1
|
Che X, Zhao Y, Xu Z, Hu Y, Ren A, Wu C, Yang J. Unlocking the Potential of l-α-Glycerylphosphorylcholine: From Metabolic Pathways to Therapeutic Applications. Nutr Rev 2025:nuaf008. [PMID: 40036805 DOI: 10.1093/nutrit/nuaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
l-α-Glycerylphosphorylcholine (GPC), also known as choline alphoscerate or α-glycerophosphorylcholine, serves as both a pharmaceutical product and a dietary supplement. Through its metabolic pathways, GPC acts as the precursor not only of choline and acetylcholine but also of various phospholipids. Extensive preclinical and clinical evidence demonstrates that GPC effectively alleviates cognitive impairment associated with Alzheimer's disease, vascular dementia, cerebral ischemia, stress, and epilepsy, among other conditions. Additionally, GPC has beneficial effects on such conditions and measures as ischemic/hypoxic conditions, ionizing radiation-induced damage, exercise performance, growth hormone release, and liver damage. As well as facilitating cholinergic neurotransmission, evidence also indicates GPC, among other activities, also can promote γ-aminobutyric acid release, enhance protein kinase C activity, facilitate hippocampal neurogenesis, upregulate neurotrophic factors, and inhibit inflammation. In preclinical studies, results indicate that GPC is not genotoxic in vitro or in vivo. Extensive human studies indicate GPC causes no severe adverse effects. Possible risks of atherosclerosis and stroke await necessary validation. In this review, the GPC-related metabolic pathways, pharmacological effects, mechanisms of action, and safety evaluation are discussed with the aim of providing a comprehensive understanding of GPC.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhongtian Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aoxin Ren
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Kantor S, Drzał A, Setkowicz Z, Elas M, Janeczko K. Dynamics of nitrergic system activation in the rat brain provoked by experimentally induced seizures. Neuroscience 2025; 564:290-298. [PMID: 39424265 DOI: 10.1016/j.neuroscience.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Epilepsy is a pathophysiological condition displaying a highly diverse phenotype. Consequently, comprehending the mechanisms underlying seizures necessitates moving beyond a simplistic model focused on the imbalance between the classical excitatory and inhibitory neurotransmitter systems. Nitric oxide (NO), a nonclassical and multifunctional gaseous neurotransmitter, has the potential to exert a profound influence on epileptic reactivity. Unfortunately, numerous studies have not provided clear answers about its involvement in the pathophysiology of epilepsy. The objective of our study was to delineate the temporal dynamics of alterations in nitrergic system activation after experimentally induced seizures. Seizures were induced in 2-month-old male Wistar rats (n = 55) by an administration of pilocarpine. Over a 6-hour observation period, seizure behaviour intensity was continuously evaluated using a modified Racine scale. At intervals of 6, 12, 24, 48, or 96 h post-chemoconvulsant administration, NO spin trapping was conducted with ferrous-diethyldithiocarbamate complexes (Fe(DETC)2). Electron paramagnetic resonance (EPR) spectroscopy was employed to quantify mononitrosyl iron complexes (NO-Fe(DETC)2) in the brain. The temporal kinetic of NO release after seizures revealed a rise in NO synthesis during the initial 12 h. Subsequently, a sharp decline occurred, returning to baseline 96 h after pilocarpine injection. Notably, our research suggests that the level of NO synthesis does not interfere with the severity of the epileptic seizures that occur. In light of this, we propose that the nitrergic system is quickly activated in the epileptic brain as a compensatory mechanism of the central nervous system. However, under usual conditions, this activation is insufficient to effectively attenuate seizures.
Collapse
Affiliation(s)
- Szymon Kantor
- Jagiellonian University, Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Gronostajowa 9, 30-387 Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Agnieszka Drzał
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Zuzanna Setkowicz
- Jagiellonian University, Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Gronostajowa 9, 30-387 Kraków, Poland
| | - Martyna Elas
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Krzysztof Janeczko
- Jagiellonian University, Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
3
|
Poslunsey M, Wood MR, Han C, Stauffer SR, Panarese JD, Melancon BJ, Engers JL, Dickerson JW, Peng W, Noetzel MJ, Cho HP, Rodriguez AL, Hopkins CR, Morrison R, Crouch RD, Bridges TM, Blobaum AL, Boutaud O, Daniels JS, Kates MJ, Castelhano A, Rook JM, Niswender CM, Jones CK, Conn PJ, Lindsley CW. Discovery of VU0467319: an M 1 Positive Allosteric Modulator Candidate That Advanced into Clinical Trials. ACS Chem Neurosci 2025; 16:95-107. [PMID: 39660766 PMCID: PMC11697341 DOI: 10.1021/acschemneuro.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
Herein we detail the first disclosure of VU0467319 (VU319), an M1 Positive Allosteric Modulator (PAM) clinical candidate that successfully completed a Phase I Single Ascending Dose (SAD) clinical trial. VU319 (16) is a moderately potent M1 PAM (M1 PAM EC50 = 492 nM ± 2.9 nM, 71.3 ± 9.9% ACh Max), with minimal M1 agonism (EC50 > 30 μM), that displayed high CNS penetration (Kps > 0.67 and Kp,uus > 0.9) and multispecies pharmacokinetics permissive of further development. Based on robust efficacy in multiple preclinical models of cognition, an ancillary pharmacology profile devoid of appreciable off-target activities, and a lack of cholinergic adverse effects (AEs) in rats, dogs and nonhuman primates, VU319 advanced into IND-enabling studies. After completing 4-week rat and dog GLP toxicology without AEs, including absence of cholinergic effects, the first in human Phase I SAD clinical trial of VU319 (NCT03220295) was performed at Vanderbilt, where a similar lack of adverse effects, including absence of cholinergic effects was noted. Moreover, signals of target engagement were seen at the highest dose tested. Thus, VU319 demonstrated the feasibility of achieving selective targeting of central M1 muscarinic receptors without eliciting cholinergic AEs that have plagued other drugs targeting CNS cholinergic neurotransmission.
Collapse
Affiliation(s)
- Michael
S. Poslunsey
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Michael R. Wood
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Changho Han
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Shaun R. Stauffer
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Joseph D. Panarese
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Bruce J. Melancon
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Julie L. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jonathan W. Dickerson
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Weimin Peng
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Meredith J. Noetzel
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Corey R. Hopkins
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Ryan Morrison
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Rachel D. Crouch
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - J. Scott Daniels
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Michael J. Kates
- Davos
Pharma, Upper Saddle River, New Jersey 07458, United States
| | | | - Jerri M. Rook
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Dean B. IUPHAR Review on muscarinic M1 and M4 receptors as drug treatment targets relevant to the molecular pathology of schizophrenia. Pharmacol Res 2024; 210:107510. [PMID: 39566671 DOI: 10.1016/j.phrs.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cobenfy, a co-formulation of xanomeline and trospium, is the first drug not acting on the dopaminergic system of the CNS approved for the treatment of schizophrenia by the FDA. Xanomeline is a muscarinic M1 and M4 receptor (CHRM1 and CHRM4) agonist whilst trospium is a peripherally active CHRM antagonist that reduces the unwanted peripheral side-effects of xanomeline. Relevant to this exciting development, this review details the human CNS cholinergic systems and how those systems are affected by the molecular pathology of schizophrenia in a way suggesting activating the CHRM1 and 4 would be beneficial in treating the disorder. The CNS distribution of CHRMs is presented along with findings using CHRM knockout mice and mice treated with drugs that activate the CHRM1 and / or M4, these data explain why these CHRMs could be involved in the genesis of the symptoms of schizophrenia. Next, the process leading to the formulation of Cobenfy and the preclinical data on xanomeline are reviewed showing why Cobenfy was expected to be useful in treating schizophrenia. The pipeline of drugs targeting CHRM1 and /or M4 receptors to treat schizophrenia are discussed. Finally, the molecular pathology of two sub-groups within schizophrenia, separated based on the presence or absence of a deficit of cortical CHRM1, are reviewed to show how such approaches could identify new drug targets. In conclusion, the history of the development of Cobenfy highlights how a growing understanding the pathophysiology of schizophrenia will suggest new treatment targets for the disorder and that pharmacologists can synthesise drugs to target these sites.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Engers J, Bollinger KA, Capstick RA, Long MF, Bender AM, Dickerson JW, Peng W, Presley CC, Cho HP, Rodriguez AL, Niswender CM, Moran SP, Xiang Z, Blobaum AL, Boutaud O, Rook JM, Engers DW, Conn PJ, Lindsley CW. Discovery of VU6007496: Challenges in the Development of an M 1 Positive Allosteric Modulator Backup Candidate. ACS Chem Neurosci 2024; 15:3421-3433. [PMID: 39197083 PMCID: PMC11413853 DOI: 10.1021/acschemneuro.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024] Open
Abstract
Herein we report progress toward a backup clinical candidate to the M1 positive allosteric modulator (PAM) VU319/ACP-319. Scaffold-hopping from the pyrrolo[2,3-b]pyridine-based M1 PAM VU6007477 to isomeric pyrrolo[3,2-b]pyridine and thieno[3,2-b]pyridine congeners identified several backup contenders. Ultimately, VU6007496, a pyrrolo[3,2-b]pyridine, advanced into late stage profiling, only to be plagued with unanticipated, species-specific metabolism and active/toxic metabolites which were identified in our phenotypic seizure liability in vivo screen, preventing further development. However, VU6007496 proved to be a highly selective and CNS penetrant M1 PAM, with minimal agonism, that displayed excellent multispecies IV/PO pharmacokinetics (PK), CNS penetration, no induction of long-term depression (or cholinergic toxicity) and robust efficacy in novel object recognition (minimum effective dose = 3 mg/kg p.o.). Thus, VU6007496 can serve as another valuable in vivo tool compound in rats and nonhuman primates, but not mouse, to study selective M1 activation.
Collapse
Affiliation(s)
- Julie
L. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Katrina A. Bollinger
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Rory A. Capstick
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Madeline F. Long
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jonathan W. Dickerson
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Weimin Peng
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Christopher C. Presley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Sean P. Moran
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Zixiu Xiang
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jerri M. Rook
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Carreño-González AJ, Liberato JL, Celani MVB, Lopes NP, Lopes JLC, Gobbo-Neto L, Fontana ACK, Dos Santos WF. Neuroprotective effects of chlorogenic acid against oxidative stress in rats subjected to lithium-pilocarpine-induced status epilepticus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6989-6999. [PMID: 38625552 DOI: 10.1007/s00210-024-03080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Epilepsy is a condition marked by sudden, self-sustained, and recurring brain events, showcasing unique electro-clinical and neuropathological phenomena that can alter the structure and functioning of the brain, resulting in diverse manifestations. Antiepileptic drugs (AEDs) can be very effective in 30% of patients in controlling seizures. Several factors contribute to this: drug resistance, individual variability, side effects, complexity of epilepsy, incomplete understanding, comorbidities, drug interactions, and no adherence to treatment. Therefore, research into new AEDs is important for several reasons such as improved efficacy, reduced side effects, expanded treatment options, treatment for drug-resistant epilepsy, improved safety profiles, targeted therapies, and innovation and progress. Animal models serve as crucial biological tools for comprehending neuronal damage and aiding in the discovery of more effective new AEDs. The utilization of antioxidant agents that act on the central nervous system may serve as a supplementary approach in the secondary prevention of epilepsy, both in laboratory animals and potentially in humans. Chlorogenic acid (CGA) is a significant compound, widely prevalent in numerous medicinal and food plants, exhibiting an extensive spectrum of biological activities such as neuroprotection, antioxidant, anti-inflammatory, and analgesic effects, among others. In this research, we assessed the neuroprotective effects of commercially available CGA in Wistar rats submitted to lithium-pilocarpine-induced status epilepticus (SE) model. After 72-h induction of SE, rats received thiopental and were treated for three consecutive days (1st, 2nd, and 3rd doses). Next, brains were collected and studied histologically for viable cells in the hippocampus with staining for cresyl-violet (Nissl staining) and for degenerating cells with Fluoro-Jade C (FJC) staining. Moreover, to evaluate oxidative stress, the presence of malondialdehyde (MDA) and superoxide dismutase (SOD) was quantified. Rats administered with CGA (30 mg/kg) demonstrated a significant decrease of 59% in the number of hippocampal cell loss in the CA3, and of 48% in the hilus layers after SE. A significant reduction of 75% in the cell loss in the CA3, shown by FJC+ staining, was also observed with the administration of CGA (30 mg/kg). Furthermore, significant decreases of 49% in MDA production and 72% in the activity of SOD were seen, when compared to animals subjected to SE that received vehicle. This study introduces a novel finding: the administration of CGA at a dosage of 30 mg/kg effectively reduced oxidative stress induced by lithium-pilocarpine, with its effects lasting until the peak of neural damage 72 h following the onset of SE. Overall, the research and development of new AEDs are essential for advancing epilepsy treatment, improving patient outcomes, and ultimately enhancing the quality of life for individuals living with epilepsy.
Collapse
Affiliation(s)
- Alberth Jonnathan Carreño-González
- Department of Biology, College of Philosophy, Sciences, and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, Zip code: 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - José Luiz Liberato
- Department of Biology, College of Philosophy, Sciences, and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, Zip code: 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Marcus Vinicius Batista Celani
- Department of Biology, College of Philosophy, Sciences, and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, Zip code: 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Peporine Lopes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), NPPNS, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - João Luís Callegari Lopes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), NPPNS, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Gobbo-Neto
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), NPPNS, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | | | - Wagner Ferreira Dos Santos
- Department of Biology, College of Philosophy, Sciences, and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, Zip code: 14040-901, Ribeirão Preto, São Paulo, Brazil.
- Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Liu X, Yu Y, Zhang H, Zhang M, Liu Y. The Role of Muscarinic Acetylcholine Receptor M 3 in Cardiovascular Diseases. Int J Mol Sci 2024; 25:7560. [PMID: 39062802 PMCID: PMC11277046 DOI: 10.3390/ijms25147560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The muscarinic acetylcholine receptor M3 (M3-mAChR) is involved in various physiological and pathological processes. Owing to specific cardioprotective effects, M3-mAChR is an ideal diagnostic and therapeutic biomarker for cardiovascular diseases (CVDs). Growing evidence has linked M3-mAChR to the development of multiple CVDs, in which it plays a role in cardiac protection such as anti-arrhythmia, anti-hypertrophy, and anti-fibrosis. This review summarizes M3-mAChR's expression patterns, functions, and underlying mechanisms of action in CVDs, especially in ischemia/reperfusion injury, cardiac hypertrophy, and heart failure, opening up a new research direction for the treatment of CVDs.
Collapse
Affiliation(s)
- Xinxing Liu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Yi Yu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Haiying Zhang
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Min Zhang
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Yan Liu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- International Joint Research Center of Human–Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
8
|
Hall RR, Cohall DH. The Relationship between Muscarinic and Cannabinoid Receptors in Neuronal Excitability and Epilepsy: A Review. Med Cannabis Cannabinoids 2024; 7:91-98. [PMID: 39015608 PMCID: PMC11250071 DOI: 10.1159/000538297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/06/2024] [Indexed: 07/18/2024] Open
Abstract
Background Of the seventy million people who suffer from epilepsy, 40 percent of them become resistant to more than one antiepileptic medication and have a higher chance of death. While the classical definition of epilepsy was due to the imbalance between excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA)-ergic signalling, substantial evidence implicates muscarinic receptors in the regulation of neural excitability. Summary Cannabinoids have shown to reduce seizure activity and neuronal excitability in several epileptic models through the activation of muscarinic receptors with drugs which modulate their activity. Cannabinoids also have been effective in reducing antiepileptic activity in pharmaco-resistant individuals; however, the mechanism of its effects in temporal lobe epilepsy is not clear. Key Messages This review seeks to elucidate the relationship between muscarinic and cannabinoid receptors in epilepsy and neural excitability.
Collapse
Affiliation(s)
- Ryan Renaldo Hall
- Faculty of Medical Sciences, University of the West Indies, Cave Hill, Barbados
| | - Damian Hugh Cohall
- Faculty of Medical Sciences, University of the West Indies, Cave Hill, Barbados
| |
Collapse
|
9
|
Balla H, Borsodi K, Őrsy P, Horváth B, Molnár PJ, Lénárt Á, Kosztelnik M, Ruisanchez É, Wess J, Offermanns S, Nyirády P, Benyó Z. Intracellular signaling pathways of muscarinic acetylcholine receptor-mediated detrusor muscle contractions. Am J Physiol Renal Physiol 2023; 325:F618-F628. [PMID: 37675459 PMCID: PMC11905796 DOI: 10.1152/ajprenal.00261.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Acetylcholine plays an essential role in the regulation of detrusor muscle contractions, and antimuscarinics are widely used in the management of overactive bladder syndrome. However, several adverse effects limit their application and patients' compliance. Thus, this study aimed to further analyze the signal transduction of M2 and M3 receptors in the murine urinary bladder to eventually find more specific therapeutic targets. Experiments were performed on adult male wild-type, M2, M3, M2/M3, or Gαq/11 knockout (KO), and pertussis toxin (PTX)-treated mice. Contraction force and RhoA activity were measured in the urinary bladder smooth muscle (UBSM). Our results indicate that carbamoylcholine (CCh)-induced contractions were associated with increased activity of RhoA and were reduced in the presence of the Rho-associated kinase (ROCK) inhibitor Y-27632 in UBSM. CCh-evoked contractile responses and RhoA activation were markedly reduced in detrusor strips lacking either M2 or M3 receptors and abolished in M2/M3 KO mice. Inhibition of Gαi-coupled signaling by PTX treatment shifted the concentration-response curve of CCh to the right and diminished RhoA activation. CCh-induced contractile responses were markedly decreased in Gαq/11 KO mice; however, RhoA activation was unaffected. In conclusion, cholinergic detrusor contraction and RhoA activation are mediated by both M2 and M3 receptors. Furthermore, whereas both Gαi and Gαq/11 proteins mediate UBSM contraction, the activation at the RhoA-ROCK pathway appears to be linked specifically to Gαi. These findings may aid the identification of more specific therapeutic targets for bladder dysfunctions.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are of utmost importance in physiological regulation of micturition and also in the development of voiding disorders. We demonstrate that the RhoA-Rho-associated kinase (ROCK) pathway plays a crucial role in contractions induced by cholinergic stimulation in detrusor muscle. Activation of RhoA is mediated by both M2 and M3 receptors as well as by Gi but not Gq/11 proteins. The Gi-RhoA-ROCK pathway may provide a novel therapeutic target for overactive voiding disorders.
Collapse
MESH Headings
- Animals
- Muscle Contraction/drug effects
- Signal Transduction/drug effects
- Urinary Bladder/drug effects
- Urinary Bladder/metabolism
- Male
- Mice, Knockout
- Receptor, Muscarinic M3/metabolism
- Receptor, Muscarinic M3/genetics
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- rhoA GTP-Binding Protein/metabolism
- rho-Associated Kinases/metabolism
- rho-Associated Kinases/antagonists & inhibitors
- Receptor, Muscarinic M2/metabolism
- Receptor, Muscarinic M2/genetics
- Mice
- Mice, Inbred C57BL
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Carbachol/pharmacology
Collapse
Affiliation(s)
- Helga Balla
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Kinga Borsodi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Petra Őrsy
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Horváth
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter József Molnár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Ádám Lénárt
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Mónika Kosztelnik
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Cerebrosvascular and Neurodegenerative Disease Research Group, Budapest, Hungary
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Cerebrosvascular and Neurodegenerative Disease Research Group, Budapest, Hungary
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Cerebrosvascular and Neurodegenerative Disease Research Group, Budapest, Hungary
| |
Collapse
|
10
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
11
|
Zavaleta-Viveros JA, Toledo P, Avendaño-Garrido ML, Escalante-Martínez JE, López-Meraz ML, Ramos-Riera KP. A modification to the Kuramoto model to simulate epileptic seizures as synchronization. J Math Biol 2023; 87:9. [PMID: 37329353 PMCID: PMC10276802 DOI: 10.1007/s00285-023-01938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
The Kuramoto model was developed to describe the coupling of oscillators, motivated by the natural synchronization phenomena. We are interested in modeling an epileptic seizure considering it as the synchronization of action potentials using and modifying this model. In this article, we propose to modify this model, changing the constant coupling force for a function with logistic growth to simulate the onset and epileptic seizure level in an adult male rat caused by the administration of lithium-pilocarpine. Later, we select some frequencies and their respective amplitude values using an algorithm based on the fast Fourier transform (FFT) from an electroencephalography signal when the rat is in basal conditions. Then, we take these values as the natural frequencies of the oscillators in the modified Kuramoto model, considering every oscillator as a single neuron to simulate the emergence of an epileptic seizure numerically by increasing the synchronization value in the coupling function. Finally, using Dynamic Time Warping algorithm, we compare the simulated signal by the Kuramoto model with an FFT approximation of the epileptic seizure.
Collapse
Affiliation(s)
- José Alfredo Zavaleta-Viveros
- Facultad de Matemáticas, Universidad Veracruzana, Calle Paseo No. 112, Lote 12, Sección 2a, Villa Nueva, Nuevo Xalapa, 91097 Xalapa, Veracruz México
| | - Porfirio Toledo
- Facultad de Matemáticas, Universidad Veracruzana, Calle Paseo No. 112, Lote 12, Sección 2a, Villa Nueva, Nuevo Xalapa, 91097 Xalapa, Veracruz México
| | - Martha Lorena Avendaño-Garrido
- Facultad de Matemáticas, Universidad Veracruzana, Calle Paseo No. 112, Lote 12, Sección 2a, Villa Nueva, Nuevo Xalapa, 91097 Xalapa, Veracruz México
| | - Jesús Enrique Escalante-Martínez
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Veracruzana, Prolongación de la Avenida Venustiano Carranza S/N. Colonia Revolución, 93390 Poza Rica, Veracruz Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, 91190 Xalapa, Veracruz México
| | - Karen Paola Ramos-Riera
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, 91190 Xalapa, Veracruz México
| |
Collapse
|
12
|
Łukawski K, Czuczwar SJ. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants (Basel) 2023; 12:antiox12051049. [PMID: 37237916 DOI: 10.3390/antiox12051049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Free radicals are generated in the brain, as well as in other organs, and their production is proportional to the brain activity. Due to its low antioxidant capacity, the brain is particularly sensitive to free radical damage, which may affect lipids, nucleic acids, and proteins. The available evidence clearly points to a role for oxidative stress in neuronal death and pathophysiology of epileptogenesis and epilepsy. The present review is devoted to the generation of free radicals in some animal models of seizures and epilepsy and the consequences of oxidative stress, such as DNA or mitochondrial damage leading to neurodegeneration. Additionally, antioxidant properties of antiepileptic (antiseizure) drugs and a possible use of antioxidant drugs or compounds in patients with epilepsy are reviewed. In numerous seizure models, the brain concentration of free radicals was significantly elevated. Some antiepileptic drugs may inhibit these effects; for example, valproate reduced the increase in brain malondialdehyde (a marker of lipid peroxidation) concentration induced by electroconvulsions. In the pentylenetetrazol model, valproate prevented the reduced glutathione concentration and an increase in brain lipid peroxidation products. The scarce clinical data indicate that some antioxidants (melatonin, selenium, vitamin E) may be recommended as adjuvants for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
13
|
Becchetti A, Grandi LC, Cerina M, Amadeo A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol Res 2023; 189:106698. [PMID: 36796465 DOI: 10.1016/j.phrs.2023.106698] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Laura Clara Grandi
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marta Cerina
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
14
|
Sanfilippo C, Giuliano L, Castrogiovanni P, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. Sex, Age, and Regional Differences in CHRM1 and CHRM3 Genes Expression Levels in the Human Brain Biopsies: Potential Targets for Alzheimer's Disease-related Sleep Disturbances. Curr Neuropharmacol 2023; 21:740-760. [PMID: 36475335 PMCID: PMC10207911 DOI: 10.2174/1570159x21666221207091209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholinergic hypofunction and sleep disturbance are hallmarks of Alzheimer's disease (AD), a progressive disorder leading to neuronal deterioration. Muscarinic acetylcholine receptors (M1-5 or mAChRs), expressed in hippocampus and cerebral cortex, play a pivotal role in the aberrant alterations of cognitive processing, memory, and learning, observed in AD. Recent evidence shows that two mAChRs, M1 and M3, encoded by CHRM1 and CHRM3 genes, respectively, are involved in sleep functions and, peculiarly, in rapid eye movement (REM) sleep. METHODS We used twenty microarray datasets extrapolated from post-mortem brain tissue of nondemented healthy controls (NDHC) and AD patients to examine the expression profile of CHRM1 and CHRM3 genes. Samples were from eight brain regions and stratified according to age and sex. RESULTS CHRM1 and CHRM3 expression levels were significantly reduced in AD compared with ageand sex-matched NDHC brains. A negative correlation with age emerged for both CHRM1 and CHRM3 in NDHC but not in AD brains. Notably, a marked positive correlation was also revealed between the neurogranin (NRGN) and both CHRM1 and CHRM3 genes. These associations were modulated by sex. Accordingly, in the temporal and occipital regions of NDHC subjects, males expressed higher levels of CHRM1 and CHRM3, respectively, than females. In AD patients, males expressed higher levels of CHRM1 and CHRM3 in the temporal and frontal regions, respectively, than females. CONCLUSION Thus, substantial differences, all strictly linked to the brain region analyzed, age, and sex, exist in CHRM1 and CHRM3 brain levels both in NDHC subjects and in AD patients.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Loretta Giuliano
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Martina Ulivieri
- Department of Psychiatry, Health Science, University of California San Diego, San Diego La Jolla, CA, USA
| | - Francesco Fazio
- Department of Psychiatry, Health Science, University of California San Diego, San Diego La Jolla, CA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| |
Collapse
|
15
|
Wang P, Yang L, Yang R, Chen Z, Ren X, Wang F, Jiao Y, Ding Y, Yang F, Sun T, Ma H. Predicted molecules and signaling pathways for regulating seizures in the hippocampus in lithium-pilocarpine induced acute epileptic rats: A proteomics study. Front Cell Neurosci 2022; 16:947732. [DOI: 10.3389/fncel.2022.947732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Seizures in rodent models that are induced by lithium-pilocarpine mimic human seizures in a highly isomorphic manner. The hippocampus is a brain region that generates and spreads seizures. In order to understand the early phases of seizure events occurring in the hippocampus, global protein expression levels in the hippocampus on day 1 and day 3 were analyzed in lithium-pilocarpine induced acute epileptic rat models using a tandem mass tag-based proteomic approach. Our results showed that differentially expressed proteins were likely to be enhanced rather than prohibited in modulating seizure activity on days 1 and 3 in lithium-pilocarpine induced seizure rats. The differentially regulated proteins differed on days 1 and 3 in the seizure rats, indicating that different molecules and pathways are involved in seizure events occurring from day 1 to day 3 following lithium-pilocarpine administration. In regard to subcellular distribution, the results suggest that post-seizure cellular function in the hippocampus is possibly regulated in a differential manner on seizure progression. Gene ontology annotation results showed that, on day 1 following lithium-pilocarpine administration, it is likely necessary to regulate macromolecular complex assembly, and cell death, while on day 3, it may be necessary to modulate protein metabolic process, cytoplasm, and protein binding. Protein metabolic process rather than macromolecular complex assembly and cell death were affected on day 3 following lithium-pilocarpine administration. The extracellular matrix, receptors, and the constitution of plasma membranes were altered most strongly in the development of seizure events. In a KEGG pathway enrichment cluster analysis, the signaling pathways identified were relevant to sustained angiogenesis and evading apoptosis, and complement and coagulation cascades. On day 3, pathways relevant to Huntington’s disease, and tumor necrosis factor signaling were most prevalent. These results suggest that seizure events occurring in day 1 modulate macromolecular complex assembly and cell death, and in day 3 modulate biological protein metabolic process. In summary, our study found limited evidence for ongoing seizure events in the hippocampus of lithium-pilocarpine induced animal models; nevertheless, evaluating the global differential expression of proteins and their impacts on bio-function may offer new perspectives for studying epileptogenesis in the future.
Collapse
|
16
|
Bojja SL, Singh N, Kolathur KK, Rao CM. What is the Role of Lithium in Epilepsy? Curr Neuropharmacol 2022; 20:1850-1864. [PMID: 35410603 PMCID: PMC9886805 DOI: 10.2174/1570159x20666220411081728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is a well-known FDA-approved treatment for bipolar and mood disorders. Lithium has been an enigmatic drug with multifaceted actions involving various neurotransmitters and intricate cell signalling cascades. Recent studies highlight the neuroprotective and neurotrophic actions of lithium in amyotrophic lateral sclerosis, Alzheimer's disease, intracerebral hemorrhage, and epilepsy. Of note, lithium holds a significant interest in epilepsy, where the past reports expose its non-specific proconvulsant action, followed lately by numerous studies for anti-convulsant action. However, the exact mechanism of action of lithium for any of its effects is still largely unknown. The present review integrates findings from several reports and provides detailed possible mechanisms of how a single molecule exhibits marked pro-epileptogenic as well as anti-convulsant action. This review also provides clarity regarding the safety of lithium therapy in epileptic patients.
Collapse
Affiliation(s)
| | | | | | - Chamallamudi Mallikarjuna Rao
- Address correspondence to this author at the Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India; E-mails: ,
| |
Collapse
|
17
|
Araújo Delmondes GD, Pereira Lopes MJ, Araújo IM, de Sousa Borges A, Batista PR, Melo Coutinho HD, Alencar de Menezes IR, Barbosa-Filho JM, Bezerra Felipe CF, Kerntopf MR. Possible mechanisms involved in the neuroprotective effect of Trans,trans-farnesol on pilocarpine-induced seizures in mice. Chem Biol Interact 2022; 365:110059. [PMID: 35931201 DOI: 10.1016/j.cbi.2022.110059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate, through in vivo and in vitro methodologies, the effect of acute trans,trans-farnesol (12.5, 25, 50 or 100 mg/kg, p.o.) administration on behavioral and neurochemical parameters associated with pilocarpine-induced epileptic seizure (300 mg/kg, i.p.) in mice. The initial results showed that the compound in question presents no anxiolytic-like or myorelaxant effects, despite reducing locomotor activity in the animals at all doses tested. In addition, the lowest dose increased the latency to onset of the first epileptic seizure, and the time to death. In addition to decreasing the mortality percentage in mice submitted to the pilocarpine model. In this same model, pretreatment with the lowest dose of the compound decreased the hippocampal concentrations of thiobarbituric acid and nitrite, and partially restored striatal concentrations of noradrenaline, dopamine, and serotonin. Taken together, the results suggest that trans,trans-farnesol presents a central depressant effect which contributes to its antiepileptic action which, in turn, seems to be mediated by the antagonism of muscarinic cholinergic receptors, reduction of oxidative stress. and modulation of noradrenaline, dopamine and serotonin concentrations in the central nervous system.
Collapse
Affiliation(s)
- Gyllyandeson de Araújo Delmondes
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil.
| | | | - Isaac Moura Araújo
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Alex de Sousa Borges
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Paulo Ricardo Batista
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | | | | | | | | | - Marta Regina Kerntopf
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil
| |
Collapse
|
18
|
Spatio-Temporal Alterations in Synaptic Density During Epileptogenesis in the Rat Brain. Neuroscience 2022; 499:142-151. [PMID: 35878719 DOI: 10.1016/j.neuroscience.2022.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein that binds levetiracetam and is involved in neurotransmission via an unknown mechanism. SV2A-immunoreactivity is reduced in animal models of epilepsy, and in postmortem hippocampi from patients with temporal lobe epilepsy. It is not known if other regions outside the hippocampus are affected in epilepsy, and whether SV2A is expression permanently reduced or regulated over time. In this study, we induced a generalized status epilepticus (SE) by systemic administration of lithium-pilocarpine to adult female rats. The brains from all animals experiencing SE were collected at different time points after the treatment. The radiotracer, [11C]-UCB-J, binds to SV2A with high affinity, and has been used for in vivo imaging as an a-proxy marker for synaptic density. Here we determined the level of tritiated UCB-J binding by semiquantitative autoradiography in the cerebral cortex, hippocampus, thalamus, and hypothalamus, and in subregions of these. A prominent and highly significant reduction in SV2A binding capacity was observed over the first days after SE in the cerebral cortex and the hippocampus, but not in the thalamus and hypothalamus. The magnitude in reduction was larger and occurred earlier in the hippocampus and the piriform cortex, than in other cortical subregions. Interestingly, in all areas examined, the binding capacity returned to control levels 12 weeks after the SE comparable to the chronic phase. These data show that lithium-pilocarpine-induced epileptogenesis involves both loss and gain of synapses in the in a time-dependent manner.
Collapse
|
19
|
Gorlewicz A, Barthet G, Zucca S, Vincent P, Griguoli M, Grosjean N, Wilczynski G, Mulle C. The Deletion of GluK2 Alters Cholinergic Control of Neuronal Excitability. Cereb Cortex 2022; 32:2907-2923. [PMID: 34730179 DOI: 10.1093/cercor/bhab390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
Kainate receptors (KARs) are key regulators of synaptic circuits by acting at pre- and postsynaptic sites through either ionotropic or metabotropic actions. KARs can be activated by kainate, a potent neurotoxin, which induces acute convulsions. Here, we report that the acute convulsive effect of kainate mostly depends on GluK2/GluK5 containing KARs. By contrast, the acute convulsive activity of pilocarpine and pentylenetetrazol is not alleviated in the absence of KARs. Unexpectedly, the genetic inactivation of GluK2 rather confers increased susceptibility to acute pilocarpine-induced seizures. The mechanism involves an enhanced excitability of GluK2-/- CA3 pyramidal cells compared with controls upon pilocarpine application. Finally, we uncover that the absence of GluK2 increases pilocarpine modulation of Kv7/M currents. Taken together, our findings reveal that GluK2-containing KARs can control the excitability of hippocampal circuits through interaction with the neuromodulatory cholinergic system.
Collapse
Affiliation(s)
- Adam Gorlewicz
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, F-33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Gael Barthet
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, F-33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Stefano Zucca
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, F-33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Peggy Vincent
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, F-33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Marilena Griguoli
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, F-33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Noëlle Grosjean
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, F-33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Grzegorz Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, F-33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
20
|
Zamora-Bello I, Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Anticonvulsant Effect of Turmeric and Resveratrol in Lithium/Pilocarpine-Induced Status Epilepticus in Wistar Rats. Molecules 2022; 27:3835. [PMID: 35744955 PMCID: PMC9231157 DOI: 10.3390/molecules27123835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that lacks a cure. The use of plant-derived antioxidant molecules such as those contained in turmeric powder and resveratrol may produce short-term anticonvulsant effects. A total of 42 three-month-old male Wistar rats were divided into six groups (n = 7 in each group): Vehicle (purified water), turmeric (150 and 300 mg/kg, respectively), and resveratrol (30 and 60 mg/kg, respectively), administered per os (p.o.) every 24 h for 35 days. Carbamazepine (300 mg/kg/5 days) was used as a pharmacological control for anticonvulsant activity. At the end of the treatment, status epilepticus was induced using the lithium-pilocarpine model [3 mEq/kg, intraperitoneally (i.p.) and 30 mg/kg subcutaneously (s.c.), respectively]. Seizures were evaluated using the Racine scale. The 300 mg/kg of turmeric and 60 mg/kg of resveratrol groups had an increased latency to the first generalized seizure. The groups treated with 150 and 300 mg/kg of turmeric and 60 mg/kg of resveratrol also had an increased latency to status epilepticus and a decreased number of generalized seizures compared to the vehicle group. The chronic administration of turmeric and resveratrol exerts anticonvulsant effects without producing kidney or liver damage. This suggests that both of these natural products of plant origin could work as adjuvants in the treatment of epilepsy.
Collapse
Affiliation(s)
- Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91000, Mexico; (I.Z.-B.); (J.F.R.-L.)
| | | | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91000, Mexico; (I.Z.-B.); (J.F.R.-L.)
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
21
|
Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex. Int J Mol Sci 2021; 23:ijms23010202. [PMID: 35008628 PMCID: PMC8745731 DOI: 10.3390/ijms23010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroughly investigated. This paper demonstraits how parvalbumin (PV)- and type 1 cannabinoid receptor (CB1R)-positive perisomatic interneurons innervate pyramidal cell bodies, and their role in synchronous population events spontaneously emerging in the human epileptic and non-epileptic neocortex, in vitro. Quantitative electron microscopy showed that the overall, PV+ and CB1R+ somatic inhibitory inputs remained unchanged in focal cortical epilepsy. On the contrary, the size of PV-stained synapses increased, and their number decreased in epileptic samples, in synchrony generating regions. Pharmacology demonstrated—in conjunction with the electron microscopy—that although both perisomatic cell types participate, PV+ cells have stronger influence on the generation of population activity in epileptic samples. The somatic inhibitory input of neocortical pyramidal cells remained almost intact in epilepsy, but the larger and consequently more efficient somatic synapses might account for a higher synchrony in this neuron population. This, together with epileptic hyperexcitability, might make a cortical region predisposed to generate or participate in hypersynchronous events.
Collapse
|
22
|
Schledwitz A, Sundel MH, Alizadeh M, Hu S, Xie G, Raufman JP. Differential Actions of Muscarinic Receptor Subtypes in Gastric, Pancreatic, and Colon Cancer. Int J Mol Sci 2021; 22:ijms222313153. [PMID: 34884958 PMCID: PMC8658119 DOI: 10.3390/ijms222313153] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cancers arising from gastrointestinal epithelial cells are common, aggressive, and difficult to treat. Progress in this area resulted from recognizing that the biological behavior of these cancers is highly dependent on bioactive molecules released by neurocrine, paracrine, and autocrine mechanisms within the tumor microenvironment. For many decades after its discovery as a neurotransmitter, acetylcholine was thought to be synthesized and released uniquely from neurons and considered the sole physiological ligand for muscarinic receptor subtypes, which were believed to have similar or redundant actions. In the intervening years, we learned this former dogma is not tenable. (1) Acetylcholine is not produced and released only by neurons. The cellular machinery required to synthesize and release acetylcholine is present in immune, cancer, and other cells, as well as in lower organisms (e.g., bacteria) that inhabit the gut. (2) Acetylcholine is not the sole physiological activator of muscarinic receptors. For example, selected bile acids can modulate muscarinic receptor function. (3) Muscarinic receptor subtypes anticipated to have overlapping functions based on similar G protein coupling and downstream signaling may have unexpectedly diverse actions. Here, we review the relevant research findings supporting these conclusions and discuss how the complexity of muscarinic receptor biology impacts health and disease, focusing on their role in the initiation and progression of gastric, pancreatic, and colon cancers.
Collapse
Affiliation(s)
- Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
| | - Margaret H. Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shien Hu
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-328-8728
| |
Collapse
|
23
|
Brown AJH, Bradley SJ, Marshall FH, Brown GA, Bennett KA, Brown J, Cansfield JE, Cross DM, de Graaf C, Hudson BD, Dwomoh L, Dias JM, Errey JC, Hurrell E, Liptrot J, Mattedi G, Molloy C, Nathan PJ, Okrasa K, Osborne G, Patel JC, Pickworth M, Robertson N, Shahabi S, Bundgaard C, Phillips K, Broad LM, Goonawardena AV, Morairty SR, Browning M, Perini F, Dawson GR, Deakin JFW, Smith RT, Sexton PM, Warneck J, Vinson M, Tasker T, Tehan BG, Teobald B, Christopoulos A, Langmead CJ, Jazayeri A, Cooke RM, Rucktooa P, Congreve MS, Weir M, Tobin AB. From structure to clinic: Design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer's disease. Cell 2021; 184:5886-5901.e22. [PMID: 34822784 PMCID: PMC7616177 DOI: 10.1016/j.cell.2021.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/29/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.
Collapse
Affiliation(s)
- Alastair J H Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Sophie J Bradley
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fiona H Marshall
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Giles A Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Kirstie A Bennett
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jason Brown
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Julie E Cansfield
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - David M Cross
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Cross Pharma Consulting Ltd, 20-22 Wenlock Road, London, N17GU, UK
| | - Chris de Graaf
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Brian D Hudson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - João M Dias
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - James C Errey
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Edward Hurrell
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jan Liptrot
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Giulio Mattedi
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Colin Molloy
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pradeep J Nathan
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Brain Mapping Unit, University of Cambridge, Department of Psychiatry, Herchel Smith Building, Cambridge, CB20SZ, UK
| | - Krzysztof Okrasa
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Greg Osborne
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Jayesh C Patel
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Mark Pickworth
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Nathan Robertson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Shahram Shahabi
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Christoffer Bundgaard
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK; H. Lundbeck A/S, Neuroscience Research, Ottiliavej 9, 2500 Valby, Copenhagen, Denmark
| | - Keith Phillips
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Lisa M Broad
- Eli Lilly & Co, Neuroscience Discovery, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Anushka V Goonawardena
- Center for Neuroscience, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Stephen R Morairty
- Center for Neuroscience, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX12JD, UK; P1vital, Manor house, Howbery Buisness Park, Wallingford, OX108BA, UK
| | - Francesca Perini
- Centre for Cognitive Neuroscience - Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Gerard R Dawson
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX12JD, UK
| | - John F W Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, M139PT UK
| | - Robert T Smith
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Julie Warneck
- Protogenia Consulting Ltd, PO-Box 289, Ely, CB79DR, UK
| | - Mary Vinson
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Tim Tasker
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Benjamin G Tehan
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Barry Teobald
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia
| | - Christopher J Langmead
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Victoria, Australia
| | - Ali Jazayeri
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Robert M Cooke
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Prakash Rucktooa
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Miles S Congreve
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Malcolm Weir
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK.
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
24
|
Dolejší E, Szánti-Pintér E, Chetverikov N, Nelic D, Randáková A, Doležal V, Kudová E, Jakubík J. Neurosteroids and steroid hormones are allosteric modulators of muscarinic receptors. Neuropharmacology 2021; 199:108798. [PMID: 34555368 DOI: 10.1016/j.neuropharm.2021.108798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
The membrane cholesterol was found to bind and modulate the function of several G-protein coupled receptors including muscarinic acetylcholine receptors. We investigated the binding of 20 steroidal compounds including neurosteroids and steroid hormones to muscarinic receptors. Corticosterone, progesterone and some neurosteroids bound to muscarinic receptors with the affinity of 100 nM or greater. We established a structure-activity relationship for steroid-based allosteric modulators of muscarinic receptors. Further, we show that corticosterone and progesterone allosterically modulate the functional response of muscarinic receptors to acetylcholine at physiologically relevant concentrations. It can play a role in stress control or in pregnancy, conditions where levels of these hormones dramatically oscillate. Allosteric modulation of muscarinic receptors via the cholesterol-binding site represents a new pharmacological approach at diseases associated with altered cholinergic signalling.
Collapse
Affiliation(s)
- Eva Dolejší
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences, Prague, Czech Republic
| | | | - Dominik Nelic
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Doležal
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences, Prague, Czech Republic.
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
25
|
Revealing the Precise Role of Calretinin Neurons in Epilepsy: We Are on the Way. Neurosci Bull 2021; 38:209-222. [PMID: 34324145 PMCID: PMC8821741 DOI: 10.1007/s12264-021-00753-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/24/2021] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain. Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons. Calretinin (CR) is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons. The functions of CR and its role in neural excitability are still unknown. Recent data suggest that CR neurons have diverse neurotransmitters, morphologies, distributions, and functions in different brain regions across various species. Notably, CR neurons in the hippocampus, amygdala, neocortex, and thalamus are extremely susceptible to excitotoxicity in the epileptic brain, but the causal relationship is unknown. In this review, we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy. Importantly, we provide perspectives on future investigations of the role of CR neurons in epilepsy.
Collapse
|
26
|
Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiol Dis 2021; 158:105446. [PMID: 34280524 DOI: 10.1016/j.nbd.2021.105446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Prevention or modification of acquired epilepsy in patients at risk is an urgent, yet unmet, clinical need. Following acute brain insults, there is an increased risk of mesial temporal lobe epilepsy (mTLE), which is often associated with debilitating comorbidities and reduced life expectancy. The latent period between brain injury and the onset of epilepsy may offer a therapeutic window for interfering with epileptogenesis. The pilocarpine model of mTLE is widely used in the search for novel antiepileptogenic treatments. Recent biochemical studies indicated that cholinergic mechanisms play a role in the epileptogenic alterations induced by status epilepticus (SE) in this and other models of mTLE, which prompted us to evaluate whether treatment with the muscarinic antagonist scopolamine during the latent period after SE is capable of preventing or modifying epilepsy and associated behavioral and cognitive alterations in female Sprague-Dawley rats. First, in silico pharmacokinetic modeling was used to select a dosing protocol by which M-receptor inhibitory brain levels of scopolamine are maintained during prolonged treatment. This protocol was verified by drug analysis in vivo. Rats were then treated twice daily with scopolamine over 17 days after SE, followed by drug wash-out and behavioral and video/EEG monitoring up to ~6 months after SE. Compared to vehicle controls, rats that were treated with scopolamine during the latent period exhibited a significantly lower incidence of spontaneous recurrent seizures during periods of intermittent recording in the chronic phase of epilepsy, less behavioral excitability, less cognitive impairment, and significantly reduced aberrant mossy fiber sprouting in the hippocampus. The present data may indicate that scopolamine exerts antiepileptogenic/disease-modifying activity in the lithium-pilocarpine rat model, possibly involving increased remission of epilepsy as a new mechanism of disease-modification. For evaluating the rigor of the present data, we envision a study that more thoroughly addresses the gender bias and video-EEG recording limitations of the present study.
Collapse
|
27
|
McDonough JH, McMonagle JD, Capacio BR. Anticonvulsant effectiveness of scopolamine against soman-induced seizures in African green monkeys. Drug Chem Toxicol 2021; 45:2185-2192. [PMID: 34251950 DOI: 10.1080/01480545.2021.1916171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Prolonged seizures are a hallmark feature of intoxication with anticholinesterase nerve agents such as soman. While benzodiazepine drugs are typically used to control these seizures, studies in both rats and guinea pigs have shown that potent, centrally acting anticholinergic drugs such as scopolamine can also terminate such seizures. The present study was performed to determine if scopolamine could produce similar anticonvulsant effects in a nonhuman primate model of soman intoxication. Adult male African green monkeys, implanted with telemetry devices to record cortical electroencephalographic activity, were pretreated with pyridostigmine (0.02 mg/kg, intramuscularly [im]) and 40 min later challenged with 15 µg/kg (im) of the nerve agent soman. One min after soman exposure the animals were treated with atropine (0.4 mg/kg, im) and the oxime 2-PAM (25.7 mg/kg, im). One min after the start of seizure activity the animals were administered scopolamine (0.01-0.1 mg/kg, im), using an up-down dosing design over successive animals. Scopolamine was highly effective in stopping soman-induced seizures with an ED50 = 0.0312 mg/kg (0.021-0.047 mg/kg = 95% confidence limits). Seizure control was rapid, with all epileptiform activity stopping on average 21.7 min after scopolamine treatment. A separate pK study showed that scopolamine absorption peaked approximately 10 min after im administration and a dose of 0.032 mg/kg produced maximum plasma levels of 17.62 ng/ml. The results show that scopolamine exerts potent and rapid anticonvulsant action against soman-induced seizures and that it may serve as a valuable adjunct to current antidote treatments for nerve agent intoxication.
Collapse
Affiliation(s)
- John H McDonough
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Joseph D McMonagle
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Benedict R Capacio
- Medical Toxicology Research Division, Pharmaceutical Sciences Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
28
|
McDonald AJ, Mott DD. Neuronal localization of m1 muscarinic receptor immunoreactivity in the monkey basolateral amygdala. J Comp Neurol 2021; 529:2450-2463. [PMID: 33410202 PMCID: PMC8113068 DOI: 10.1002/cne.25104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/17/2020] [Accepted: 01/01/2021] [Indexed: 11/11/2022]
Abstract
The basolateral nuclear complex (BNC) of the amygdala plays an important role in the generation of emotional/motivational behavior and the consolidation of emotional memories. Activation of M1 cholinergic receptors (M1Rs) in the BNC is critical for memory consolidation. Previous receptor binding studies in the monkey amygdala demonstrated that the BNC has a high density of M1Rs, but did not have sufficient resolution to identify which neurons in the BNC expressed them. This was accomplished in the present immunohistochemical investigation using an antibody for the m1 receptor (m1R). Analysis of m1Rs in the monkey BNC using immunoperoxidase techniques revealed that their expression was very dense in the BNC, and suggested that virtually all of the pyramidal projection neurons (PNs) in all of the BNC nuclei were m1R-immunoreactive (m1R+). This was confirmed with dual-labeling immunofluorescence using staining for calcium/calmodulin-dependent protein kinase II (CaMK) as a marker for BNC PNs. However, additional dual-labeling studies indicated that one-third of inhibitory interneurons (INs) expressing glutamic acid decarboxylase (GAD) were also m1R+. Moreover, the finding that 60% of parvalbumin (PV) immunoreactive neurons were m1R+ indicated that this IN subpopulation was the main GAD+ subpopulation exhibiting m1R expression. The cholinergic innervation of the amygdala is greatly reduced in Alzheimer's disease and there is currently considerable interest in developing selective M1R positive allosteric modulators (PAMs) to treat the symptoms. The results of the present study indicate that M1Rs in both PNs and INs in the primate BNC would be targeted by M1R PAMs.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - David D Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
29
|
Barbero‐Castillo A, Riefolo F, Matera C, Caldas‐Martínez S, Mateos‐Aparicio P, Weinert JF, Garrido‐Charles A, Claro E, Sanchez‐Vives MV, Gorostiza P. Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2005027. [PMID: 34018704 PMCID: PMC8292914 DOI: 10.1002/advs.202005027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/19/2021] [Indexed: 05/03/2023]
Abstract
The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.
Collapse
Affiliation(s)
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
- Department of Pharmaceutical SciencesUniversity of MilanMilan20133Italy
| | - Sara Caldas‐Martínez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Pedro Mateos‐Aparicio
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Julia F. Weinert
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Aida Garrido‐Charles
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| | - Enrique Claro
- Institut de Neurociències and Departament de Bioquímica i Biologia MolecularUnitat de Bioquímica de MedicinaUniversitat Autònoma de Barcelona (UAB)Barcelona08193Spain
| | - Maria V. Sanchez‐Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
| |
Collapse
|
30
|
Zheng JJ, Zhang TY, Liu HT, Huang ZX, Teng JM, Deng JX, Zhong JG, Qian X, Sheng XW, Ding JQ, He SQ, Zhao X, Ji WD, Qi DF, Li W, Zhang M. Cytisine Exerts an Anti-Epileptic Effect via α7nAChRs in a Rat Model of Temporal Lobe Epilepsy. Front Pharmacol 2021; 12:706225. [PMID: 34248648 PMCID: PMC8263902 DOI: 10.3389/fphar.2021.706225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Temporal lobe epilepsy (TLE) is a common chronic neurological disease that is often invulnerable to anti-epileptic drugs. Increasing data have demonstrated that acetylcholine (ACh) and cholinergic neurotransmission are involved in the pathophysiology of epilepsy. Cytisine, a full agonist of α7 nicotinic acetylcholine receptors (α7nAChRs) and a partial agonist of α4β2nAChRs, has been widely applied for smoking cessation and has shown neuroprotection in neurological diseases. However, whether cytisine plays a role in treating TLE has not yet been determined. Experimental Approach: In this study, cytisine was injected intraperitoneally into pilocarpine-induced epileptic rats for three weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was used to evaluate the mechanism of action of cytisine. Rats were assayed for the occurrence of seizures and cognitive function by video surveillance and Morris water maze. Hippocampal injuries and synaptic structure were assessed by Nissl staining and Golgi staining. Furthermore, levels of glutamate, γ-aminobutyric acid (GABA), ACh, and α7nAChRs were measured. Results: Cytisine significantly reduced seizures and hippocampal damage while improving cognition and inhibiting synaptic remodeling in TLE rats. Additionally, cytisine decreased glutamate levels without altering GABA levels, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. α-bgt antagonized the above-mentioned effects of cytisine treatment. Conclusion and Implications: Taken together, these findings indicate that cytisine exerted an anti-epileptic and neuroprotective effect in TLE rats via activation of α7nAChRs, which was associated with a decrease in glutamate levels, inhibition of synaptic remodeling, and improvement of cholinergic transmission in the hippocampus. Hence, our findings not only suggest that cytisine represents a promising anti-epileptic drug, but provides evidence of α7nAChRs as a novel therapeutic target for TLE.
Collapse
Affiliation(s)
- Jing-Jun Zheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacy, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Teng-Yue Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong-Tao Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ze-Xin Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Mei Teng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Xian Deng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Gui Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xu Qian
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Wen Sheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ji-Qiang Ding
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu-Qiao He
- Department of Pharmacy, Maoming People's Hospital, Maoming, China
| | - Xin Zhao
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-Dong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - De-Feng Qi
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hop-ital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mei Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Ruan Y, Patzak A, Pfeiffer N, Gericke A. Muscarinic Acetylcholine Receptors in the Retina-Therapeutic Implications. Int J Mol Sci 2021; 22:4989. [PMID: 34066677 PMCID: PMC8125843 DOI: 10.3390/ijms22094989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) belong to the superfamily of G-protein-coupled receptors (GPCRs). The family of mAChRs is composed of five subtypes, M1, M2, M3, M4 and M5, which have distinct expression patterns and functions. In the eye and its adnexa, mAChRs are widely expressed and exert multiple functions, such as modulation of tear secretion, regulation of pupil size, modulation of intraocular pressure, participation in cell-to-cell signaling and modula-tion of vascular diameter in the retina. Due to this variety of functions, it is reasonable to assume that abnormalities in mAChR signaling may contribute to the development of various ocular diseases. On the other hand, mAChRs may offer an attractive therapeutic target to treat ocular diseases. Thus far, non-subtype-selective mAChR ligands have been used in ophthalmology to treat dry eye disease, myopia and glaucoma. However, these drugs were shown to cause various side-effects. Thus, the use of subtype-selective ligands would be useful to circumvent this problem. In this review, we give an overview on the localization and on the functional role of mAChR subtypes in the eye and its adnexa with a special focus on the retina. Moreover, we describe the pathophysiological role of mAChRs in retinal diseases and discuss potential therapeutic approaches.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| |
Collapse
|
32
|
Lu D, Ji Y, Sundaram P, Traub RD, Guan Y, Zhou J, Li T, Zhe Sun P, Luan G, Okada Y. Alkaline brain pH shift in rodent lithium-pilocarpine model of epilepsy with chronic seizures. Brain Res 2021; 1758:147345. [PMID: 33556378 PMCID: PMC7987840 DOI: 10.1016/j.brainres.2021.147345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Brain pH is thought to be important in epilepsy. The regulation of brain pH is, however, still poorly understood in animal models of chronic seizures (SZ) as well as in patients with intractable epilepsy. We used chemical exchange saturation transfer (CEST) MRI to noninvasively determine if the pH is alkaline shifted in a rodent model of the mesial temporal lobe (MTL) epilepsy with chronic SZ. Taking advantage of its high spatial resolution, we determined the pH values in specific brain regions believed to be important in this model produced by lithium-pilocarpine injection. All animals developed status epilepticus within 90 min after the lithium-pilocarpine administration, but one animal died within 24 hrs. All the surviving animals developed chronic SZ during the first 2 months. After SZ developed, brain pH was determined in the pilocarpine and control groups (n = 8 each). Epileptiform activity was documented in six pilocarpine rats with scalp EEG. The brain pH was estimated using two methods based on magnetization transfer asymmetry and amide proton transfer ratio. The pH was alkaline shifted in the pilocarpine rats (one outlier excluded) compared to the controls in the hippocampus (7.29 vs 7.17, t-test, p < 0.03) and the piriform cortex (7.34 vs. 7.06, p < 0.005), marginally more alkaline in the thalamus (7.13 vs. 7.01, p < 0.05), but not in the cerebral cortex (7.18 vs. 7.08, p > 0.05). Normalizing the brain pH may lead to an effective non-surgical method for treating intractable epilepsy as it is known that SZ can be eliminated by lowering the pH.
Collapse
Affiliation(s)
- Dongshuang Lu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Padmavathi Sundaram
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Roger D Traub
- AI Foundations, IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598 USA
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy, Beijing, China; Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China.
| | - Yoshio Okada
- Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Dept. Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
Wang Y, Tan B, Wang Y, Chen Z. Cholinergic Signaling, Neural Excitability, and Epilepsy. Molecules 2021; 26:molecules26082258. [PMID: 33924731 PMCID: PMC8070422 DOI: 10.3390/molecules26082258] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common brain disorder characterized by recurrent epileptic seizures with neuronal hyperexcitability. Apart from the classical imbalance between excitatory glutamatergic transmission and inhibitory γ-aminobutyric acidergic transmission, cumulative evidence suggest that cholinergic signaling is crucially involved in the modulation of neural excitability and epilepsy. In this review, we briefly describe the distribution of cholinergic neurons, muscarinic, and nicotinic receptors in the central nervous system and their relationship with neural excitability. Then, we summarize the findings from experimental and clinical research on the role of cholinergic signaling in epilepsy. Furthermore, we provide some perspectives on future investigation to reveal the precise role of the cholinergic system in epilepsy.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.W.); (Z.C.); Tel.: +86-5718-661-8660 (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.W.); (Z.C.); Tel.: +86-5718-661-8660 (Z.C.)
| |
Collapse
|
34
|
Yang CS, Chiu SC, Liu PY, Wu SN, Lai MC, Huang CW. Gastrodin alleviates seizure severity and neuronal excitotoxicities in the rat lithium-pilocarpine model of temporal lobe epilepsy via enhancing GABAergic transmission. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113751. [PMID: 33359863 DOI: 10.1016/j.jep.2020.113751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Temporal lobe epilepsy remains one of the most drug-resistant focal epilepsy, leading to enormous healthcare burden. Among traditional herb medicine, some ingredients have the potential to treat seizure and alleviate the neuronal excitoxicity. The dried rhizome of Gastrodia elata Blume has been used to treat convulsive disorder, dizziness, dementia and migraine in eastern Asia. AIM OF THE STUDY To determine whether gastrodin, an active ingredient of Gastrodia elata Blume, can reduce lithium-pilocarpine induced seizure severity and neuronal excitotoxicity and explore the underlying mechanism. MATERIALS AND METHODS We divided the Sprague-Dawley rats into an experimental group (gastrodin group) and a control group (Dimethyl sulfoxide, vehicle group) and performed the behavioral analysis and electroencephalography to determine the effect of gastrodin on the seizure severity induced by lithium-pilocarpine injection. Nissl-stained histopathology elucidated the degree of rat hippocampal neuronal damage as markers of acute and subacute neuronal excitotoxicity. Besides, the Western blotting of dissected hippocampus was carried out to demonstrate the protein expression involving GABAergic transmission and metabolic pathway. RESULTS Gastrodin reduced the acute seizure severity in lithium-pilocarpine-induced seizure model. In electroencephalography recording, gastrodin exerted inhibitory action on epileptiform discharge. Compared with control group, gastrodin exhibited neuroprotective effect against seizure related hippocampal neuronal damage at acute and subacute stages. The Western blotting showed that gastrodin reversed the degradation of GABAA receptor after pilocarpine-induced seizures. CONCLUSIONS In the experimental seizure model, gastrodin showed anti-seizure and neuroprotective abilities. Enhancing the expression of GABAA receptor plays an important role in its antiepileptic mechanism. The results offer a new insight of developing new antiepileptic drugs from traditional Chinese medicine.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, 42743, Taiwan.
| | - Sheng-Chun Chiu
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, 42743, Taiwan.
| | - Ping-Yen Liu
- Department of Cardiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City, 70101, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City, 70101, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, 40402, Taiwan.
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City, 70101, Taiwan.
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
35
|
Siregar P, Audira G, Feng LY, Lee JH, Santoso F, Yu WH, Lai YH, Li JH, Lin YT, Chen JR, Hsiao CD. Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation. Toxins (Basel) 2021; 13:toxins13040259. [PMID: 33916832 PMCID: PMC8066688 DOI: 10.3390/toxins13040259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 12/02/2022] Open
Abstract
Arecoline is one of the nicotinic acid-based alkaloids, which is found in the betel nut. In addition to its function as a muscarinic agonist, arecoline exhibits several adverse effects, such as inducing growth retardation and causing developmental defects in animal embryos, including zebrafish, chicken, and mice. In this study, we aimed to study the potential adverse effects of waterborne arecoline exposure on zebrafish larvae locomotor activity and investigate the possible mechanism of the arecoline effects in zebrafish behavior. The zebrafish behavior analysis, together with molecular docking and the antagonist co-exposure experiment using muscarinic acetylcholine receptor antagonists were conducted. Zebrafish larvae aged 96 h post-fertilization (hpf) were exposed to different concentrations (0.001, 0.01, 0.1, and 1 ppm) of arecoline for 30 min and 24 h, respectively, to find out the effect of arecoline in different time exposures. Locomotor activities were measured and quantified at 120 hpf. The results showed that arecoline caused zebrafish larvae locomotor hyperactivities, even at a very low concentration. For the mechanistic study, we conducted a structure-based molecular docking simulation and antagonist co-exposure experiment to explore the potential interactions between arecoline and eight subtypes, namely, M1a, M2a, M2b, M3a, M3b, M4a, M5a, and M5b, of zebrafish endogenous muscarinic acetylcholine receptors (mAChRs). Arecoline was predicted to show a strong binding affinity to most of the subtypes. We also discovered that the locomotion hyperactivity phenotypes triggered by arecoline could be rescued by co-incubating it with M1 to M4 mAChR antagonists. Taken together, by a pharmacological approach, we demonstrated that arecoline functions as a highly potent hyperactivity-stimulating compound in zebrafish that is mediated by multiple muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan; (P.S.); (G.A.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan; (P.S.); (G.A.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
| | - Ling-Yi Feng
- School of Pharmacy and Ph.D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jia-Hau Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.L.); (W.-H.Y.)
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fiorency Santoso
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
| | - Wen-Hao Yu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.L.); (W.-H.Y.)
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Jih-Heng Li
- School of Pharmacy and Ph.D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.L.); (Y.-T.L.); (C.-D.H.)
| | - Ying-Ting Lin
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.L.); (W.-H.Y.)
- Drug Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.L.); (Y.-T.L.); (C.-D.H.)
| | - Jung-Ren Chen
- Department of Biological Science & Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan; (P.S.); (G.A.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
- Correspondence: (J.-H.L.); (Y.-T.L.); (C.-D.H.)
| |
Collapse
|
36
|
Kim HY, Suh PG, Kim JI. The Role of Phospholipase C in GABAergic Inhibition and Its Relevance to Epilepsy. Int J Mol Sci 2021; 22:ijms22063149. [PMID: 33808762 PMCID: PMC8003358 DOI: 10.3390/ijms22063149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons. Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance. As such, altered GABAergic inhibition can lead to severe E/I imbalance, consequently resulting in excessive and hypersynchronous neuronal activity as in epilepsy. Phospholipase C (PLC) is a key enzyme in the intracellular signaling pathway and regulates various neuronal functions including neuronal development, synaptic transmission, and plasticity in the brain. Accumulating evidence suggests that neuronal PLC is critically involved in multiple aspects of GABAergic functions. Therefore, a better understanding of mechanisms by which neuronal PLC regulates GABAergic inhibition is necessary for revealing an unrecognized linkage between PLC and epilepsy and developing more effective treatments for epilepsy. Here we review the function of PLC in GABAergic inhibition in the brain and discuss a pathophysiological relationship between PLC and epilepsy.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Correspondence: ; Tel.: +82-52-217-2458
| |
Collapse
|
37
|
Maupu C, Enderlin J, Igert A, Oger M, Auvin S, Hassan-Abdi R, Soussi-Yanicostas N, Brazzolotto X, Nachon F, Dal Bo G, Dupuis N. Diisopropylfluorophosphate-induced status epilepticus drives complex glial cell phenotypes in adult male mice. Neurobiol Dis 2021; 152:105276. [PMID: 33529768 DOI: 10.1016/j.nbd.2021.105276] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
Organophosphate pesticides and nerve agents (OPs), are characterized by cholinesterase inhibition. In addition to severe peripheral symptoms, high doses of OPs can lead to seizures and status epilepticus (SE). Long lasting seizure activity and subsequent neurodegeneration promote neuroinflammation leading to profound pathological alterations of the brain. The aim of this study was to characterize neuroinflammatory responses at key time points after SE induced by the OP, diisopropylfluorophosphate (DFP). Immunohistochemistry (IHC) analysis and RT-qPCR on cerebral tissue are often insufficient to identity and quantify precise neuroinflammatory alterations. To address these needs, we performed RT-qPCR quantification after whole brain magnetic-activated cell-sorting (MACS) of CD11B (microglia/infiltrated macrophages) and GLAST (astrocytes)-positive cells at 1, 4, 24 h and 3 days post-SE. In order to compare these results to those obtained by IHC, we performed, classical Iba1 (microglia/infiltrated macrophages) and GFAP (astrocytes) IHC analysis in parallel, focusing on the hippocampus, a brain region affected by seizure activity and neurodegeneration. Shortly after SE (1-4 h), an increase in pro-inflammatory (M1-like) markers and A2-specific markers, proposed as neurotrophic, were observed in CD11B and GLAST-positive isolated cells, respectively. Microglial cells successively expressed immuno-regulatory (M2b-like) and anti-inflammatory (M2a-like) at 4 h and 24 h post-SE induction. At 24 h and 3 days, A1-specific markers, proposed as neurotoxic, were increased in isolated astrocytes. Although IHC analysis presented no modification in terms of percentage of marked area and cell number at 1 and 4 h after SE, at 24 h and 3 days after SE, microglial and astrocytic activation was visible by IHC as an increase in Iba1 and GFAP-positive area and Iba1-positive cells in DFP animals when compared to the control. Our work identified sequential microglial and astrocytic phenotype activation. Although the role of each phenotype in SE cerebral outcomes requires further study, targeting specific markers at specific time point could be a beneficial strategy for DFP-induced SE treatment.
Collapse
Affiliation(s)
- Clémence Maupu
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Julie Enderlin
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France; Service de neurologie pédiatrique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | - Alexandre Igert
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Myriam Oger
- Unité Imagerie, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Stéphane Auvin
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France; Service de neurologie pédiatrique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | | | | | - Xavier Brazzolotto
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Florian Nachon
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Grégory Dal Bo
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France
| | - Nina Dupuis
- Département de Toxicologie et risques chimiques, Institut de recherche biomédicale des armées, BP73, F-91223 Brétigny sur Orge cedex, France.
| |
Collapse
|
38
|
van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front Pharmacol 2021; 11:606656. [PMID: 33584282 PMCID: PMC7878563 DOI: 10.3389/fphar.2020.606656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The M1 and M4 muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, in particular for Alzheimer's disease and schizophrenia. Due to high sequence homology, selective targeting of any of the M1-M5 mAChRs through the endogenous ligand binding site has been notoriously difficult to achieve. With the discovery of highly subtype selective mAChR positive allosteric modulators in the new millennium, selectivity through targeting an allosteric binding site has opened new avenues for drug discovery programs. However, some hurdles remain to be overcome for these promising new drug candidates to progress into the clinic. One challenge is the potential for on-target side effects, such as for the M1 mAChR where over-activation of the receptor by orthosteric or allosteric ligands can be detrimental. Therefore, in addition to receptor subtype selectivity, a drug candidate may need to exhibit a biased signaling profile to avoid such on-target adverse effects. Indeed, recent studies in mice suggest that allosteric modulators for the M1 mAChR that bias signaling toward specific pathways may be therapeutically important. This review brings together details on the signaling pathways activated by the M1 and M4 mAChRs, evidence of biased agonism at these receptors, and highlights pathways that may be important for developing new subtype selective allosteric ligands to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Emma T. van der Westhuizen
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - K. H. Christopher Choy
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Simon McKenzie-Nickson
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Sophie J. Bradley
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| |
Collapse
|
39
|
Noches V, Rivera C, González MP, Merello G, Olivares-Costa M, Andrés ME. Pilocarpine-induced seizures associate with modifications of LSD1/CoREST/HDAC1/2 epigenetic complex and repressive chromatin in mice hippocampus. Biochem Biophys Rep 2021; 25:100889. [PMID: 33426312 PMCID: PMC7779720 DOI: 10.1016/j.bbrep.2020.100889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022] Open
Abstract
Epilepsy is a neurological disorder of genetic or environmental origin characterized by recurrent spontaneous seizures. A rodent model of temporal lobe epilepsy is induced by a single administration of pilocarpine, a non-selective cholinergic muscarinic receptor agonist. The molecular changes associated with pilocarpine-induced seizures are still poorly described. Epigenetic multiprotein complexes that regulate gene expression by changing the structure of chromatin impose transcriptional memories. Among the epigenetic enzymes relevant to the epileptogenic process is lysine-specific demethylase 1 (LSD1, KDM1A), which regulates the expression of genes that control neuronal excitability. LSD1 forms complexes with the CoREST family of transcriptional corepressors, which are molecular bridges that bring HDAC1/2 and LSD1 enzymes to deacetylate and demethylate the tail of nucleosomal histone H3. To test the hypothesis that LSD1-complexes are involved in initial modifications associated with pilocarpine-induced epilepsy, we studied the expression of main components of LSD1-complexes and the associated epigenetic marks on isolated neurons and the hippocampus of pilocarpine-treated mice. Using a single injection of 300 mg/kg of pilocarpine and after 24 h, we found that protein levels of LSD1, CoREST2, and HDAC1/2 increased, while CoREST1 decreased in the hippocampus. In addition, we observed increased histone H3 lysine 9 di- and trimethylation (H3K9me2/3) and decreased histone H3 lysine 4 di and trimethylation (H3K4me2/3). Similar findings were observed in cultured hippocampal neurons and HT-22 hippocampal cell line treated with pilocarpine. In conclusion, our data show that muscarinic receptor activation by pilocarpine induces a global repressive state of chromatin and prevalence of LSD1-CoREST2 epigenetic complexes, modifications that could underlie the pathophysiological processes leading to epilepsy.
Collapse
Key Words
- CoREST, Corepressor for element-1 silencing transcription factor
- H3K4me2
- H3K4me2, histone H3 lysine 4 dimethylation
- H3K4me3, histone H3 lysine 4 trimethylation
- H3K9me2
- H3K9me2, histone H3 lysine 9 dimethylation
- H3K9me3, histone H3 lysine 9 trimethylation
- H3ac, Histone H3 acetylated
- HDAC, Histone deacetylase
- HP1α, heterochromatin protein 1α
- LCH Complex, LSD1/CoREST/HDACs complex
- LCH complex
- LSD1, lysine-specific demethylase 1
- Muscarinic receptors
- Pilo, Pilocarpine
- Pilocarpine
- SMN, Scopolamine Methyl Nitrate
- Status epilepticus
- TLE, Temporal Lobe Epilepsy
Collapse
Affiliation(s)
- Verónica Noches
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Rivera
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela P González
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gianluca Merello
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Montserrat Olivares-Costa
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Estela Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
40
|
Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, De Araujo Furtado M, Braga MF. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures. Neuropharmacology 2020; 181:108298. [DOI: 10.1016/j.neuropharm.2020.108298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
41
|
Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci 2020; 265:118826. [PMID: 33259863 DOI: 10.1016/j.lfs.2020.118826] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Epilepsy is a neurologicaldisorder characterized by persistent predisposition to recurrent seizurescaused by abnormal neuronal activity in the brain. Epileptic seizures maydevelop due to a relative imbalance of excitatory and inhibitory neurotransmitters. Expressional alterations of receptors and ion channelsactivated by neurotransmitters can lead to epilepsy pathogenesis. AIMS In this updated comprehensive review, we discuss the emerging implication of mutations in neurotransmitter-mediated receptors and ion channels. We aim to provide critical findings of the current literature about the role of neurotransmitters in epilepsy. MATERIALS AND METHODS A comprehensive literature review was conducted to identify and critically evaluate studies analyzing the possible relationship between epilepsy and neurotransmitters. The PubMed database was searched for related research articles. KEY FINDINGS Glutamate and gamma-aminobutyric acid (GABA) are the main neurotransmitters playing a critical role in the pathophysiology of this balance, and irreversible neuronal damage may occur as a result of abnormal changes in these molecules. Acetylcholine (ACh), the main stimulant of the autonomic nervous system, mediates signal transmission through cholinergic and nicotinic receptors. Accumulating evidence indicates that dysfunction of nicotinic ACh receptors, which are widely expressed in hippocampal and cortical neurons, may be significantly implicated in the pathogenesis of epilepsy. The dopamine-norepinephrine-epinephrine cycle activates hormonal and neuronal pathways; serotonin, norepinephrine, histamine, and melatonin can act as both hormones and neurotransmitters. Recent reports have demonstrated that nitric oxide mediates cognitive and memory-related functions via stimulating neuronal transmission. SIGNIFICANCE The elucidation of the role of the main mediators and receptors in epilepsy is crucial for developing new diagnostic and therapeutic approaches.
Collapse
|
42
|
Ahmed Juvale II, Che Has AT. The evolution of the pilocarpine animal model of status epilepticus. Heliyon 2020; 6:e04557. [PMID: 32775726 PMCID: PMC7393986 DOI: 10.1016/j.heliyon.2020.e04557] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023] Open
Abstract
The pilocarpine animal model of status epilepticus is a well-established, clinically translatable model that satisfies all of the criteria essential for an animal model of status epilepticus: a latency period followed by spontaneous recurrent seizures, replication of behavioural, electrographic, metabolic, and neuropathological changes, as well as, pharmacoresistance to anti-epileptic drugs similar to that observed in human status epilepticus. However, this model is also characterized by high mortality rates and studies in recent years have also seen difficulties in seizure induction due to pilocarpine resistant animals. This can be attributed to differences in rodent strains, species, gender, and the presence of the multi-transporter, P-glycoprotein at the blood brain barrier. The current paper highlights the various alterations made to the original pilocarpine model over the years to combat both the high mortality and low induction rates. These range from the initial lithium-pilocarpine model to the more recent Reduced Intensity Status Epilepticus (RISE) model, which finally brought the mortality rates down to 1%. These modifications are essential to improve animal welfare and future experimental outcomes.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
43
|
Chidambaram H, Chinnathambi S. G-Protein Coupled Receptors and Tau-different Roles in Alzheimer’s Disease. Neuroscience 2020; 438:198-214. [DOI: 10.1016/j.neuroscience.2020.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/14/2023]
|
44
|
McCulloch KA, Jin Y. The muscarinic agonist arecoline suppresses motor circuit hyperactivity in C. elegans. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32626844 PMCID: PMC7326331 DOI: 10.17912/micropub.biology.000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine A McCulloch
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
45
|
Thompson KJ, Tobin AB. Crosstalk between the M 1 muscarinic acetylcholine receptor and the endocannabinoid system: A relevance for Alzheimer's disease? Cell Signal 2020; 70:109545. [PMID: 31978506 PMCID: PMC7184673 DOI: 10.1016/j.cellsig.2020.109545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which accounts for 60-70% of the 50 million worldwide cases of dementia and is characterised by cognitive impairments, many of which have long been associated with dysfunction of the cholinergic system. Although the M1 muscarinic acetylcholine receptor (mAChR) is considered a promising drug target for AD, ligands targeting this receptor have so far been unsuccessful in clinical trials. As modulatory receptors to cholinergic transmission, the endocannabinoid system may be a promising drug target to allow fine tuning of the cholinergic system. Furthermore, disease-related changes have been found in the endocannabinoid system during AD progression and indeed targeting the endocannabinoid system at specific disease stages alleviates cognitive symptoms in numerous mouse models of AD. Here we review the role of the endocannabinoid system in AD, and its crosstalk with mAChRs as a potential drug target for cholinergic dysfunction.
Collapse
Affiliation(s)
- Karen J Thompson
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
46
|
Silva de Melo B, de Morais BP, de Souza Ferreira Sá VS, Lourinho FD, Pinheiro Toda IPS, do Nascimento JLM, Marques DN, da Silva MCF, Cardoso GTM, Luz Barbas LA, Torres MF, Muto NA, de Mello VJ, Hamoy M. Behavioural, electrocorticographic, and electromyographic alterations induced by Nerium oleander ethanolic extract: Anticonvulsant therapeutics assessment. Neurotoxicology 2020; 78:21-28. [DOI: 10.1016/j.neuro.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
|
47
|
Wang Y, Wang Y, Xu C, Wang S, Tan N, Chen C, Chen L, Wu X, Fei F, Cheng H, Lin W, Qi Y, Chen B, Liang J, Zhao J, Xu Z, Guo Y, Zhang S, Li X, Zhou Y, Duan S, Chen Z. Direct Septum-Hippocampus Cholinergic Circuit Attenuates Seizure Through Driving Somatostatin Inhibition. Biol Psychiatry 2020; 87:843-856. [PMID: 31987494 DOI: 10.1016/j.biopsych.2019.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous studies indicated the involvement of cholinergic neurons in seizure; however, the specific role of the medial septum (MS)-hippocampus cholinergic circuit in temporal lobe epilepsy (TLE) has not yet been completely elucidated. METHODS In the current study, we used magnetic resonance imaging and diffusion tensor imaging to characterize the pathological change of the MS-hippocampus circuit in 42 patients with TLE compared with 22 healthy volunteers. Using optogenetics and chemogenetics, combined with in vivo or in vitro electrophysiology and retrograde rabies virus tracing, we revealed a direct MS-hippocampus cholinergic circuit that potently attenuates seizure through driving somatostatin inhibition in animal TLE models. RESULTS We found that patients with TLE with hippocampal sclerosis showed a decrease of neuronal fiber connectivity of the MS-hippocampus compared with healthy people. In the mouse TLE model, MS cholinergic neurons ceased firing during hippocampal seizures. Optogenetic and chemogenetic activation of MS cholinergic neurons (but not glutamatergic or GABAergic [gamma-aminobutyric acidergic] neurons) significantly attenuated hippocampal seizures, while specific inhibition promoted hippocampal seizures. Electrophysiology combined with modified rabies virus tracing studies showed that direct (but not indirect) MS-hippocampal cholinergic projections mediated the antiseizure effect by preferentially targeting hippocampal GABAergic neurons. Furthermore, chemogenetic inhibition of hippocampal somatostatin-positive (rather than parvalbumin-positive) subtype of GABAergic neurons reversed the antiseizure effect of the MS-hippocampus cholinergic circuit, which was mimicked by activating somatostatin-positive neurons. CONCLUSIONS These findings underscore the notable antiseizure role of the direct cholinergic MS-hippocampus circuit in TLE through driving the downstream somatostatin effector. This may provide a better understanding of the changes of the seizure circuit and the precise spatiotemporal control of epilepsy.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Cenglin Xu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Tan
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liying Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohua Wu
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Fei
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heming Cheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenkai Lin
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingbei Qi
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bin Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiao Liang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junli Zhao
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhenghao Xu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shihong Zhang
- Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoming Li
- Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yudong Zhou
- Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shumin Duan
- Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Institute of Neuroscience, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Zhang Y, Zhou H, Qu H, Liao C, Jiang H, Huang S, Ghobadi SN, Telichko A, Li N, Habte FG, Doyle T, Woznak JP, Bertram EH, Lee KS, Wintermark M. Effects of Non-invasive, Targeted, Neuronal Lesions on Seizures in a Mouse Model of Temporal Lobe Epilepsy. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1224-1234. [PMID: 32081583 PMCID: PMC8120598 DOI: 10.1016/j.ultrasmedbio.2020.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 05/25/2023]
Abstract
Surgery to treat drug-resistant epilepsy can be quite effective but remains substantially underutilized. A pilot study was undertaken to test the feasibility of using a non-invasive, non-ablative, approach to produce focal neuronal loss to treat seizures in a rodent model of temporal lobe epilepsy. In this study, spontaneous, recurrent seizures were established in a mouse model of pilocarpine-induced status epilepticus. After post-status epilepticus stabilization, baseline behavioral seizures were monitored for 30 d. Non-invasive opening of the blood-brain barrier targeting the hippocampus was then produced by using magnetic resonance-guided, low-intensity focused ultrasound, through which a neurotoxin (quinolinic acid) administered intraperitoneally gained access to the brain parenchyma to produce focal neuronal loss. Behavioral seizures were then monitored for 30 d after this procedure, and brains were subsequently prepared for histologic analysis of the sites of neuronal loss. The average frequency of behavioral seizures in all animals (n = 11) was reduced by 21.2%. Histologic analyses along the longitudinal axis of the hippocampus revealed that most of the animals (n = 8) exhibited neuronal loss located primarily in the intermediate aspect of the hippocampus, while sparing the septal aspect. Two other animals with damage to the intermediate hippocampus also exhibited prominent bilateral damage to the septal aspect of the hippocampus. A final animal had negligible neuronal loss overall. Notably, the site of neuronal loss along the longitudinal axis of the hippocampus influenced seizure outcomes. Animals that did not have bilateral damage to the septal hippocampus displayed a mean decrease in seizure frequency of 27.7%, while those with bilateral damage to the septal hippocampus actually increased seizure frequency by 18.7%. The animal without neuronal loss exhibited an increase in seizure frequency of 19.6%. The findings indicate an overall decrease in seizure frequency in treated animals. And, the site of neuronal loss along the longitudinal axis of the hippocampus appears to play a key role in reducing seizure activity. These pilot data are promising, and they encourage additional and more comprehensive studies examining the effects of targeted, non-invasive, neuronal lesions for the treatment of epilepsy.
Collapse
Affiliation(s)
- Yanrong Zhang
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA
| | - Haiyan Zhou
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; The Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haibo Qu
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; Department of Medical Imaging, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengde Liao
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; Department of Radiology, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hong Jiang
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; Department of Neurology, Peking University of People's Hospital, Beijing, China
| | - Siqin Huang
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Sara Natasha Ghobadi
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA
| | - Arsenii Telichko
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ningrui Li
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Frezghi G Habte
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford, California, USA
| | - Tim Doyle
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford, California, USA
| | - James P Woznak
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Edward H Bertram
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Kevin S Lee
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA; Department of Neurosurgery and Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.
| | - Max Wintermark
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA.
| |
Collapse
|
49
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
50
|
Gillet C, Kurth S, Kuenzel T. Muscarinic modulation of M and h currents in gerbil spherical bushy cells. PLoS One 2020; 15:e0226954. [PMID: 31940388 PMCID: PMC6961914 DOI: 10.1371/journal.pone.0226954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Descending cholinergic fibers innervate the cochlear nucleus. Spherical bushy cells, principal neurons of the anterior part of the ventral cochlear nucleus, are depolarized by cholinergic agonists on two different time scales. A fast and transient response is mediated by alpha-7 homomeric nicotinic receptors while a slow and long-lasting response is mediated by muscarinic receptors. Spherical bushy cells were shown to express M3 receptors, but the receptor subtypes involved in the slow muscarinic response were not physiologically identified yet. Whole-cell patch clamp recordings combined with pharmacology and immunohistochemistry were performed to identify the muscarinic receptor subtypes and the effector currents involved. Spherical bushy cells also expressed both M1 and M2 receptors. The M1 signal was stronger and mainly somatic while the M2 signal was localized in the neuropil and on the soma of bushy cells. Physiologically, the M-current was observed for the gerbil spherical bushy cells and was inhibited by oxotremorine-M application. Surprisingly, long application of carbachol showed only a transient depolarization. Even though no muscarinic depolarization could be detected, the input resistance increased suggesting a decrease in the cell conductance that matched with the closure of M-channels. The hyperpolarization-activated currents were also affected by muscarinic activation and counteracted the effect of the inactivation of M-current on the membrane potential. We hypothesize that this double muscarinic action might allow adaptation of effects during long durations of cholinergic activation.
Collapse
Affiliation(s)
- Charlène Gillet
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Stefanie Kurth
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- * E-mail:
| |
Collapse
|