1
|
Chen XP, Yang ZT, Yang SX, Li EM, Xie L. PAK2 as a therapeutic target in cancer: Mechanisms, challenges, and future perspectives. Biochim Biophys Acta Rev Cancer 2025; 1880:189246. [PMID: 39694422 DOI: 10.1016/j.bbcan.2024.189246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
P21-activated kinases (PAKs) are crucial regulators within cellular signaling pathways and have been implicated in a range of human diseases, including cancer. Among the PAK family, PAK2 is widely expressed across various tissues and has emerged as a significant driver of cancer progression. However, systematic studies on PAK2 remain limited. This review provides a comprehensive overview of PAK2's role in cancer, focusing on its involvement in processes such as angiogenesis, metastasis, cell survival, metabolism, immune response, and drug resistance. We also explore its function in key cancer signaling pathways and the potential of small-molecule inhibitors targeting PAK2 for therapeutic purposes. Despite promising preclinical data, no PAK2 inhibitors have reached clinical practice, underscoring challenges related to their specificity and therapeutic application. This review highlights the biological significance of PAK2 in cancer and its interactions with critical signaling pathways, offering valuable insights for future research. We also discuss the major obstacles in developing PAK inhibitors and propose strategies to overcome these barriers, paving the way for their clinical translation.
Collapse
Affiliation(s)
- Xin-Pan Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zi-Tao Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shang-Xin Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; The Laboratory for Cancer Molecular Biology, Shantou Academy Medical Sciences, Shantou 515041, Guangdong, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou 515041, Guangdong, China.
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
2
|
Wu M, Sarkar C, Guo B. Regulation of Cancer Metastasis by PAK2. Int J Mol Sci 2024; 25:13443. [PMID: 39769207 PMCID: PMC11676821 DOI: 10.3390/ijms252413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
PAK2 is a serine-threonine kinase and a member of the p21-activated kinase (PAK) family. PAK2 is activated by GTP-bound rho family GTPases, Rac, and Cdc42, and it regulates actin dynamics, cell adhesion to the extracellular matrix, and cell motility. In various types of cancers, PAK2 has been implicated in the regulation of cancer cell proliferation, cell cycle, and apoptosis. In addition, recent studies have shown that PAK2 plays an important role in cancer cell metastasis, indicating PAK2 as a potential therapeutic target. This review discusses recent discoveries on the functions of PAK2 in the regulation of various types of cancers. A better understanding of the mechanisms of function of PAK2 will facilitate future development of cancer therapies.
Collapse
Affiliation(s)
- Megan Wu
- The Kinkaid School, Houston, TX 77024, USA;
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh;
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Lee CK, Wang FT, Huang CH, Chan WH. Dose-dependent effects of silver nanoparticles on cell death modes in mouse blastocysts induced via endoplasmic reticulum stress and mitochondrial apoptosis. Toxicol Res (Camb) 2024; 13:tfae158. [PMID: 39371680 PMCID: PMC11447381 DOI: 10.1093/toxres/tfae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/19/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
In view of the rapidly expanding medical and commercial applications of silver nanoparticles (AgNPs), their potential health risks and environmental effects are a significant growing concern. Earlier research by our group uncovered the embryotoxic potential of AgNPs, showing detrimental impacts of these nanoparticles on both pre- and post-implantation embryonic development. In the current study, we showed that low (50-100 μM) and high (200-400 μM) dose ranges of AgNPs trigger distinct cell death programs affecting mouse embryo development and further explored the underlying mechanisms. Treatment with low concentrations of AgNPs (50-100 μM) triggered ROS generation, in turn, inducing mitochondria-dependent apoptosis, and ultimately, harmful effects on embryo implantation, post-implantation development, and fetal development. Notably, high concentrations of AgNPs (200-400 μM) evoked more high-level ROS generation and endoplasmic reticulum (ER) stress-mediated necrosis. Interestingly, pre-incubation with Trolox, a strong antioxidant, reduced ROS generation in the group treated with 200-400 μM AgNPs to the level induced by 50-100 μM AgNPs, resulting in switching of the cell death mode from necrosis to apoptosis and a significant improvement in the impairment of embryonic development. Our findings additionally indicate that activation of PAK2 is a crucial step in AgNP-triggered apoptosis and sequent detrimental effects on embryonic development. Based on the collective results, we propose that the levels of ROS generated by AgNP treatment of embryos serve as a critical regulator of cell death type, leading to differential degrees of damage to embryo implantation, post-implantation development and fetal development through triggering apoptosis, necrosis or other cell death signaling cascades.
Collapse
Affiliation(s)
- Cheng-Kai Lee
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Chien-Hsun Huang
- Hungchi Gene IVF Center, Taoyuan District, Daxing West Road, Taoyuan District, Taoyuan City 330012, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
4
|
Sun G. Death and survival from executioner caspase activation. Semin Cell Dev Biol 2024; 156:66-73. [PMID: 37468421 DOI: 10.1016/j.semcdb.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Executioner caspases are evolutionarily conserved regulators of cell death under apoptotic stress. Activated executioner caspases drive apoptotic cell death through cleavage of diverse protein substrates or pyroptotic cell death in the presence of gasdermin E. On the other hand, activation of executioner caspases can also trigger pro-survival and pro-proliferation signals. In recent years, a growing body of studies have demonstrated that cells can survive from executioner caspase activation in response to stress and that the survivors undergo molecular and phenotypic alterations. This review focuses on death and survival from executioner caspase activation, summarizing the role of executioner caspases in apoptotic and pyroptotic cell death and discussing the potential mechanism and consequences of survival from stress-induced executioner caspase activation.
Collapse
Affiliation(s)
- Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Lee CK, Wang FT, Huang CH, Chan WH. Role of activated p21-activated kinase 2 in methylmercury-induced embryotoxic effects on mouse blastocysts. Toxicol Res (Camb) 2023; 12:433-445. [PMID: 37397923 PMCID: PMC10311136 DOI: 10.1093/toxres/tfad030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023] Open
Abstract
Methylmercury (MeHg), a biotransformation product derived from mercury or inorganic mercury compounds in waterways, is a potent toxin that exerts hazardous effects on human health via environmental contamination. Previous studies have reported MeHg-induced impairment of nerve development in embryogenesis and placental development. However, the potential deleterious effects and regulatory mechanisms of action of MeHg on pre- and post-implantation embryo development are yet to be established. Experiments from the current study clearly demonstrate that MeHg exerts toxic effects on early embryonic development processes, including the zygote to blastocyst stage. Induction of apoptosis and decrease in embryo cell number were clearly detected in MeHg-treated blastocysts. Additionally, intracellular reactive oxygen species (ROS) generation and activation of caspase-3 and p21-activated protein kinase 2 (PAK2) were observed in MeHg-treated blastocysts. Importantly, prevention of ROS generation by pre-treatment with Trolox, a potent antioxidant, significantly attenuated MeHg-triggered caspase-3 and PAK2 activation as well as apoptosis. Notably, the downregulation of PAK2 via transfection of specifically targeted siRNA (siPAK2) led to marked attenuation of PAK2 activity and apoptosis and the deleterious effects of MeHg on embryonic development in blastocysts. Our findings strongly suggest that ROS serve as an important upstream regulator to trigger the activation of caspase-3, which further cleaves and activates PAK2 in MeHg-treated blastocysts. Activated PAK2 promotes apoptotic processes that, in turn, cause sequent impairment of embryonic and fetal development.
Collapse
Affiliation(s)
- Cheng-Kai Lee
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City 11217, Taiwan
| | - Chien-Hsun Huang
- Hungchi Gene IVF Center, Taoyuan District, Taoyuan City 330012, Taiwan
| | - Wen-Hsiung Chan
- Corresponding author: Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan. Fax: +886-3-2653599; E-mail:
| |
Collapse
|
6
|
Huang CH, Wang FT, Chan WH. Role of caspase-3-cleaved/activated PAK2 in brusatol-triggered apoptosis of human lung cancer A549 cells. Toxicol Res (Camb) 2022; 11:791-803. [PMID: 36337251 PMCID: PMC9623572 DOI: 10.1093/toxres/tfac057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 09/01/2023] Open
Abstract
Brusatol, a major quassinoid extract of Bruceae fructus, is an important bioactive component with antineoplastic capacity. Several beneficial pharmacological and biological properties of brusatol have been uncovered to date, including anti-inflammatory, anticolitis, antimalarial, and anticancer activities. To confer anticancer benefits, brusatol is reported to effectively inhibit the Nrf2-mediated antioxidant response and trigger apoptotic signaling. In this study, we investigated the regulatory mechanisms underlying apoptotic processes in brusatol-treated A549 cells in detail. Our experiments showed that brusatol induces cell death through intracellular ROS-triggered mitochondria-dependent apoptotic events and does not involve necrosis. Mechanistically, p21-activated protein kinase 2 (PAK2) was cleaved by caspase-3 to generate an activated p34 fragment involved in brusatol-induced apoptosis of A549 cells. Notably, PAK2 knockdown led to downregulation of caspase-3-mediated PAK2 activity, in turn, effectively attenuating brusatol-induced apoptosis, highlighting a crucial role of caspase-3-activated PAK2 in this process. Moreover, knockdown of PAK2 resulted in significant inhibition of c-Jun N-terminal kinase (JNK) activity in brusatol-treated A549 cells, clearly suggesting that JNK serves as a downstream substrate of caspase-3-cleaved/activated PAK2 in the apoptotic cascade. SP600125, a specific JNK inhibitor, significantly suppressed brusatol-induced JNK activity but only partially prevented apoptosis, implying that JNK serves as only one of a number of substrates for PAK2 in the brusatol-triggered apoptotic cascade. Based on the collective results, we propose a signaling cascade model for brusatol-induced apoptosis in human A549 cells involving ROS, caspases, PAK2, and JNK.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
7
|
The role of caspases as executioners of apoptosis. Biochem Soc Trans 2021; 50:33-45. [PMID: 34940803 DOI: 10.1042/bst20210751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.
Collapse
|
8
|
Kinases leave their mark on caspase substrates. Biochem J 2021; 478:3179-3184. [PMID: 34492095 DOI: 10.1042/bcj20210399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is a cell death program that is executed by the caspases, a family of cysteine proteases that typically cleave after aspartate residues during a proteolytic cascade that systematically dismantles the dying cell. Extensive signaling crosstalk occurs between caspase-mediated proteolysis and kinase-mediated phosphorylation, enabling integration of signals from multiple pathways into the decision to commit to apoptosis. A new study from Maluch et al. examines how phosphorylation within caspase cleavage sites impacts the efficiency of substrate cleavage. The results demonstrate that while phosphorylation in close proximity to the scissile bond is generally inhibitory, it does not necessarily abrogate substrate cleavage, but instead attenuates the rate. In some cases, this inhibition can be overcome by additional favorable substrate features. These findings suggest potential nuanced physiological roles for phosphorylation of caspase substrates with exciting implications for targeting caspases with chemical probes and therapeutics.
Collapse
|
9
|
Julian L, Naylor G, Wickman GR, Rath N, Castino G, Stevenson D, Bryson S, Munro J, McGarry L, Mullin M, Rice A, Del Río Hernández A, Olson MF. Defective apoptotic cell contractility provokes sterile inflammation, leading to liver damage and tumour suppression. eLife 2021; 10:e61983. [PMID: 33871359 PMCID: PMC8087448 DOI: 10.7554/elife.61983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/17/2021] [Indexed: 01/20/2023] Open
Abstract
Apoptosis is characterized by profound morphological changes, but their physiological purpose is unknown. To characterize the role of apoptotic cell contraction, ROCK1 was rendered caspase non-cleavable (ROCK1nc) by mutating aspartate 1113, which revealed that ROCK1 cleavage was necessary for forceful contraction and membrane blebbing. When homozygous ROCK1nc mice were treated with the liver-selective apoptotic stimulus of diethylnitrosamine, ROCK1nc mice had more profound liver damage with greater neutrophil infiltration than wild-type mice. Inhibition of the damage-associated molecular pattern protein HMGB1 or signalling by its cognate receptor TLR4 lowered neutrophil infiltration and reduced liver damage. ROCK1nc mice also developed fewer diethylnitrosamine-induced hepatocellular carcinoma (HCC) tumours, while HMGB1 inhibition increased HCC tumour numbers. Thus, ROCK1 activation and consequent cell contraction are required to limit sterile inflammation and damage amplification following tissue-scale cell death. Additionally, these findings reveal a previously unappreciated role for acute sterile inflammation as an efficient tumour-suppressive mechanism.
Collapse
Affiliation(s)
- Linda Julian
- Cancer Research United Kingdom Beatson Institute, Garscube EstateGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Gregory Naylor
- Cancer Research United Kingdom Beatson Institute, Garscube EstateGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Grant R Wickman
- Cancer Research United Kingdom Beatson Institute, Garscube EstateGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Nicola Rath
- Cancer Research United Kingdom Beatson Institute, Garscube EstateGlasgowUnited Kingdom
| | - Giovanni Castino
- Department of Chemistry and Biology, Ryerson UniversityTorontoCanada
| | - David Stevenson
- Cancer Research United Kingdom Beatson Institute, Garscube EstateGlasgowUnited Kingdom
| | - Sheila Bryson
- Cancer Research United Kingdom Beatson Institute, Garscube EstateGlasgowUnited Kingdom
| | - June Munro
- Cancer Research United Kingdom Beatson Institute, Garscube EstateGlasgowUnited Kingdom
| | - Lynn McGarry
- Cancer Research United Kingdom Beatson Institute, Garscube EstateGlasgowUnited Kingdom
| | - Margaret Mullin
- Electron Microscopy Facility, School of Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Armandodel Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson UniversityTorontoCanada
| |
Collapse
|
10
|
Kuželová K, Obr A, Röselová P, Grebeňová D, Otevřelová P, Brodská B, Holoubek A. Group I p21-activated kinases in leukemia cell adhesion to fibronectin. Cell Adh Migr 2021; 15:18-36. [PMID: 33464167 PMCID: PMC7834095 DOI: 10.1080/19336918.2021.1872760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
P21-activated kinases (PAK) regulate processes associated with cytoskeleton dynamics. PAK expression in leukemia cells was measured on protein and mRNA levels. In functional assays, we analyzed the effect of PAK inhibitors IPA-3 and FRAX597 on cell adhesivity and viability. PAK2 was dominant in cell lines, whereas primary cells also expressed comparable amount of PAK1 transcription isoforms: PAK1-full and PAK1Δ15. PAK1Δ15 and PAK2 levels correlated with surface density of integrins β1 and αVβ3. PAK1-full, but not PAK2, was present in membrane protrusions. IPA-3, which prevents PAK activation, induced cell contraction in semi-adherent HEL cells only. FRAX597, which inhibits PAK kinase activity, increased cell-surface contact area in all leukemia cells. Both inhibitors reduced the stability of cell attachment and induced cell death.
Collapse
Affiliation(s)
- Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion , Prague, Czech Republic
| | - Adam Obr
- Department of Proteomics, Institute of Hematology and Blood Transfusion , Prague, Czech Republic
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion , Prague, Czech Republic
| | - Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion , Prague, Czech Republic
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion , Prague, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion , Prague, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion , Prague, Czech Republic
| |
Collapse
|
11
|
Abstract
In the final stages of apoptosis, apoptotic cells can generate a variety of membrane-bound vesicles known as apoptotic extracellular vesicles (ApoEVs). Apoptotic bodies (ApoBDs), a major subset of ApoEVs, are formed through a process termed apoptotic cell disassembly characterised by a series of tightly regulated morphological steps including plasma membrane blebbing, apoptotic membrane protrusion formation and fragmentation into ApoBDs. To better characterise the properties of ApoBDs and elucidate their function, a number of methods including differential centrifugation, filtration and fluorescence-activated cell sorting were developed to isolate ApoBDs. Furthermore, it has become increasingly clear that ApoBD formation can contribute to various biological processes such as apoptotic cell clearance and intercellular communication. Together, recent literature demonstrates that apoptotic cell disassembly and thus, ApoBD formation, is an important process downstream of apoptotic cell death. In this chapter, we discuss the current understandings of the molecular mechanisms involved in regulating apoptotic cell disassembly, techniques for ApoBD isolation, and the functional roles of ApoBDs in physiological and pathological settings.
Collapse
|
12
|
Saidijam M, Afshar S, Taherkhani A. Identifying Potential Biomarkers in Colorectal Cancer and Developing Non-invasive Diagnostic Models Using Bioinformatics Approaches. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020. [DOI: 10.34172/ajmb.2020.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most frequent causes of gastrointestinal tumors. Due to the invasiveness of the current diagnostic methods, there is an urgent need to develop non-invasive diagnostic approaches for CRC. The exact mechanisms and the most important genes associated with the development of CRC are not fully demonstrated. Objectives: This study aimed to identify differentially expressed miRNAs (DEMs), key genes, and their regulators associated with the pathogenesis of CRC. The signaling pathways and biological processes (BPs) that were significantly affected in CRC were also indicated. Moreover, two non-invasive models were constructed for CRC diagnosis. Methods: The miRNA dataset GSE59856 was downloaded from the Gene Expression Omnibus (GEO) database and analyzed to identify DEMs in CRC patients compared with healthy controls (HCs). A protein-protein interaction (PPI) network was built and analyzed. Significant clusters in the PPI networks were identified, and the BPs and pathways associated with these clusters were studied. The hub genes in the PPI network, as well as their regulators were identified. Results: A total of 569 DEMs were demonstrated with the criteria of P value <0.001. A total of 110 essential genes and 30 modules were identified in the PPI network. Functional analysis revealed that 1005 BPs, 9 molecular functions (MFs), 14 cellular components (CCs), and 887 pathways were significantly affected in CRC. A total of 22 transcription factors (TFs) were demonstrated as the regulators of the hubs. Conclusion: Our results may provide new insight into the pathogenesis of CRC and advance the diagnostic and therapeutic methods of the disease. However, confirmation is required in the future.
Collapse
Affiliation(s)
- Massoud Saidijam
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Huang J, Huang A, Poplawski A, DiPino F, Traugh JA, Ling J. PAK2 activated by Cdc42 and caspase 3 mediates different cellular responses to oxidative stress-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118645. [PMID: 31926209 DOI: 10.1016/j.bbamcr.2020.118645] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
p21-activated protein kinase (PAK2) is a unique member of the PAK family kinases that plays important roles in stress signaling. It can be activated by binding to the small GTPase, Cdc42 and Rac1, or by caspase 3 cleavage. Cdc42-activated PAK2 mediates cytostasis, whereas caspase 3-cleaved PAK2 contributes to apoptosis. However, the relationship between these two states of PAK2 activation remains elusive. In this study, through protein biochemical analyses and various cell-based assays, we demonstrated that full-length PAK2 activated by Cdc42 was resistant to the cleavage by caspase 3 in vitro and within cells. When mammalian cells were treated by oxidative stress using hydrogen peroxide, PAK2 was highly activated through caspase 3 cleavage that led to apoptosis. However, when PAK2 was pre-activated by Cdc42 or by mild stress such as serum deprivation, it was no longer able to be cleaved by caspase 3 upon hydrogen peroxide treatment, and the subsequent apoptosis was also largely inhibited. Furthermore, cells expressing active mutants of full-length PAK2 became more resistant to hydrogen peroxide-induced apoptosis than inactive mutants. Taken together, this study identified two states of PAK2 activation, wherein Cdc42- and autophosphorylation-dependent activation inhibited the constitutive activation of PAK2 by caspase cleavage. The regulation between these two states of PAK2 activation provides a new molecular mechanism to support PAK2 as a molecular switch for controlling cytostasis and apoptosis in response to different types and levels of stress with broad physiological and pathological relevance.
Collapse
Affiliation(s)
- John Huang
- Department of Biochemistry, University of California, Riverside, CA 92521, United States of America
| | - Allen Huang
- Canyon Crest Academy, San Diego, CA 92130, United States of America
| | - Amelia Poplawski
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, United States of America; Misericordia University, Dallas, PA 18612, United States of America
| | - Frank DiPino
- Misericordia University, Dallas, PA 18612, United States of America
| | - Jolinda A Traugh
- Department of Biochemistry, University of California, Riverside, CA 92521, United States of America
| | - Jun Ling
- California University of Science and Medicine, Colton, CA 92324, United States of America; Geisinger Commonwealth School of Medicine, Scranton, PA 18509, United States of America; Department of Biochemistry, University of California, Riverside, CA 92521, United States of America.
| |
Collapse
|
14
|
Grebeňová D, Holoubek A, Röselová P, Obr A, Brodská B, Kuželová K. PAK1, PAK1Δ15, and PAK2: similarities, differences and mutual interactions. Sci Rep 2019; 9:17171. [PMID: 31748572 PMCID: PMC6868145 DOI: 10.1038/s41598-019-53665-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
P21-activated kinases (PAK) are key effectors of the small GTPases Rac1 and Cdc42, as well as of Src family kinases. In particular, PAK1 has several well-documented roles, both kinase-dependent and kinase-independent, in cancer-related processes, such as cell proliferation, adhesion, and migration. However, PAK1 properties and functions have not been attributed to individual PAK1 isoforms: besides the full-length kinase (PAK1-full), a splicing variant lacking the exon 15 (PAK1Δ15) is annotated in protein databases. In addition, it is not clear if PAK1 and PAK2 are functionally overlapping. Using fluorescently tagged forms of human PAK1-full, PAK1Δ15, and PAK2, we analyzed their intracellular localization and mutual interactions. Effects of PAK inhibition (IPA-3, FRAX597) or depletion (siRNA) on cell-surface adhesion were monitored by real-time microimpedance measurement. Both PAK1Δ15 and PAK2, but not PAK1-full, were enriched in focal adhesions, indicating that the C-terminus might be important for PAK intracellular localization. Using coimmunoprecipitation, we documented direct interactions among the studied PAK group I members: PAK1 and PAK2 form homodimers, but all possible heterocomplexes were also detected. Interaction of PAK1Δ15 or PAK2 with PAK1-full was associated with extensive PAK1Δ15/PAK2 cleavage. The impedance measurements indicate, that PAK2 depletion slows down cell attachment to a surface, and that PAK1-full is involved in cell spreading. Altogether, our data suggest a complex interplay among different PAK group I members, which have non-redundant functions.
Collapse
Affiliation(s)
- Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Adam Obr
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic.
| |
Collapse
|
15
|
Tixeira R, Phan TK, Caruso S, Shi B, Atkin-Smith GK, Nedeva C, Chow JDY, Puthalakath H, Hulett MD, Herold MJ, Poon IKH. ROCK1 but not LIMK1 or PAK2 is a key regulator of apoptotic membrane blebbing and cell disassembly. Cell Death Differ 2019; 27:102-116. [PMID: 31043701 DOI: 10.1038/s41418-019-0342-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
Many cell types are known to undergo a series of morphological changes during the progression of apoptosis, leading to their disassembly into smaller membrane-bound vesicles known as apoptotic bodies (ApoBDs). In particular, the formation of circular bulges called membrane blebs on the surface of apoptotic cells is a key morphological step required for a number of cell types to generate ApoBDs. Although apoptotic membrane blebbing is thought to be regulated by kinases including ROCK1, PAK2 and LIMK1, it is unclear whether these kinases exhibit overlapping roles in the disassembly of apoptotic cells. Utilising both pharmacological and CRISPR/Cas9 gene editing based approaches, we identified ROCK1 but not PAK2 or LIMK1 as a key non-redundant positive regulator of apoptotic membrane blebbing as well as ApoBD formation. Functionally, we have established an experimental system to either inhibit or enhance ApoBD formation and demonstrated the importance of apoptotic cell disassembly in the efficient uptake of apoptotic materials by various phagocytes. Unexpectedly, we also noted that ROCK1 could play a role in regulating the onset of secondary necrosis. Together, these data shed light on both the mechanism and function of cell disassembly during apoptosis.
Collapse
Affiliation(s)
- Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Bo Shi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jenny D Y Chow
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
16
|
Ghatak S, Misra S, Moreno-Rodrigue RA, Hascall VC, Leone GW, Markwald RR. Periostin/β1integrin interaction regulates p21-activated kinases in valvular interstitial cell survival and in actin cytoskeleton reorganization. Biochim Biophys Acta Gen Subj 2019; 1863:813-829. [PMID: 30742951 DOI: 10.1016/j.bbagen.2018.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022]
Abstract
The matricellular protein periostin (PN) promotes postnatal valve remodeling and maturation. Incomplete remodeling of the valve can trigger degenerative processes that lead to a myxomatous phenotype that includes loss of PN. However, signaling pathways involved that link valvular-interstitial-fibroblast cells (VICs) to proliferation, migration and actin remodeling functions are unclear. The p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements and cell proliferation/adhesion/migration functions in a variety of cellular contexts, including normal cells and cancer cells. This study shows that Pak1, but not Pak2 and Pak4, is a critical mediator of VIC survival and actin organization, and that the molecular signaling regulating actin-remodeling is initiated upon PN/beta-integrin-induced phosphorylation of the focal-adhesion-kinase (Fak) (Y397). Molecular and pharmacological inhibition of key components of PN/Fak/Akt1 signaling abolished the PN-induced actin polymerization and the activation of mTOR, p70S6K and Pak1. Similarly, blocking mTOR inhibited p70S6K, Pak1 phosphorylation and consequently actin-polymerization. Accordingly, inhibiting p70S6K blocked Pak1 phosphorylation and actin polymerization, and subsequently inhibited adhesion and growth of VICs. Periostin-induced Akt1 activation of Pak1 is independent of Cdc42 and Rac1 GTPases, and Akt1 is both downstream and upstream of Pak1. Further, the PN-Pak1-induced Akt1 protects cells from apoptosis through suppression of transcriptional activation of Forkhead-Transcription-Factor (FKHR). In contrast, kinase deficient Pak1 increases apoptosis by increasing FKHR-mediated transcriptional activation. These studies define new functional significance of PN-Fak-Akt1-Pak1 signaling that at least partly regulates Akt1-induced actin polymerization and FKHR-mediated transcriptional activation, which may eventually regulate the mature-valve-leaflet remodeling function, and also FKHR-mediated transcriptional activation for pro-survival of VICs.
Collapse
Affiliation(s)
- Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.; Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC 29425, USA
| | - Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.; Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Ricardo A Moreno-Rodrigue
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, OH, USA
| | - Gustavo W Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC 29425, USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA..
| |
Collapse
|
17
|
Tixeira R, Poon IKH. Disassembly of dying cells in diverse organisms. Cell Mol Life Sci 2019; 76:245-257. [PMID: 30317529 PMCID: PMC11105331 DOI: 10.1007/s00018-018-2932-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023]
Abstract
Programmed cell death (PCD) is a conserved phenomenon in multicellular organisms required to maintain homeostasis. Among the regulated cell death pathways, apoptosis is a well-described form of PCD in mammalian cells. One of the characteristic features of apoptosis is the change in cellular morphology, often leading to the fragmentation of the cell into smaller membrane-bound vesicles through a process called apoptotic cell disassembly. Interestingly, some of these morphological changes and cell disassembly are also noted in cells of other organisms including plants, fungi and protists while undergoing 'apoptosis-like PCD'. This review will describe morphologic features leading to apoptotic cell disassembly, as well as its regulation and function in mammalian cells. The occurrence of cell disassembly during cell death in other organisms namely zebrafish, fly and worm, as well as in other eukaryotic cells will also be discussed.
Collapse
Affiliation(s)
- Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
18
|
Sukumaran P, Sun Y, Zangbede FQ, da Conceicao VN, Mishra B, Singh BB. TRPC1 expression and function inhibit ER stress and cell death in salivary gland cells. FASEB Bioadv 2018; 1:40-50. [PMID: 31111119 PMCID: PMC6524637 DOI: 10.1096/fba.1021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Disturbances in endoplasmic reticulum (ER) Ca2+ homeostasis have been associated with many diseases including loss of salivary glands. Although significant progress has been accomplished which led to the increase in our understanding of the cellular responses to ER stress, the factors/ion channels that could inhibit ER stress are not yet identified. Here we show that TRPC1 (transient receptor potential canonical 1) is involved in regulating Ca2+ homeostasis and loss of TRPC1 decreased ER Ca2+ levels, inhibited the unfolded protein response (UPR), that induced loss of salivary gland cells. We provide further evidence that ER stress inducing agents (Tunicamycin and Brefeldin A) disrupts Ca2+ homeostasis by directly inhibiting TRPC1-mediated Ca2+ entry, which led to ER stress in salivary gland cells. Moreover, induction of ER stress lead to an increase in CHOP expression, which decreased TRPC1 expression and subsequently attenuated autophagy along with increased apoptosis. Importantly, TRPC1-/- mice showed increased ER stress, increased immune cell infiltration, loss of Ca2+ homeostasis, decreased saliva secretion, and decreased salivary gland survival. Finally, restoration of TRPC1 not only maintained Ca2+ homeostasis, but inhibited ER stress that induced cell survival. Overall these results suggest a significant role of TRPC1 Ca2+ channels in ER stress and homeostatic function/survival of salivary gland cells.
Collapse
Affiliation(s)
- Pramod Sukumaran
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Fredice Quenum Zangbede
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201
| | | | - Bibhuti Mishra
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center, San Antonio, TX 78229.,Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201
| |
Collapse
|
19
|
Abstract
Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.
Collapse
|
20
|
Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ 2017; 24:1359-1368. [PMID: 28338655 PMCID: PMC5520454 DOI: 10.1038/cdd.2017.37] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
The phenotypic and biochemical similarities between caspase-mediated apoptosis and cellular differentiation are striking. They include such diverse phenomenon as mitochondrial membrane perturbations, cytoskeletal rearrangements and DNA fragmentation. The parallels between the two disparate processes suggest some common ancestry and highlight the paradoxical nature of the death-centric view of caspases. That is, what is the driving selective pressure that sustains death-inducing proteins throughout eukaryotic evolution? Plausibly, caspase function may be rooted in a primordial non-death function, such as cell differentiation, and was co-opted for its role in programmed cell death. This review will delve into the links between caspase-mediated apoptosis and cell differentiation and examine the distinguishing features of these events. More critically, we chronicle the evolutionary origins of caspases and propose that caspases may have held an ancient role in mediating the fidelity of cell division/differentiation through its effects on proteostasis and protein quality control.
Collapse
|
21
|
Eron SJ, Raghupathi K, Hardy JA. Dual Site Phosphorylation of Caspase-7 by PAK2 Blocks Apoptotic Activity by Two Distinct Mechanisms. Structure 2016; 25:27-39. [PMID: 27889207 DOI: 10.1016/j.str.2016.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/20/2016] [Accepted: 10/27/2016] [Indexed: 01/23/2023]
Abstract
Caspases, the cysteine proteases that execute apoptosis, are tightly regulated via phosphorylation by a series of kinases. Although all apoptotic caspases work in concert to promote apoptosis, different kinases regulate individual caspases. Several sites of caspase-7 phosphorylation have been reported, but without knowing the molecular details, it has been impossible to exploit or control these complex interactions, which normally prevent unwanted proliferation. During dysregulation, PAK2 kinase plays an alternative anti-apoptotic role, phosphorylating caspase-7 and promoting unfettered cell growth and chemotherapeutic resistance. PAK2 phosphorylates caspase-7 at two sites, inhibiting activity using two different molecular mechanisms, before and during apoptosis. Phosphorylation of caspase-7 S30 allosterically obstructs its interaction with caspase-9, preventing intersubunit linker processing, slowing or preventing caspase-7 activation. S239 phosphorylation renders active caspase-7 incapable of binding substrate, blocking later events in apoptosis. Each of these mechanisms is novel, representing new opportunities for synergistic control of caspases and their counterpart kinases.
Collapse
Affiliation(s)
- Scott J Eron
- Department of Chemistry, University of Massachusetts Amherst, 104 LGRT, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Kishore Raghupathi
- Department of Chemistry, University of Massachusetts Amherst, 104 LGRT, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts Amherst, 104 LGRT, 710 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
22
|
Nuche-Berenguer B, Ramos-Álvarez I, Jensen RT. The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1122-1136. [PMID: 26912410 PMCID: PMC4846574 DOI: 10.1016/j.bbadis.2016.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
Abstract
In a recent study we explored Group-1-p21-activated kinases (GP.1-PAKs) in rat pancreatic acini. Only PAK2 was present; it was activated by gastrointestinal-hormones/neurotransmitters and growth factors in a PKC-, Src- and small-GTPase-mediated manner. PAK2 was required for enzyme-secretion and ERK/1-2-activation. In the present study we examined PAK2's role in CCK and TPA-activation of important distal signaling cascades mediating their physiological/pathophysiological effects and analyzed its role in pathophysiological processes important in early pancreatitis. In rat pancreatic acini, PAK2-inhibition by the specific, GP.1.PAK-inhibitor, IPA-3-suppressed cholecystokinin (CCK)/TPA-stimulated activation of focal-adhesion kinases and mitogen-activated protein-kinases. PAK2-inhibition reversed the dual stimulatory/inhibitory effect of CCK/TPA on the PI3K/Akt/GSK-3β pathway. However, its inhibition did not affect PKC activation. PAK2-inhibition protected acini from CCK-induced ROS-generation; caspase/trypsin-activation, important in early pancreatitis; as well as from cell-necrosis. Furthermore, PAK2-inhibition reduced proteolytic-activation of PAK-2p34, which is involved in programmed-cell-death. To ensure that the study did not only rely in the specificity of IPA-3 as a PAK inhibitor, we used two other approaches for PAK inhibition, FRAX597 a ATP-competitive-GP.1-PAKs-inhibitor and infection with a PAK2-dominant negative(DN)-Advirus. Those two approaches confirmed the results obtained with IPA-3. This study demonstrates that PAK2 is important in mediating CCK's effect on the activation of signaling-pathways known to mediate its physiological/pathophysiological responses including several cellular processes linked to the onset of pancreatitis. Our results suggest that PAK2 could be a new, important therapeutic target to consider for the treatment of diseases involving deregulation of pancreatic acinar cells.
Collapse
Affiliation(s)
- Bernardo Nuche-Berenguer
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA.
| |
Collapse
|
23
|
A bead-based cleavage method for large-scale identification of protease substrates. Sci Rep 2016; 6:22645. [PMID: 26935269 PMCID: PMC4776233 DOI: 10.1038/srep22645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/16/2016] [Indexed: 01/25/2023] Open
Abstract
Proteolysis is a major form of post translational modification which occurs when a protease cleaves peptide bonds in a target protein to modify its activity. Tracking protease substrates is indispensable for understanding its cellular functions. However, it is difficult to directly identify protease substrates because the end products of proteolysis, the cleaved protein fragments, must be identified among the pool of cellular proteins. Here we present a bead-based cleavage approach using immobilized proteome as the screening library to identify protease substrates. This method enables efficient separation of proteolyzed proteins from background protein mixture. Using caspase-3 as the model protease, we have identified 1159 high confident substrates, among which, strikingly, 43.9% of substrates undergo degradation during apoptosis. The huge number of substrates and positive support of in vivo evidence indicate that the BBC method is a powerful tool for protease substrates identification.
Collapse
|
24
|
Oropesa Ávila M, Fernández Vega A, Garrido Maraver J, Villanueva Paz M, De Lavera I, De La Mata M, Cordero MD, Alcocer Gómez E, Delgado Pavón A, Álvarez Córdoba M, Cotán D, Sánchez-Alcázar JA. Emerging roles of apoptotic microtubules during the execution phase of apoptosis. Cytoskeleton (Hoboken) 2015; 72:435-46. [PMID: 26382917 DOI: 10.1002/cm.21254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/01/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022]
Abstract
Apoptosis is a genetically programmed energy-dependent process of cell demise, characterized by specific morphological and biochemical events in which the activation of caspases has an essential role. During apoptosis the cytoskeleton participates actively in characteristic morphological rearrangements of the dying cell. This reorganisation has been assigned mainly to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent reports have showed that microtubules are reformed during the execution phase of apoptosis organizing an apoptotic microtubule network (AMN). AMN is organized behind plasma membrane, forming a cortical structure. Apoptotic microtubules repolymerization takes place in many cell types and under different apoptotic inducers. It has been hypothesized that AMN is critical for maintaining plasma membrane integrity and cell morphology during the execution phase of apoptosis. AMN disorganization leads apoptotic cells to secondary necrosis and the release of potential toxic molecules which can damage neighbor cells and promotes inflammation. Therefore, AMN formation during physiological apoptosis or in pathological apoptosis induced by anti-cancer treatments is essential for tissue homeostasis and the prevention of additional cell damage and inflammation.
Collapse
Affiliation(s)
- Manuel Oropesa Ávila
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Alejandro Fernández Vega
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Juan Garrido Maraver
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Marina Villanueva Paz
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Isabel De Lavera
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Mario De La Mata
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Mario D Cordero
- Facultad De Odontología. Universidad De Sevilla, Sevilla, 41009, Spain
| | - Elizabet Alcocer Gómez
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Mónica Álvarez Córdoba
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - David Cotán
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| |
Collapse
|
25
|
Kuželová K, Grebeňová D, Holoubek A, Röselová P, Obr A. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells. PLoS One 2014; 9:e92560. [PMID: 24664099 PMCID: PMC3963893 DOI: 10.1371/journal.pone.0092560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
P21-activated kinases (PAKs) are involved in the regulation of multiple processes including cell proliferation, adhesion and migration. However, the current knowledge about their function is mainly based on results obtained in adherent cell types. We investigated the effect of group I PAK inhibition using the compound IPA-3 in a variety of human leukemic cell lines (JURL-MK1, MOLM-7, K562, CML-T1, HL-60, Karpas-299, Jurkat, HEL) as well as in primary blood cells. IPA-3 induced cell death with EC50 ranging from 5 to more than 20 μM. Similar range was found for IPA-3-mediated dephosphorylation of a known PAK downstream effector, cofilin. The cell death was associated with caspase-3 activation, PARP cleavage and apoptotic DNA fragmentation. In parallel, 20 μM IPA-3 treatment induced rapid and marked decrease of the cell adhesivity to fibronectin. Per contra, partial reduction of PAK activity using lower dose IPA-3 or siRNA resulted in a slight increase in the cell adhesivity. The changes in the cell adhesivity were also studied using real-time microimpedance measurement and by interference reflection microscopy. Significant differences in the intracellular IPA-3 level among various cell lines were observed indicating that an active mechanism is involved in IPA-3 transport.
Collapse
Affiliation(s)
- Kateřina Kuželová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| | - Dana Grebeňová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Aleš Holoubek
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavla Röselová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Adam Obr
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
26
|
Yan BX, Ma JX, Zhang J, Guo Y, Mueller MD, Remick SC, Yu JJ. Prostasin may contribute to chemoresistance, repress cancer cells in ovarian cancer, and is involved in the signaling pathways of CASP/PAK2-p34/actin. Cell Death Dis 2014; 5:e995. [PMID: 24434518 PMCID: PMC4043260 DOI: 10.1038/cddis.2013.523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is the deadliest of gynecologic cancers, largely due to the development of drug resistance in chemotherapy. Prostasin may have an essential role in the oncogenesis. In this study, we show that prostasin is decreased in an ovarian cancer drug-resistant cell line and in ovarian cancer patients with high levels of excision repair cross-complementing 1, a marker for chemoresistance. Our cell cultural model investigation demonstrates prostasin has important roles in the development of drug resistance and cancer cell survival. Forced overexpression of prostasin in ovarian cancer cells greatly induces cell death (resulting in 99% cell death in a drug-resistant cell line and 100% cell death in other tested cell lines). In addition, the surviving cells grow at a much lower rate compared with non-overexpressed cells. In vivo studies indicate that forced overexpression of prostasin in drug-resistant cells greatly inhibits the growth of tumors and may partially reverse drug resistance. Our investigation of the molecular mechanisms suggests that prostasin may repress cancer cells and/or contribute to chemoresistance by modulating the CASP/P21-activated protein kinase (PAK2)-p34 pathway, and thereafter PAK2-p34/JNK/c-jun and PAK2-p34/mlck/actin signaling pathways. Thus, we introduce prostain as a potential target for treating/repressing some ovarian tumors and have begun to identify their relevant molecular targets in specific signaling pathways.
Collapse
Affiliation(s)
- B-x Yan
- 1] Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA [2] IcesnowYanyan Bioscience Association, Beijing 00094, China
| | - J-x Ma
- 1] Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA [2] Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - J Zhang
- 1] IcesnowYanyan Bioscience Association, Beijing 00094, China [2] Beijing Animal Science Institute, Beijing 00097, China
| | - Y Guo
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - M D Mueller
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - S C Remick
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - J J Yu
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
27
|
Storbeck CJ, Al-Zahrani KN, Sriram R, Kawesa S, O'Reilly P, Daniel K, McKay M, Kothary R, Tsilfidis C, Sabourin LA. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration. Skelet Muscle 2013; 3:16. [PMID: 23815977 PMCID: PMC3733878 DOI: 10.1186/2044-5040-3-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 05/02/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cell growth and terminal differentiation are controlled by complex signaling systems that regulate the tissue-specific expression of genes controlling cell fate and morphogenesis. We have previously reported that the Ste20-like kinase SLK is expressed in muscle tissue and is required for cell motility. However, the specific function of SLK in muscle tissue is still poorly understood. METHODS To gain further insights into the role of SLK in differentiated muscles, we expressed a kinase-inactive SLK from the human skeletal muscle actin promoter. Transgenic muscles were surveyed for potential defects. Standard histological procedures and cardiotoxin-induced regeneration assays we used to investigate the role of SLK in myogenesis and muscle repair. RESULTS High levels of kinase-inactive SLK in muscle tissue produced an overall decrease in SLK activity in muscle tissue, resulting in altered muscle organization, reduced litter sizes, and reduced breeding capacity. The transgenic mice did not show any differences in fiber-type distribution but displayed enhanced regeneration capacity in vivo and more robust differentiation in vitro. CONCLUSIONS Our results show that SLK activity is required for optimal muscle development in the embryo and muscle physiology in the adult. However, reduced kinase activity during muscle repair enhances regeneration and differentiation. Together, these results suggest complex and distinct roles for SLK in muscle development and function.
Collapse
|
28
|
Gray JJ, Zommer AE, Bouchard RJ, Duval N, Blackstone C, Linseman DA. N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress. Brain Res 2012; 1494:28-43. [PMID: 23220553 DOI: 10.1016/j.brainres.2012.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/16/2012] [Accepted: 12/01/2012] [Indexed: 01/02/2023]
Abstract
Neuronal cell death via apoptosis or necrosis underlies several devastating neurodegenerative diseases associated with aging. Mitochondrial dysfunction resulting from oxidative or nitrosative stress often acts as an initiating stimulus for intrinsic apoptosis or necrosis. These events frequently occur in conjunction with imbalances in the mitochondrial fission and fusion equilibrium, although the cause and effect relationships remain elusive. Here, we demonstrate in primary rat cerebellar granule neurons (CGNs) that oxidative or nitrosative stress induces an N-terminal cleavage of optic atrophy-1 (OPA1), a dynamin-like GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. This cleavage event is indistinguishable from the N-terminal cleavage of OPA1 observed in CGNs undergoing caspase-mediated apoptosis (Loucks et al., 2009) and results in removal of a key lysine residue (K301) within the GTPase domain. OPA1 cleavage in CGNs occurs coincident with extensive mitochondrial fragmentation, disruption of the microtubule network, and cell death. In contrast to OPA1 cleavage induced in CGNs by removing depolarizing extracellular potassium (5K apoptotic conditions), oxidative or nitrosative stress-induced OPA1 cleavage caused by complex I inhibition or nitric oxide, respectively, is caspase-independent. N-terminal cleavage of OPA1 is also observed in vivo in aged rat and mouse midbrain and hippocampal tissues. We conclude that N-terminal cleavage and subsequent inactivation of OPA1 may be a contributing factor in the neuronal cell death processes underlying neurodegenerative diseases, particularly those associated with aging. Furthermore, these data suggest that OPA1 cleavage is a likely convergence point for mitochondrial dysfunction and imbalances in mitochondrial fission and fusion induced by oxidative or nitrosative stress.
Collapse
Affiliation(s)
- Josie J Gray
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Hsu YH, Traugh JA. Amide hydrogen/deuterium exchange & MALDI-TOF mass spectrometry analysis of Pak2 activation. J Vis Exp 2011:e3602. [PMID: 22143461 PMCID: PMC3308624 DOI: 10.3791/3602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Amide hydrogen/deuterium exchange (H/D exchange) coupled with mass spectrometry has been widely used to analyze the interface of protein-protein interactions, protein conformational changes, protein dynamics and protein-ligand interactions. H/D exchange on the backbone amide positions has been utilized to measure the deuteration rates of the micro-regions in a protein by mass spectrometry(1,2,3). The resolution of this method depends on pepsin digestion of the deuterated protein of interest into peptides that normally range from 3-20 residues. Although the resolution of H/D exchange measured by mass spectrometry is lower than the single residue resolution measured by the Heteronuclear Single Quantum Coherence (HSQC) method of NMR, the mass spectrometry measurement in H/D exchange is not restricted by the size of the protein(4). H/D exchange is carried out in an aqueous solution which maintains protein conformation. We provide a method that utilizes the MALDI-TOF for detection(2), instead of a HPLC/ESI (electrospray ionization)-MS system(5,6). The MALDI-TOF provides accurate mass intensity data for the peptides of the digested protein, in this case protein kinase Pak2 (also called γ-Pak). Proteolysis of Pak 2 is carried out in an offline pepsin digestion. This alternative method, when the user does not have access to a HPLC and pepsin column connected to mass spectrometry, or when the pepsin column on HPLC does not result in an optimal digestion map, for example, the heavily disulfide-bonded secreted Phospholipase A(2;) (sPLA(2;)). Utilizing this method, we successfully monitored changes in the deuteration level during activation of Pak2 by caspase 3 cleavage and autophosphorylation(7,8,9).
Collapse
|
30
|
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15:719-61. [PMID: 20969480 DOI: 10.1089/ars.2010.3392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly regulated process essential for the development and homeostasis of multicellular organisms. Whereas caspases, a large family of intracellular cysteine proteases, play central roles in the execution of apoptosis, other proapoptotic and antiapoptotic regulators such as the members of the Bcl-2 family are also critically involved in the regulation of apoptosis. A large body of evidence has revealed that a number of protein kinases are among such regulators and regulate cellular sensitivity to various proapoptotic signals at multiple steps in apoptosis. However, recent progress in the analysis of these apoptosis signaling kinases demonstrates that they generally act as crucial regulators of diverse cellular responses to a wide variety of stressors, beyond their roles in apoptosis regulation. In this review, we have cataloged apoptosis signaling kinases involved in cellular stress responses on the basis of their ability to induce apoptosis and discuss their roles in stress responses with particular emphasis on health outcomes upon their dysregulation.
Collapse
Affiliation(s)
- Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence Program and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
31
|
Marlin JW, Chang YWE, Ober M, Handy A, Xu W, Jakobi R. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34. Mamm Genome 2011; 22:306-17. [PMID: 21499899 DOI: 10.1007/s00335-011-9326-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/23/2011] [Indexed: 11/26/2022]
Abstract
p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.
Collapse
Affiliation(s)
- Jerry W Marlin
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA
| | | | | | | | | | | |
Collapse
|
32
|
Chan WH. Photodynamic treatment induces an apoptotic pathway involving calcium, nitric oxide, p53, p21-activated kinase 2, and c-Jun N-terminal kinase and inactivates survival signal in human umbilical vein endothelial cells. Int J Mol Sci 2011; 12:1041-59. [PMID: 21541041 PMCID: PMC3083688 DOI: 10.3390/ijms12021041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 01/25/2011] [Accepted: 02/02/2011] [Indexed: 01/24/2023] Open
Abstract
Photodynamic treatment (PDT) elicits a diverse range of cellular responses, including apoptosis. Previously, we showed that PDT stimulates caspase-3 activity, and subsequent cleavage and activation of p21-activated kinase 2 (PAK2) in human epidermal carcinoma A431 cells. In the current study, pretreatment with nitric oxide (NO) scavengers inhibited PDT-induced mitochondrial membrane potential (MMP) changes, activation of caspase-9, caspase-3, p21-activated protein kinase 2 (PAK2) and c-Jun N-terminal kinase (JNK), and gene expression of p53 and p21 involved in apoptotic signaling. Moreover, PAK2 activity was required for PDT-induced JNK activation and apoptosis. Inhibition of p53 mRNA expression using small interfering RNA (siRNA) additionally blocked activation of PAK2 and apoptosis induced by PDT. Importantly, our data also show that PDT triggers cell death via inactivation of ERK-mediated anti-apoptotic pathway. PDT triggers cell death via inactivation of the HSP90/multi-chaperone complex and subsequent degradation of Ras, further inhibiting anti-apoptotic processes, such as the Ras→ERK signal transduction pathway. Furthermore, we did not observe two-stage JNK activation for regulation of PAK2 activity in the PDT-induced apoptotic pathway in HUVECs, which was reported earlier in A431 cells. Based on the collective results, we have proposed a model for the PDT-triggered inactivation of the survival signal and apoptotic signaling cascade with Rose Bengal (RB), which sequentially involves singlet oxygen, Ca2+, NO, p53, caspase-9, caspase-3, PAK2, and JNK.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li 32023, Taiwan; E-Mail: ; Tel.: +886-3-2653515
| |
Collapse
|
33
|
p21-activated kinase 5 inhibits camptothecin-induced apoptosis in colorectal carcinoma cells. Tumour Biol 2010; 31:575-82. [PMID: 20567954 DOI: 10.1007/s13277-010-0071-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/08/2010] [Indexed: 12/27/2022] Open
Abstract
p21-activated kinase 5 (PAK5) is a recently identified member of the group B PAK family. The PAK proteins are effectors of the small GTPase Cdc42 and Rac1 and are known to regulate cell motility and activate cell-survival signaling pathways. Especially, the mitochondrial localization of PAK5 is vital to its effects on apoptosis and cell survival. Previously, we demonstrated that PAK5 expression increased significantly during the malignant progression of colorectal carcinoma (CRC) and that PAK5 promoted CRC metastasis by regulating CRC cell adhesion and migration. In the present study, we aim to investigate the role of PAK5 in camptothecin-induced apoptosis and its potential mechanism of action. Our results showed that overexpression of PAK5 inhibited camptothecin-induced apoptosis by inhibiting the activity of caspase-8 in CRC cells. Accordingly, knockdown of PAK5 in LoVo cells resulted in increased apoptosis. Mechanistically, we found that PAK5 directly phosphorylated Bad on serine 112 and indirectly led to phosphorylation of serine 136 via the Akt pathway. In conclusion, our study revealed previously unappreciated inhibitory role of PAK5 in camptothecin-induced apoptosis, thus suggesting PAK5 as a novel therapeutic target in CRC.
Collapse
|
34
|
Zhang M, Siedow M, Saia G, Chakravarti A. Inhibition of p21-activated kinase 6 (PAK6) increases radiosensitivity of prostate cancer cells. Prostate 2010; 70:807-16. [PMID: 20054820 PMCID: PMC2860659 DOI: 10.1002/pros.21114] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND p21-activated kinase 6 (PAK6) is a serine/threonine kinase belonging to the p21-activated kinase (PAK) family. We investigated the role of PAK6 in radiation-induced cell death in human prostate cancer cells. METHODS We used a short hairpin RNA (shRNA) strategy to stably knock down PAK6 in PC3 and DU145 cells. Radiation sensitivities were compared in PAK6 stably knockdown cells versus the scrambled shRNA-expressing control cells. RESULTS PAK6 mRNA and protein levels in PC3 and DU145 cells were upregulated upon exposure to 6 Gy of radiation. After irradiation, an increased percentage of apoptotic cells and cleaved caspase-3 levels were demonstrated in combination with a decrease in cell viability and a reduction in clonogenic survival in PAK6-knockdown cells. In addition, transfection with PAK6 shRNA blocked cells in a more radiosensitive G2-M phase and increased levels of DNA double-strand breaks. We further explored the potential mechanisms by which PAK6 mediates resistance to radiation-induced apoptosis. Inhibition of PAK6 caused a decrease in Ser(112) phosphorylation of BAD, a proapoptotic member of the Bcl-2 family, which led to enhanced binding of BAD to Bcl-2 and Bcl-X(L) and release of cytochrome c culminating into caspase activation and cell apoptosis. CONCLUSIONS The combination of PAK6 inhibition and irradiation resulted in significantly decreased survival of prostate cancer cells. The underlying mechanisms by which targeting PAK6 may improve radiation response seem to be multifaceted, and involve alterations in cell cycle distribution and impaired DNA double-strand break repair as well as relieved BAD phosphorylation.
Collapse
Affiliation(s)
- Min Zhang
- Department of Radiation Oncology, The Ohio State University Medical School, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
35
|
Siu MKY, Yeung MCW, Zhang H, Kong DSH, Ho JWK, Ngan HYS, Chan DCW, Cheung ANY. p21-Activated kinase-1 promotes aggressive phenotype, cell proliferation, and invasion in gestational trophoblastic disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:3015-22. [PMID: 20413688 DOI: 10.2353/ajpath.2010.091263] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gestational trophoblastic disease (GTD) includes hydatidiform mole (HM), which can develop persistent gestational trophoblastic neoplasia requiring chemotherapy; choriocarcinoma, which is a frankly malignant tumor; placental site trophoblastic tumor; and epithelioid trophoblastic tumor. p21-Activated kinases (PAKs) promote malignant tumor progression. Therefore, this study investigated PAK1, PAK2, and p-PAK2 Ser(20) in the pathogenesis of GTD. By real-time PCR, PAK1 mRNA was significantly higher in HMs, particularly metastatic HMs (P = 0.046) and HMs that developed persistent disease (P = 0.011), when compared with normal placentas. By immunohistochemistry, significantly increased cytoplasmic PAK1 immunoreactivity in cytotrophoblasts was also detected in HMs (P = 0.042) and choriocarcinomas (P = 0.003). In addition, HMs that developed persistent disease displayed higher PAK1 immunoreactivity than those that regressed (P = 0.016), and elevated PAK1 immunoreactivity was observed in placental site trophoblastic tumors. Indeed, there was significant positive correlation between PAK1 expression and the proliferative indices Ki-67 (P = 0.016) and MCM7 (P = 0.026). Moreover, higher PAK1 mRNA and protein expression was confirmed in the choriocarcinoma cell-lines JEG-3 and JAR; however, PAK2 mRNA and p-PAK2 immunoreactivity showed a similar expression pattern in normal first trimester placentas and GTD. Knockdown of PAK1 in JEG-3 and JAR reduced cell proliferation, migration, and invasion ability, up-regulated p16, and down-regulated vascular endothelial growth factor and MT1-MMP expression. This is the first report revealing the involvement of PAK1 in the pathogenesis and clinical progress of GTD.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Meng JY, Zhang CY, Lei CL. A proteomic analysis of Helicoverpa armigera adults after exposure to UV light irradiation. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:405-411. [PMID: 19944107 DOI: 10.1016/j.jinsphys.2009.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 05/28/2023]
Abstract
Ultraviolet (UV) light (blacklight), which emits UV in the range of 320-400nm, has been used worldwide in light trapping of insect pests. To gain a better understanding of the response of Helicoverpa armigera adults to UV light irradiation, we carried out a comparative proteomic analysis. Three-day-old adults were exposed to UV light for 1h. Total proteins were extracted and separated by two-dimensional gel electrophoresis. More than 1200 protein spots were reproducibly detected, including 12 that were more abundant and 21 less abundant. Mass spectrometry analysis and database searching helped us to identify 29 differentially abundant proteins. The identified proteins were categorized into several functional groups including signal transduction, RNA processing, protein processing, stress response, metabolisms, and cytoskeleton structure, etc. This study is the first analysis of differentially expressed proteins in phototactic insects under UV light irradiation conditions and gives new insights into the adaptation mechanisms responsive to UV light irradiation stress.
Collapse
Affiliation(s)
- Jian-Yu Meng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Institute of Insect Resources, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
37
|
Hsu RM, Tsai MH, Hsieh YJ, Lyu PC, Yu JS. Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol Biol Cell 2009; 21:287-301. [PMID: 19923322 PMCID: PMC2808764 DOI: 10.1091/mbc.e09-03-0232] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MYO18A is found as a novel PAK2 binding partner via βPIX/GIT1. MYO18A-depleted cells showed dramatic changes in shape, actin stress fiber and membrane ruffle formation, and displayed increases in the number and size of focal adhesions and a decrease in cell migration, suggesting an important role of MYO18A in regulating epithelial cell migration. The p21-activated kinase (PAK) 2 is known to be involved in numerous biological functions, including the regulation of actin reorganization and cell motility. To better understand the mechanisms underlying this regulation, we herein used a proteomic approach to identify PAK2-interacting proteins in human epidermoid carcinoma A431 cells. We found that MYO18A, an emerging member of the myosin superfamily, is a novel PAK2 binding partner. Using a siRNA knockdown strategy and in vitro binding assay, we discovered that MYO18A binds to PAK2 through the βPIX/GIT1 complex. Under normal conditions, MYO18A and PAK2 colocalized in lamellipodia and membrane ruffles. Interestingly, knockdown of MYO18A in cells did not prevent formation of the PAK2/βPIX/GIT1 complex, but rather apparently changed its localization to focal adhesions. Moreover, MYO18A-depleted cells showed dramatic changes in morphology and actin stress fiber and membrane ruffle formation and displayed increases in the number and size of focal adhesions. Migration assays revealed that MYO18A-depleted cells had decreased cell motility, and reexpression of MYO18A restored their migration ability. Collectively, our findings indicate that MYO18A is a novel binding partner of the PAK2/βPIX/GIT1 complex and suggest that MYO18A may play an important role in regulating epithelial cell migration via affecting multiple cell machineries.
Collapse
Affiliation(s)
- Rae-Mann Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
38
|
Abstract
The complex process of apoptosis is orchestrated by caspases, a family of cysteine proteases with unique substrate specificities. Accumulating evidence suggests that cell death pathways are finely tuned by multiple signaling events, including direct phosphorylation of caspases, whereas kinases are often substrates of active caspases. Importantly, caspase-mediated cleavage of kinases can terminate prosurvival signaling or generate proapoptotic peptide fragments that help to execute the death program and facilitate packaging of the dying cells. Here, we review caspases as kinase substrates and kinases as caspase substrates and discuss how the balance between cell survival and cell death can be shifted through crosstalk between these two enzyme families.
Collapse
Affiliation(s)
- Manabu Kurokawa
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
39
|
Hsuuw YD, Kuo TF, Lee KH, Liu YC, Huang YT, Lai CY, Chan WH. Ginkgolide B induces apoptosis via activation of JNK and p21-activated protein kinase 2 in mouse embryonic stem cells. Ann N Y Acad Sci 2009; 1171:501-8. [PMID: 19723096 DOI: 10.1111/j.1749-6632.2009.04691.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ginkgolide B (GKB), the major active component of Ginkgo biloba extracts, can both stimulate and inhibit apoptotic signaling. We previously showed that ginkgolide treatment of mouse blastocysts induces apoptosis, decreases cell numbers, retards the proliferation and development of mouse embryonic stem cells and blastocysts in vitro, and causes developmental injury in vivo. However, the precise molecular mechanisms underlying its actions are currently unknown. Here, our study further revealed that GKB induced apoptotic biochemical changes, including activation of JNK, caspase-3, and p21-activated protein kinase 2 (PAK2), in ESC-B5 mouse embryonic stem cells. Treatment of ESC-B5 cells with a JNK-specific inhibitor (SP600125) reduced GKB-induced activation of both JNK and caspase-3, indicating that JNK activity is required for GKB-induced caspase activation. Experiments using caspase-3 inhibitors and antisense oligonucleotides against PAK2 showed that caspase-3 activation is required for PAK2 activation and both of these activations are required for GKB-induced apoptosis in ESC-B5 cells.
Collapse
Affiliation(s)
- Yan-Der Hsuuw
- Department of Life Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Some of the characteristics of cancer cells are high rates of cell proliferation, cell survival, and the ability to invade surrounding tissue. The cytoskeleton has an essential role in these processes. Dynamic changes in the cytoskeleton are necessary for cell motility and cancer cells are dependent on motility for invasion and metastasis. The signaling pathways behind the reshaping and migrating properties of the cytoskeleton in cancer cells involve a group of Ras-related small GTPases and their effectors, including the p21-activated kinases (Paks). Paks are a family of serine/threonine protein kinases comprised of six isoforms (Pak 1-6), all of which are direct targets of the small GTPases Rac and Cdc42. Besides their role in cytoskeletal dynamics, Paks have recently been shown to regulate various other cellular activities, including cell survival, mitosis, and transcription. Paks are overexpressed and/or hyperactivated in several human tumors and their role in cell transformation makes them attractive therapeutic targets. Pak-targeted therapeutics may efficiently inhibit certain types of tumors and efforts to identify selective Pak-inhibitors are underway.
Collapse
Affiliation(s)
- Bettina Dummler
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
41
|
Huang YT, Lai CY, Lou SL, Yeh JM, Chan WH. Activation of JNK and PAK2 is essential for citrinin-induced apoptosis in a human osteoblast cell line. ENVIRONMENTAL TOXICOLOGY 2009; 24:343-356. [PMID: 18767140 DOI: 10.1002/tox.20434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. Previous studies by our group showed that CTN triggers apoptosis in mouse embryonic stem cells, as well as embryonic developmental injury. Here, we investigated the precise mechanisms governing this apoptotic effect in osteoblasts. CTN induced apoptotic biochemical changes in a human osteoblast cell line, including activation of c-Jun N-terminal kinase (JNK), loss of mitochondrial membrane potential, and caspase-3 and p21-activated protein kinase 2 (PAK2) activation. Experiments using a JNK-specific inhibitor, SP600125, and antisense oligonucleotides against JNK reduced CTN-induced activation of both JNK and caspase-3 in osteoblasts, indicating that JNK is required for caspase activation in this apoptotic pathway. Experiments using caspase-3 inhibitors and antisense oligonucleotides against PAK2 revealed that active caspase-3 is essential for PAK2 activation. Moreover, both caspase-3 and PAK2 require activation for CTN-induced apoptosis of osteoblasts. Interestingly, CTN stimulates two-stage activation of JNK in human osteoblasts. Early-stage JNK activation is solely ROS-dependent, whereas late-stage activation is dependent on ROS-mediated caspase activity, and regulated by caspase-induced activation of PAK2. On the basis of these results, we propose a signaling cascade model for CTN-induced apoptosis in human osteoblasts involving ROS, JNK, caspases, and PAK2.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Bioscience Technology, Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Inhibition of citrinin-induced apoptotic biochemical signaling in human hepatoma G2 cells by resveratrol. Int J Mol Sci 2009; 10:3338-3357. [PMID: 20111678 PMCID: PMC2812821 DOI: 10.3390/ijms10083338] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 12/25/2022] Open
Abstract
The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis, but its precise regulatory mechanisms of action are currently unclear. Resveratrol, a member of the phytoalexin family found in grapes and other dietary plants, possesses antioxidant and anti-tumor properties. In the present study, we examined the effects of resveratrol on apoptotic biochemical events in Hep G2 cells induced by CTN. Resveratrol inhibited CTN-induced ROS generation, activation of JNK, loss of mitochondrial membrane potential (MMP), as well as activation of caspase-9, caspase-3 and PAK2. Moreover, resveratrol and the ROS scavengers, NAC and α-tocopherol, abolished CTN-stimulated intracellular oxidative stress and apoptosis. Active JNK was required for CTN-induced mitochondria-dependent apoptotic biochemical changes, including loss of MMP, and activation of caspases and PAK2. Activation of PAK2 was essential for apoptosis triggered by CTN. These results collectively demonstrate that CTN stimulates ROS generation and JNK activation for mitochondria-dependent apoptotic signaling in Hep G2 cells, and these apoptotic biochemical events are blocked by pretreatment with resveratrol, which exerts antioxidant effects.
Collapse
|
43
|
Elevated p21-activated kinase 2 activity results in anchorage-independent growth and resistance to anticancer drug-induced cell death. Neoplasia 2009; 11:286-97. [PMID: 19242610 DOI: 10.1593/neo.81446] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 11/18/2022] Open
Abstract
p21-activated kinase 2 (PAK-2) seems to be a regulatory switch between cell survival and cell death signaling. We have shown previously that activation of full-length PAK-2 by Rac or Cdc42 stimulates cell survival, whereas caspase activation of PAK-2 to the proapoptotic PAK-2p34 fragment is involved in the cell death response. In this study, we present a role of elevated activity of full-length PAK-2 in anchorage-independent growth and resistance to anticancer drug-induced apoptosis of cancer cells. Hs578T human breast cancer cells that have low levels of PAK-2 activity were more sensitive to anticancer drug-induced apoptosis and showed higher levels of caspase activation of PAK-2 than MDA-MB435 and MCF-7 human breast cancer cells that have high levels of PAK-2 activity. To examine the role of elevated PAK-2 activity in breast cancer, we have introduced a conditionally active PAK-2 into Hs578T human breast cells. Conditional activation of PAK-2 causes loss of contact inhibition and anchorage-independent growth of Hs578T cells. Furthermore, conditional activation of PAK-2 suppresses activation of caspase 3, caspase activation of PAK-2, and apoptosis of Hs578T cells in response to the anticancer drug cisplatin. Our data suggest a novel mechanism by which full-length PAK-2 activity controls the apoptotic response by regulating levels of activated caspase 3 and thereby its own cleavage to the proapoptotic PAK-2p34 fragment. As a result, elevated PAK-2 activity interrupts the apoptotic response and thereby causes anchorage-independent survival and growth and resistance to anticancer drug-induced apoptosis.
Collapse
|
44
|
Abstract
The mycotoxin citrinin (CTN) is a natural contaminant in foodstuffs and animal feeds, and exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. However, its precise regulatory mechanisms of action, particularly in stem cells and embryos, are currently unclear. Recent studies show that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments with the embryonic stem cell line, ESC-B5, disclose that CTN induces apoptosis via several mechanisms, including ROS generation, increased cytoplasmic free calcium levels, intracellular nitric oxide production, enhanced Bax/Bcl-2 ratio, loss of mitochondrial membrane potential, cytochrome c release, activation of caspase-9 and caspase-3, and p21-activated protein kinase 2 and c-Jun N-terminal protein kinase activation. Additional studies show that CTN promotes cell death via inactivation of the HSP90/multi-chaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes such as the Ras-->ERK signal transduction pathway. On the basis of these findings, we propose a model for CTN-induced cell injury signalling cascades in embryonic stem cells and blastocysts.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| |
Collapse
|
45
|
Caffeine induces cell death via activation of apoptotic signal and inactivation of survival signal in human osteoblasts. Int J Mol Sci 2008; 9:698-718. [PMID: 19325779 PMCID: PMC2635715 DOI: 10.3390/ijms9050698] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 02/25/2008] [Accepted: 05/05/2008] [Indexed: 01/11/2023] Open
Abstract
Caffeine consumption is a risk factor for osteoporosis, but the precise regulatory mechanisms are currently unknown. Here, we show that cell viability decreases in osteoblasts treated with caffeine in a dose-dependent manner. This cell death is attributed primarily to apoptosis and to a smaller extent, necrosis. Moreover, caffeine directly stimulates intracellular oxidative stress. Our data support caffeine-induced apoptosis in osteoblasts via a mitochondria-dependent pathway. The apoptotic biochemical changes were effectively prevented upon pretreatment with ROS scavengers, indicating that ROS plays a critical role as an upstream controller in the caffeine-induced apoptotic cascade. Additionally, p21-activated protein kinase 2 (PAK2) and c-Jun N-terminal kinase (JNK) were activated in caffeine-treated osteoblasts. Experiments further found that PAK2 activity is required for caffeine-induced JNK activation and apoptosis. Importantly, our data also show that caffeine triggers cell death via inactivation of the survival signal, including the ERK- and Akt-mediated anti-apoptotic pathways. Finally, exposure of rats to dietary water containing 10~20 μM caffeine led to bone mineral density loss. These results demonstrate for the first time that caffeine triggers apoptosis in osteoblasts via activation of mitochondria-dependent cell death signaling and inactivation of the survival signal, and causes bone mineral density loss in vivo.
Collapse
|
46
|
Ndozangue-Touriguine O, Hamelin J, Bréard J. Cytoskeleton and apoptosis. Biochem Pharmacol 2008; 76:11-8. [PMID: 18462707 DOI: 10.1016/j.bcp.2008.03.016] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 11/17/2022]
Abstract
Apoptosis is a genetically programmed and physiological mode of cell death that leads to the removal of unwanted or abnormal cells. Cysteine-proteases called caspases are responsible for the apoptotic execution phase which is characterized by specific biochemical events as well as morphological changes. These changes, which lead to the orderly dismantling of the apoptotic cell, include cell contraction, dynamic membrane blebbing, chromatin condensation, nuclear disintegration, cell fragmentation followed by phagocytosis of the dying cell. They involve major modifications of the cytoskeleton which are largely mediated by cleavage of several of its components by caspases. For example, dynamic membrane blebbing is due to the increased contractility of the acto-myosin system following myosin light chain (MLC) phosphorylation. MLC phosphorylation is a consequence of the cleavage of a Rho GTPase effector, the kinase ROCK I, by caspase-3. This cleavage induces a constitutive kinase activity by removal of an inhibitory domain. Chromatin condensation is facilitated by the processing of lamins by caspases. Collapse of the cytokeratin network is mediated by cleavage of keratin 18. On another hand, the actin cytoskeleton rearrangement needed in the phagocyte for engulfment of the dying cell is due to the activation of the small GTPase Rac, a GTPase of the Rho family that induces actin polymerisation and formation of lamellipodia. In addition to mediating the morphological modifications of the apoptotic cell, several proteins of the cytoskeleton such as actin and keratins are also involved in the regulation of apoptotic signaling.
Collapse
|
47
|
Sawasaki T, Kamura N, Matsunaga S, Saeki M, Tsuchimochi M, Morishita R, Endo Y. Arabidopsis HY5 protein functions as a DNA-binding tag for purification and functional immobilization of proteins on agarose/DNA microplate. FEBS Lett 2007; 582:221-8. [PMID: 18082144 PMCID: PMC7164004 DOI: 10.1016/j.febslet.2007.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 11/28/2007] [Accepted: 12/04/2007] [Indexed: 12/30/2022]
Abstract
Protein microarray is considered to be one of the key analytical tools for high-throughput protein function analysis. Here, we report that the Arabidopsis HY5 functions as a novel DNA-binding tag (DBtag) for proteins. We also demonstrate that the DBtagged proteins could be immobilized and purified on a newly designed agarose/DNA microplate. Furthermore, we show three applications using the microarray: (1) detection of autophosphorylation activity of DBtagged human protein kinases and inhibition of their activity by staurosporine, (2) specific cleavage of DBtagged proteins by a virus protease and caspase 3, and (3) detection of a protein-protein interaction between the DBtagged UBE2N and UBE2v1. Thus, this method may facilitate rapid functional analysis of a wide range of proteins.
Collapse
Affiliation(s)
- Tatsuya Sawasaki
- Cell-Free Science and Technology Research Center, and The Venture Business Laboratory, Ehime University, Matsuyama, Ehime, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Huang LH, Shiao NH, Hsuuw YD, Chan WH. Protective effects of resveratrol on ethanol-induced apoptosis in embryonic stem cells and disruption of embryonic development in mouse blastocysts. Toxicology 2007; 242:109-22. [DOI: 10.1016/j.tox.2007.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 02/03/2023]
|
49
|
Machuy N, Campa F, Thieck O, Rudel T. c-Abl-binding protein interacts with p21-activated kinase 2 (PAK-2) to regulate PDGF-induced membrane ruffles. J Mol Biol 2007; 370:620-32. [PMID: 17543336 DOI: 10.1016/j.jmb.2007.04.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 03/21/2007] [Accepted: 04/25/2007] [Indexed: 11/25/2022]
Abstract
p21-Activated kinases (PAKs) are serine/threonine kinases involved in multiple cellular functions including cytoskeleton regulation, proliferation and apoptosis. We performed a screen for proteins interacting with PAK-2, a ubiquitously expressed kinase involved in apoptotic signaling. Among the PAK-2 interacting proteins were different members of the Abl-binding protein family. Abl-binding proteins bound to a proline-rich region of PAK-2 located in the regulatory N terminus. Moreover, active PAK-2 phosphorylated Abl-binding proteins in vitro. Interestingly, we show that PAK-2 also interacted with c-Abl but via a different domain than with the Abl-binding proteins. PAK-2 and Abi-1 co-localized in the cytoplasm and to membrane dorsal ruffles induced by PDGF treatment. Expression of mutant PAK-2 deficient in binding to Abl-binding proteins or silencing of PAK-2 expression prevented the formation of membrane dorsal ruffles in response to PDGF. Our findings define a new class of PAK-interacting proteins, which play an important role in actin cytoskeletal reorganization.
Collapse
Affiliation(s)
- Nikolaus Machuy
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
50
|
Chan WH, Wu HJ, Shiao NH. Apoptotic signaling in methylglyoxal-treated human osteoblasts involves oxidative stress, c-Jun N-terminal kinase, caspase-3, and p21-activated kinase 2. J Cell Biochem 2007; 100:1056-69. [PMID: 17131386 DOI: 10.1002/jcb.21114] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. MG is cytotoxic through induction of cell death, and elevated MG levels in diabetes patients are believed to contribute to diabetic complications. In this report, we show for the first time that MG treatment triggers apoptosis in human osteoblasts. We further show that MG-induced apoptosis of osteoblasts involves specific apoptotic biochemical changes, including oxidative stress, c-Jun N-terminal kinase (JNK) activation, mitochondrial membrane potential changes, cytochrome C release, increased Bax/Bcl-2 protein ratios, and activation of caspases (caspase-9, caspase-3) and p21-activated protein kinase 2 (PAK2). Treatment of osteoblasts with SP600125, a JNK-specific inhibitor, led to a reduction in MG-induced apoptosis and decreased activation of caspase-3 and PAK2, indicating that JNK activity is upstream of these events. Experiments using anti-sense oligonucleotides against PAK2 further showed that PAK2 activation is required for MG-induced apoptosis in osteoblasts. Interestingly, we also found that MG treatment triggered nuclear translocation of NF-kappaB, although the precise regulatory role of NF-kappaB activation in MG-induced apoptosis remains unclear. Lastly, we examined the effect of MG on osteoblasts in vivo, and found that exposure of rats to dietary water containing 100-200 microM MG caused bone mineral density (BMD) loss. Collectively, these results reveal for the first time that MG treatment triggers apoptosis in osteoblasts via specific apoptotic signaling, and causes BMD loss in vivo.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| | | | | |
Collapse
|