1
|
Chatgilialoglu C. Biological Models of Oxidative Purine DNA Damage in Neurodegenerative Disorders. Antioxidants (Basel) 2025; 14:578. [PMID: 40427460 PMCID: PMC12108456 DOI: 10.3390/antiox14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Most DNA damage caused by oxidative metabolism consists of single lesions that can accumulate in tissues. This review focuses on two classes of lesions: the two 8-oxopurine (8-oxo-Pu) lesions that are repaired by the base excision repair (BER) enzyme and the four 5',8-cyclopurine (cPu) lesions that are repaired exclusively by the nucleotide excision repair (NER) enzyme. The aim is to correlate the simultaneous quantification of these two classes of lesions in the context of neurological disorders. The first half is a summary of reactive oxygen species (ROS) with particular attention to the pathways of hydroxyl radical (HO•) formation, followed by a summary of protocols for the quantification of six lesions and the biomimetic chemistry of the HO• radical with double-stranded oligonucleotides (ds-ODN) and calf thymus DNA (ct-DNA). The second half addresses two neurodegenerative diseases: xeroderma pigmentosum (XP) and Cockayne syndrome (CS). The quantitative data on the six lesions obtained from genomic and/or mitochondrial DNA extracts across several XP and CS cell lines are discussed. Oxidative stress contributes to oxidative DNA damage by resulting in the accumulation of cPu and 8-oxo-Pu in DNA. The formation of cPu is the postulated culprit inducing neurological symptoms associated with XP and CS.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Center for Advanced Technologies, Adam Mickiewicz University, 61614 Poznań, Poland; or
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| |
Collapse
|
2
|
Tsujimoto M, Fujita T, Furukawa T, Arima Y, Nibu KI, Nishigori C. Melatonin mitigates UV-induced tumorigenesis and suppresses hearing function deterioration in Xpa-deficient mice. J Dermatol Sci 2025; 117:81-87. [PMID: 39890562 DOI: 10.1016/j.jdermsci.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is caused by impaired DNA repair of UV-induced dipyrimidine-photoproducts. XP cells also show impaired repair/removal of ROS or oxidative DNA lesions caused by UV or 4-nitroquinolline 1-oxide (4NQO). Gene profiling indicated that inflammatory response-related genes are significantly upregulated after UV exposure in XP-A model mice. OBJECTIVE Since XP cells are in the state of oxidative stress and inflammation, we aimed to search for therapeutic agents from anti-oxidants/anti-inflammatory drugs, that potentially improve XP symptoms. METHODS Several antioxidants were examined for reducing 4NQO-induced oxidative cytotoxicity or UV-induced oxidative DNA damage in XP-A cells. Among them, we focused on melatonin and evaluated its improving effect for Xpa-deficient MEF on UV-induced cytotoxicity and ROS production, and for Xpa-deficient mice on UV-induced skin tumorigenesis and auditory brainstem responses as one of the neurological symptoms. RESULTS Melatonin and nicotinamide attenuated 4NQO-induced oxidative cytotoxicity. UV-induced intracellular ROS production and cytotoxicity were improved by melatonin for Xpa-deficient MEF. Finally, the administration of melatonin mitigated UV-induced skin inflammation and tumorigenesis and suppressed hearing deterioration in Xpa-deficient mice. CONCLUSION Our results show that melatonin could alleviate XP symptoms through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Mariko Tsujimoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takeshi Fujita
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tatsuya Furukawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yaeno Arima
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Hyogo Red Cross Blood Center, Kobe, Japan.
| |
Collapse
|
3
|
De Cleene N, Carbone F, Cerejo C, Peball M, Stanzial F, Benedicenti F, Lunzer R, Seppi K, Heim B. An unusual presentation of Huntington’s disease-like syndrome in a patient with Xeroderma pigmentosum type F: Case report and review of the literature. Clin Park Relat Disord 2025; 12:100340. [DOI: 10.1016/j.prdoa.2025.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2025] Open
|
4
|
Badja C, Momen S, Koh GCC, Boushaki S, Roumeliotis TI, Kozik Z, Jones I, Bousgouni V, Dias JML, Krokidis MG, Young J, Chen H, Yang M, Docquier F, Memari Y, Valcarcel-Zimenez L, Gupta K, Kong LR, Fawcett H, Robert F, Zhao S, Degasperi A, Kumar Y, Davies H, Harris R, Frezza C, Chatgilialoglu C, Sarkany R, Lehmann A, Bakal C, Choudhary J, Fassihi H, Nik-Zainal S. Insights from multi-omic modeling of neurodegeneration in xeroderma pigmentosum using an induced pluripotent stem cell system. Cell Rep 2024; 43:114243. [PMID: 38805398 DOI: 10.1016/j.celrep.2024.114243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.
Collapse
Affiliation(s)
- Cherif Badja
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK.
| | - Sophie Momen
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Gene Ching Chiek Koh
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Soraya Boushaki
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Zuza Kozik
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Vicky Bousgouni
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - João M L Dias
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece; Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
| | - Jamie Young
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Hongwei Chen
- Wellcome Sanger Institute, Hinxton CB10 1RQ, UK; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - France Docquier
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| | - Yasin Memari
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Lorea Valcarcel-Zimenez
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Komal Gupta
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Li Ren Kong
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; NUS Centre for Cancer Research, N2CR, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Heather Fawcett
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Florian Robert
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Salome Zhao
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Andrea Degasperi
- Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Yogesh Kumar
- Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Helen Davies
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Rebecca Harris
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Robert Sarkany
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, UK
| | - Alan Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Chris Bakal
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jyoti Choudhary
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, UK
| | - Serena Nik-Zainal
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
5
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
6
|
Sarmini L, Meabed M, Emmanouil E, Atsaves G, Robeska E, Karwowski BT, Campalans A, Gimisis T, Khobta A. Requirement of transcription-coupled nucleotide excision repair for the removal of a specific type of oxidatively induced DNA damage. Nucleic Acids Res 2023; 51:4982-4994. [PMID: 37026475 PMCID: PMC10250225 DOI: 10.1093/nar/gkad256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Accumulation of DNA damage resulting from reactive oxygen species was proposed to cause neurological and degenerative disease in patients, deficient in nucleotide excision repair (NER) or its transcription-coupled subpathway (TC-NER). Here, we assessed the requirement of TC-NER for the repair of specific types of oxidatively generated DNA modifications. We incorporated synthetic 5',8-cyclo-2'-deoxypurine nucleotides (cyclo-dA, cyclo-dG) and thymine glycol (Tg) into an EGFP reporter gene to measure transcription-blocking potentials of these modifications in human cells. Using null mutants, we further identified the relevant DNA repair components by a host cell reactivation approach. The results indicated that NTHL1-initiated base excision repair is by far the most efficient pathway for Tg. Moreover, Tg was efficiently bypassed during transcription, which effectively rules out TC-NER as an alternative repair mechanism. In a sharp contrast, both cyclopurine lesions robustly blocked transcription and were repaired by NER, wherein the specific TC-NER components CSB/ERCC6 and CSA/ERCC8 were as essential as XPA. Instead, repair of classical NER substrates, cyclobutane pyrimidine dimer and N-(deoxyguanosin-8-yl)-2-acetylaminofluorene, occurred even when TC-NER was disrupted. The strict requirement of TC-NER highlights cyclo-dA and cyclo-dG as candidate damage types, accountable for cytotoxic and degenerative responses in individuals affected by genetic defects in this pathway.
Collapse
Affiliation(s)
- Leen Sarmini
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Mohammed Meabed
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Eirini Emmanouil
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - George Atsaves
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Elena Robeska
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
- Université de Paris Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
| | - Bolesław T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, Lodz 90-151, Poland
| | - Anna Campalans
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
- Université de Paris Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
| | - Thanasis Gimisis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Andriy Khobta
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
7
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Sharma M, Nair DT. Pfprex from
Plasmodium falciparum
can bypass oxidative stress‐induced DNA lesions. FEBS J 2022; 289:5218-5240. [DOI: 10.1111/febs.16414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Minakshi Sharma
- Regional Centre for Biotechnology Faridabad India
- Kalinga Institute of Industrial Technology Bhubaneshwar India
| | | |
Collapse
|
9
|
Zhang X, Yin M, Hu J. Nucleotide excision repair: a versatile and smart toolkit. Acta Biochim Biophys Sin (Shanghai) 2022; 54:807-819. [PMID: 35975604 PMCID: PMC9828404 DOI: 10.3724/abbs.2022054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nucleotide excision repair (NER) is a major pathway to deal with bulky adducts induced by various environmental toxins in all cellular organisms. The two sub-pathways of NER, global genome repair (GGR) and transcription-coupled repair (TCR), differ in the damage recognition modes. In this review, we describe the molecular mechanism of NER in mammalian cells, especially the details of damage recognition steps in both sub-pathways. We also introduce new sequencing methods for genome-wide mapping of NER, as well as recent advances about NER in chromatin by these methods. Finally, the roles of NER factors in repairing oxidative damages and resolving R-loops are discussed.
Collapse
Affiliation(s)
| | | | - Jinchuan Hu
- Correspondence address. Tel: +86-21-54237702; E-mail:
| |
Collapse
|
10
|
Low GKM, Ting APL, Fok EDZ, Gopalakrishnan K, Zeegers D, Khaw AK, Jayapal M, Martinez-Lopez W, Hande MP. Role of Xeroderma pigmentosum D (XPD) protein in genome maintenance in human cells under oxidative stress. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503444. [PMID: 35483790 DOI: 10.1016/j.mrgentox.2022.503444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Xeroderma pigmentosum D (XPD) protein plays a pivotal role in the nucleotide excision repair pathway. XPD unwinds the local area of the damaged DNA by virtue of constituting transcription factor II H (TFIIH) and is important not only for repair but also for basal transcription. Although cells deficient in XPD have shown to be defective in oxidative base-lesion repair, the effects of the oxidative assault on primary fibroblasts from patients suffering from Xeroderma Pigmentosum D have not been fully explored. Therefore, we sought to investigate the role of XPD in oxidative DNA damage-repair by treating primary fibroblasts derived from a patient suffering from Xeroderma Pigmentosum D, with hydrogen peroxide. Our results show dose-dependent increase in genotoxicity with minimal effect on cytotoxicity with H2O2 in XPD deficient cells compared to control cells. XPD deficient cells displayed increased susceptibility and reduced repair capacity when subjected to DNA damage induced by oxidative stress. XPD deficient fibroblasts exhibited increased telomeric loss after H2O2 treatment. In addition, we demonstrated that chronic oxidative stress induced accelerated premature senescence characteristics. Gene expression profiling revealed alterations in genes involved in transcription and nucleotide metabolisms, as well as in cellular and cell cycle processes in a more significant way than in other pathways. This study highlights the role of XPD in the repair of oxidative stress and telomere maintenance. Lack of functional XPD seems to increase the susceptibility of oxidative stress-induced genotoxicity while retaining cell viability posing as a potential cancer risk factor of Xeroderma Pigmentosum D patients.
Collapse
Affiliation(s)
- Grace Kah Mun Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aloysius Poh Leong Ting
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edwin Dan Zhihao Fok
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kalpana Gopalakrishnan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dimphy Zeegers
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aik Kia Khaw
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wilner Martinez-Lopez
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Associate Unit on Genomic Stability, Faculty of Medicine, University of the Republic (UdelaR), Montevideo, Uruguay; Vellore Institute of Technology, Vellore, India
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Vellore Institute of Technology, Vellore, India; Mangalore University, India.
| |
Collapse
|
11
|
Kawada T, Kino K, Tokorodani K, Anabuki R, Morikawa M, Kobayashi T, Ohara K, Ohshima T, Miyazawa H. Analysis of nucleotide insertion opposite urea and translesion synthesis across urea by DNA polymerases. Genes Environ 2022; 44:7. [PMID: 35168664 PMCID: PMC8845263 DOI: 10.1186/s41021-022-00236-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract Urea (Ua) is produced in DNA as the result of oxidative damage to thymine and guanine. It was previously reported that Klenow fragment (Kf) exo− incorporated dATP opposite Ua, and that DNA polymerase β was blocked by Ua. We report here the following nucleotide incorporations opposite Ua by various DNA polymerases: DNA polymerase α, dATP and dGTP (dATP > dGTP); DNA polymerase δ, dATP; DNA polymerase ζ, dATP; Kf exo−, dATP; Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), dGTP and dATP (dGTP > dATP); and DNA polymerase η, dCTP, dGTP, dATP, and dTTP (dCTP > dGTP > dATP > dTTP). DNA polymerases β and ε were blocked by Ua. Elongation by DNA polymerases δ and ζ stopped after inserting dATP opposite Ua. Importantly, the elongation efficiency to full-length beyond Ua using DNA polymerase η and Dpo4 were almost the same as that of natural DNA. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s41021-022-00236-3.
Collapse
Affiliation(s)
- Taishu Kawada
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Katsuhito Kino
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan.
| | - Kyousuke Tokorodani
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Ryuto Anabuki
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Masayuki Morikawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Kazuaki Ohara
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Takayuki Ohshima
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| |
Collapse
|
12
|
Higgs EB, Godschalk R, Langie SAS, van Schooten FJ, Hodges NJ. Upregulation of mNEIL3 in Ogg1-null cells is a potential backup mechanism for 8-oxoG repair. Mutagenesis 2021; 36:437-444. [PMID: 34644377 DOI: 10.1093/mutage/geab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species formation and resultant oxidative damage to DNA are ubiquitous events in cells, the homeostasis of which can be dysregulated in a range of pathological conditions. Base excision repair (BER) is the primary repair mechanism for oxidative genomic DNA damage. One prevalent oxidised base modification, 8-oxoguanine (8-oxoG), is recognised by 8-oxoguanine glycosylase-1 (OGG1) initiating removal and repair via BER. Surprisingly, Ogg1 null mouse embryonic fibroblasts (mOgg1-/- MEFs) do not accumulate 8-oxoG in the genome to the extent expected. This suggests that there are backup repair mechanisms capable of repairing 8-oxoG in the absence of OGG1. In the current study, we identified components of NER (Ercc1, Ercc4, Ercc5), BER (Lig1, Tdg, Nthl1, Mpg, Mgmt, NEIL3), MMR (Mlh1, Msh2, Msh6) and DSB (Brip1, Rad51d, Prkdc) pathways that are transcriptionally elevated in mOgg1-/- MEFs. Interestingly, all three nucleotide excision repair genes identified: Ercc1 (2.5 ± 0.2-fold), Ercc4 (1.5 ± 0.1-fold) and Ercc5 (1.7 ± 0.2-fold) have incision activity. There was also a significant functional increase in NER activity (42.0 ± 7.9%) compared to WT MEFs. We also observed upregulation of both Neil3 mRNA (37.9 ± 1.6-fold) and protein in mOgg1-/- MEFs. This was associated with a 3.4 ± 0.4-fold increase in NEIL3 substrate sites in genomic DNA of cells treated with BSO, consistent with the ability of NEIL3 to remove 8-oxoG oxidation products from genomic DNA. In conclusion, we suggest that in Ogg1-null cells, upregulation of multiple DNA repair proteins including incision components of the NER pathway and Neil3 are important compensatory responses to prevent the accumulation of genomic 8-oxoG.
Collapse
Affiliation(s)
- Ellen B Higgs
- School of Biosciences, The University of Birmingham, Birmingham, UK.,Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Roger Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sabine A S Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Nikolas J Hodges
- School of Biosciences, The University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Schaich MA, Van Houten B. Searching for DNA Damage: Insights From Single Molecule Analysis. Front Mol Biosci 2021; 8:772877. [PMID: 34805281 PMCID: PMC8602339 DOI: 10.3389/fmolb.2021.772877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 01/26/2023] Open
Abstract
DNA is under constant threat of damage from a variety of chemical and physical insults, such as ultraviolet rays produced by sunlight and reactive oxygen species produced during respiration or inflammation. Because damaged DNA, if not repaired, can lead to mutations or cell death, multiple DNA repair pathways have evolved to maintain genome stability. Two repair pathways, nucleotide excision repair (NER) and base excision repair (BER), must sift through large segments of nondamaged nucleotides to detect and remove rare base modifications. Many BER and NER proteins share a common base-flipping mechanism for the detection of modified bases. However, the exact mechanisms by which these repair proteins detect their damaged substrates in the context of cellular chromatin remains unclear. The latest generation of single-molecule techniques, including the DNA tightrope assay, atomic force microscopy, and real-time imaging in cells, now allows for nearly direct visualization of the damage search and detection processes. This review describes several mechanistic commonalities for damage detection that were discovered with these techniques, including a combination of 3-dimensional and linear diffusion for surveying damaged sites within long stretches of DNA. We also discuss important findings that DNA repair proteins within and between pathways cooperate to detect damage. Finally, future technical developments and single-molecule studies are described which will contribute to the growing mechanistic understanding of DNA damage detection.
Collapse
Affiliation(s)
- Matthew A. Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Hsiao YY, Chen FH, Chan CC, Tsai CC. Monte Carlo Simulation of Double-Strand Break Induction and Conversion after Ultrasoft X-rays Irradiation. Int J Mol Sci 2021; 22:ijms222111713. [PMID: 34769142 PMCID: PMC8583805 DOI: 10.3390/ijms222111713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
This paper estimates the yields of DNA double-strand breaks (DSBs) induced by ultrasoft X-rays and uses the DSB yields and the repair outcomes to evaluate the relative biological effectiveness (RBE) of ultrasoft X-rays. We simulated the yields of DSB induction and predicted them in the presence and absence of oxygen, using a Monte Carlo damage simulation (MCDS) software, to calculate the RBE. Monte Carlo excision repair (MCER) simulations were also performed to calculate the repair outcomes (correct repairs, mutations, and DSB conversions). Compared to 60Co γ-rays, the RBE values for ultrasoft X-rays (titanium K-shell, aluminum K-shell, copper L-shell, and carbon K-shell) for DSB induction were respectively 1.3, 1.9, 2.3, and 2.6 under aerobic conditions and 1.3, 2.1, 2.5, and 2.9 under a hypoxic condition (2% O2). The RBE values for enzymatic DSBs were 1.6, 2.1, 2.3, and 2.4, respectively, indicating that the enzymatic DSB yields are comparable to the yields of DSB induction. The synergistic effects of DSB induction and enzymatic DSB formation further facilitate cell killing and the advantage in cancer treatment.
Collapse
Affiliation(s)
- Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou Branch, Taoyuan 33305, Taiwan
| | - Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (C.-C.C.); (C.-C.T.); Tel.: +886-4-22851549-222 (C.-C.T.)
| | - Ching-Chih Tsai
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (C.-C.C.); (C.-C.T.); Tel.: +886-4-22851549-222 (C.-C.T.)
| |
Collapse
|
15
|
Sassa A, Fukuda T, Ukai A, Nakamura M, Sato R, Fujiwara S, Hirota K, Takeda S, Sugiyama KI, Honma M, Yasui M. Follow-up genotoxicity assessment of Ames-positive/equivocal chemicals using the improved thymidine kinase gene mutation assay in DNA repair-deficient human TK6 cells. Mutagenesis 2021; 36:331-338. [PMID: 34216473 DOI: 10.1093/mutage/geab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
Genotoxicity testing plays an important role in the safety assessment of pharmaceuticals, pesticides, and chemical substances. Among the guidelines for various genotoxicity tests, the in vitro genotoxicity test battery comprises the bacterial Ames test and mammalian cell assays. Several chemicals exhibit conflicting results for the bacterial Ames test and mammalian cell genotoxicity studies, which may stem from the differences in DNA repair capacity or metabolism, between different cell types or species. For better understanding the mechanistic implications regarding conflict outcomes between different assay systems, it is necessary to develop in vitro genotoxicity testing approaches with higher specificity towards DNA-damaging reagents. We have recently established an improved thymidine kinase (TK) gene mutation assay (TK assay) that is deficient in DNA excision repair system using human lymphoblastoid TK6 cells lacking XRCC1 and XPA (XRCC1 -/-/XPA -/-), the core factors of base excision repair and nucleotide excision repair, respectively. This DNA repair-deficient TK6 cell line is expected to specifically evaluate the genotoxic potential of chemical substances based on the DNA damage. We focused on four reagents, N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA), p-phenylenediamine (PPD), auramine, and malachite green (MG) as the Ames test-positive chemicals. In our assay, assessment using XRCC1 -/-/XPA -/- cells revealed no statistically significant increase in the mutant frequencies after treatment with NEDA, PPD, and MG, suggesting the chemicals to be non-genotoxic in humans. The observations were consistent with that of the follow-up in vivo studies. In contrast, the mutant frequency was markedly increased in XRCC1 -/-/XPA -/- cells after treatment with auramine. The results suggest that auramine is the genotoxic reagent that preferentially induces DNA damages resolved by BER and/or NER in mammals. Taken together, BER/NER deficient cell-based genotoxicity testing will contribute to elucidate the mechanism of genotoxicity and therefore play a pivotal role in the accurate safety assessment of chemical substances.
Collapse
Affiliation(s)
- Akira Sassa
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Takayuki Fukuda
- Tokyo Laboratory, BoZo Research Center Inc., Hanegi, Setagaya-ku, Tokyo, Japan
| | - Akiko Ukai
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki Japan
| | - Maki Nakamura
- Tokyo Laboratory, BoZo Research Center Inc., Hanegi, Setagaya-ku, Tokyo, Japan
| | - Ryosuke Sato
- Tokyo Laboratory, BoZo Research Center Inc., Hanegi, Setagaya-ku, Tokyo, Japan
| | - Sho Fujiwara
- Tokyo Laboratory, BoZo Research Center Inc., Hanegi, Setagaya-ku, Tokyo, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki Japan
| |
Collapse
|
16
|
Krasikova Y, Rechkunova N, Lavrik O. Nucleotide Excision Repair: From Molecular Defects to Neurological Abnormalities. Int J Mol Sci 2021; 22:ijms22126220. [PMID: 34207557 PMCID: PMC8228863 DOI: 10.3390/ijms22126220] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway, which can remove diverse bulky DNA lesions destabilizing a DNA duplex. NER defects cause several autosomal recessive genetic disorders. Xeroderma pigmentosum (XP) is one of the NER-associated syndromes characterized by low efficiency of the removal of bulky DNA adducts generated by ultraviolet radiation. XP patients have extremely high ultraviolet-light sensitivity of sun-exposed tissues, often resulting in multiple skin and eye cancers. Some XP patients develop characteristic neurodegeneration that is believed to derive from their inability to repair neuronal DNA damaged by endogenous metabolites. A specific class of oxidatively induced DNA lesions, 8,5′-cyclopurine-2′-deoxynucleosides, is considered endogenous DNA lesions mainly responsible for neurological problems in XP. Growing evidence suggests that XP is accompanied by defective mitophagy, as in primary mitochondrial disorders. Moreover, NER pathway is absent in mitochondria, implying that the mitochondrial dysfunction is secondary to nuclear NER defects. In this review, we discuss the current understanding of the NER molecular mechanism and focuses on the NER linkage with the neurological degeneration in patients with XP. We also present recent research advances regarding NER involvement in oxidative DNA lesion repair. Finally, we highlight how mitochondrial dysfunction may be associated with XP.
Collapse
Affiliation(s)
- Yuliya Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Nadejda Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
17
|
Fortuny A, Chansard A, Caron P, Chevallier O, Leroy O, Renaud O, Polo SE. Imaging the response to DNA damage in heterochromatin domains reveals core principles of heterochromatin maintenance. Nat Commun 2021; 12:2428. [PMID: 33893291 PMCID: PMC8065061 DOI: 10.1038/s41467-021-22575-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Heterochromatin is a critical chromatin compartment, whose integrity governs genome stability and cell fate transitions. How heterochromatin features, including higher-order chromatin folding and histone modifications associated with transcriptional silencing, are maintained following a genotoxic stress challenge is unknown. Here, we establish a system for targeting UV damage to pericentric heterochromatin in mammalian cells and for tracking the heterochromatin response to UV in real time. We uncover profound heterochromatin compaction changes during repair, orchestrated by the UV damage sensor DDB2, which stimulates linker histone displacement from chromatin. Despite massive heterochromatin unfolding, heterochromatin-specific histone modifications and transcriptional silencing are maintained. We unveil a central role for the methyltransferase SETDB1 in the maintenance of heterochromatic histone marks after UV. SETDB1 coordinates histone methylation with new histone deposition in damaged heterochromatin, thus protecting cells from genome instability. Our data shed light on fundamental molecular mechanisms safeguarding higher-order chromatin integrity following DNA damage.
Collapse
Affiliation(s)
- Anna Fortuny
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Audrey Chansard
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Pierre Caron
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Odile Chevallier
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Olivier Leroy
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Olivier Renaud
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
18
|
Chan CC, Hsiao YY. The Effects of Dimethylsulfoxide and Oxygen on DNA Damage Induction and Repair Outcomes for Cells Irradiated by 62 MeV Proton and 3.31 MeV Helium Ions. J Pers Med 2021; 11:jpm11040286. [PMID: 33917956 PMCID: PMC8068342 DOI: 10.3390/jpm11040286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play an essential role in radiation-induced indirect actions. In terms of DNA damage, double strand breaks (DSBs) have the greatest effects on the repair of DNA damage, cell survival and transformation. This study evaluated the biological effects of the presence of ROS and oxygen on DSB induction and mutation frequency. The relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) of 62 MeV therapeutic proton beams and 3.31 MeV helium ions were calculated using Monte Carlo damage simulation (MCDS) software. Monte Carlo excision repair (MCER) simulations were used to calculate the repair outcomes (mutation frequency). The RBE values of proton beams decreased to 0.75 in the presence of 0.4 M dimethylsulfoxide (DMSO) and then increases to 0.9 in the presence of 2 M DMSO while the RBE values of 3.31 MeV helium ions increased from 2.9 to 5.7 (0–2 M). The mutation frequency of proton beams also decreased from 0.008–0.065 to 0.004–0.034 per cell per Gy by the addition of 2 M DMSO, indicating that ROS affects both DSB induction and repair outcomes. These results show that the combined use of DMSO in normal tissues and an increased dose in tumor regions increases treatment efficiency.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24730022 (ext. 12010)
| |
Collapse
|
19
|
Kim DH, Im ST, Yoon JY, Kim S, Kim MK, Chung MH, Park CK. Comparison of therapeutic effects between topical 8-oxo-2'-deoxyguanosine and corticosteroid in ocular alkali burn model. Sci Rep 2021; 11:6909. [PMID: 33767351 PMCID: PMC7994716 DOI: 10.1038/s41598-021-86440-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/12/2021] [Indexed: 01/25/2023] Open
Abstract
We compared the therapeutic effects of topical 8-oxo-2'-deoxyguanosine (8-oxo-dG) and corticosteroid in a murine ocular alkali burn model. (n = 128) The corneal alkali burn model was established by applying 0.1 N sodium hydroxide (NaOH), followed by treatment with 8-oxo-dG, 0.1% fluorometholone (FML), 1% prednisolone acetate (PDE), or phosphate-buffered saline (PBS) twice daily. One week later, the clinical and histological status of the cornea were assessed. Transcript levels of inflammatory cytokines and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as well as the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the cornea, were assayed. The 8-oxo-dG and PDE groups showed marked improvements in corneal integrity and clarity when compared with the PBS group (each p < 0.01). The numbers of cells stained for neutrophil elastase and F4/80-positive inflammatory cells were significantly decreased, with levels of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α, and total ROS/RNS amounts markedly reduced in the 8-oxo-dG, FML, and PDE groups (each p < 0.05). Levels of NADPH oxidase type 2 and 4 were substantially more repressed in the 8-oxo-dG-treated group than in the PDE-treated group (each p < 0.05). Topical 8-oxo-dG showed excellent therapeutic effects that were comparable with those treated with topical PDE in a murine ocular alkali burn model.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University College of Medicine, 1198, Guwol-dong, Namdong-Gu, Incheon, 21565, Korea.
| | - Sang-Taek Im
- Fight Against Angiogenesis Related Blindness (FARB) Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Jin Young Yoon
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea
| | | | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Myung-Hee Chung
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, 21999, Korea.
| |
Collapse
|
20
|
Rechkunova NI, Krasikova YS, Lavrik OI. Interactome of Base and Nucleotide Excision DNA Repair Systems. Mol Biol 2021. [DOI: 10.1134/s0026893321020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
22
|
Kant M, Tahara YK, Jaruga P, Coskun E, Lloyd RS, Kool ET, Dizdaroglu M. Inhibition by Tetrahydroquinoline Sulfonamide Derivatives of the Activity of Human 8-Oxoguanine DNA Glycosylase (OGG1) for Several Products of Oxidatively induced DNA Base Lesions. ACS Chem Biol 2021; 16:45-51. [PMID: 33331782 DOI: 10.1021/acschembio.0c00877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA glycosylases involved in the first step of the DNA base excision repair pathway are promising targets in cancer therapy. There is evidence that reduction of their activities may enhance cell killing in malignant tumors. Recently, two tetrahydroquinoline compounds named SU0268 and SU0383 were reported to inhibit OGG1 for the excision of 8-hydroxyguanine. This DNA repair protein is one of the major cellular enzymes responsible for excision of a number of oxidatively induced lesions from DNA. In this work, we used gas chromatography-tandem mass spectrometry with isotope-dilution to measure the excision of not only 8-hydroxyguanine but also that of the other major substrate of OGG1, i.e., 2,6-diamino-4-hydroxy-5-formamidopyrimidine, using genomic DNA with multiple purine- and pyrimidine-derived lesions. The excision of a minor substrate 4,6-diamino-5-formamidopyrimidine was also measured. Both SU0268 and SU0383 efficiently inhibited OGG1 activity for these three lesions, with the former being more potent than the latter. Dependence of inhibition on concentrations of SU0268 and SU0383 from 0.05 μmol/L to 10 μmol/L was also demonstrated. The approach used in this work may be applied to the investigation of OGG1 inhibition by SU0268 and SU0383 and other small molecule inhibitors in further studies including cellular and animal models of disease.
Collapse
Affiliation(s)
- Melis Kant
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yu-ki Tahara
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
23
|
Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res 2020; 48:11227-11243. [PMID: 33010169 PMCID: PMC7672477 DOI: 10.1093/nar/gkaa777] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
The six major mammalian DNA repair pathways were discovered as independent processes, each dedicated to remove specific types of lesions, but the past two decades have brought into focus the significant interplay between these pathways. In particular, several studies have demonstrated that certain proteins of the nucleotide excision repair (NER) and base excision repair (BER) pathways work in a cooperative manner in the removal of oxidative lesions. This review focuses on recent data showing how the NER proteins, XPA, XPC, XPG, CSA, CSB and UV-DDB, work to stimulate known glycosylases involved in the removal of certain forms of base damage resulting from oxidative processes, and also discusses how some oxidative lesions are probably directly repaired through NER. Finally, since many glycosylases are inhibited from working on damage in the context of chromatin, we detail how we believe UV-DDB may be the first responder in altering the structure of damage containing-nucleosomes, allowing access to BER enzymes.
Collapse
Affiliation(s)
- Namrata Kumar
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
| | - Sripriya Raja
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Bennett Van Houten
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Lost in the Crowd: How Does Human 8-Oxoguanine DNA Glycosylase 1 (OGG1) Find 8-Oxoguanine in the Genome? Int J Mol Sci 2020; 21:ijms21218360. [PMID: 33171795 PMCID: PMC7664663 DOI: 10.3390/ijms21218360] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
The most frequent DNA lesion resulting from an oxidative stress is 7,8-dihydro-8-oxoguanine (8-oxoG). 8-oxoG is a premutagenic base modification due to its capacity to pair with adenine. Thus, the repair of 8-oxoG is critical for the preservation of the genetic information. Nowadays, 8-oxoG is also considered as an oxidative stress-sensor with a putative role in transcription regulation. In mammalian cells, the modified base is excised by the 8-oxoguanine DNA glycosylase (OGG1), initiating the base excision repair (BER) pathway. OGG1 confronts the massive challenge that is finding rare occurrences of 8-oxoG among a million-fold excess of normal guanines. Here, we review the current knowledge on the search and discrimination mechanisms employed by OGG1 to find its substrate in the genome. While there is considerable data from in vitro experiments, much less is known on how OGG1 is recruited to chromatin and scans the genome within the cellular nucleus. Based on what is known of the strategies used by proteins searching for rare genomic targets, we discuss the possible scenarios allowing the efficient detection of 8-oxoG by OGG1.
Collapse
|
25
|
Misztal T, Kowalczyk P, Młotkowska P, Marciniak E. The Effect of Allopregnanolone on Enzymatic Activity of the DNA Base Excision Repair Pathway in the Sheep Hippocampus and Amygdala under Natural and Stressful Conditions. Int J Mol Sci 2020; 21:E7762. [PMID: 33092287 PMCID: PMC7589085 DOI: 10.3390/ijms21207762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/24/2023] Open
Abstract
The neurosteroid allopregnanolone (AL) has many beneficial functions in the brain. This study tested the hypothesis that AL administered for three days into the third brain ventricle would affect the enzymatic activity of the DNA base excision repair (BER) pathway in the hippocampal CA1 and CA3 fields and the central amygdala in luteal-phase sheep under both natural and stressful conditions. Acute stressful stimuli, including isolation and partial movement restriction, were used on the last day of infusion. The results showed that stressful stimuli increased N-methylpurine DNA glycosylase (MPG), thymine DNA glycosylase (TDG), 8-oxoguanine glycosylase (OGG1), and AP-endonuclease 1 (APE1) mRNA expression, as well as repair activities for 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC), and 8-oxoguanine (8-oxoG) compared to controls. The stimulated events were lower in stressed and AL-treated sheep compared to sheep that were only stressed (except MPG mRNA expression in the CA1 and amygdala, as well as TDG mRNA expression in the CA1). AL alone reduced mRNA expression of all DNA repair enzymes (except TDG in the amygdala) relative to controls and other groups. DNA repair activities varied depending on the tissue-AL alone stimulated the excision of εA in the amygdala, εC in the CA3 and amygdala, and 8-oxoG in all tissues studied compared to controls. However, the excision efficiency of lesioned bases in the AL group was lower than in the stressed and stressed and AL-treated groups, with the exception of εA in the amygdala. In conclusion, the presented modulating effect of AL on the synthesis of BER pathway enzymes and their repair capacity, both under natural and stressful conditions, indicates another functional role of this neurosteroid in brain structures.
Collapse
Affiliation(s)
- Tomasz Misztal
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (P.K.); (P.M.); (E.M.)
| | | | | | | |
Collapse
|
26
|
Tsuji Y, Ueda T, Sekiguchi K, Nishiyama M, Kanda F, Nishigori C, Toda T, Matsumoto R. Progressive length-dependent polyneuropathy in xeroderma pigmentosum group A. Muscle Nerve 2020; 62:534-540. [PMID: 32696477 DOI: 10.1002/mus.27028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND In this study, we aimed to investigate the progression of peripheral nervous system involvement in xeroderma pigmentosum group A (XP-A). METHODS We performed nerve conduction studies in 17 genetically confirmed XP-A patients and conducted follow-ups. Of these patients we also analyzed gray matter volume (GMV) using brain MRI and assessed the severity score of clinical and skin manifestation. RESULTS We found significant reduction in the motor and sensory nerve action potential amplitude and mild reduction in conduction velocity. These findings were predominant in sensory nerves and the lower limbs, were observed since early childhood, and gradually deteriorated with age. CONCLUSIONS The electrophysiological characteristics of XP-A patients are consistent with length-dependent axonal polyneuropathy and there is progressive deterioration from early childhood.
Collapse
Affiliation(s)
- Yukio Tsuji
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiro Ueda
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Nishiyama
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Chikako Nishigori
- Division of Dermatology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tatsushi Toda
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
27
|
Thompson PS, Cortez D. New insights into abasic site repair and tolerance. DNA Repair (Amst) 2020; 90:102866. [PMID: 32417669 PMCID: PMC7299775 DOI: 10.1016/j.dnarep.2020.102866] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Thousands of apurinic/apyrimidinic (AP or abasic) sites form in each cell, each day. This simple DNA lesion can have profound consequences to cellular function, genome stability, and disease. As potent blocks to polymerases, they interfere with the reading and copying of the genome. Since they provide no coding information, they are potent sources of mutation. Due to their reactive chemistry, they are intermediates in the formation of lesions that are more challenging to repair including double-strand breaks, interstrand crosslinks, and DNA protein crosslinks. Given their prevalence and deleterious consequences, cells have multiple mechanisms of repairing and tolerating these lesions. While base excision repair of abasic sites in double-strand DNA has been studied for decades, new interest in abasic site processing has come from more recent insights into how they are processed in single-strand DNA. In this review, we discuss the source of abasic sites, their biological consequences, tolerance mechanisms, and how they are repaired in double and single-stranded DNA.
Collapse
Affiliation(s)
- Petria S Thompson
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA
| | - David Cortez
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA.
| |
Collapse
|
28
|
Kumar N, Moreno NC, Feltes BC, Menck CF, Houten BV. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol 2020; 43:e20190104. [PMID: 32141475 PMCID: PMC7198027 DOI: 10.1590/1678-4685-gmb-2019-0104] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
Base and nucleotide excision repair (BER and NER) pathways are normally associated with removal of specific types of DNA damage: small base modifications (such as those induced by DNA oxidation) and bulky DNA lesions (such as those induced by ultraviolet or chemical carcinogens), respectively. However, growing evidence indicates that this scenario is much more complex and these pathways exchange proteins and cooperate with each other in the repair of specific lesions. In this review, we highlight studies discussing the involvement of NER in the repair of DNA damage induced by oxidative stress, and BER participating in the removal of bulky adducts on DNA. Adding to this complexity, UVA light experiments revealed that oxidative stress also causes protein oxidation, directly affecting proteins involved in both NER and BER. This reduces the cell’s ability to repair DNA damage with deleterious implications to the cells, such as mutagenesis and cell death, and to the organisms, such as cancer and aging. Finally, an interactome of NER and BER proteins is presented, showing the strong connection between these pathways, indicating that further investigation may reveal new functions shared by them, and their cooperation in maintaining genome stability.
Collapse
Affiliation(s)
- Namrata Kumar
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natália C Moreno
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bruno C Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Carlos Fm Menck
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bennett Van Houten
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Abstract
The physiological impact of the aberrant oxidation products on genomic DNA were demonstrated by embryonic lethality or the cancer susceptibility and/or neurological symptoms of animal impaired in the base excision repair (BER); the major pathway to maintain genomic integrity against non-bulky DNA oxidation. However, growing evidence suggests that other DNA repair pathways or factors that are not primarily associated with the classical BER pathway are also actively involved in the mitigation of oxidative assaults on the genomic DNA, according to the corresponding types of DNA oxidation. Among others, factors dedicated to lesion recognition in the nucleotide excision repair (NER) pathway have been shown to play eminent roles in the process of lesion recognition and stimulation of the enzyme activity of some sets of BER factors. Besides, substantial bulky DNA oxidation can be preferentially removed by a canonical NER mechanism; therefore, loss of function in the NER pathway shares common features arising from BER defects, including cancer predisposition and neurological disorders, although NER defects generally are nonlethal. Here we discuss recent achievements for delineating newly arising roles of NER lesion recognition factors to facilitate the BER process, and cooperative works of BER and NER pathways in response to the genotoxic oxidative stress.
Collapse
|
30
|
Luo WR, Chen FH, Huang RJ, Chen YP, Hsiao YY. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB inductions and conversions induced by therapeutic proton beams. Int J Radiat Biol 2019; 96:187-196. [PMID: 31682784 DOI: 10.1080/09553002.2020.1688883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: This study evaluated the DNA double strand breaks (DSBs) induced by indirect actions and its misrepairs to estimate the relative biological effectiveness (RBE) of proton beams.Materials and methods: From experimental data, DSB induction was evaluated in cells irradiated by 62 MeV proton beams in the presence of dimethylsulphoxide (DMSO) and under hypoxic conditions. The DNA damage yields for calculating the RBE were estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes (correct repairs, mutations and DSB conversions) were estimated using Monte Carlo Excision Repair (MCER) simulations.Results: The values for RBE of 62 MeV protons (LET = 1.051 keV/μm) for DSB induction and enzymatic DSB under aerobic condition (21% O2) was 1.02 and 0.94, respectively, as comparing to 60Co γ-rays (LET = 2.4 keV/μm). DMSO mitigated the inference of indirect action and reduced DSB induction to a greater extent when damaged by protons rather than γ-rays, resulting in a decreased RBE of 0.86. DMSO also efficiently prevented enzymatic DSB yields triggered by proton irradiation and reduced the RBE to 0.83. However, hypoxia (2% O2) produced a similar level of DSB induction with respect to the protons and γ-rays, with a comparable RBE of 1.02.Conclusions: The RBE values of proton beams estimated from DSB induction and enzymatic DSB decreased by 16% and 12%, respectively, in the presence of DMSO. Our findings indicate that the overall effects of DSB induction and enzymatic DSB could intensify the tumor killing, while alleviate normal tissue damage when indirect actions are effectively interrupted.
Collapse
Affiliation(s)
- Wei-Ren Luo
- Department of Radiology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Kweishan, Taiwan.,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou Branch, Taoyuan, Taiwan
| | - Ren-Jing Huang
- Department of Radiology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Pin Chen
- Department of Radiology, Taipei Manicipal Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
31
|
Abstract
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA lesions. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human disorders caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated ageing. All three syndromes include developmental abnormalities, indicating an important role for optimal transcription and for NER in protecting against spontaneous DNA damage during embryonic development. Here, we review the current knowledge on genes that function in NER that also affect embryonic development, in particular the development of a fully functional nervous system.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
32
|
Processing of a single ribonucleotide embedded into DNA by human nucleotide excision repair and DNA polymerase η. Sci Rep 2019; 9:13910. [PMID: 31558768 PMCID: PMC6763444 DOI: 10.1038/s41598-019-50421-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
DNA polymerases often incorporate non-canonical nucleotide, i.e., ribonucleoside triphosphates into the genomic DNA. Aberrant accumulation of ribonucleotides in the genome causes various cellular abnormalities. Here, we show the possible role of human nucleotide excision repair (NER) and DNA polymerase η (Pol η) in processing of a single ribonucleotide embedded into DNA. We found that the reconstituted NER system can excise the oxidized ribonucleotide on the plasmid DNA. Taken together with the evidence that Pol η accurately bypasses a ribonucleotide, i.e., riboguanosine (rG) or its oxidized derivative (8-oxo-rG) in vitro, we further assessed the mutagenic potential of the embedded ribonucleotide in human cells lacking NER or Pol η. A single rG on the supF reporter gene predominantly induced large deletion mutations. An embedded 8-oxo-rG caused base substitution mutations at the 3′-neighboring base rather than large deletions in wild-type cells. The disruption of XPA, an essential factor for NER, or Pol η leads to the increased mutant frequency of 8-oxo-rG. Furthermore, the frequency of 8-oxo-rG-mediated large deletions was increased by the loss of Pol η, but not XPA. Collectively, our results suggest that base oxidation of the embedded ribonucleotide enables processing of the ribonucleotide via alternative DNA repair and damage tolerance pathways.
Collapse
|
33
|
Jang S, Kumar N, Beckwitt EC, Kong M, Fouquerel E, Rapić-Otrin V, Prasad R, Watkins SC, Khuu C, Majumdar C, David SS, Wilson SH, Bruchez MP, Opresko PL, Van Houten B. Damage sensor role of UV-DDB during base excision repair. Nat Struct Mol Biol 2019; 26:695-703. [PMID: 31332353 PMCID: PMC6684372 DOI: 10.1038/s41594-019-0261-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/28/2019] [Indexed: 12/22/2022]
Abstract
UV-DDB, a key protein in human global nucleotide excision repair (NER), binds avidly to abasic sites and 8-oxo-guanine (8-oxoG), suggesting a noncanonical role in base excision repair (BER). We investigated whether UV-DDB can stimulate BER for these two common forms of DNA damage, 8-oxoG and abasic sites, which are repaired by 8-oxoguanine glycosylase (OGG1) and apurinic/apyrimidinic endonuclease (APE1), respectively. UV-DDB increased both OGG1 and APE1 strand cleavage and stimulated subsequent DNA polymerase β-gap filling activity by 30-fold. Single-molecule real-time imaging revealed that UV-DDB forms transient complexes with OGG1 or APE1, facilitating their dissociation from DNA. Furthermore, UV-DDB moves to sites of 8-oxoG repair in cells, and UV-DDB depletion sensitizes cells to oxidative DNA damage. We propose that UV-DDB is a general sensor of DNA damage in both NER and BER pathways, facilitating damage recognition in the context of chromatin.
Collapse
Affiliation(s)
- Sunbok Jang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Namrata Kumar
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily C Beckwitt
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Muwen Kong
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Molecular Biophysics and Structural Biology Graduate Program, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University and Sydney Kimmel Medical College, Philadelphia, PA, USA
| | - Vesna Rapić-Otrin
- Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rajendra Prasad
- Genomic Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cindy Khuu
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Biochemistry, Molecular, Cellular and Developmental Graduate Group, University of California, Davis, Davis, CA, USA
| | - Chandrima Majumdar
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Biochemistry, Molecular, Cellular and Developmental Graduate Group, University of California, Davis, Davis, CA, USA
| | - Samuel H Wilson
- Genomic Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Patricia L Opresko
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Molecular Biophysics and Structural Biology Graduate Program, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol 2019; 3:7. [PMID: 30854468 PMCID: PMC6403339 DOI: 10.1038/s41698-019-0079-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cancers develop due to the accumulation of genetic and epigenetic alterations. Genetic alterations are induced by aging, mutagenic chemicals, ultraviolet light, and other factors; whereas, epigenetic alterations are mainly by aging and chronic inflammation. The accumulation and patterns of alterations in normal cells reflect our past exposure levels and life history. Most accumulated alterations are considered as passengers, but their accumulation is correlated with cancer drivers. This has been shown for aberrant DNA methylation but has only been speculated for genetic alterations. However, recent technological advancements have enabled measurement of rare point mutations, and studies have shown that their accumulation levels are indeed correlated with cancer risk. When the accumulation levels of aberrant DNA methylation and point mutations are combined, risk prediction becomes even more accurate. When high levels of alterations accumulate, the tissue has a high risk of developing cancer or even multiple cancers and is considered as a “cancerization field”, with or without expansion of physiological patches of clonal cells. In this review, we describe the formation of a cancerization field and how we can apply its detection in precision cancer risk diagnosis.
Collapse
Affiliation(s)
- Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045 Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045 Tokyo, Japan
| |
Collapse
|
35
|
Masaki T, Tsujimoto M, Kitazawa R, Nakano E, Funasaka Y, Ichihashi M, Kitazawa S, Kakita A, Kanda F, Nishigori C. Autopsy findings and clinical features of a mild-type xeroderma pigmentosum complementation group A siblings: 40 years of follow-up. JAAD Case Rep 2019; 5:205-208. [PMID: 30809560 PMCID: PMC6374959 DOI: 10.1016/j.jdcr.2018.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Taro Masaki
- Division of Dermatology, Kobe University Graduate School of Medicine, Hyogo.,Department of Dermatology, Kobe City Nishi-Kobe Medical Center, Hyogo
| | - Mariko Tsujimoto
- Division of Dermatology, Kobe University Graduate School of Medicine, Hyogo
| | - Riko Kitazawa
- Division of Pathology, Kobe University Graduate School of Medicine, Hyogo.,Department of Molecular Pathology, Graduate School of Medicine, Ehime University, Ehime
| | - Eiji Nakano
- Division of Dermatology, Kobe University Graduate School of Medicine, Hyogo
| | - Yoko Funasaka
- Division of Dermatology, Kobe University Graduate School of Medicine, Hyogo.,Department of Dermatology, Nippon Medical School, Tokyo
| | - Masamitsu Ichihashi
- Division of Dermatology, Kobe University Graduate School of Medicine, Hyogo.,Anti-aging Medical Research Center, Graduate School of Life and Medical Sciences Doshisha University, Kyoto.,Faculty of Pharmaceutical Science, Kobe Gakuin University, Hyogo.,Arts Ginza Clinic, Shinbashi, Tokyo
| | - Sohei Kitazawa
- Division of Pathology, Kobe University Graduate School of Medicine, Hyogo.,Department of Molecular Pathology, Graduate School of Medicine, Ehime University, Ehime
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata
| | - Fumio Kanda
- Division of Neurology, Kobe University Graduate School of Medicine, Hyogo
| | - Chikako Nishigori
- Division of Dermatology, Kobe University Graduate School of Medicine, Hyogo
| |
Collapse
|
36
|
Kunisada M, Yamano N, Hosaka C, Takemori C, Nishigori C. Inflammation Due to Voriconazole-induced Photosensitivity Enhanced Skin Phototumorigenesis in Xpa-knockout Mice. Photochem Photobiol 2018; 94:1077-1081. [PMID: 29968917 DOI: 10.1111/php.12972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
Abstract
Voriconazole is an antifungal agent and used as a prophylactic measure, especially in immunocompromised patients. However, there have been several reports of its adverse reactions, namely photosensitivity with intense inflammatory rashes and subsequent skin cancer development. To assess the effects of photosensitizing drugs voriconazole and hydrochlorothiazide (HCTZ) on the enhancement of UV-induced inflammatory responses and UV-induced tumorigenesis, we utilized Xpa-knockout mice, which is DNA repair-deficient and more susceptible to UV-induced inflammation and tumor development than wild-type mice. Administration of voriconazole prior to broadband UVB exposure significantly upregulated multiple inflammatory cytokines compared with the vehicle- or HCTZ-administered groups. Voriconazole administration along with chronic UVB exposure produced significantly higher number of skin tumors than HCTZ or vehicle in Xpa-knockout mice. Furthermore, the investigation of UVB-induced DNA damage using embryonic fibroblasts of Xpa-knockout mice revealed a significantly higher 8-oxo-7,8-dihydroguanine level in cells treated with voriconazole N-oxide, a voriconazole-metabolite during UV exposure. The data suggest that voriconazole plus UVB-induced inflammatory response may be related to voriconazole-induced skin phototumorigenesis.
Collapse
Affiliation(s)
- Makoto Kunisada
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nozomi Yamano
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chieko Hosaka
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chihiro Takemori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
37
|
Laverty DJ, Greenberg MM. In Vitro Bypass of Thymidine Glycol by DNA Polymerase θ Forms Sequence-Dependent Frameshift Mutations. Biochemistry 2017; 56:6726-6733. [PMID: 29243925 PMCID: PMC5743609 DOI: 10.1021/acs.biochem.7b01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Unrepaired DNA lesions block replication and threaten genomic stability. Several specialized translesion polymerases, including polymerase θ (Pol θ), contribute to replicative bypass of these lesions. The role of Pol θ in double-strand break repair is well-understood, but its contribution to translesion synthesis is much less so. We describe the action of Pol θ on templates containing thymidine glycol (Tg), a major cytotoxic, oxidative DNA lesion that blocks DNA replication. Unrepaired Tg lesions are bypassed in human cells by specialized translesion polymerases by one of two distinct pathways: high-fidelity bypass by the combined action of Pol κ and Pol ζ or weakly mutagenic bypass by Pol θ. Here we report that in vitro bypass of Tg by Pol θ results in frameshift mutations (deletions) in a sequence-dependent fashion. Steady-state kinetic analysis indicated that one- and two-nucleotide deletions are formed 9- and 6-fold more efficiently, respectively, than correct, full-length bypass products. Sequencing of in vitro bypass products revealed that bypass preference decreased in the following order on a template where all three outcomes were possible: two-nucleotide deletion > correct bypass > one-nucleotide deletion. These results suggest that bypass of Tg by Pol θ results in mutations opposite the lesion, as well as frameshift mutations.
Collapse
Affiliation(s)
- Daniel J. Laverty
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| |
Collapse
|
38
|
Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 2017; 134:208-217. [PMID: 29128308 DOI: 10.1016/j.neuropharm.2017.11.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022]
Abstract
The past two decades have witnessed remarkable advances in oxidative stress research, particularly in the context of ischemic brain injury. Oxidative stress in ischemic tissues compromises the integrity of the genome, resulting in DNA lesions, cell death in neurons, glial cells, and vascular cells, and impairments in neurological recovery after stroke. As DNA is particularly vulnerable to oxidative attack, cells have evolved the ability to induce multiple DNA repair mechanisms, including base excision repair (BER), nucleotide excision repair (NER) and non-homogenous endpoint jointing (NHEJ). Defective DNA repair is tightly correlated with worse neurological outcomes after stroke, whereas upregulation of DNA repair enzymes, such as APE1, OGG1, and XRCC1, improves long-term functional recovery following stroke. Indeed, DNA damage and repair are now known to play critical roles in fundamental aspects of stroke recovery, such as neurogenesis, white matter recovery, and neurovascular unit remodeling. Several DNA repair enzymes are essential for comprehensive neural repair mechanisms after stroke, including Polβ and NEIL3 for neurogenesis, APE1 for white matter repair, Gadd45b for axonal regeneration, and DNA-PKs for neurovascular remodeling. This review discusses the emerging role of DNA damage and repair in functional recovery after stroke and highlights the contribution of DNA repair to regenerative elements after stroke. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
|
39
|
Huh JY, Jung I, Piao L, Ha H, Chung MH. 8-Hydroxy-2-deoxyguanosine ameliorates high-fat diet-induced insulin resistance and adipocyte dysfunction in mice. Biochem Biophys Res Commun 2017; 491:890-896. [DOI: 10.1016/j.bbrc.2017.07.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
|
40
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
41
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
42
|
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic Biol Med 2017; 107:110-124. [PMID: 28109890 DOI: 10.1016/j.freeradbiomed.2017.01.029] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97110-970 Santa Maria, RS, Brazil.
| | - Natália Cestari Moreno
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Natielen Jacques Schuch
- Departamento de Nutrição, Centro Universitário Franciscano, 97010-032 Santa Maria, RS, Brazil.
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
| |
Collapse
|
43
|
Boiteux S, Coste F, Castaing B. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med 2017; 107:179-201. [PMID: 27903453 DOI: 10.1016/j.freeradbiomed.2016.11.042] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 01/23/2023]
Abstract
Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets.
Collapse
Affiliation(s)
- Serge Boiteux
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| | - Franck Coste
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| |
Collapse
|
44
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
45
|
Yu Y, Cui Y, Niedernhofer LJ, Wang Y. Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chem Res Toxicol 2016; 29:2008-2039. [PMID: 27989142 DOI: 10.1021/acs.chemrestox.6b00265] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A variety of endogenous and exogenous agents can induce DNA damage and lead to genomic instability. Reactive oxygen species (ROS), an important class of DNA damaging agents, are constantly generated in cells as a consequence of endogenous metabolism, infection/inflammation, and/or exposure to environmental toxicants. A wide array of DNA lesions can be induced by ROS directly, including single-nucleobase lesions, tandem lesions, and hypochlorous acid (HOCl)/hypobromous acid (HOBr)-derived DNA adducts. ROS can also lead to lipid peroxidation, whose byproducts can also react with DNA to produce exocyclic DNA lesions. A combination of bioanalytical chemistry, synthetic organic chemistry, and molecular biology approaches have provided significant insights into the occurrence, repair, and biological consequences of oxidatively induced DNA lesions. The involvement of these lesions in the etiology of human diseases and aging was also investigated in the past several decades, suggesting that the oxidatively induced DNA adducts, especially bulky DNA lesions, may serve as biomarkers for exploring the role of oxidative stress in human diseases. The continuing development and improvement of LC-MS/MS coupled with the stable isotope-dilution method for DNA adduct quantification will further promote research about the clinical implications and diagnostic applications of oxidatively induced DNA adducts.
Collapse
Affiliation(s)
| | | | - Laura J Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute Florida , Jupiter, Florida 33458, United States
| | | |
Collapse
|
46
|
Evans MD, Mistry V, Singh R, Gackowski D, Różalski R, Siomek-Gorecka A, Phillips DH, Zuo J, Mullenders L, Pines A, Nakabeppu Y, Sakumi K, Sekiguchi M, Tsuzuki T, Bignami M, Oliński R, Cooke MS. Nucleotide excision repair of oxidised genomic DNA is not a source of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine. Free Radic Biol Med 2016; 99:385-391. [PMID: 27585947 DOI: 10.1016/j.freeradbiomed.2016.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a widely measured biomarker of oxidative stress. It has been commonly assumed to be a product of DNA repair, and therefore reflective of DNA oxidation. However, the source of urinary 8-oxodGuo is not understood, although potential confounding contributions from cell turnover and diet have been ruled out. Clearly it is critical to understand the precise biological origins of this important biomarker, so that the target molecule that is oxidised can be identified, and the significance of its excretion can be interpreted fully. In the present study we aimed to assess the contributions of nucleotide excision repair (NER), by both the global genome NER (GG-NER) and transcription-coupled NER (TC-NER) pathways, and sanitisation of the dGTP pool (e.g. via the activity of the MTH1 protein), on the production of 8-oxodGuo, using selected genetically-modified mice. In xeroderma pigmentosum A (XPA) mice, in which GG-NER and TC-NER are both defective, the urinary 8-oxodGuo data were unequivocal in ruling out a contribution from NER. In line with the XPA data, the production of urinary 8-oxodGuo was not affected in the xeroderma pigmentosum C mice, specifically excluding a role of the GG-NER pathway. The bulk of the literature supports the mechanism that the NER proteins are responsible for removing damage to the transcribed strand of DNA via TC-NER, and on this basis we also examined Cockayne Syndrome mice, which have a functional loss of TC-NER. These mice showed no difference in urinary 8-oxodGuo excretion, compared to wild type, demonstrating that TC-NER does not contribute to urinary 8-oxodGuo levels. These findings call into question whether genomic DNA is the primary source of urinary 8-oxodGuo, which would largely exclude it as a biomarker of DNA oxidation. The urinary 8-oxodGuo levels from the MTH1 mice (both knock-out and hMTH1-Tg) were not significantly different to the wild-type mice. We suggest that these findings are due to redundancy in the process, and that other enzymes substitute for the lack of MTH1, however the present study cannot determine whether or not the 2'-deoxyribonucleotide pool is the source of urinary 8-oxodGuo. On the basis of the above, urinary 8-oxodGuo is most accurately defined as a non-invasive biomarker of oxidative stress, derived from oxidatively generated damage to 2'-deoxyguanosine.
Collapse
Affiliation(s)
- Mark D Evans
- Oxidative Stress Group, University of Leicester, Leicester, United Kingdom.
| | - Vilas Mistry
- Oxidative Stress Group, University of Leicester, Leicester, United Kingdom
| | - Rajinder Singh
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - Agnieszka Siomek-Gorecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - David H Phillips
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Jie Zuo
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Leon Mullenders
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Alex Pines
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - Marcus S Cooke
- Oxidative Stress Group, University of Leicester, Leicester, United Kingdom; Department of Genetics, University of Leicester, United Kingdom.
| |
Collapse
|
47
|
Sassa A, Çağlayan M, Rodriguez Y, Beard WA, Wilson SH, Nohmi T, Honma M, Yasui M. Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine. J Biol Chem 2016; 291:24314-24323. [PMID: 27660390 DOI: 10.1074/jbc.m116.738732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/28/2016] [Indexed: 12/21/2022] Open
Abstract
Numerous ribonucleotides are incorporated into the genome during DNA replication. Oxidized ribonucleotides can also be erroneously incorporated into DNA. Embedded ribonucleotides destabilize the structure of DNA and retard DNA synthesis by DNA polymerases (pols), leading to genomic instability. Mammalian cells possess translesion DNA synthesis (TLS) pols that bypass DNA damage. The mechanism of TLS and repair of oxidized ribonucleotides remains to be elucidated. To address this, we analyzed the miscoding properties of the ribonucleotides riboguanosine (rG) and 7,8-dihydro-8-oxo-riboguanosine (8-oxo-rG) during TLS catalyzed by the human TLS pols κ and η in vitro The primer extension reaction catalyzed by human replicative pol α was strongly blocked by 8-oxo-rG. pol κ inefficiently bypassed rG and 8-oxo-rG compared with dG and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG), whereas pol η easily bypassed the ribonucleotides. pol α exclusively inserted dAMP opposite 8-oxo-rG. Interestingly, pol κ preferentially inserted dCMP opposite 8-oxo-rG, whereas the insertion of dAMP was favored opposite 8-oxo-dG. In addition, pol η accurately bypassed 8-oxo-rG. Furthermore, we examined the activity of the base excision repair (BER) enzymes 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease 1 on the substrates, including rG and 8-oxo-rG. Both BER enzymes were completely inactive against 8-oxo-rG in DNA. However, OGG1 suppressed 8-oxo-rG excision by RNase H2, which is involved in the removal of ribonucleotides from DNA. These results suggest that the different sugar backbones between 8-oxo-rG and 8-oxo-dG alter the capacity of TLS and repair of 8-oxoguanine.
Collapse
Affiliation(s)
- Akira Sassa
- From the Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan and
| | - Melike Çağlayan
- the Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Yesenia Rodriguez
- the Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - William A Beard
- the Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Samuel H Wilson
- the Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Takehiko Nohmi
- From the Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan and
| | - Masamitsu Honma
- From the Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan and
| | - Manabu Yasui
- From the Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan and
| |
Collapse
|
48
|
Wang H, Dharmalingam P, Vasquez V, Mitra J, Boldogh I, Rao KS, Kent TA, Mitra S, Hegde ML. Chronic oxidative damage together with genome repair deficiency in the neurons is a double whammy for neurodegeneration: Is damage response signaling a potential therapeutic target? Mech Ageing Dev 2016; 161:163-176. [PMID: 27663141 DOI: 10.1016/j.mad.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated aging and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama; Department of Biotechnology, Acharya Nagarjuna University, Guntur, AP, India; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
49
|
Shabbir SH. DNA Repair Dysfunction and Neurodegeneration: Lessons From Rare Pediatric Disorders. J Child Neurol 2016; 31:392-6. [PMID: 26116382 DOI: 10.1177/0883073815592221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 05/31/2015] [Indexed: 01/15/2023]
Abstract
Nucleotide excision repair disorders display a wide range of clinical syndromes and presentations, all associated at the molecular level by dysfunction of genes participating in the nucleotide excision repair pathway. Genotype-phenotype relationships are remarkably complex and not well understood. This article outlines neurodegenerative symptoms seen in nucleotide excision repair disorders and explores the role that nucleotide excision repair dysfunction can play in the pathogenesis of chronic neurodegenerative diseases.
Collapse
|
50
|
Sassa A, Kamoshita N, Kanemaru Y, Honma M, Yasui M. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome. PLoS One 2015; 10:e0142218. [PMID: 26559182 PMCID: PMC4641734 DOI: 10.1371/journal.pone.0142218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022] Open
Abstract
Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.
Collapse
Affiliation(s)
- Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
- * E-mail: (MY); (AS)
| | - Nagisa Kamoshita
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
- * E-mail: (MY); (AS)
| |
Collapse
|