
- Ki Hoon Han
- College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong, Songpa-gu 138-736, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yan JJ, Jung JS, Lee JE, Lee J, Huh SO, Kim HS, Jung KC, Cho JY, Nam JS, Suh HW, Kim YH, Song DK. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med 2004; 10:161-7. [PMID: 14716308 DOI: 10.1038/nm989] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 12/15/2003] [Indexed: 12/13/2022]
Abstract
Sepsis represents a major cause of death in intensive care units. Here we show that administration of lysophosphatidylcholine (LPC), an endogenous lysophospholipid, protected mice against lethality after cecal ligation and puncture (CLP) or intraperitoneal injection of Escherichia coli. In vivo treatment with LPC markedly enhanced clearance of intraperitoneal bacteria and blocked CLP-induced deactivation of neutrophils. In vitro, LPC increased bactericidal activity of neutrophils, but not macrophages, by enhancing H(2)O(2) production in neutrophils that ingested E. coli. Incubation with an antibody to the LPC receptor, G2A, inhibited LPC-induced protection from CLP lethality and inhibited the effects of LPC in neutrophils. G2A-specific antibody also blocked the inhibitory effects of LPC on certain actions of lipopolysaccharides (LPS), including lethality and the release of tumor necrosis factor-alpha (TNF-alpha) from neutrophils. These results suggest that LPC can effectively prevent and treat sepsis and microbial infections.
Collapse
Affiliation(s)
- Ji-Jing Yan
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, 1 Okchon-dong, Chunchon, Gangwon-do, 200-702, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O'Halloran EK, Oesterle EC. Characterization of leukocyte subtypes in chicken inner ear sensory epithelia. J Comp Neurol 2004; 475:340-60. [PMID: 15221950 DOI: 10.1002/cne.20162] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human hearing and balance require intact inner ear sensory hair cells, which transduce mechanical stimuli into electrical signals that are transmitted to the brain. Loss of hair cells after birth in mammals is irreversible, whereas birds are able to regenerate hair cells after insult and demonstrate ongoing hair cell production in the vestibular epithelia. Leukocytes reside in undamaged sensory epithelia of the avian inner ear and increase in number after trauma, prior to the proliferation of hair cell progenitors. It has been hypothesized that leukocyte-produced growth factors or cytokines may be involved in triggering hair cell regeneration. Little is known about the specific leukocyte subtypes present in avian ear. Immunohistochemistry with a panel of monoclonal antibodies to chicken leukocytes was used to identify leukocyte subtypes in normal posthatch chicken ear sensory epithelia. The responsiveness of the leukocytes to aminoglycoside-induced damage was also observed. Based on immunocytochemical and morphological criteria, we quantified leukocyte subtypes in normal and drug-damaged auditory and vestibular sensory epithelia. Data indicate that lymphocytes (B and T cells) do not reside in normal or drug-damaged ear sensory epithelia at 1-3 days post insult but are present in adjacent nonsensory tissues. The most common leukocytes in inner ear sensory epithelia are ramified cells of the myeloid lineage. Many of these are MHC class II positive, and a small percentage are mature tissue macrophages. An absence of leukocytes in lesioned areas of the auditory sensory epithelium suggests they may not play a critical role in triggering hair cell regeneration.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Anti-Bacterial Agents/toxicity
- Antigens, Surface/metabolism
- Bromodeoxyuridine/metabolism
- CD3 Complex/metabolism
- Cell Count
- Chickens
- Ear, Inner/cytology
- Ear, Inner/drug effects
- Epithelium/drug effects
- Epithelium/metabolism
- Epithelium/pathology
- Gentamicins/toxicity
- Glycoproteins/metabolism
- Hair Cells, Vestibular/drug effects
- Hair Cells, Vestibular/pathology
- Immunohistochemistry/methods
- Leukocytes/classification
- Leukocytes/drug effects
- Leukocytes/metabolism
- Mitochondrial Proteins
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Saccule and Utricle/cytology
- Saccule and Utricle/drug effects
- Saccule and Utricle/metabolism
- Statistics, Nonparametric
- Streptomycin/toxicity
- Time Factors
Collapse
Affiliation(s)
- Elizabeth K O'Halloran
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98195-7923, USA
| | | |
Collapse
|
34
|
Abstract
This review focuses on the role of monocytes in the early phase of atherogenesis, before foam cell formation. An emerging consensus underscores the importance of the cellular inflammatory system in atherogenesis. Initiation of the process apparently hinges on accumulating low-density lipoproteins (LDL) undergoing oxidation and glycation, providing stimuli for the release of monocyte attracting chemokines and for the upregulation of endothelial adhesive molecules. These conditions favor monocyte transmigration to the intima, where chemically modified, aggregated, or proteoglycan- or antibody-complexed LDL may be endocytotically internalized via scavenger receptors present on the emergent macrophage surface. The differentiating monocytes in concert with T lymphocytes exert a modulating effect on lipoproteins. These events propagate a series of reactions entailing generation of lipid peroxides and expression of chemokines, adhesion molecules, cytokines, and growth factors, thereby sustaining an ongoing inflammatory process leading ultimately to lesion formation. New data emerging from studies using transgenic animals, notably mice, have provided novel insights into many of the cellular interactions and signaling mechanisms involving monocytes/macrophages in the atherogenic processes. A number of these studies, focusing on mechanisms for monocyte activation and the roles of adhesive molecules, chemokines, cytokines and growth factors, are addressed in this review.
Collapse
Affiliation(s)
- Bjarne Osterud
- Department of Biochemistry, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|
35
|
Mahtouk K, Jourdan M, De Vos J, Hertogh C, Fiol G, Jourdan E, Rossi JF, Klein B. An inhibitor of the EGF receptor family blocks myeloma cell growth factor activity of HB-EGF and potentiates dexamethasone or anti-IL-6 antibody-induced apoptosis. Blood 2003; 103:1829-37. [PMID: 14576062 PMCID: PMC2386161 DOI: 10.1182/blood-2003-05-1510] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously found that some myeloma cell lines express the heparin-binding epidermal growth factor-like growth factor (HB-EGF) gene. As the proteoglycan syndecan-1 is an HB-EGF coreceptor as well as a hallmark of plasma cell differentiation and a marker of myeloma cells, we studied the role of HB-EGF on myeloma cell growth. The HB-EGF gene was expressed by bone marrow mononuclear cells in 8 of 8 patients with myeloma, particularly by monocytes and stromal cells, but not by purified primary myeloma cells. Six of 9 myeloma cell lines and 9 of 9 purified primary myeloma cells expressed ErbB1 or ErbB4 genes coding for HB-EGF receptor. In the presence of a low interleukin-6 (IL-6) concentration, HB-EGF stimulated the proliferation of the 6 ErbB1+ or ErbB4+ cell lines, through the phosphatidylinositol 3-kinase/AKT (PI-3K/AKT) pathway. A pan-ErbB inhibitor blocked the myeloma cell growth factor activity and the signaling induced by HB-EGF. This inhibitor induced apoptosis of patients'myeloma cells cultured with their tumor environment. It also increased patients' myeloma cell apoptosis induced by an anti-IL-6 antibody or dexamethasone. The ErbB inhibitor had no effect on the interaction between multiple myeloma cells and stromal cells. It was not toxic for nonmyeloma cells present in patients' bone marrow cultures or for the growth of hematopoietic progenitors. Altogether, these data identify ErbB receptors as putative therapeutic targets in multiple myeloma.
Collapse
Affiliation(s)
- Karène Mahtouk
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Unité de thérapie cellulaire
CHRU MontpellierFR
| | - Michel Jourdan
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Unité de thérapie cellulaire
CHRU MontpellierFR
| | - John De Vos
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Unité de thérapie cellulaire
CHRU MontpellierFR
| | - Catherine Hertogh
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Unité de thérapie cellulaire
CHRU MontpellierFR
| | - Geneviève Fiol
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Unité de thérapie cellulaire
CHRU MontpellierFR
| | - Eric Jourdan
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Unité de thérapie cellulaire
CHRU MontpellierFR
| | - Jean-François Rossi
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Unité de thérapie cellulaire
CHRU MontpellierFR
| | - Bernard Klein
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Unité de thérapie cellulaire
CHRU MontpellierFR
- * Correspondence should be adressed to: Bernard Klein
| |
Collapse
|
36
|
Sonoki K, Iwase M, Iino K, Ichikawa K, Ohdo S, Higuchi S, Yoshinari M, Iida M. Atherogenic role of lysophosphatidylcholine in low-density lipoprotein modified by phospholipase A2 and in diabetic patients: protection by nitric oxide donor. Metabolism 2003; 52:308-14. [PMID: 12647268 DOI: 10.1053/meta.2003.50049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of our study was to investigate the atherogenic role of lysophosphatidylcholine (lyso-PC) in low-density lipoprotein (LDL) under diabetic environment. Expression of monocyte chemoattractant protein-1 (MCP-1) mRNA and nuclear factor-kappa B (NF-kappaB)-DNA binding activity were determined in human umbilical vein endothelial cells (HUVEC) incubated with native or glycoxidized LDL, LDL modified by phospholipase A2 (PLA2) and LDL isolated from diabetic patients. Lyso-PC contents in LDL were measured using electrospray ionization-liquid chromatography/mass spectrometry (ESI-LC/MS). Lyso-PC contents were higher in glycoxidized LDL and PLA2-treated LDL compared with native LDL. Glycoxidized LDL and enrichment of lyso-PC by PLA2 treatment resulted in upregulation of MCP-1 mRNA expression through increased NF-kappaB activity in HUVEC. Moreover, LDL isolated from diabetics contained more lyso-PC than that from nondiabetic subjects, and induced higher MCP-1 mRNA expression and NF-kappaB activity in HUVEC. In both in vitro and human studies, palmitoyl- and stearoyl-lyso-PC contents correlated with MCP-1 expression and NF-kappaB activity. Preincubation with 4-ethyl-2-hydroxyimino-5-nitro-3-hexenamide, a NO donor, abrogated increased expression of MCP-1 mRNA and high NF-kappaB activity induced by PLA2-treated LDL and by LDL isolated from diabetic patients. Our results suggest that lyso-PC contents in LDL play an important role in atherogenesis under diabetic condition, which could be prevented by increased availability of vascular NO.
Collapse
Affiliation(s)
- Kazuo Sonoki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rikitake Y, Hirata KI, Yamashita T, Iwai K, Kobayashi S, Itoh H, Ozaki M, Ejiri J, Shiomi M, Inoue N, Kawashima S, Yokoyama M. Expression of G2A, a receptor for lysophosphatidylcholine, by macrophages in murine, rabbit, and human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2002; 22:2049-53. [PMID: 12482833 DOI: 10.1161/01.atv.0000040598.18570.54] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lysophosphatidylcholine (LPC), a major phospholipid component of oxidized low density lipoprotein, has been demonstrated to induce multiple functional alterations of vasculature that are potentially involved in atherosclerosis. Recently, an orphan G-protein-coupled receptor, G2A, has been identified as a high-affinity receptor for LPC. Although it has been demonstrated that G2A is expressed predominantly in lymphoid tissues and lymphocytes, there are no reports to determine whether G2A is expressed in atherosclerotic lesions and cardiovascular cells. METHODS AND RESULTS Immunohistochemistry with an anti-G2A antibody revealed that G2A was expressed predominantly by macrophages within atherosclerotic lesions at the aortic root of apolipoprotein E-deficient mice and the thoracic aortas of Watanabe heritable hyperlipidemic rabbits. In atherosclerotic plaques of human coronary arterial specimens, G2A was expressed by macrophages within the lipid-rich plaques, whereas no immunoreactivity of G2A was observed in fibrous plaques where macrophages did not exist. Reverse transcription-polymerase chain reaction analysis demonstrated that G2A mRNA was highly expressed in human and murine monocytes/macrophages. The expression of G2A protein was detected in human and murine monocytes/macrophages by immunoblotting. CONCLUSIONS These findings demonstrate that monocytes/macrophages abundantly express G2A and suggest that G2A may play a role in the formation and progression of atherosclerotic lesions.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/chemistry
- Aorta, Thoracic/metabolism
- Apolipoproteins E/deficiency
- Cardiovascular System/metabolism
- Cardiovascular System/pathology
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/immunology
- Cell Cycle Proteins/metabolism
- Cells, Cultured
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Vessels/chemistry
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/pathology
- Humans
- Jurkat Cells/chemistry
- Jurkat Cells/metabolism
- Lysophosphatidylcholines/metabolism
- Macrophages/chemistry
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages, Peritoneal/chemistry
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Knockout
- Monocytes/chemistry
- Monocytes/metabolism
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rabbits
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Tumor Cells, Cultured
- Umbilical Veins/chemistry
- Umbilical Veins/metabolism
- Umbilical Veins/pathology
Collapse
Affiliation(s)
- Yoshiyuki Rikitake
- Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Coutant F, Perrin-Cocon L, Agaugué S, Delair T, André P, Lotteau V. Mature dendritic cell generation promoted by lysophosphatidylcholine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1688-95. [PMID: 12165488 DOI: 10.4049/jimmunol.169.4.1688] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the acute phase response, the interplay between high density lipoproteins and low density lipoproteins (LDL) favors transient generation of oxidized LDL with proinflammatory activities. We hypothesized that oxidative modification of LDL is an endogenous signal for the immune system, and we have shown that oxidized LDL promotes mature dendritic cell transition from monocyte, therefore linking the nonspecific acute phase response to adaptive immunity. Lysophosphatidylcholine (LPC) is a major lipid component of oxidized LDL with reported proinflammatory activities. We now report that LPC acts through G protein-coupled receptors on differentiating monocytes to generate mature dendritic cells with the ability to stimulate IL-2 and IFN-gamma production by allogeneic T lymphocytes. LPC is most effective in lipoprotein-deprived serum and can be inhibited by an excess of native LDLs reflecting normal plasma conditions. Therefore, by controlling the balance between native and oxidized lipoproteins and the resulting production of LPC, the acute phase reactants may provide a context of Ag presentation that is transiently favorable to immune activation. Intralipid, a therapeutic lipid emulsion for parenteral nutrition with unexplained immunomodulatory properties, also blocked LPC activity. This opens perspectives for the understanding and treatment of acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Frédéric Coutant
- Centre d'Etude et de Recherche en Virologie et Immunologie, Institut National de la Santé et de la Recherche Médicale, Lyon, France.
| | | | | | | | | | | |
Collapse
|
39
|
Watanabe T, Koba S, Katagiri T, Pakala R, Benedict CR. Lysophosphatidylcholine potentiates the mitogenic effect of various vasoactive compounds on rabbit aortic smooth muscle cells. JAPANESE HEART JOURNAL 2002; 43:409-16. [PMID: 12227716 DOI: 10.1536/jhj.43.409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We examined the mechanism of action of lysophosphatidylcholine (lyso-PC), which is suggested to be involved in the pathogenesis of atherosclerosis and inflamatory disorders, and its interaction with well-known vasoactive compounds such as hydrogen peroxide (H2O2), thromboxane A2 (TX-A2), serotonin (5-HT), angiotensin II (Ang-II), endothelin-1 (ET-1), or urotensin II (U-II) on VSMC proliferation. Growth-arrested rabbit VSMCs were incubated with given concentrations of lyso-PC with H202, TX-A2, 5-HT, Ang-II, ET-1, or U-II. [3H]Thymidine incorporation into DNA was measured as an index of VSMC proliferation. Lyso-PC induced a maximal effect on [3H]thymidine incorporation at a concentration of 15 microM (156%), and its effect was significantly inhibited by the phospholipase C inhibitor U73122 (10 microM), the intracellular antioxidant NAC (400 microM), and the NADPH oxidase inhibitor diphenylene iodonium (1 microM), but not by the MAPK kinase inhibitor (10 microM). H2O2, TX-A2, 5-HT, Ang-II, ET-1, or U-II also stimulated [3H]thymidine incorporation in a dose-dependent manner. A non-mitogenic concentration of lyso-PC (5 microM) significantly potentiated the effect of low concentrations of H2O2 (0.1 microM, 110 to 222%), TX-A2 (5 microM, 120 to 202%), 5-HT (5 microM, 182 to 259%), Ang-II (0.5 microM, 167 to 304%), ET-1 (0.01 microM, 139 to 297%), or U-II (0.025 microM, 120 to 332%) on [3H]thymidine incorporation. The results suggest that lyso-PC acts synergistically with the vasoactive compounds H2O2, TX-A2, 5-HT, Ang-II, ET-1, or U-II in inducing VSMC proliferation, which may play an important role in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Takuya Watanabe
- Third Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
40
|
Jaross W, Eckey R, Menschikowski M. Biological effects of secretory phospholipase A(2) group IIA on lipoproteins and in atherogenesis. Eur J Clin Invest 2002; 32:383-93. [PMID: 12059982 DOI: 10.1046/j.1365-2362.2002.01000.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secretory phospholipase A(2) group IIA(sPLA(2) IIA) can be produced and secreted by various cell types either constitutionally or as an acute-phase reactant upon stimulation by proinflammatory cytokines. The enzyme prefers phosphatidylethanolamine and phosphatidylserine as substrates. One important biological function may be the hydrolytic destruction of bacterial membranes. It has been demonstrated, however, that sPLA(2) can also hydrolyse the phospholipid monolayers of high density lipoprotein (HDL) and low density lipoprotein (LDL) in vitro. Secretory phospholipase A(2)-modified LDL show increased affinity to glycosaminoglycans and proteoglycans, a tendency to aggregate, and an enhanced ability to deliver cholesterol to cells. Incubation of cultured macrophages with PLA(2)-treated LDL and HDL is associated with increased intracellular lipid accumulation, resulting in the formation of foam cells. Elevated sPLA(2)(IIA) activity in blood serum leads to an increased clearance of serum cholesterol. Secretory phospholipase A(2)(IIA) can also be detected in the intima, adventitia and media of the atherosclerotic wall not only in developed lesions but also in very early stages of atherosclerosis. The presence of DNA of Chlamydia pneumoniae, herpes simplex virus, and cytomegalovirus was found to be associated with sPLA(2)(IIA) expression and other signs of local inflammation. Thus, sPLA(2)(IIA) appears to be one important link between the lipid and the inflammation hypothesis of atherosclerosis.
Collapse
Affiliation(s)
- Werner Jaross
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technical University of Dresden, Germany.
| | | | | |
Collapse
|
41
|
Kim JY, Jang MK, Lee SS, Choi MS, Bok SH, Oh GT, Park YB. Rab7 gene is up-regulated by cholesterol-rich diet in the liver and artery. Biochem Biophys Res Commun 2002; 293:375-82. [PMID: 12054610 DOI: 10.1016/s0006-291x(02)00173-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To identify genes responding to the cholesterol-rich diet, differentially expressed hepatic genes have been searched from a diet-induced hypercholesterolemic rabbit by differential display reverse transcription-polymerase chain reaction (DDRT-PCR). Among the many screened genes, Rab7 gene was shown to be distinctively up-regulated in response to the cholesterol-loading into the rabbit. To visualize the location of elevated Rab7 expression in tissues, patterns of the gene expression were monitored within hepatic and aortic tissues by in situ hybridization and immunohistochemistry. The expression of Rab7 was obviously increased in the hepatic tissues, especially in the endothelial cells and hepatocytes around central veins of the high cholesterol-fed rabbit, compared to the tissues from rabbit fed a normal diet. To find out a potential relationship between the Rab7 and the atherogenesis, the same experiments were conducted with the atherosclerotic plaques obtained from rabbit and human. The elevated expression of Rab7 gene was clearly evident in both tissues, suggesting that the Rab7 may be involved in the process of atherogenesis.
Collapse
Affiliation(s)
- Ji Yong Kim
- Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Mills GB, Eder A, Fang X, Hasegawa Y, Mao M, Lu Y, Tanyi J, Tabassam FH, Wiener J, Lapushin R, Yu S, Parrott JA, Compton T, Tribley W, Fishman D, Stack MS, Gaudette D, Jaffe R, Furui T, Aoki J, Erickson JR. Critical role of lysophospholipids in the pathophysiology, diagnosis, and management of ovarian cancer. Cancer Treat Res 2002; 107:259-83. [PMID: 11775454 DOI: 10.1007/978-1-4757-3587-1_12] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysophosphatidic acid (LPA), the simplest of all phospholipids, exhibits pleiomorphic functions in multiple cell lineages. The effects of LPA appear to be mediated by binding of LPA to specific members of the endothelial differentiation gene (Edg) family of G protein-coupled receptors (GPCR). Edg 2, Edg4, and Edg7 are high affinity receptors for LPA, and Edg1 may be a low affinity receptor for LPA. PSP24 has been shown to be responsive to LPA in Xenopus oocytes, however, its role in mammalian cells is unclear. The specific biochemical events initiated by the different Edg receptors, as well as the biological outcomes of activation of the individual receptors, are only beginning to be determined. LPA levels are consistently elevated in the plasma and ascites of ovarian cancer patients, but not in most other epithelial tumors, with the exception of cervix and endometrium, suggesting that LPA may be of particular importance in the pathophysiology of ovarian cancer. In support of this concept, ovarian cancer cells constitutively and inducibly produce high levels of LPA and demonstrate markedly different responses to LPA than normal ovarian surface epithelium. Edg4 and Edg7 levels are consistently increased in malignant ovarian epithelial cells contributing to the aberrant response of ovarian cancer cells to LPA. Edg2 may represent a negative regulatory LPA receptor inducing apoptosis in ovarian cancer cells. Thus, increased levels of LPA, altered receptor expression and altered responses to LPA may contribute to the initiation, progression or outcome of ovarian cancer. Over 40% of known drugs target GPCR, making LPA receptors attractive targets for molecular therapeutics. Indeed, using the structure-function relationship of LPA in model systems, we have identified selective Edg2 anatgonists, as well as Edg4 and Edg7 agonists. These lead compounds are being assessed in preclinical model systems. Understanding the mechanisms regulating LPA production, metabolism and function could lead to improved methods for early detection and to new targets for therapy in ovarian cancer.
Collapse
Affiliation(s)
- Gordon B Mills
- Department of Molecular Therapeutics, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hashimoto T, Imamura M, Etoh T, Sekiguchi N, Masakado M, Inoguchi T, Nawata H, Umeda F. Lysophosphatidylcholine inhibits the expression of prostacyclin stimulating factor in cultured vascular smooth muscle cells. J Diabetes Complications 2002; 16:81-6. [PMID: 11872373 DOI: 10.1016/s1056-8727(01)00211-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have cloned a prostacyclin (PGI2) stimulating factor (PSF), which stimulates PGI2 production by vascular endothelial cells. Previous study demonstrated the reduced PSF expression in the coronary arteries from the patients with ischemic heart disease. To clarify the mechanism of reduced PSF expression in atherosclerosis, we examined the effect of lysophosphatidylcholine (lysoPC), a main component of oxidized low density lipoprotein (LDL), on PSF expression in cultured vascular smooth muscle cells. LysoPC reduced PSF expression dose-dependently. Whereas neither phosphatidylcholine nor native LDL affects the PSF expression. Calphostin C, a protein kinase C (PKC) inhibitor, restored the reduction of PSF expression by lysoPC. These results suggest that lysoPC-induced reduction of PSF expression is mediated by PKC activation and is playing a role in the initiation and progression of atherosclerotic lesions.
Collapse
Affiliation(s)
- Toshihiko Hashimoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mazière C, Conte MA, Mazière JC. Activation of JAK2 by the oxidative stress generated with oxidized low-density lipoprotein. Free Radic Biol Med 2001; 31:1334-40. [PMID: 11728804 DOI: 10.1016/s0891-5849(01)00649-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atherosclerosis includes a series of cellular and molecular responses characteristic of an inflammatory disease. We provide evidence that cupric-ion-oxidized LDL (CuLDL) or endothelial cell-oxidized LDL (ELDL) induced the activation by Tyr-phosphorylation of JAK2, one of the Janus kinase involved upstream of STATs in the JAK/STAT pathway of cytokine transduction. Oxidized LDL (OxLDL) also initiated STAT1 and STAT3 Tyr-phosphorylation and translocation to the nucleus, with a more marked effect for the extensively modified CuLDL. Genistein, a nonspecific Tyr-kinase inhibitor, and AG490, a specific inhibitor of JAKs, markedly prevented the CuLDL-induced enhancement of STAT1 and STAT3 Tyr-phosphorylation and DNA-binding activity, suggesting that JAKs are the main kinases involved in STATs' activation by oxidized LDL. In addition, the lipid extract of CuLDL increased the intracellular levels of lipid peroxidation products and the Tyr-phosphorylation of JAK2, STAT1, and STAT3, whereas the antioxidant vitamin E prevented all these effects. These results demonstrate that OxLDL induces the activation by Tyr-phosphorylation of JAK2, STAT1, and STAT3 by generation of an intracellular oxidative stress by means of its lipid peroxidation products, and thus include JAK2 within the range of oxidative stress-activated kinases.
Collapse
Affiliation(s)
- C Mazière
- Laboratoire de Biochimie, Université de Picardie Jules Verne, Amiens, France.
| | | | | |
Collapse
|
45
|
Lepidi S, Kenagy RD, Raines EW, Chiu ES, Chait A, Ross R, Clowes AW. MMP9 production by human monocyte-derived macrophages is decreased on polymerized type I collagen. J Vasc Surg 2001; 34:1111-8. [PMID: 11743569 DOI: 10.1067/mva.2001.119401] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The production of matrix metalloproteinases (MMPs), such as MMP9, by macrophages may be a critical factor in the rupture of unstable atherosclerotic plaques and aortic aneurysms. Therefore, we studied the role of matrix and soluble cytokines in the regulation of monocyte/macrophage expression of MMP9. Although freshly isolated monocytes synthesize little MMP9, cells cultured on tissue-culture plastic differentiate into macrophages and synthesize maximal amounts of MMP9. Differentiated macrophages cultured on plastic are unresponsive to further stimulation by interleukin 1beta, tumor necrosis factor alpha, or platelet-derived growth factor BB. In contrast, monocytes cultured on polymerized collagen synthesize much less MMP9 than cells cultured on plastic and demonstrate a more than three-fold increase in MMP9 synthesis in response to interleukin 1beta, tumor necrosis factor alpha, and platelet-derived growth factor BB. To determine whether the physical state of the collagen was critical for the decrease in basal synthesis of MMP9, monocytes were cultured in suspension for 5 days to allow differentiation and then seeded onto monomer or polymerized collagen. Synthesis of MMP9 was significantly decreased in cells on polymerized collagen and modestly increased in macrophages seeded on monomer collagen. These results suggest that MMP9 synthesis by macrophages in the vessel wall may be under negative control by native, polymerized collagen and that disruption of this native conformation could increase MMP9 production. In addition, cells in contact with the collagen matrix are potentially more responsive to soluble mediators such as platelet-derived growth factor, interleukin 1beta, and tumor necrosis factor alpha.
Collapse
Affiliation(s)
- S Lepidi
- Department of Surgery, University of Washington School of Medicine, Seattle, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Panini SR, Yang L, Rusinol AE, Sinensky MS, Bonventre JV, Leslie CC. Arachidonate metabolism and the signaling pathway of induction of apoptosis by oxidized LDL/oxysterol. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32223-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Morimoto M, Kume N, Miyamoto S, Ueno Y, Kataoka H, Minami M, Hayashida K, Hashimoto N, Kita T. Lysophosphatidylcholine Induces Early Growth Response Factor-1 Expression and Activates the Core Promoter of PDGF-A Chain in Vascular Endothelial Cells. Arterioscler Thromb Vasc Biol 2001; 21:771-6. [PMID: 11348873 DOI: 10.1161/01.atv.21.5.771] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
—Lysophosphatidylcholine (lyso-PC), a polar phospholipid that is increased in atherogenic lipoproteins and atherosclerotic lesions, has been shown to transcriptionally induce the expression of endothelial genes relevant to atherogenesis. In cultured bovine aortic endothelial cells (BAECs), we show that lyso-PC induces the expression of early growth response factor (Egr)-1 and thereby activates the proximal promoter of the platelet-derived growth factor (PDGF)-A chain located 55 to 71 bp upstream from the transcription start site, which has been shown to be crucial for PDGF-A chain expression induced by fluid shear stress and fibroblast growth factor-1. Northern blot analyses showed that lyso-PC (10 to 20 μmol/L) transiently (30 minutes to 1 hour) induced expression of Egr-1 mRNA. Induced expression of Egr-1 mRNA, which was associated with increased amounts of Egr-1 protein in nuclei, preceded PDGF-A chain mRNA induction in lyso-PC–activated BAECs. Nuclear runoff assay revealed that lyso-PC stimulates transcription of the Egr-1 gene. Transient transfection of the oligonucleotide corresponding to the proximal promoter of the PDGF-A chain (oligo A) linked to the luciferase reporter gene revealed that lyso-PC can activate the core promoter of the PDGF-A chain by 5-fold. Insertion of a guanine at 3 sites in the oligo A abolished the lyso-PC–induced increases in luciferase activities. Electrophoretic mobility shift assay with use of radiolabeled oligo A showed a lyso-PC–inducible shift band, which was suppressed by excess amounts of unlabeled oligo A or an anti–Egr-1 antibody. In addition, lyso-PC–induced Egr-1 expression was inhibited by PD98059, a specific inhibitor of mitogen-activated protein kinase kinase-1 (MEK1), suggesting that lyso–PC-induced expression of Egr-1 depends on the MEK1/extracellular signal–regulated kinase pathway. Taken together, transcriptional activation of Egr-1–dependent genes by this atherogenic lipid may be a key regulator of atherogenesis.
Collapse
Affiliation(s)
- M Morimoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saiga A, Morioka Y, Ono T, Nakano K, Ishimoto Y, Arita H, Hanasaki K. Group X secretory phospholipase A(2) induces potent productions of various lipid mediators in mouse peritoneal macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:67-76. [PMID: 11341959 DOI: 10.1016/s1388-1981(00)00167-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown the expression of group X secretory phospholipase A(2) (sPLA(2)-X) in mouse splenic macrophages and its powerful potency for releasing fatty acids from various intact cell membranes. Here, we examined the potency of sPLA(2)-X in the production of lipid mediators in murine peritoneal macrophages. Mouse sPLA(2)-X was found to induce a marked release of fatty acids including arachidonic acid and linoleic acid, which contrasted with little, if any, release by the action of group IB and IIA sPLA(2)s. In resting macrophages, sPLA(2)-X elicited a modest production of prostaglandin E(2) and thromboxane A(2). After the induction of cyclooxygenase-2 (COX-2) by pretreatment with lipopolysaccharide, a dramatic increase in the production of these eicosanoids was observed in sPLA(2)-X-treated macrophages, which was completely blocked by the addition of either the specific sPLA(2) inhibitor indoxam or the COX inhibitor indomethacin. In accordance with its higher hydrolyzing activity toward phosphatidylcholine, mouse sPLA(2)-X induced a potent production of lysophosphatidylcholine. These findings strongly suggest that sPLA(2)-X plays a critical role in the production of various lipid mediators from macrophages. These events might be relevant to the progression of various pathological states, including chronic inflammation and atherosclerosis.
Collapse
Affiliation(s)
- A Saiga
- Shionogi Research Laboratories, Shionogi&Co., Ltd., 12-4 Sagisu, 5-Chome, Fukushima-ku, 553-0002, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Cieslik K, Abrams CS, Wu KK. Up-regulation of endothelial nitric-oxide synthase promoter by the phosphatidylinositol 3-kinase gamma /Janus kinase 2/MEK-1-dependent pathway. J Biol Chem 2001; 276:1211-9. [PMID: 11042169 DOI: 10.1074/jbc.m005305200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our recent study indicates that lysophosphatidylcholine (LPC) enhances Sp1 binding and Sp1-dependent endothelial nitric oxide synthase (eNOS) promoter activity via the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK-1) signaling pathway (Cieslik, K., Lee, C.-M., Tang, J.-L., and Wu, K. K. (1999) J. Biol. Chem. 274, 34669-34675). To identify upstream signaling molecules, we transfected human endothelial cells with dominant negative and active mutants of Ras and evaluated their effects on eNOS promoter activity. Neither mutant altered the basal or LPC-induced eNOS promoter function. By contrast, a dominant negative mutant of phosphatidylinositol 3-kinase gamma (PI-3Kgamma) blocked the promoter activity induced by LPC. Wortmannin and LY 294002 had a similar effect. AG-490, a selective inhibitor of Janus kinase 2 (Jak2), also reduced the LPC-induced Sp1 binding and eNOS promoter activity to the basal level. LPC induced Jak2 phosphorylation, which was abolished by LY 294002 and the dominant negative mutant of PI-3Kgamma. LY 294002 and AG-490 abrogated MEK-1 phosphorylation induced by LPC but had no effect on Raf-1. These results indicate that PI-3Kgamma and Jak2 are essential for LPC-induced eNOS promoter activity. This signaling pathway was sensitive to pertussis toxin, suggesting the involvement of a G(i) protein in PI-3Kgamma activation. These results indicate that LPC enhances Sp1-dependent eNOS promoter activity by a pertussis toxin-sensitive, Ras-independent novel pathway, PI-3Kgamma/Jak2/MEK-1/ERK1/2.
Collapse
Affiliation(s)
- K Cieslik
- Vascular Biology Research Center and Division of Hematology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
50
|
Chai YC, Binion DG, Chisolm GM. Relationship of molecular structure to the mechanism of lysophospholipid-induced smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol 2000; 279:H1830-8. [PMID: 11009470 DOI: 10.1152/ajpheart.2000.279.4.h1830] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that oxidized low-density lipoprotein and one of its constituents, lysophosphatidylcholine (lysoPC), caused smooth muscle cell proliferation that was inhibitable by vitamin E and by a neutralizing antibody against basic fibroblast growth factor-2 (FGF-2). We now show that the mitogenic activity of lysolipids is highly dependent on structure. Phospholipids with palmitoyl fatty acid and phosphocholine induced DNA synthesis optimally. Shorter and longer fatty acids were significantly less potent, as were phosphoserine and phosphoethanolamine head groups. Structurally related phospholipids [platelet-activating factor (PAF) and lysoPAF] were also mitogens and acted via an analogous FGF-2-dependent, vitamin E-inhibitable mechanism. The mechanism of lysoPC stimulation was distinct from that of another phospholipid mitogen, lysophosphatidic acid (lysoPA), in that lysoPC stimulation was not pertussis toxin inhibitable. Furthermore, lysoPA stimulation was not inhibitable by vitamin E. Despite its distinct cellular pathway for stimulation, lysoPA also ultimately led to FGF-2 release. Our data show that specific structural attributes of lysoPC, PAF, and lysoPAF enable these agents to mediate smooth muscle cell release of FGF-2, which in turn stimulates proliferation.
Collapse
Affiliation(s)
- Y C Chai
- Department of Cell Biology, Lerner Research Institute of the Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|