1
|
Volkov AY, Safronova VM, Nered SN, Lyubchenko LN, Stilidi IS. GENETIC POLYMORPHISM OF RETROPERITONEAL MYXOID LIPOSARCOMA. ACTA ACUST UNITED AC 2020. [DOI: 10.21294/1814-4861-2020-19-3-89-96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objective: to detect new molecular genetic markers and therapeutic targets in retroperitoneal myxoid liposarcoma.Material and Methods. DNA samples isolated from tumor tissue and obtained from formalinfixed paraffin-embedded (FFPE) slides were used. DNA was extracted using the GeneRead DNA FFPE Kit (50) (Qiagen). High-throughput next generation sequencing (NGS) using the GeneReader Actionable Insights Tumor Panel (GRTP – 101X) on the QCI Analyzer version 1.1 platform (Qiagen) was used for molecular genetic analysis of 12 genes involved in carcinogenesis: KRAS, NRAS, KIT, BRAF, PDGFRA, ALK, EGFR, ERBB2, PIK3CA, ERBB3, ESR1, RAF1.Results. Targeted sequencing of retroperitoneal extra-organ myxoid liposarcoma demonstrated genetic heterogeneity. Our study was the first to describe mutations and polymorphic variants in genes, such as EGFR, PIK3CA, ALK, BRAF, ERBB2 / 3, ESR1, KIT, PDGFRA in myxoid liposarcoma.Conclusion. This study demonstrated a wide range of molecular genetic rearrangements in retroperitoneal extra-organ myxoid liposarcoma. Synonymous mutations in the EGFR (Q787Q) and PDGFRA (P567P) genes were detected in all cases (100 %). Missense mutations in the ERBB2 gene (P1170A) and synonymous mutations in the ALK (G845G) and BRAF genes were identified in 75 % of cases. Missense mutation in the PIK3CA gene (I391M) was detected in 25 % of cases. The gene polymorphisms presented in this paper are most likely involved in the carcinogenesis of retroperitoneal myxoid liposarcoma. Further studies with larger patient groups and multivariate analysis of long-term treatment results are required.
Collapse
Affiliation(s)
- A. Yu. Volkov
- N.N. Blokhin National Medical Research Centre of Oncology of the Health Ministry of Russia
| | - V. M. Safronova
- N.N. Blokhin National Medical Research Centre of Oncology of the Health Ministry of Russia
| | - S. N. Nered
- N.N. Blokhin National Medical Research Centre of Oncology of the Health Ministry of Russia
| | - L. N. Lyubchenko
- N.N. Blokhin National Medical Research Centre of Oncology of the Health Ministry of Russia;
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | - I. S. Stilidi
- N.N. Blokhin National Medical Research Centre of Oncology of the Health Ministry of Russia
| |
Collapse
|
2
|
Reinertsen KK, Bronson RT, Stiles CD, Wang C. Temporal and spatial specificity of PDGF alpha receptor promoter in transgenic mice. Gene Expr 2018; 6:301-14. [PMID: 9368101 PMCID: PMC6148283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant expression of the platelet-derived growth factor alpha receptor (PDGF alpha R) has been linked to developmental abnormalities in vertebrate models, and has been implicated in multiple disease states in humans. To identify cis-acting regulatory elements that dictate expression of this receptor, we generated transgenic mice bearing the reporter gene beta-galactosidase (lacZ) under the control of a 6-kb promoter sequence. Expression of lacZ was monitored throughout embryonic development, with special focus on nervous tissue, skeleton, and several organ systems wherein PDGF alpha R expression is thought to play a pivotal role. In several independent transgenic mouse strains, lacZ expression recapitulated predominant features of PDGF alpha R gene expression during mouse development. These results demonstrate that critical tissue-specific regulatory elements for PDGF alpha R expression are located within a 6-kb upstream region of the PDGF alpha R gene.
Collapse
Affiliation(s)
- Kerry K. Reinertsen
- *Department of Microbiology and Molecular Genetics, Harvard Medical School and the Dana-Farber Cancer Institute, Boston, MA 02115
| | - Roderick T. Bronson
- †Department of Pathology, Tufts University Schools of Medicine and Veterinary Medicine, Boston, MA 02111
| | - Charles D. Stiles
- *Department of Microbiology and Molecular Genetics, Harvard Medical School and the Dana-Farber Cancer Institute, Boston, MA 02115
| | - Chiayeng Wang
- ‡Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612
- Address correspondence to Chiayeng Wang, Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, 801 South Paulina Street, 530E, Chicago, IL 60612. Tel: (312) 996-4530; Fax: (312) 413-1604; E-mail:
| |
Collapse
|
3
|
Xu Q, Liu X, Wang X, Hua Y, Wang X, Chen J, Li J, Wang Y, Stoeger T, Chen S, Huang N. Growth arrest-specific protein 7 regulates the murine M1 alveolar macrophage polarization. Immunol Res 2018; 65:1065-1073. [PMID: 28895026 DOI: 10.1007/s12026-017-8948-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Growth arrest-specific gene 7 (Gas7) is preferentially expressed in terminally differentiated brain cells and plays a crucial role during neuronal development and neurite outgrowth. Apart from that, Gas7 was found to be abundantly expressed in immune cells like murine macrophage without knowing the actual roles in immune reaction. By using the Illumina microarray analysis, we observed a clear induction of Gas7 but no other Gas family members in murine M1-polarized alveolar macrophage, which was further confirmed by RT-qPCR, Western blotting, and immunostaining analysis, suggesting a likelihood that Gas7 may participate in murine alveolar macrophage polarization. Moreover, we found that the upregulation of Gas7 in M1-polarized alveolar macrophage was almost fully blocked by IKK selective inhibitor BMS, which links Gas7 induction to nuclear factor kappa beta (NF-κB) signaling activation. Interestingly, we found that Gas7 knockdown by small interfering RNA transfection did not affect the pro-inflammatory cytokine gene Tnf and Ilb expression, whereas the expressions of canonic M1 marker gene Nos2 and other M1-dependent genes Il12b, Il6, Cxcl1, Cxcl2, and Cxcl9 were found to be reduced. Furthermore, Gas7-related M1 gene expression in alveolar macrophage was not dependent on NF-κB and STAT1 pathway. Our results demonstrate that Gas7 is potentially involved in regulation of murine M1 alveolar macrophage polarization. HIGHLIGHTS Gas7 was induced in LPS/IFNγ mediated M1 polarization. Gas7 are induced during time course of M1 polarization. Gas7 upregulation was dependent on NF-κB pathway in M1 polarized AMs. Gas7 knockdown reduced the M1 markers gene expression in M1 polarized AMs.
Collapse
Affiliation(s)
- Qian Xu
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaofan Liu
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yuanqi Hua
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaoying Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Junli Chen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jingyu Li
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yi Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Shanze Chen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Ning Huang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Van De Weghe JC, Rusterholz TD, Latour B, Grout ME, Aldinger KA, Shaheen R, Dempsey JC, Maddirevula S, Cheng YHH, Phelps IG, Gesemann M, Goel H, Birk OS, Alanzi T, Rawashdeh R, Khan AO, Bamshad MJ, Nickerson DA, Neuhauss SC, Dobyns WB, Alkuraya FS, Roepman R, Bachmann-Gagescu R, Doherty D, Doherty D. Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish. Am J Hum Genet 2017. [PMID: 28625504 DOI: 10.1016/j.ajhg.2017.05.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
5
|
Christensen ST, Morthorst SK, Mogensen JB, Pedersen LB. Primary Cilia and Coordination of Receptor Tyrosine Kinase (RTK) and Transforming Growth Factor β (TGF-β) Signaling. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028167. [PMID: 27638178 DOI: 10.1101/cshperspect.a028167] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the beginning of the millennium, research in primary cilia has revolutionized our way of understanding how cells integrate and organize diverse signaling pathways during vertebrate development and in tissue homeostasis. Primary cilia are unique sensory organelles that detect changes in their extracellular environment and integrate and transmit signaling information to the cell to regulate various cellular, developmental, and physiological processes. Many different signaling pathways have now been shown to rely on primary cilia to function properly, and mutations that lead to ciliary dysfunction are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination of these pathways may be linked to ciliopathies.
Collapse
Affiliation(s)
- Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Johanne B Mogensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| |
Collapse
|
6
|
Extracellular Signal-Regulated Kinase 2 and CHOP Restrict the Expression of the Growth Arrest-Specific p20K Lipocalin Gene to G0. Mol Cell Biol 2016; 36:2890-2902. [PMID: 27601586 DOI: 10.1128/mcb.00338-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
The activation of the growth arrest-specific (gas) p20K gene depends on the interaction of C/EBPβ with two elements of a 48-bp promoter region termed the quiescence-responsive unit (QRU). Here we identify extracellular signal-related kinase 2 (ERK2) as a transcriptional repressor of the p20K QRU in cycling chicken embryo fibroblasts (CEF). ERK2 binds to repeated GAAAG sequences overlapping the C/EBPβ sites of the QRU. The recruitment of ERK2 and C/EBPβ is mutually exclusive and dictates the expression of p20K. C/EBP homologous protein (CHOP) was associated with C/EBPβ under conditions promoting endoplasmic reticulum (ER) stress and, to a lesser extent, in cycling CEF but was not detectable when C/EBPβ was immunoprecipitated from contact-inhibited cells. During ER stress, overexpression of CHOP inhibited p20K, while its downregulation promoted p20K, indicating that CHOP is also a potent inhibitor of p20K. Transcriptome analyses revealed that hypoxia-responsive genes are strongly induced in contact-inhibited but not serum-starved CEF, and elevated levels of nitroreductase activity, a marker of hypoxia, were detected at confluence. Conditions of hypoxia (2% O2) induced growth arrest in subconfluent CEF and markedly stimulated p20K expression, suggesting that the control of proliferation and gas gene expression is closely linked to limiting oxygen concentrations associated with high cell densities.
Collapse
|
7
|
Growth-arrest-specific 7C protein inhibits tumor metastasis via the N-WASP/FAK/F-actin and hnRNP U/β-TrCP/β-catenin pathways in lung cancer. Oncotarget 2016; 6:44207-21. [PMID: 26506240 PMCID: PMC4792552 DOI: 10.18632/oncotarget.6229] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 10/17/2015] [Indexed: 11/25/2022] Open
Abstract
Growth-arrest-specific 7 (GAS7) belongs to a group of adaptor proteins that coordinate the actin cytoskeleton. Among human GAS7 isoforms, only GAS7C possesses a Src homology 3 domain. We report here that GAS7C acts as a migration suppressor and can serve as a prognostic biomarker in lung cancer. GAS7C overexpression reduces lung cancer migration, whereas GAS7C knockdown enhances cancer cell migration. Importantly, ectopically overexpressed GAS7C binds tightly with N-WASP thus inactivates the fibronectin/integrin/FAK pathway, which in turn leads to the suppression of F-actin dynamics. In addition, overexpression of GAS7C sequesters hnRNP U and thus decreases the level of β-catenin protein via the β-TrCP ubiquitin-degradation pathway. The anti-metastatic effect of GAS7C overexpression was also confirmed using lung cancer xenografts. Our clinical data indicated that 23.6% (25/106) of lung cancer patients showed low expression of GAS7C mRNA which correlated with a poorer overall survival. In addition, low GAS7C mRNA expression was detected in 60.0% of metastatic lung cancer patients, indicating an association between low GAS7C expression and cancer progression. A significant inverse correlation between mRNA expression and promoter hypermethylation was also found, which suggests that the low level of GAS7C expression was partly due to promoter hypermethylation. Our results provide novel evidence that low GAS7C correlates with poor prognosis and promotes metastasis in lung cancer. Low GAS7C increases cancer cell motility by promoting N-WASP/FAK/F-actin cytoskeleton dynamics. It also enhances β-catenin stability via hnRNP U/β-TrCP complex formation. Therefore, GAS7C acts as a metastasis suppressor in lung cancer.
Collapse
|
8
|
Umberger NL, Caspary T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell 2014; 26:350-8. [PMID: 25392303 PMCID: PMC4294681 DOI: 10.1091/mbc.e14-05-0952] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-Akt(T308) and P-Akt(S473), and previous work showed decreased P-Akt(S473) in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-Akt(T308) and P-Akt(S473) in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-Akt(T308). Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-Akt(S473) or P-Akt(T308) upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA-dependent phosphorylation of Akt(S473) and Akt(T308) in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.
Collapse
Affiliation(s)
- Nicole L Umberger
- Genetics and Molecular Biology Graduate Programs, Emory University School of Medicine, Atlanta, GA 30322 Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
9
|
Satir P. Onward from the cradle. Mol Biol Cell 2014; 25:3277-9. [PMID: 25360050 PMCID: PMC4214774 DOI: 10.1091/mbc.e14-05-1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This essay records a voyage of discovery from the “cradle of cell biology” to the present, focused on the biology of the oldest known cell organelle, the cilium. In the “romper room” of cilia and microtubule (MT) biology, the sliding MT hypothesis of ciliary motility was born. From the “summer of love,” students and colleagues joined the journey to test switch-point mechanisms of motility. In the new century, interest in nonmotile (primary) cilia, never lost from the cradle, was rekindled, leading to discoveries relating ciliogenesis to autophagy and hypotheses of how molecules cross ciliary necklace barriers for cell signaling.
Collapse
Affiliation(s)
- Peter Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
10
|
Identification and Characterization of Mouse Type II Platelet-Derived Growth Factor Receptor α Transcript. Biosci Biotechnol Biochem 2014; 72:759-66. [DOI: 10.1271/bbb.70640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Egeberg DL, Lethan M, Manguso R, Schneider L, Awan A, Jørgensen TS, Byskov AG, Pedersen LB, Christensen ST. Primary cilia and aberrant cell signaling in epithelial ovarian cancer. Cilia 2012; 1:15. [PMID: 23351307 PMCID: PMC3555760 DOI: 10.1186/2046-2530-1-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/01/2012] [Indexed: 12/14/2022] Open
Abstract
Background Ovarian cancer is the fourth leading cause of cancer-related deaths among women in Denmark, largely due to the advanced stage at diagnosis in most patients. Approximately 90% of ovarian cancers originate from the single-layered ovarian surface epithelium (OSE). Defects in the primary cilium, a solitary sensory organelle in most cells types including OSE, were recently implicated in tumorigenesis, mainly due to deregulation of ciliary signaling pathways such as Hedgehog (Hh) signaling. However, a possible link between primary cilia and epithelial ovarian cancer has not previously been investigated. Methods The presence of primary cilia was analyzed in sections of fixed human ovarian tissue as well as in cultures of normal human ovarian surface epithelium (OSE) cells and two human OSE-derived cancer cell lines. We also used immunofluorescence microscopy, western blotting, RT-PCR and siRNA to investigate ciliary signaling pathways in these cells. Results We show that ovarian cancer cells display significantly reduced numbers of primary cilia. The reduction in ciliation frequency in these cells was not due to a failure to enter growth arrest, and correlated with persistent centrosomal localization of aurora A kinase (AURA). Further, we demonstrate that ovarian cancer cells have deregulated Hh signaling and platelet-derived growth factor receptor alpha (PDGFRα) expression and that promotion of ciliary formation/stability by AURA siRNA depletion decreases Hh signaling in ovarian cancer cells. Lastly, we show that the tumor suppressor protein and negative regulator of AURA, checkpoint with forkhead-associated and ring finger domains (CHFR), localizes to the centrosome/primary cilium axis. Conclusions Our results suggest that primary cilia play a role in maintaining OSE homeostasis and that the low frequency of primary cilia in cancer OSE cells may result in part from over-expression of AURA, leading to aberrant Hh signaling and ovarian tumorigenesis.
Collapse
Affiliation(s)
- Dorte L Egeberg
- Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Christensen ST, Clement CA, Satir P, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 2012; 226:172-84. [PMID: 21956154 PMCID: PMC4294548 DOI: 10.1002/path.3004] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders.
Collapse
|
13
|
Sundvall M, Veikkolainen V, Kurppa K, Salah Z, Tvorogov D, van Zoelen EJ, Aqeilan R, Elenius K. Cell death or survival promoted by alternative isoforms of ErbB4. Mol Biol Cell 2010; 21:4275-86. [PMID: 20943952 PMCID: PMC2993754 DOI: 10.1091/mbc.e10-04-0332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The report demonstrates that two distinct isoforms of the ErbB4 receptor tyrosine kinase stimulate either proliferation or apoptosis by mechanisms involving differential transcriptional regulation of the PDGFRA gene. These data have implications for developing approaches to target ErbB4 signaling in cancer. The significance of ErbB4 in tumor biology is poorly understood. The ERBB4 gene is alternatively spliced producing juxtamembrane (JM-a and JM-b) and cytoplasmic (CYT-1 and CYT-2) isoforms. Here, signaling via the two alternative ErbB4 JM isoforms (JM-a CYT-2 and JM-b CYT-2) was compared. Fibroblasts expressing ErbB4 JM-a demonstrated enhanced ErbB4 autophosphorylation, growth, and survival. In contrast, cells overexpressing ErbB4 JM-b underwent starvation-induced death. Both pro- and antisurvival responses to the two ErbB4 isoforms were sensitive to an ErbB kinase inhibitor. Platelet-derived growth factor receptor-alpha (PDGFRA) was identified as an ErbB4 target gene that was differentially regulated by the two ErbB4 isoforms. The soluble intracellular domain of ErbB4, released from the JM-a but not from the JM-b isoform, associated with the transcription factor AP-2 and promoted its potential to enhance PDGFRA transcription. Survival of cells expressing JM-a was suppressed by targeting either PDGFR-α or AP-2, whereas cells expressing JM-b were rescued from cell death by the PDGFR-α agonist, PDGF-BB. These findings indicate that two alternative ErbB4 isoforms may promote antagonistic cellular responses and suggest that pharmacological inhibition of ErbB4 kinase activity may lead to either suppression or promotion of cellular growth.
Collapse
Affiliation(s)
- Maria Sundvall
- Department of Medical Biochemistry and Genetics, and Medicity Research Laboratory, University of Turku, Turku, Finland; Department of Oncology, Turku University Hospital, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Thorsteinsson RI, Christensen ST, Pedersen LB. Using quantitative PCR to identify kinesin-3 genes that are upregulated during growth arrest in mouse NIH3T3 cells. Methods Cell Biol 2010; 94:67-86. [PMID: 20362085 DOI: 10.1016/s0091-679x(08)94003-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Most cells in our body form a single primary cilium when entering growth arrest. During the past decade, a number of studies have revealed a key role for primary cilia in coordinating a variety of signaling pathways that control important cellular and developmental processes. Consequently, significant effort has been directed toward the identification of genes involved in ciliary assembly and function. Many candidate ciliary genes and proteins have been identified using large-scale "omics" approaches, including proteomics, transcriptomics, and comparative genomics. Although such large-scale approaches can be extremely informative, additional validation of candidate ciliary genes using alternative "small-scale" approaches is often necessary. Here we describe a quantitative PCR-based method that can be used to screen groups of genes for those that are upregulated during growth arrest in cultured mouse NIH3T3 cells and those that might have cilia-related functions. We employed this method to specifically search for mouse kinesin-3 genes that are upregulated during growth arrest and identified three such genes (Kif13A, Kif13B, and Kif16A). In principle, however, the method can be extended to identify other genes or gene families that are upregulated during growth arrest.
Collapse
Affiliation(s)
- Rikke I Thorsteinsson
- Department of Biology, Section of Cell and Developmental Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | | | | |
Collapse
|
15
|
You JJ, Lin-Chao S. Gas7 functions with N-WASP to regulate the neurite outgrowth of hippocampal neurons. J Biol Chem 2010; 285:11652-66. [PMID: 20150425 PMCID: PMC3283256 DOI: 10.1074/jbc.m109.051094] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuritogenesis, or neurite outgrowth, is a critical process for neuronal differentiation and maturation in which growth cones are formed from highly dynamic actin structures. Gas7 (growth arrest-specific gene 7), a new member of the PCH (Pombe Cdc15 homology) protein family, is predominantly expressed in neurons and is required for the maturation of primary cultured Purkinje neurons as well as the neuron-like differentiation of PC12 cells upon nerve growth factor stimulation. We report that Gas7 co-localizes and physically interacts with N-WASP, a key regulator of Arp2/3 complex-mediated actin polymerization, in the cortical region of Gas7-transfected Neuro-2a cells and growth cones of hippocampal neurons. The interaction between Gas7 and N-WASP is mediated by WW-Pro domains, which is unique in the PCH protein family, where most interactions are of the SH3-Pro kind. The interaction contributes to the formation of membrane protrusions and processes by recruiting the Arp2/3 complex in a Cdc42-independent manner. Importantly, specific interaction between Gas7 and N-WASP is required for regular neurite outgrowth of hippocampal neurons. The data demonstrate an essential role of Gas7 through its interaction with N-WASP during neuronal maturation/differentiation.
Collapse
Affiliation(s)
- Jhong-Jhe You
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
16
|
Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hoffmann EK, Yoder BK, Schwab A, Satir P, Christensen ST. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 2010; 25:279-92. [PMID: 20110689 DOI: 10.1159/000276562] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2009] [Indexed: 12/28/2022] Open
Abstract
Cell motility and migration play pivotal roles in numerous physiological and pathophysiological processes including development and tissue repair. Cell migration is regulated through external stimuli such as platelet-derived growth factor-AA (PDGF-AA), a key regulator in directional cell migration during embryonic development and a chemoattractant during postnatal migratory responses including wound healing. We previously showed that PDGFRalpha signaling is coordinated by the primary cilium in quiescent cells. However, little is known about the function of the primary cilium in cell migration. Here we used micropipette analysis to show that a normal chemosensory response to PDGF-AA in fibroblasts requires the primary cilium. In vitro and in vivo wound healing assays revealed that in ORPK mouse (IFT88(Tg737Rpw)) fibroblasts, where ciliary assembly is defective, chemotaxis towards PDGF-AA is absent, leading to unregulated high speed and uncontrolled directional cell displacement during wound closure, with subsequent defects in wound healing. These data suggest that in coordination with cytoskeletal reorganization, the fibroblast primary cilium functions via ciliary PDGFRalpha signaling to monitor directional movement during wound healing.
Collapse
Affiliation(s)
- Linda Schneider
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Faraone D, Aguzzi MS, Toietta G, Facchiano AM, Facchiano F, Magenta A, Martelli F, Truffa S, Cesareo E, Ribatti D, Capogrossi MC, Facchiano A. Platelet-derived growth factor-receptor alpha strongly inhibits melanoma growth in vitro and in vivo. Neoplasia 2009; 11:732-742. [PMID: 19649203 PMCID: PMC2713586 DOI: 10.1593/neo.09408] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 02/08/2023]
Abstract
Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs) is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Ralpha may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Ralpha respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Ralpha. Proliferation was rescued by PDGF-Ralpha inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Ralpha mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Ralpha was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Ralpha show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Balpha and a marked increase of p38gamma, mitogen-activated protein kinase kinase 3, and signal regulatory protein alpha1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Ralpha reached a significant 70% inhibition of primary melanoma growth (P < .001) and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Ralpha strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.
Collapse
Affiliation(s)
- Debora Faraone
- Laboratorio Biologia Vascolare e Terapia Genica, Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Maria Simona Aguzzi
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Roma, Italy
| | - Gabriele Toietta
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Roma, Italy
| | - Angelo M Facchiano
- Laboratorio Bioinformatica e Biologia Computazionale, Istituto di Scienza dell'Alimentazione CNR, Avellino, Italy
| | - Francesco Facchiano
- Dipartimento Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Roma, Italy
| | - Alessandra Magenta
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Roma, Italy
| | - Fabio Martelli
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Roma, Italy
| | - Silvia Truffa
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Roma, Italy
| | - Eleonora Cesareo
- Laboratorio Ingegneria Tessutale e Fisiopatologia Cutanea, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Roma, Italy
| | | | - Maurizio C Capogrossi
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Roma, Italy
| | - Antonio Facchiano
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Roma, Italy
| |
Collapse
|
18
|
Schneider L, Stock CM, Dieterich P, Jensen BH, Pedersen LB, Satir P, Schwab A, Christensen ST, Pedersen SF. The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-alpha in the primary cilium. ACTA ACUST UNITED AC 2009; 185:163-76. [PMID: 19349585 PMCID: PMC2700519 DOI: 10.1083/jcb.200806019] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that the primary cilium coordinates platelet-derived growth factor (PDGF) receptor (PDGFR) α–mediated migration in growth-arrested fibroblasts. In this study, we investigate the functional relationship between ciliary PDGFR-α and the Na+/H+ exchanger NHE1 in directional cell migration. NHE1 messenger RNA and protein levels are up-regulated in NIH3T3 cells and mouse embryonic fibroblasts (MEFs) during growth arrest, which is concomitant with cilium formation. NHE1 up-regulation is unaffected in Tg737orpk MEFs, which have no or very short primary cilia. In growth-arrested NIH3T3 cells, NHE1 is activated by the specific PDGFR-α ligand PDGF-AA. In wound-healing assays on growth-arrested NIH3T3 cells and wild-type MEFs, NHE1 inhibition by 5′-(N-ethyl-N-isopropyl) amiloride potently reduces PDGF-AA–mediated directional migration. These effects are strongly attenuated in interphase NIH3T3 cells, which are devoid of primary cilia, and in Tg737orpk MEFs. PDGF-AA failed to stimulate migration in NHE1-null fibroblasts. In conclusion, stimulation of directional migration in response to ciliary PDGFR-α signals is specifically dependent on NHE1 activity, indicating that NHE1 activation is a critical event in the physiological response to PDGFR-α stimulation.
Collapse
Affiliation(s)
- Linda Schneider
- Department of Biology, University of Copenhagen, Copenhagen O, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sepulveda DE, Andrews BA, Asenjo JA, Papoutsakis ET. Comparative transcriptional analysis of embryoid body versus two-dimensional differentiation of murine embryonic stem cells. Tissue Eng Part A 2009; 14:1603-14. [PMID: 18433312 DOI: 10.1089/ten.tea.2007.0331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding the process of ex vivo embryonic stem (ES) cell differentiation is important for generating higher yields of desirable cell types or lineages and for understanding fundamental aspects of ES differentiation. We used DNA microarray analysis to investigate the differentiation of mouse ES cells cultured under three differentiation conditions. Embryoid body (EB) formation was compared to differentiation on surfaces coated with either gelatin (GEL) or matrigel (MAT). Based on the transcriptional patterns of a list of literature-based "stemness" genes, ES cell differentiation on the two coated surfaces appeared similar but not identical to EB differentiation. A notable difference was the GEL and MAT upregulation but EB downregulation of nine such stemness genes, which are related to cell adhesion and epithelial differentiation. Further, GEL and MAT differentiation showed higher expression of bone formation-related genes (Spp1, Csf1, Gsn, Bmp8b, Crlf1). Gene ontology analysis shows an increase in the expression of genes related to migration and cell structure in all three conditions. Overall, GEL and MAT conditions resulted in a more similar to each other transcriptional profile than to the EB condition, and such differences are apparently related to higher nutrient and metabolite gradients and limitations in the EB versus the GEL or MAT cultures.
Collapse
Affiliation(s)
- Dario E Sepulveda
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Institute for Cell Dynamics and Biotechnology (ICDB), University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
20
|
Sambasivan R, Pavlath GK, Dhawan J. A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts. J Biosci 2008; 33:27-44. [PMID: 18376068 DOI: 10.1007/s12038-008-0019-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular quiescence is characterized not only by reduced mitotic and metabolic activity but also by altered gene expression. Growing evidence suggests that quiescence is not merely a basal state but is regulated by active mechanisms. To understand the molecular programme that governs reversible cell cycle exit, we focused on quiescence-related gene expression in a culture model of myogenic cell arrest and activation. Here we report the identification of quiescence-induced genes using a gene-trap strategy. Using a retroviral vector, we generated a library of gene traps in C2C12 myoblasts that were screened for arrest-induced insertions by live cell sorting (FACS-gal). Several independent gene- trap lines revealed arrest-dependent induction of betagal activity, confirming the efficacy of the FACS screen. The locus of integration was identified in 15 lines. In three lines,insertion occurred in genes previously implicated in the control of quiescence, i.e. EMSY - a BRCA2--interacting protein, p8/com1 - a p300HAT -- binding protein and MLL5 - a SET domain protein. Our results demonstrate that expression of chromatin modulatory genes is induced in G0, providing support to the notion that this reversibly arrested state is actively regulated.
Collapse
|
21
|
Lin Z, Sugai JV, Jin Q, Chandler LA, Giannobile WV. Platelet-derived growth factor-B gene delivery sustains gingival fibroblast signal transduction. J Periodontal Res 2008; 43:440-9. [PMID: 18823454 PMCID: PMC2583112 DOI: 10.1111/j.1600-0765.2008.01089.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Platelet-derived growth factor-BB is a potent mediator of tooth-supporting periodontal tissue repair and regeneration. A limitation of the effects of topical platelet-derived growth factor-BB application is its short half-life in vivo. Gene therapy has shown strong promise for the long-term delivery of platelet-derived growth factor in both skin ulcer healing and periodontal tissue engineering. However, little is known regarding the extended effects of platelet-derived growth factor-B on cell signaling via gene delivery, especially at the level of phosphorylation of intracellular kinases. This study sought to evaluate the effect of gene transfer by Ad-PDGF-B on human gingival fibroblasts (HGFs) and the subsequent regulation of genes and cell-surface proteins associated with cellular signaling. MATERIAL AND METHODS HGFs from human subjects were treated by adenoviral PDGF-B, PDGF-1308 (a dominant negative mutant of PDGF) and recombinant human platelet-derived growth factor-BB, and then incubated in serum-free conditions for various time points and harvested at 1, 6, 12, 24, 48, 72 and 96 h. Exogenous PDGF-B was measured by RT-PCR and Western blot. Cell proliferation was evaluated by [methyl-3H]thymidine incorporation assay. We used proteomic arrays to explore phosphorylation patterns of 23 different intracellular kinases after PDGF-B gene transfer. The expression of alpha and beta PDGFR and Akt were measured by Western blot analysis. RESULTS Sustained in vitro expression of PDGF-B in HGFs by Ad-PDGF-B transduction was seen at both the mRNA and protein levels. Compared to rhPDGF-BB and Ad-PDGF-1308, Ad-PDGF-B maintained cell growth in serum-free conditions, with robust increases in DNA synthesis. Gene delivery of PDGF-B also prolonged downregulation of the growth arrest specific gene (gas) PDGF alpha R. Of the 23 intracellular kinases that we tested in proteomic arrays, Akt revealed the most notable long-term cell signaling effect as a result of the over-expression of Ad-PDGF-B, compared with pulse recombinant human platelet-derived growth factor BB. Prolonged Akt phosphorylation was induced by treatment with Ad-PDGF-B, for at least up to 96 h. CONCLUSION These findings further demonstrate that gene delivery of PDGF-B displays sustained signal transduction effects in human gingival fibroblasts that are higher than those conveyed by treatment with recombinant human platelet-derived growth factor-BB protein. These data on platelet-derived growth factor gene delivery contribute to an improved understanding of these pathways that are likely to play a role in the control of clinical outcomes of periodontal regenerative therapy.
Collapse
Affiliation(s)
- Z Lin
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|
22
|
Sepúlveda DE, Andrews BA, Asenjo JA, Papoutsakis ET. Comparative Transcriptional Analysis of Embryoid Body Versus Two-Dimensional Differentiation of Murine Embryonic Stem Cells. Tissue Eng Part A 2008. [DOI: 10.1089/tea.2007.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Liu P, Lu J, Cardoso WV, Vaziri C. The SPARC-related factor SMOC-2 promotes growth factor-induced cyclin D1 expression and DNA synthesis via integrin-linked kinase. Mol Biol Cell 2007; 19:248-61. [PMID: 17989364 DOI: 10.1091/mbc.e07-05-0510] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Secreted modular calcium-binding protein-2 (SMOC-2) is a recently-identified SPARC-related protein of unknown function. In mRNA profiling experiments we, found that SMOC-2 expression was elevated in quiescent (G0) mouse fibroblasts and repressed after mitogenic stimulation with serum. The G0-specific expression of SMOC-2 was similar to that of platelet-derived growth factor-beta receptor (PDGFbetaR), a major mitogenic receptor. Therefore, we tested a possible role for SMOC-2 in growth factor-induced cell cycle progression. SMOC-2 overexpression augmented DNA synthesis induced by serum and fibroblast mitogens (including PDGF-BB and basic fibroblast growth factor). Conversely, SMOC-2 ablation by using small interfering RNA attenuated DNA synthesis in response to PDGF-BB and other growth factors. Mitogen-induced expression of cyclin D1 was attenuated in SMOC-2-ablated cells, and cyclin D1-overexpressing cells were resistant to inhibition of mitogenesis after SMOC-2 ablation. Therefore, cyclin D1 is limiting for G1 progression in SMOC-2-deficient cells. SMOC-2 ablation did not inhibit PDGF-induced PDGFbetaR autophosphorylation or PDGF-BB-dependent activation of mitogen-activated protein kinase and Akt kinases, suggesting that SMOC-2 is dispensable for growth factor receptor activation. However, integrin-linked kinase (ILK) activity was reduced in SMOC-2-ablated cells. Ectopic expression of hyperactive ILK corrected the defective mitogenic response of SMOC-2-deficient cells. Therefore, SMOC-2 contributes to cell cycle progression by maintaining ILK activity during G1. These results identify a novel role for SMOC-2 in cell cycle control.
Collapse
Affiliation(s)
- Peijun Liu
- The Department of Genetics and Genomics and The Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
24
|
Minato Y, Tashiro E, Kanai M, Nihei Y, Kodama Y, Imoto M. Transcriptional regulation of a new variant of human platelet-derived growth factor receptor alpha transcript by E2F-1. Gene 2007; 403:89-97. [PMID: 17881156 DOI: 10.1016/j.gene.2007.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/23/2007] [Accepted: 08/10/2007] [Indexed: 01/30/2023]
Abstract
Platelet-derived growth factors (PDGFs) and their receptors play an important role in cell proliferation, angiogenesis, and differentiation during normal development, and have also been implicated in tumorigenesis. In this study, we identified a novel variant of human PDGF receptor alpha mRNA (type II), which contains the same open reading frame as the known PDGF receptor alpha mRNA (type I) but a different 5'-untranslated region (5'-UTR). The 5'-UTR of the type II transcript was identified as a 363-bp exon located in intron 1 at position +1,210 to +1,572 relative to the transcriptional initiation site of the type I transcript. This type II transcript was expressed in a subset of human cell lines, such as MG-63 and MNNG/HOS cells. Moreover, transcription of the type II, but not the type I, was regulated by E2F-1 through an E2F-1-responsive site located at position +1,086/+1,093 downstream of the transcriptional initiation site of the type I transcript. Furthermore, epigenetic modulation might be involved in the expression of the type II transcript. Our findings provide new insights into the regulatory mechanism of PDGF receptor alpha transcription in normal and tumor cells.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Cilia are membrane-bounded, centriole-derived projections from the cell surface that contain a microtubule cytoskeleton, the ciliary axoneme, surrounded by a ciliary membrane. Axonemes in multiciliated cells of mammalian epithelia are 9 + 2, possess dynein arms, and are motile. In contrast, single nonmotile 9 + 0 primary cilia are found on epithelial cells, such as those of the kidney tubule, but also on nonepithelial cells, such as chondrocytes, fibroblasts, and neurons. The ciliary membranes of all cilia contain specific receptors and ion channel proteins that initiate signaling pathways controlling motility and/or linking mechanical or chemical stimuli, including sonic hedgehog and growth factors, to intracellular transduction cascades regulating differentiation, migration, and cell growth during development and in adulthood. Unique motile 9 + 0 cilia, found during development at the embryonic node, determine left-right asymmetry of the body.
Collapse
Affiliation(s)
- Peter Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| | | |
Collapse
|
26
|
Christensen ST, Pedersen LB, Schneider L, Satir P. Sensory cilia and integration of signal transduction in human health and disease. Traffic 2007; 8:97-109. [PMID: 17241444 DOI: 10.1111/j.1600-0854.2006.00516.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the extracellular environment in order to control basic cellular processes during embryonic and postnatal development, as well as in tissue homeostasis in adulthood. Consequently, defects in building of the cilium or in transport or function of ciliary signal proteins are associated with a series of pathologies, including developmental disorders and cancer. In this review, we highlight recent examples of the mechanisms by which signal components are selectively targeted and transported to the ciliary membrane and we present an overview of the signal transduction pathways associated with primary and motile cilia in vertebrate cells, including platelet-derived growth factor receptor-alpha (PDGFRalpha), hedgehog and Wnt signaling pathways. Finally, we discuss the functions of these cilia-associated signal transduction pathways and their role in human health and development.
Collapse
Affiliation(s)
- Søren T Christensen
- Department of Molecular Biology, Section of Biochemistry, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark.
| | | | | | | |
Collapse
|
27
|
Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, Christensen ST. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 2006; 15:1861-6. [PMID: 16243034 DOI: 10.1016/j.cub.2005.09.012] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 09/01/2005] [Accepted: 09/01/2005] [Indexed: 11/28/2022]
Abstract
Recent findings show that cilia are sensory organelles that display specific receptors and ion channels, which transmit signals from the extracellular environment via the cilium to the cell to control tissue homeostasis and function. Agenesis of primary cilia or mislocation of ciliary signal components affects human pathologies, such as polycystic kidney disease and disorders associated with Bardet-Biedl syndrome. Primary cilia are essential for hedgehog ligand-induced signaling cascade regulating growth and patterning. Here, we show that the primary cilium in fibroblasts plays a critical role in growth control via platelet-derived growth factor receptor alpha (PDGFRalpha), which localizes to the primary cilium during growth arrest in NIH3T3 cells and primary cultures of mouse embryonic fibroblasts. Ligand-dependent activation of PDGFRalphaalpha is followed by activation of Akt and the Mek1/2-Erk1/2 pathways, with Mek1/2 being phosphorylated within the cilium and at the basal body. Fibroblasts derived from Tg737(orpk) mutants fail to form normal cilia and to upregulate the level of PDGFRalpha; PDGF-AA fails to activate PDGFRalphaalpha and the Mek1/2-Erk1/2 pathway. Signaling through PDGFRbeta, which localizes to the plasma membrane, is maintained at comparable levels in wild-type and mutant cells. We propose that ciliary PDGFRalphaalpha signaling is linked to tissue homeostasis and to mitogenic signaling pathways.
Collapse
Affiliation(s)
- Linda Schneider
- Department of Biochemistry, Institute for Molecular Biology and Physiology, University of Copenhagen, The August Krogh Building, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
28
|
Colantonio JR, Bekker JM, Kim SJ, Morrissey KM, Crosbie RH, Hill KL. Expanding the Role of the Dynein Regulatory Complex to Non-Axonemal Functions: Association of GAS11 with the Golgi Apparatus. Traffic 2006; 7:538-48. [PMID: 16643277 DOI: 10.1111/j.1600-0854.2006.00411.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mammalian GAS11 gene is a candidate tumor suppressor of unknown function that was previously identified as one of several genes upregulated upon growth arrest. Interestingly, although GAS11 homologs in Trypanosoma brucei (trypanin) and Chlamydomonas reinhardtii (PF2) are integral components of the flagellar axoneme and are necessary for regulating flagellar beat, the GAS11 gene was discovered based on its expression in cells that do not assemble a motile cilium. This suggests that GAS11 function might not be restricted to the cilium. To investigate this possibility, we generated GAS11-specific antibodies and demonstrate here that GAS11 is expressed in a variety of mammalian cells that lack a motile cilium. In COS7 cells, GAS11 is associated with the detergent-insoluble cytoskeleton and exhibits a juxtanuclear localization that overlaps with the pericentrosomal Golgi apparatus. This localization is dependent upon intact microtubules and is cell-cycle regulated, such that GAS11 is dispersed throughout the cytoplasm as cells progress through mitosis. GAS11 remains associated with Golgi fragments following depolymerization of cytoplasmic microtubules but is dispersed upon disruption of the Golgi with brefeldin A. These data suggest that GAS11 is associated with the Golgi apparatus. In support of this, recombinant GAS11 binds Golgi membranes in vitro. In growth-arrested mIMCD3 cells, GAS11 co-localizes with gamma-tubulin at the base of the primary cilium. The pericentrosomal Golgi apparatus and base of the cilium both represent convergence points for microtubule minus ends and correspond to sites where dynein regulation is required. The algal GAS11 homolog functions as part of a dynein regulatory complex (DRC) in the axoneme (Rupp and Porter. J Cell Biol 2003;162:47-57) and our findings suggest that components of this axonemal dynein regulatory system have been adapted in mammalian cells to participate in non-axonemal functions.
Collapse
Affiliation(s)
- Jessica R Colantonio
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Expression of growth arrest-specific (Gas) genes is observed during growth arrest in terminally differentiating cells during development of peripheral nerves. Gas7 is expressed predominantly in the brain and is required for neurite formation. Human GAS7 is located on chromosome 17p11.3 close to or within the putative breakpoint of isochromosome 17q (i(17q)) in medulloblastoma, indicating a potential role as a tumor suppressor gene, lost by formation of i(17q). However in the present study, the expression of GAS7 was detected in 20 of 29 childhood medulloblastoma samples regardless of the presence of i(17q). Therefore, GAS7 is not likely to be a tumor suppressor gene in medulloblastoma development.
Collapse
Affiliation(s)
- Martin Ebinger
- Department of Pediatric Oncology, University Children's Hospital, Eberhard-Karl's-University, Tübingen, Germany
| | | | | | | |
Collapse
|
30
|
Chao CCK, Chang PY, Lu HHP. Human Gas7 isoforms homologous to mouse transcripts differentially induce neurite outgrowth. J Neurosci Res 2005; 81:153-62. [PMID: 15948147 DOI: 10.1002/jnr.20552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gas7, a growth-arrest-specific protein, is expressed preferentially in the brain and is required for neurite outgrowth in cultured cerebellar and peripheral murine neurons. Gas7 interacts with F-actin and colocalizes with the terminal part of actin microfilament in cells in which membrane outgrowth is present. Gas7 isoforms were discovered in murine brain by alternative splicing. This work reports the identification of two human Gas7 cDNA: hGas7-a with 2,427 nucleotides, which encodes 330 amino acids, and hGas7-b with 2,610 nucleotides, which encodes 412 amino acids according to predicted open-reading-frames. The predicted hGas7-b protein is 97% homologous to murine homologues, whereas the hGas7-a is homologous to the mouse Gas7-cb form that is expressed preferentially in cerebellum. Alignment analysis of the Gas7 protein sequences revealed a high homology to that in humans: 99% for the monkey, 97% in murine, and around 75% for the puffer fish and chicken. The hGas7-b protein comprises a WW domain, which often associates with other domains that are typically present in proteins in signal transduction processes, and an FCH domain, which participates in rearranging the cytoskeleton. The hGas7-a comprises only the FCH domain. Analysis of the human Gas7 sequences using the DNA database revealed that the two forms resulted from the canonical alternative splicing of a Gas7 genomic sequence. The abundance of both hGas7 mRNA levels, determined by quantitative PCR in tissues including brain, breast cancer, placenta, and head-neck cancer, revealed that the level of hGas7-a was 14 times that of hGas7-b in these tissues. Transfection of cells with hGas7-a or hGas7-b cDNA yielded the predicted 38-kDa or 50-kDa protein, respectively. The ectopic expression of hGas7 caused neurite-like cell processes in both mouse Neuro-2a and human SH-SY5Y neuroblastoma cells. Interestingly, the hGas7-a preferentially elicited the small lamellipodia, whereas the hGas7-b elicited the small filopodia phenotype. These findings reveal the evolutionary conservation of the structure and function of Gas7. They also suggest that the FCH domain in Gas7 may participate in the development of lamellipodia, and the WW domain may participate in the fine-tuning of the filopodia.
Collapse
Affiliation(s)
- Chuck C-K Chao
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan, Republic of China.
| | | | | |
Collapse
|
31
|
Brady G, Boggan L, Bowie A, O'Neill LAJ. Schlafen-1 causes a cell cycle arrest by inhibiting induction of cyclin D1. J Biol Chem 2005; 280:30723-34. [PMID: 15946944 DOI: 10.1074/jbc.m500435200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Schlafen-1 (Slfn-1), the prototypic member of the Schlafen family of proteins, was described as an inducer of growth arrest in T-lymphocytes and causes a cell cycle arrest in NIH3T3 fibroblasts prior to the G1/S transition. How Slfn-1 exerts its effects on the cell cycle is not currently known. We report that synchronized murine fibroblasts expressing Slfn-1 do not exit G1 when stimulated with fetal calf serum, platelet-derived growth factor BB (PDGF-BB) or epidermal growth factor (EGF). The induction of cyclin D1 by these stimuli was blocked in the presence of Slfn-1 as were all downstream cell cycle processes. Overexpression of cyclin D1 in growth-arrested, Slfn-1-expressing cells induced an increase in cell growth consistent with this protein being the biological target of Slfn-1. Activation of the mitogen-activated protein kinase pathway by EGF or phorbol 12-myristate 13-acetate was unaffected by Slfn-1 expression. PDGF signaling was, however, almost completely blocked. This was due to a lack of PDGF receptor expression in Slfn-1-expressing cells consistent with Slfn-1 blocking the cell cycle in G1 where PDGF receptor expression is normally down-regulated. Finally, overexpression of Slfn-1 inhibited the activation of the cyclin D1 promoter. Slfn-1 therefore causes a cell cycle arrest during G1 by inhibiting induction of cyclin D1 by mitogens.
Collapse
Affiliation(s)
- Gareth Brady
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | |
Collapse
|
32
|
Suprynowicz FA, Disbrow GL, Simic V, Schlegel R. Are transforming properties of the bovine papillomavirus E5 protein shared by E5 from high-risk human papillomavirus type 16? Virology 2005; 332:102-13. [PMID: 15661144 DOI: 10.1016/j.virol.2004.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 09/10/2004] [Accepted: 11/10/2004] [Indexed: 11/24/2022]
Abstract
The E5 proteins of bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 16 (HPV-16) are small (44-83 amino acids), hydrophobic polypeptides that localize to membranes of the Golgi apparatus and endoplasmic reticulum, respectively. While the oncogenic properties of BPV-1 E5 have been characterized in detail, less is known about HPV-16 E5 due to its low expression in mammalian cells. Using codon-optimized HPV-16 E5 DNA, we have generated stable fibroblast cell lines that express equivalent levels of epitope-tagged BPV-1 and HPV-16 E5 proteins. In contrast to BPV-1 E5, HPV-16 E5 does not activate growth factor receptors, phosphoinositide 3-kinase or c-Src, and fails to induce focus formation, although it does promote anchorage-independent growth in soft agar. These variant activities are apparently unrelated to differences in intracellular localization of the E5 proteins since retargeting HPV-16 E5 to the Golgi apparatus does not induce focus formation.
Collapse
Affiliation(s)
- Frank A Suprynowicz
- Department of Pathology, Georgetown University Medical School, Preclinical Sciences Building, Room GR10C, 3900 Reservoir Road, NW, Box #571432, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
33
|
Chang PY, Kuo JT, Lin-Chao S, Chao CCK. Identification of rat Gas7 isoforms differentially expressed in brain and regulated following kainate-induced neuronal injury. J Neurosci Res 2005; 79:788-97. [PMID: 15657892 DOI: 10.1002/jnr.20409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The growth arrest-specific gene 7 (Gas7) is expressed primarily in the brain and is necessary for the formation of neurite in cultured cerebellar preneurons. The endogenous rat Gas7 (rGas7) is transiently elevated before nerve growth factor-promoted neurite outgrowths emerge in cultured PC12 cells. We report three Gas7 isoforms (a, b, and c) in rat tissues. Peptide microsequencing identified two Gas7 forms, rGas7-a (38 kDa) and rGas7-b (47 kDa). rGas7-c can be predicted from a transcription variant by alternative splicing. Although two open reading frames were predicted, a cloned rGas7 cDNA encoded mostly rGas7-a in mammalian cells. The overexpression of the rGas7 cDNA in PC12 cells sufficed to promote small lamellipodia- and filopodia-like cell processes that resemble the initial stages of neurite formation. Three rGas7 isoforms were differentially expressed in all of the brain subregions. Only rGas7-a was detected in rat cerebellum, as in mouse cerebellum. Kainate injury did not affect the level of rGas7-b, but the level of isoform c was substantially suppressed in the hippocampus. Immunohistochemistry reveals that Gas7 was expressed primarily in the pyramidal neurons of the hippocampus and was quickly attenuated before recovery in the CA3 area after kainate was administered. These results suggest that differential expression and unique regulation of Gas7 isoforms in brain subregions may be important in specialized brain functions. Conservation of Gas7 isoforms by alternative splicing in mammals is also considered.
Collapse
Affiliation(s)
- P-Y Chang
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
34
|
Chao CCK, Su LJ, Sun NK, Ju YT, Lih JCJ, Lin-Chao S. Involvement of Gas7 in nerve growth factor-independent and dependent cell processes in PC12 cells. J Neurosci Res 2003; 74:248-54. [PMID: 14515354 DOI: 10.1002/jnr.10763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gas7, a growth arrest-specific gene originally isolated from serum-starved mouse fibroblast cells, is expressed in vivo predominantly in the brain and is required for neurite formation in cultured mouse cerebellar neurons (Ju et al. [1998] Proc. Natl. Acad. Sci. USA 95: 11423-11428). Here we report that Gas7 plays a key role in the morphological differentiation of PC12 preneuronal rat pheochromocytoma cells (PC12 cells). We found that overexpression of murine Gas7 in PC12 cells leads to an expanded cell morphology and promotes spike-like cell processes that resemble the early stages of neurite formation. These processes undergo elongation upon addition of nerve growth factor (NGF). We also found that the addition of NGF induces the production of endogenous rat-Gas7 (rGas7), which is transiently elevated prior to the appearance of NGF-promoted neurite outgrowths. Furthermore, inhibition of endogenous rGas7 production by antisense nucleotides complimentary to the translation initiation region of a rGas7 cDNA (AJ131902) reduces the NGF-promoted neurite outgrowths. Our results demonstrate that Gas7 by itself influences early cell morphological development and likely functions as an early-stage intermediary in NGF-induced neuronal differentiation of PC12 culture cells.
Collapse
Affiliation(s)
- Chuck C-K Chao
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Gagliardi M, Maynard S, Miyake T, Rodrigues N, Tjew SL, Cabannes E, Bedard PA. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression. J Biol Chem 2003; 278:43846-54. [PMID: 12896981 DOI: 10.1074/jbc.m304085200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBPbeta. In this report, we describe the role of C/EBPbeta in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBPbeta (designated Delta184-C/EBPbeta) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBPbeta had a proliferative advantage over cells with one or two functional copies of this gene. C/EBP inhibition enhanced the expression of the three major components of AP-1 in cycling CEF, namely c-Jun, JunD, and Fra-2, and stimulated AP-1 activity. In contrast, the over-expression of C/EBPbeta caused a dramatic reduction in the levels of AP-1 proteins. Therefore, C/EBPbeta is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBPbeta but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF over-expressing c-Jun, and to a lesser extent JunD and Fra-2, did not growth arrest at high cell density and did not express p20K. Therefore, AP-1 interfered with the action of C/EBPbeta at high cell density, indicating that these factors play opposing roles in the control of GAS gene expression and CEF proliferation.
Collapse
Affiliation(s)
- Mark Gagliardi
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Rupp G, Porter ME. A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest-specific gene product. J Cell Biol 2003; 162:47-57. [PMID: 12847082 PMCID: PMC2172716 DOI: 10.1083/jcb.200303019] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 05/15/2003] [Accepted: 05/21/2003] [Indexed: 11/22/2022] Open
Abstract
The dynein regulatory complex (DRC) is an important intermediate in the pathway that regulates flagellar motility. To identify subunits of the DRC, we characterized a Chlamydomonas motility mutant obtained by insertional mutagenesis. The pf2-4 mutant displays an altered waveform that results in slow swimming cells. EM analysis reveals defects in DRC structure that can be rescued by reintroduction of the wild-type PF2 gene. Immunolocalization studies show that the PF2 protein is distributed along the length of the axoneme, where it is part of a discrete complex of polypeptides. PF2 is a coiled-coil protein that shares significant homology with a mammalian growth arrest-specific gene product (Gas11/Gas8) and a trypanosome protein known as trypanin. PF2 and its homologues appear to be universal components of motile axonemes that are required for DRC assembly and the regulation of flagellar motility. The expression of Gas8/Gas11 transcripts in a wide range of tissues may also indicate a potential role for PF2-related proteins in other microtubule-based structures.
Collapse
Affiliation(s)
- Gerald Rupp
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
37
|
Chen QP, Giannobile WV. Adenoviral gene transfer of PDGF downregulates gas gene product PDGFalphaR and prolongs ERK and Akt/PKB activation. Am J Physiol Cell Physiol 2002; 282:C538-44. [PMID: 11832339 PMCID: PMC2579768 DOI: 10.1152/ajpcell.00419.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The delivery of platelet-derived growth factor (PDGF) for tissue engineering of skin and periodontal wounds has become an active area of interest. However, little is known regarding the extended effects of PDGF on cell signaling via gene therapy and how such an approach facilitates the exiting of cells from growth arrest and entry to competence required for cell cycling. We show in vitro expression and secretion of PDGF-AA by recombinant adenovirus encoding the PDGF-A gene (Ad-PDGF-A). The bioactive PDGF-AA protein released induces sustained downregulation of PDGFalphaR that is encoded by a growth arrest-specific (gas) gene. Ad-PDGF-A induces sustained phosphorylation of PDGFalphaR as well as prolonged phosphorylation of downstream extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Furthermore, the phosphorylation of PDGFalphaR is abolished by cotransducing cells with adenovirus encoding a dominant negative mutant of the PDGF-A gene that disrupts PDGF bioactivity. These findings demonstrate the prolonged effects of adenoviral delivery of PDGF and aid in the better understanding of sustained PDGF signaling.
Collapse
Affiliation(s)
- Qi-Ping Chen
- Center for Biorestoration of Oral Health, Department of Periodontics, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
38
|
Yeh SD, Chen YJ, Chang ACY, Ray R, She BR, Lee WS, Chiang HS, Cohen SN, Lin-Chao S. Isolation and properties of Gas8, a growth arrest-specific gene regulated during male gametogenesis to produce a protein associated with the sperm motility apparatus. J Biol Chem 2002; 277:6311-7. [PMID: 11751847 DOI: 10.1074/jbc.m106941200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth arrest-specific (Gas) genes are expressed during serum starvation or contact inhibition of cells grown in culture. Here we report the isolation and characterization of Gas8, a novel gene identified on the basis of its growth arrest-specific expression in murine fibroblasts. We show that production of Gas8 mRNA and protein occurs in adult mice predominantly in the testes, where expression is regulated during postmeiotic development of male gametocytes. Whereas a low level of Gas8 mRNA was detected by Northern blotting in testes of murine male neonates and young adolescents, Gas8 mRNA increased rapidly postmeiotically. In adult males, both Gas8 mRNA and protein reached steady state levels in testes that were 10-fold higher than in other tissues. Immunohistochemical analyses showed that Gas8 protein accumulates in gametocytes as they approach the lumen of seminiferous tubules and is localized to the cytoplasm of round spermatids, the tails of elongating spermatids, and mature spermatid tail bundles protruding into the lumen; in epididymal spermatozoa Gas8 protein was present in the flagella. However, premeiotic murine gametocytes lacked detectable Gas8 protein, as did seminiferous tubules in biopsy specimens from seven human males having cytological evidence of non-obstructive azoospermia secondary to Sertoli cell-only syndrome. Our findings, which associate Gas8 production developmentally with the later stages of spermatogenesis and spatially with the sperm motility apparatus, collectively suggest that this growth arrest-specific gene product may have a role in sperm motility. This postulated role for Gas8 is supported by our observation that highly localized production of Gas8 protein occurs also in the cilia of epithelial cells lining pulmonary bronchi and fallopian tubes and by the flagellar association of a Trypanosoma brucei ortholog of Gas8.
Collapse
Affiliation(s)
- Shauh-Der Yeh
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
She BR, Liou GG, Lin-Chao S. Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth. Exp Cell Res 2002; 273:34-44. [PMID: 11795944 DOI: 10.1006/excr.2001.5435] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.
Collapse
Affiliation(s)
- Bin-Ru She
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | | | | |
Collapse
|
40
|
Abstract
Contact inhibition of cell proliferation evokes a unique cellular program of growth arrest compared with stress, age, or other physical constraints. The last decade of research on genes activated by cell-cell contact has uncovered features of transmembrane signaling, cytoskeletal reorganization, and transcriptional control that initiate and maintain a quiescent phenotype. This review will focus on mechanisms controlling contact inhibition of cell proliferation, highlighting specific gene expression responses that are activated by cell-cell contact. Although a temporal framework for imposition of these mechanisms has not yet been well described, contact inhibition of cell proliferation clearly requires their coordinated function. Novel targets for intervention in proliferative disorders are emerging from these studies.
Collapse
Affiliation(s)
- Peter J Nelson
- Division of Nephrology, Mount Sinai Medical Center, New York, NY 10029, USA.
| | | |
Collapse
|
41
|
Metheny-Barlow LJ, Flynn B, van Gijssel HE, Marrogi A, Gerwin BI. Paradoxical effects of platelet-derived growth factor-A overexpression in malignant mesothelioma. Antiproliferative effects in vitro and tumorigenic stimulation in vivo. Am J Respir Cell Mol Biol 2001; 24:694-702. [PMID: 11415934 DOI: 10.1165/ajrcmb.24.6.4334] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Malignant mesothelioma is associated with asbestos exposure and remains resistant to all therapeutic intervention. Previous studies have suggested an enhancing role for platelet-derived growth factor (PDGF) in mesothelial tumorigenicity, although the mechanism by which PDGF facilitates tumorigenicity is unknown. Here, we evaluate the contribution of PDGF-A expression to mesothelial tumorigenicity using ectopic modulation of PDGF-A expression. We find, in accordance with other reports, that the receptor for PDGF-A, although expressed at high levels in normal human mesothelial cells, is not easily detectable in mesothelioma. Further, we show that PDGF-A overexpression is responsible for autocrine downregulation of its receptor. Our data indicate, surprisingly, that for mesothelioma cells in vitro, high-level activation of a PDGF-A-PDGF receptor loop is antiproliferative whereas abrogation of PDGF-A expression stimulates growth. These data suggest that PDGF-A does not contribute to tumorigenicity by autocrine stimulation of proliferation. In contrast, increased PDGF-A expression in vivo increases tumor incidence and growth rate and decreases the latency period to tumor formation whereas abrogation of PDGF-A expression decreases tumor incidence and increases latency. Thus, the tumorigenic effect of PDGF-A must act through paracrine mechanisms relevant at early stages of tumor initiation.
Collapse
Affiliation(s)
- L J Metheny-Barlow
- Laboratory of Human Carcinogenesis; and Laboratory of Cellular Carcinogenesis and Tumor Promotion, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
42
|
Néron B, Marx M, Crisanti P. Role of QN1 protein in cell proliferation arrest and differentiation during the neuroretina development. Mech Dev 2001; 102:107-17. [PMID: 11287185 DOI: 10.1016/s0925-4773(01)00297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this report, we describe the involvement of the quail neuroretina 1 (QN1) protein in retinal development. The Qn1 cDNA was isolated as a gene specifically expressed at the onset of neuronal cell cycle withdrawal (Bidou et al., Mech. Dev. 43 (1993) 159). Qn1 is located in the cytoplasm in proliferating cells during the early stages of the development. Its distribution changes, becoming predominantly nuclear, in neurons during establishment of the quiescent state upon the differentiation. We decreased the amount of QN1 protein by an antisense strategy in vitro or in vivo. This decrease of the amount of QN1 protein results in additional mitosis and in severe abnormalities such as retinal dysplasia. Our results suggest that QN1 plays a key role at the onset of neuronal cell cycle withdrawal.
Collapse
Affiliation(s)
- B Néron
- INSERM U450, "Développement, Vieillissement et Pathologie de la Rétine", 29 Rue de Wilhem 75016, Paris, France
| | | | | |
Collapse
|
43
|
Lindroos PM, Wang YZ, Rice AB, Bonner JC. Regulation of PDGFR-alpha in rat pulmonary myofibroblasts by staurosporine. Am J Physiol Lung Cell Mol Physiol 2001; 280:L354-62. [PMID: 11159015 DOI: 10.1152/ajplung.2001.280.2.l354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upregulation of the platelet-derived growth factor (PDGF) receptor-alpha (PDGFR-alpha) is a mechanism of myofibroblast hyperplasia during pulmonary fibrosis. We previously identified interleukin (IL)-1beta as a major inducer of the PDGFR-alpha in rat pulmonary myofibroblasts in vitro. In this study, we report that staurosporine, a broad-spectrum kinase inhibitor, upregulates PDGFR-alpha gene expression and protein. A variety of other kinase inhibitors did not induce PDGFR-alpha expression. Staurosporine did not act via an IL-1beta autocrine loop because the IL-1 receptor antagonist protein did not block staurosporine-induced PDGFR-alpha expression. Furthermore, staurosporine did not activate a variety of signaling molecules that were activated by IL-1beta, including nuclear factor-kappaB, extracellular signal-regulated kinase, and c-Jun NH2-terminal kinase. However, both staurosporine- and IL-1beta-induced phosphorylation of p38 mitogen-activated protein kinase and upregulation of PDGFR-alpha by these two agents was inhibited by the p38 inhibitor SB-203580. Finally, staurosporine inhibited basal and PDGF-stimulated mitogenesis over the same concentration range that induced PDGFR-alpha expression. Collectively, these data demonstrate that staurosporine is a useful tool for elucidating the signaling mechanisms that regulate PDGFR expression in lung connective tissue cells and possibly for evaluating the role of the PDGFR-alpha as a growth arrest-specific gene.
Collapse
Affiliation(s)
- P M Lindroos
- Laboratory of Pulmonary Pathobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
44
|
Provot S, Pouponnot C, Lecoq O, Calothy G, Felder-Schmittbuhl MP. Characterization of a novel quiescence responsive element downregulated by v-Src in the promoter of the neuroretina specific QR1 gene. Oncogene 2000; 19:4736-45. [PMID: 11032024 DOI: 10.1038/sj.onc.1203837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuroretina is a functional unit of the central nervous system which arises through successive steps of division, growth arrest and differentiation of neuroectodermal precursors. Postmitotic quail neuroretina (QNR) cells are conditionally induced to divide upon infection with temperature sensitive mutants of Rous sarcoma virus (RSV), since QNR cell division can be arrested by either inactivating p60v-Src at the nonpermissive temperature (41 degrees C) or by serum deprivation at 37 degrees C. We are studying the transcriptional control of QR1, a neuroretina specific gene, whose expression is down-regulated in proliferating cells at 37 degrees C and is fully restored when these cells are made quiescent. We previously showed that this quiescence specific upregulation implicates a promoter region named A box, which binds Maf transcription factors. We report the identification of the C box, a second promoter sequence that activates QR1 transcription in non dividing cells. This sequence is able to form two DNA-protein complexes, one of which (C4) is predominantly detected in growth arrested NR cells. We identified the DNA binding site for C4 and described mutations that abolish both C4 binding and promoter activity in quiescent cells. Moreover, we show that a multimerized C box is able to stimulate a heterologous promoter in non dividing cells and constitutes, therefore, a novel quiescence responsive enhancer. Finally, we report that QR1 transcriptional response to cell quiescence requires cooperation between the C box and A box.
Collapse
Affiliation(s)
- S Provot
- UMR 146 CNRS-Institut Curie, Orsay, France
| | | | | | | | | |
Collapse
|
45
|
Lazakovitch EM, She BR, Lien CL, Woo WM, Ju YT, Lin-Chao S. The Gas7 gene encodes two protein isoforms differentially expressed within the brain. Genomics 1999; 61:298-306. [PMID: 10552931 DOI: 10.1006/geno.1999.5964] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gas7, a growth arrest-specific gene first isolated from serum-starved NIH3T3 cells, is expressed abundantly in the brain and is essential for the outgrowth of neurites from cultured cerebellar neurons. Here, we report the existence of a Gas7-related cDNA, designated Gas7-cb, isolated from the mouse cerebellum, and we report the finding that Gas7-cb transcripts and protein are expressed at different locations than those of Gas7. Gas7-cb cDNA differs from the Gas7 cDNA only in the 5' region. Its encoded protein shares the same 320 amino acids in its C-terminus with those of Gas7. Analyses of the RNA and protein expression of Gas7-cb and Gas7 by RNase protection assay and Western blot indicated that while Gas7 expression is predominant in the cerebrum and in growth-arrested NIH3T3 fibroblasts, Gas7-cb expression is predominant in the cerebellum. Characterization of Gas7 and Gas7-cb RNAs and of the genomic structure of murine Gas7 cloned in a bacterial artificial chromosome indicated that the Gas7 gene spans more than 60 kb and consists of at least 15 exons. The 5'-terminus of Gas7-cb is located at exon 6a, which is absent in Gas7 transcripts but is retained in its entirety in Gas7-cb transcripts, resulting in the presence of a unique 20-amino-acid sequence at the N-terminus of the Gas7-cb protein. Our results show that the Gas7 gene encodes two Gas7 isoforms, Gas7 and Gas7-cb, whose expression is differentially regulated within mouse brain.
Collapse
Affiliation(s)
- E M Lazakovitch
- Institute of Molecular Biology, Academia Sinica, Nankang, 115, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Kim S, Mao PL, Gagliardi M, Bédard PA. C/EBPbeta (NF-M) is essential for activation of the p20K lipocalin gene in growth-arrested chicken embryo fibroblasts. Mol Cell Biol 1999; 19:5718-31. [PMID: 10409760 PMCID: PMC84423 DOI: 10.1128/mcb.19.8.5718] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1999] [Accepted: 05/05/1999] [Indexed: 11/20/2022] Open
Abstract
The p20K gene is induced in conditions of reversible growth arrest in chicken embryo fibroblasts (CEF). This expression is dependent on transcriptional activation and on a region of the promoter designated the quiescence-responsive unit (QRU). In this report, we describe the regulatory elements of the QRU responsible for activation in resting cells and characterize the trans-acting proteins interacting with these elements. We show that the QRU consists of functionally distinct domains including quiescence-specific and weak proliferation-responsive elements. The quiescence responsiveness of the QRU was mapped to two C/EBP binding sites, and the activity of the p20K promoter and its QRU was inhibited by the expression of a dominant negative mutant of C/EBPbeta in nondividing cells. The activation of QRU in response to serum starvation and contact inhibition correlated with the presence of a growth arrest-specific complex in electrophoretic mobility shift assays. This complex was supershifted by antibody for C/EBPbeta. C/EBPbeta accumulated in conditions of contact inhibition as a result of transcriptional activation. Therefore, C/EBPbeta was itself regulated as a growth arrest-specific gene in CEF. Finally, we show that the expression of p20K is regulated by linoleic acid, an essential fatty acid binding to p20K. The addition of linoleic acid to contact-inhibited CEF markedly repressed the synthesis of p20K without inducing mitogenesis. The activity of the QRU was inhibited by linoleic acid or the peroxisome proliferator-activated receptor PPARgamma2 in transient expression assays. Therefore, we have identified C/EBPbeta as a key activator of a growth arrest-specific gene in CEF and implicated an essential fatty acid, linoleic acid, in regulation of the QRU and the p20K lipocalin gene.
Collapse
Affiliation(s)
- S Kim
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | |
Collapse
|
47
|
Rice PL, Porter SE, Koski KM, Ramakrishna G, Chen A, Schrump D, Kazlauskas A, Malkinson AM. Reduced receptor expression for platelet-derived growth factor and epidermal growth factor in dividing mouse lung epithelial cells. Mol Carcinog 1999; 25:285-94. [PMID: 10449035 DOI: 10.1002/(sici)1098-2744(199908)25:4<285::aid-mc7>3.0.co;2-f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The roles of growth factors in mouse lung neoplasia were investigated by examining receptors for platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) in epithelial cell lines. Whereas nontumorigenic lung cells expressed mRNA and protein for PDGF receptor (PDGFR)-alpha, PDGFR-beta, and EGF receptor (EGFR), five of six neoplastic lines did not. Because this exceptional tumorigenic cell line grows slowly, we hypothesized that receptor levels increased with cell stasis. To test this hypothesis, serum concentrations were manipulated, and log-phase and post-confluent cells were compared. Consistent with our hypothesis, PDGFR-alpha and EGFR contents, but not PDGFR-beta contents, increased at stasis. Ki-ras mutation initiates lung tumorigenesis in mice, but activation of Ki-ras did not affect receptor expression. This was determined both by transfecting nontumorigenic cells with activated Ki-ras and neoplastic cells with a Ki-ras antisense construct and by diminishing Ki-ras activation by using a farnesyltransferase inhibitor. Stasis-associated upregulation of growth-factor receptor expression suggests a function in lung cell differentiation that is abrogated during neoplastic growth.
Collapse
Affiliation(s)
- P L Rice
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Velasco JA, Avila MA, Notario V. The product of the cph oncogene is a truncated, nucleotide-binding protein that enhances cellular survival to stress. Oncogene 1999; 18:689-701. [PMID: 9989819 DOI: 10.1038/sj.onc.1202324] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cph was isolated from neoplastic Syrian hamster embryo fibroblasts initiated by 3-methylcholanthrene (MCA), and was shown to be a single copy gene in the hamster genome, conserved from yeast to human cells, expressed in fetal cells and most adult tissues, and acting synergistically with H-ras in the transformation of murine NIH3T3 fibroblasts. We have now isolated Syrian hamster full-length cDNAs for the cph oncogene and proto-oncogene. Nucleotide sequence analysis revealed that cph was activated in MCA-treated cells by a point-mutational deletion at codon 214, which caused a shift in the normal open reading frame (ORF) and brought a translation termination codon 33 amino acids downstream. While proto-cph encodes a protein (pcph) of 469 amino acids, cph encodes a truncated protein (cph) of 246 amino acids with a new, hydrophobic C-terminus. Similar mechanisms activated cph in other MCA-treated Syrian hamster cells. The cph and proto-cph proteins have partial sequence homology with two protein families: GDP/GTP exchange factors and nucleotide phosphohydrolases. In vitro translated, gel-purified cph proteins did not catalyze nucleotide exchange for H-ras, but were able to bind nucleotide phosphates, in particular ribonucleotide diphosphates such as UDP and GDP. Steady-state levels of cph mRNA increased 6.7-fold in hamster neoplastic cells, relative to a 2.2-fold increase in normal cells, when they were subjected to a nutritional stress such as serum deprivation. Moreover, cph-transformed NIH3T3 cells showed increased survival to various forms of stress (serum starvation, hyperthermia, ionizing radiation), strongly suggesting that cph participates in cellular mechanisms of response to stress.
Collapse
Affiliation(s)
- J A Velasco
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
49
|
Ju YT, Chang AC, She BR, Tsaur ML, Hwang HM, Chao CC, Cohen SN, Lin-Chao S. gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc Natl Acad Sci U S A 1998; 95:11423-8. [PMID: 9736752 PMCID: PMC21658 DOI: 10.1073/pnas.95.19.11423] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth arrest-specific (gas) genes are expressed preferentially in cells that enter a quiescent state. gas7, which we identified in serum-starved murine fibroblasts, is reported here to be expressed in vivo selectively in neuronal cells of the mature cerebral cortex, hippocampus, and cerebellum. gas7 transcripts encode a 48-kDa protein containing a structural domain that resembles sequences of OCT2, a POU transcription factor implicated in neuronal development, and synapsins, which have a role in modulating neurotransmitter release. Using in situ hybridization and immunocytochemical analysis, we show that GAS7 expression occurs prominently in cerebellar Purkinje cells and that inhibition of production in terminally differentiating cultures of embryonic murine cerebellum impedes neurite outgrowth from maturing Purkinje cells. Conversely, GAS7 overexpression in undifferentiated neuroblastoma cell cultures dramatically promotes neurite-like outgrowth. Collectively, our results provide evidence for an association between expression of this gas gene and neuronal development.
Collapse
Affiliation(s)
- Y T Ju
- Institute of Molecular Biology, Academia Sinica, Nankang Taipei, Taiwan 115, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang XQ, Afink GB, Svensson K, Jacobs JJ, Günther T, Forsberg-Nilsson K, van Zoelen EJ, Westermark B, Nistér M. Specific expression in mouse mesoderm- and neural crest-derived tissues of a human PDGFRA promoter/lacZ transgene. Mech Dev 1998; 70:167-80. [PMID: 9510033 DOI: 10.1016/s0925-4773(97)00190-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The platelet-derived growth factor alpha-receptor (PDGFR-alpha) displays a lineage-specific expression pattern in the mouse embryo and is required for normal development of mesoderm and cephalic neural crest derivatives. The purpose of the present study was to demonstrate the in vivo promoter function of genomic DNA fragments representing the 5'-flanking part of the human PDGFRA gene. 2.2, 0.9 and 0.4 kb PDGFRA promoter fragments, ligated to a lacZ reporter gene, were microinjected into fertilized mouse eggs and transgenic mouse lines were established. The expression patterns were basically similar in the 2.2 and 0.9 kb lines and overlapped grossly the endogenous Pdgfra gene expression pattern. The transgenic line with the highest expression level was chosen for detailed analysis. Expression was, as expected, mainly confined to tissues of mesodermal and neural crest origin. No expression was found in epithelial tissues of endo- or ectodermal origin. The promoter fragments were also active in neuroepithelium and in certain neuronal cell types that did not faithfully express PDGFR-alpha mRNA, while they failed to specify reporter expression in PDGFR-alpha expressing O-2A progenitor cells and other glial elements of the central nervous system. Thus, the isolated human PDGFRA promoter contains most but not all of the regulatory elements that are necessary to establish tissue specific gene expression during development.
Collapse
Affiliation(s)
- X Q Zhang
- Department of Pathology, University of Uppsala, University Hospital, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|