1
|
Zhang F, Zhu M, Chen Y, Wang G, Yang H, Lu X, Li Y, Chang HM, Wu Y, Ma Y, Yuan S, Zhu W, Dong X, Zhao Y, Yu Y, Wang J, Mu L. Harnessing omics data for drug discovery and development in ovarian aging. Hum Reprod Update 2025; 31:240-268. [PMID: 39977580 DOI: 10.1093/humupd/dmaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Ovarian aging occurs earlier than the aging of many other organs and has a lasting impact on women's overall health and well-being. However, effective interventions to slow ovarian aging remain limited, primarily due to an incomplete understanding of the underlying molecular mechanisms and drug targets. Recent advances in omics data resources, combined with innovative computational tools, are offering deeper insight into the molecular complexities of ovarian aging, paving the way for new opportunities in drug discovery and development. OBJECTIVE AND RATIONALE This review aims to synthesize the expanding multi-omics data, spanning genome, transcriptome, proteome, metabolome, and microbiome, related to ovarian aging, from both tissue-level and single-cell perspectives. We will specially explore how the analysis of these emerging omics datasets can be leveraged to identify novel drug targets and guide therapeutic strategies for slowing and reversing ovarian aging. SEARCH METHODS We conducted a comprehensive literature search in the PubMed database using a range of relevant keywords: ovarian aging, age at natural menopause, premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), genomics, transcriptomics, epigenomics, DNA methylation, RNA modification, histone modification, proteomics, metabolomics, lipidomics, microbiome, single-cell, genome-wide association studies (GWAS), whole-exome sequencing, phenome-wide association studies (PheWAS), Mendelian randomization (MR), epigenetic target, drug target, machine learning, artificial intelligence (AI), deep learning, and multi-omics. The search was restricted to English-language articles published up to September 2024. OUTCOMES Multi-omics studies have uncovered key mechanisms driving ovarian aging, including DNA damage and repair deficiencies, inflammatory and immune responses, mitochondrial dysfunction, and cell death. By integrating multi-omics data, researchers can identify critical regulatory factors and mechanisms across various biological levels, leading to the discovery of potential drug targets. Notable examples include genetic targets such as BRCA2 and TERT, epigenetic targets like Tet and FTO, metabolic targets such as sirtuins and CD38+, protein targets like BIN2 and PDGF-BB, and transcription factors such as FOXP1. WIDER IMPLICATIONS The advent of cutting-edge omics technologies, especially single-cell technologies and spatial transcriptomics, has provided valuable insights for guiding treatment decisions and has become a powerful tool in drug discovery aimed at mitigating or reversing ovarian aging. As technology advances, the integration of single-cell multi-omics data with AI models holds the potential to more accurately predict candidate drug targets. This convergence offers promising new avenues for personalized medicine and precision therapies, paving the way for tailored interventions in ovarian aging. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Fengyu Zhang
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ming Zhu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guiquan Wang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmei Lu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yunlong Ma
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuai Yuan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jia Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Filipovich E, Gorodkova E, Shcherbakova A, Asaad W, Popov S, Melnichenko G, Mokrysheva N, Utkina M. The role of cell cycle-related genes in the tumorigenesis of adrenal and thyroid neuroendocrine tumors. Heliyon 2025; 11:e41457. [PMID: 39834406 PMCID: PMC11742855 DOI: 10.1016/j.heliyon.2024.e41457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The molecular mechanisms underlying adrenal and thyroid neuroendocrine tumors, including their tumorigenesis, progression, and metastasis, involve unique pathways regulating cell cycle progression. To better understand these mechanisms and pathways, extensive in-depth research on cell cycle-related genes is necessary. This review aims to describe and interpret current single-cell RNA sequencing studies on neuroblastoma, medullary thyroid cancer, and pheochromocytoma tumors. Our review summarizes differentially expressed cell cycle-related genes with distinct functions, highlighting their potential as therapeutic targets and components of panels used to determine tumor type or aggressiveness. Although some insights have been gained, there is still limited information on these topics, and further research is required to explore the regulatory mechanisms of these tumors.
Collapse
Affiliation(s)
- Ekaterina Filipovich
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Ekaterina Gorodkova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Anastasia Shcherbakova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Walaa Asaad
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Sergey Popov
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Galina Melnichenko
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Natalya Mokrysheva
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Marina Utkina
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| |
Collapse
|
3
|
Zhao M, Li J, Wang R, Mi L, Gu Y, Chen R, Li Y, Shi W, Zhang Y. Ubiquitination-Binding Enzyme 2C is Associated with Cancer Development and Prognosis and is a Potential Therapeutic Target. Onco Targets Ther 2024; 17:1159-1171. [PMID: 39678016 PMCID: PMC11637980 DOI: 10.2147/ott.s485053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
UBE2C (Ubiquitination-binding enzyme 2C), one of the E2 enzymes encoded in the human genome, is a component of the ubiquitin proteasome system and plays a pivotal role in regulating cell cycle progression. Moreover, UBE2C is highly expressed and may play a pivotal role in both high-incidence and high-mortality malignancies, including lung cancers, breast cancers, and esophageal cancers. UBE2C influences a number of key processes, including cell cycle progression, tumor invasion and metastasis, proliferation, and drug resistance. However, few articles have systematically summarized the role of UBE2C in cancer. The aim of this review is to describe the structure and function of UBE2C, focusing on the current status of UBE2C research in malignant tumors. Furthermore, this review presents the potential of UBE2C as a new therapeutic target and a diagnostic and prognostic biomarker. Finally, future research directions for UBE2C are proposed. It is of great value to explore the mechanism of action of UBE2C in the tumor microenvironment (TME). A comprehensive and coherent comprehension of UBE2C will undoubtedly facilitate its transition from fundamental research to clinical applications.
Collapse
Affiliation(s)
- Mengjie Zhao
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Jielong Li
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rui Wang
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Lida Mi
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Yan Gu
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rongjin Chen
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Yangyang Li
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Woda Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Yajun Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| |
Collapse
|
4
|
Zhan P, Lu Y, Lu J, Cheng Y, Luo C, Yang F, Xi W, Wang J, Cen X, Wang F, Xie C, Yin Z. The activation of the Notch signaling pathway by UBE2C promotes the proliferation and metastasis of hepatocellular carcinoma. Sci Rep 2024; 14:22859. [PMID: 39353974 PMCID: PMC11445553 DOI: 10.1038/s41598-024-72714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
UBE2C, a ubiquitin-conjugating enzyme, functions as an oncogene in different types of human cancers. Nonetheless, the exact influence of UBE2C on the development of HCC via regulation of ubiquitination remains uncertain. Here, we found that UBE2C displayed elevated levels of expression in HCC and was associated with an unfavorable prognosis, as evidenced by the analysis of the TCGA database and the examination of clinical specimens. The role of UBE2C in HCC revealed its ability to promote the growth and metastasis of HCC. Mechanistically, UBE2C activated Notch signaling, as evidenced by the upregulation of N1ICD and Hes1, crucial components of the Notch pathway, and activation of the RBP-JK luciferase reporter by UBE2C. Finally, rescue experiments demonstrated that the oncogenic role of UBE2C was eliminated through treatment with the Notch inhibitor DAPT, while overexpression of N1ICD alleviated the anticarcinogenic impact of knockdown of UBE2C. Altogether, the results of our study indicate that UBE2C plays a role in the activation of Notch signaling and could potentially serve as a viable target for therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Ping Zhan
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yuyan Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Jing Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yizhe Cheng
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Changhong Luo
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Fan Yang
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Wenqing Xi
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China
| | - Jinzhu Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xuesong Cen
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China.
| | - Chengrong Xie
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China.
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China.
| |
Collapse
|
5
|
Fujiwara Y, Takahashi RU, Saito M, Umakoshi M, Shimada Y, Koyama K, Yatabe Y, Watanabe SI, Koyota S, Minamiya Y, Tahara H, Kono K, Shiraishi K, Kohno T, Goto A, Tsuchiya N. Oncofetal IGF2BP3-mediated control of microRNA structural diversity in the malignancy of early-stage lung adenocarcinoma. Proc Natl Acad Sci U S A 2024; 121:e2407016121. [PMID: 39196622 PMCID: PMC11388381 DOI: 10.1073/pnas.2407016121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The nature of microRNA (miRNA) dysfunction in carcinogenesis remains controversial because of the complex connection between miRNA structural diversity and biological processes. Here, we found that oncofetal IGF2BP3 regulates the selective production of a subset of 3'-isoforms (3'-isomiRs), including miR-21-5p and Let-7 family, which induces significant changes in their cellular seed occupancy and structural components, establishing a cancer-specific gene expression profile. The D-score, reflecting dominant production of a representative miR-21-5p+C (a 3'-isomiR), discriminated between clinical early-stage lung adenocarcinoma (LUAD) cases with low and high recurrence risks, and was associated with molecular features of cell cycle progression, epithelial-mesenchymal transition pressure, and immune evasion. We found that IGF2BP3 controls the production of miR-21-5p+C by directing the nuclear Drosha complex to select the cleavage site. IGF2BP3 was also involved in the production of 3'-isomiRs of miR-425-5p and miR-454-3p. IGF2BP3-regulated these three miRNAs are suggested to be associated with the regulation of p53, TGF-β, and TNF pathways in LUAD. Knockdown of IGF2BP3 also induced a selective upregulation of Let-7 3'-isomiRs, leading to increased cellular Let-7 seed occupancy and broad repression of its target genes encoding cell cycle regulators. The D-score is an index that reflects this cellular situation. Our results suggest that the aberrant regulation of miRNA structural diversity is a critical component for controlling cellular networks, thus supporting the establishment of a malignant gene expression profile in early stage LUAD.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kei Koyama
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Souichi Koyota
- Molecular Medicine Laboratory, Bioscience Education and Research Support Center, Akita University, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Hospital, Akita 010-8543, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Naoto Tsuchiya
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
6
|
Jiang Y, Liu B, Fu L, Li F. UBE2C regulates the KEAP1/NRF2 signaling pathway to promote the growth of gastric cancer by inhibiting autophagy. Int J Biol Macromol 2024; 276:134011. [PMID: 39032892 DOI: 10.1016/j.ijbiomac.2024.134011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world, ranking fourth in incidence and second in mortality among malignant tumors. In recent years, there has been some progress in biological treatment and targeted treatment for gastric cancer, but the prognosis for gastric cancer patients remains pessimistic, and the molecular mechanisms involved are not yet clear. In this study, bioinformatics analysis showed that Ubiquitin-conjugating enzyme E2C(UBE2C) was abnormally expressed in various types of cancer. Furthermore, UBE2C protein and mRNA expression was significantly elevated in gastric cancer tissues and cells. Silencing UBE2C significantly inhibited the proliferation and migration of gastric cancer cells. Mechanistically, UBE2C overexpression inhibited gastric cancer cell autophagy, leading to the accumulation of p62. Furthermore, immunoprecipitation results showed that UBE2C overexpression promoted the interaction between p62 and KEAP1, while inhibiting the binding of NRF2 to KEAP1, thereby weakening the ubiquitination and degradation of NRF2. In addition, the silencing of UBE2C leads to a reduction in the nuclear accumulation of NRF2. Importantly, the NRF2 activator TBHQ reversed the inhibition of gastric cancer cell proliferation and migration caused by the silencing of UBE2C. In summary, our study provides new insights into the molecular mechanisms of UBE2C in anti-cancer therapy.
Collapse
Affiliation(s)
- Yunhe Jiang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lifu Fu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China; The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China; Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China; Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China.
| |
Collapse
|
7
|
Yamanaka T, Kurosawa M, Yoshida A, Shimogori T, Hiyama A, Maity SN, Hattori N, Matsui H, Nukina N. The transcription factor NF-YA is crucial for neural progenitor maintenance during brain development. J Biol Chem 2024; 300:105629. [PMID: 38199563 PMCID: PMC10839448 DOI: 10.1016/j.jbc.2024.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
In contrast to stage-specific transcription factors, the role of ubiquitous transcription factors in neuronal development remains a matter of scrutiny. Here, we demonstrated that a ubiquitous factor NF-Y is essential for neural progenitor maintenance during brain morphogenesis. Deletion of the NF-YA subunit in neural progenitors by using nestin-cre transgene in mice resulted in significant abnormalities in brain morphology, including a thinner cerebral cortex and loss of striatum during embryogenesis. Detailed analyses revealed a progressive decline in multiple neural progenitors in the cerebral cortex and ganglionic eminences, accompanied by induced apoptotic cell death and reduced cell proliferation. In neural progenitors, the NF-YA short isoform lacking exon 3 is dominant and co-expressed with cell cycle genes. ChIP-seq analysis from the cortex during early corticogenesis revealed preferential binding of NF-Y to the cell cycle genes, some of which were confirmed to be downregulated following NF-YA deletion. Notably, the NF-YA short isoform disappears and is replaced by its long isoform during neuronal differentiation. Forced expression of the NF-YA long isoform in neural progenitors resulted in a significant decline in neuronal count, possibly due to the suppression of cell proliferation. Collectively, we elucidated a critical role of the NF-YA short isoform in maintaining neural progenitors, possibly by regulating cell proliferation and apoptosis. Moreover, we identified an isoform switch in NF-YA within the neuronal lineage in vivo, which may explain the stage-specific role of NF-Y during neuronal development.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan; Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masaru Kurosawa
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aya Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Hiyama
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Lu Y, Shan L, Cheng X, Zhu XL. Exploring the mechanism underlying the therapeutic effects of butein in colorectal cancer using network pharmacology and single-cell RNA sequencing data. J Gene Med 2024; 26:e3628. [PMID: 37963584 DOI: 10.1002/jgm.3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Butein has shown substantial potential as a cancer treatment, but its precise mechanism of action in colorectal cancer (CRC) remains unclear. This study aimed to uncover the underlying mechanisms through which butein operates in CRC and to identify potential biomarkers through a comprehensive investigation. METHODS Target genes associated with butein were sourced from SwissTargetPrediction, CTD, BindingDB and TargetNet. Gene expression data from the GSE38026 dataset and the single-cell dataset (GSE222300) were retrieved from the Gene Expression Omnibus database. The activation of disease-related pathways was assessed using Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and differential gene analysis. Disease-associated genes were identified through differential analysis and weighted gene co-expression network analysis (WGCNA). The protein-protein interaction network was utilized to pinpoint potential drug targets. Molecular complex detection (MCODE) analysis was employed to uncover relevant genes influenced by butein within key subgroup networks. Machine learning techniques were applied for the screening of potential biomarkers, with receiver operating characteristic curves used to evaluate their clinical significance. Single-cell analysis was conducted to assess the pharmacological targets of butein in CRC, with validation performed using the external dataset GSE40967. RESULTS A total of 232 target genes for butein were identified. Functional enrichment analysis revealed significant enrichment of signaling pathways, including mitogen-activated protein kinase, JAK-STAT and NF-κB, among these genes. Differential analysis, in conjunction with WGCNA, yielded 520 disease-related genes. Subsequently, a disease-drug-gene network consisting of 727 targets was established, and a subnetwork containing 56 crucial genes was extracted. Important pathways such as the FoxO signaling pathway exhibited significant enrichment within these key genes. Machine learning applied to the 56 important genes led to the identification of a potential biomarker, UBE2C. Receiver operating characteristic analysis demonstrated the excellent clinical predictive utility of UBE2C. Single-cell analysis suggested that butein's therapeutic effects might be linked to its influence on epithelial and T cells, with UBE2C expression associated with these cell types. Validation using the external dataset GSE40967 further confirmed the exceptional clinical predictive capability of UBE2C. CONCLUSION This study combines network pharmacology with single-cell analysis to unravel the mechanisms underlying butein's effects in CRC. Notably, UBE2C emerged as a promising biomarker with superior clinical efficacy. These research findings contribute significantly to our understanding of specific molecular mechanisms, potentially shaping future clinical practices.
Collapse
Affiliation(s)
- Ye Lu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Taicang, Jiangsu, China
- Suzhou Medical College of Soochow University/Soochow University Affiliated Taicang Hospital, Suzhou, Jiangsu, China
| | - Li Shan
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Taicang, Jiangsu, China
| | - Xu Cheng
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Taicang, Jiangsu, China
| | - Xiao-Li Zhu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Taicang, Jiangsu, China
| |
Collapse
|
9
|
Liang K, Wang Q, Qiu L, Gong X, Chen Z, Zhang H, Ding K, Liu Y, Wei J, Lin S, Fu S, Du H. Combined Inhibition of UBE2C and PLK1 Reduce Cell Proliferation and Arrest Cell Cycle by Affecting ACLY in Pan-Cancer. Int J Mol Sci 2023; 24:15658. [PMID: 37958642 PMCID: PMC10650476 DOI: 10.3390/ijms242115658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have shown that the cell-cycle-related regulatory proteins UBE2C, PLK1, and BIRC5 promote cell proliferation and migration in different types of cancer. However, there is a lack of in-depth and systematic research on the mechanism of these three as therapeutic targets. In this study, we found a positive correlation between the expression of UBE2C and PLK1/BIRC5 in the Cancer Genome Atlas (TCGA) database, revealing a potential combination therapy candidate for pan-cancer. Quantitative real-time PCR (qRT-PCR), Western blotting (WB), cell phenotype detection, and RNA-seq techniques were used to evidence the effectiveness of the combination candidate. We found that combined interference of UBE2C with PLK1 and UBE2C with BIRC5 affected metabolic pathways by significantly downregulating the mRNA expression of IDH1 and ACLY, which was related to the synthesis of acetyl-CoA. By combining the PLK1 inhibitor volasertib and the ACLY inhibitor bempedoic acid, it showed a higher synergistic inhibition of cell viability and higher synergy scores in seven cell lines, compared with those of other combination treatments. Our study reveals the potential mechanisms through which cell-cycle-related genes regulate metabolism and proposes a potential combined targeted therapy for patients with higher PLK1 and ACLY expression in pan-cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (K.L.); (Q.W.); (L.Q.); (X.G.); (Z.C.); (H.Z.); (K.D.); (Y.L.); (J.W.); (S.L.); (S.F.)
| |
Collapse
|
10
|
Liu D, Guan X, Liu W, Jia Y, Zhou H, Xi C, Zhao M, Fang Y, Wu L, Li K. Identification of transcriptome characteristics of granulosa cells and the possible role of UBE2C in the pathogenesis of premature ovarian insufficiency. J Ovarian Res 2023; 16:203. [PMID: 37848988 PMCID: PMC10580542 DOI: 10.1186/s13048-023-01266-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/17/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is an important cause of infertility characterized by the functional decline of the ovary. Granulosa cells (GCs) around oocytes are critical for folliculogenesis, and GC dysfunction is one of the important etiologies of POI. The aim of this study was to explore the potential biomarkers of POI by identifying hub genes and analyze the correlation of biomarkers with immune infiltration in POI using RNA profiling and bioinformatics analysis. METHODS RNA sequencing was performed on GCs from biochemical POI (bPOI) patients and controls. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to explore the candidate genes. qRT‒PCR was performed to verify the expression of hub genes. Western blot, Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine (EdU) assays, TUNEL (TdT-mediated dUTP Nick-End Labeling) and flow cytometry analysis were used to validate the possible role of ubiquitin-conjugating enzyme 2C (UBE2C) in POI. CIBERSORT was adopted to explore immune cell infiltration and the correlation between UBE2C and immune cells in bPOI. RESULTS Through analysis of differentially expressed genes (DEGs) and WGCNA, we obtained 143 candidate genes. After construction of the protein‒protein interaction (PPI) network and analysis with Cytoscape, 10 hub genes, including UBE2C, PBK, BUB1, CDC20, NUSAP1, CENPA, CCNB2, TOP2A, AURKB, and FOXM1, were identified and verified by qRT‒PCR. Subsequently, UBE2C was chosen as a possible biomarker of POI because knockdown of UBE2C could inhibit the proliferation and promote the apoptosis of GCs. Immune infiltration analysis indicated that monocytes and M1 macrophages may be associated with the pathogenesis of POI. In addition, UBE2C was negatively correlated with monocytes and M1 macrophages in POI. CONCLUSIONS This study identified a hub gene in GCs that might be important in the pathogenesis of POI and revealed the key role of UBE2C in driving POI. Immune infiltration may be highly related with the onset and etiology of POI.
Collapse
Affiliation(s)
- Dan Liu
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Xiaohong Guan
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenqiang Liu
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanping Jia
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Hong Zhou
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Chenxiang Xi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Mei Zhao
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Yuan Fang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Li Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Kunming Li
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China.
| |
Collapse
|
11
|
Liu J, Zhang C. Xenopus cell-free extracts and their applications in cell biology study. BIOPHYSICS REPORTS 2023; 9:195-205. [PMID: 38516620 PMCID: PMC10951473 DOI: 10.52601/bpr.2023.230016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 03/23/2024] Open
Abstract
Xenopus has proven to be a remarkably versatile model organism in the realm of biological research for numerous years, owing to its straightforward maintenance in laboratory settings and its abundant provision of ample-sized oocytes, eggs, and embryos. The cell cycle of these oocytes, eggs, and early embryos exhibits synchrony, and extracts derived from these cells serve various research purposes. Many fundamental concepts in biochemistry, cell biology, and development have been elucidated through the use of cell-free extracts derived from Xenopus cells. Over the past few decades, a wide array of cell-free extracts has been prepared from oocytes, eggs, and early embryos of different Xenopus species at varying cell cycle stages. Each of these extracts possesses distinct characteristics. This review provides a concise overview of the Xenopus species employed in laboratory research, the diverse types of cell-free extracts available, and their respective properties. Furthermore, this review delves into the extensive investigation of spindle assembly in Xenopus egg extracts, underscoring the versatility and potency of these cell-free systems in the realm of cell biology.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Vava A, Paccez JD, Wang Y, Gu X, Bhasin MK, Myers M, Soares NC, Libermann TA, Zerbini LF. DCUN1D1 Is an Essential Regulator of Prostate Cancer Proliferation and Tumour Growth That Acts through Neddylation of Cullin 1, 3, 4A and 5 and Deregulation of Wnt/Catenin Pathway. Cells 2023; 12:1973. [PMID: 37566052 PMCID: PMC10417424 DOI: 10.3390/cells12151973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Defective in cullin neddylation 1 domain containing 1 (DCUN1D1) is an E3 ligase for the neddylation, a post-translational process similar to and occurring in parallel to ubiquitin proteasome pathway. Although established as an oncogene in a variety of squamous cell carcinomas, the precise role of DCUN1D1 in prostate cancer (PCa) has not been previously explored thoroughly. Here, we investigated the role of DCUN1D1 in PCa and demonstrated that DCUN1D1 is upregulated in cell lines as well as human tissue samples. Inhibition of DCUN1D1 significantly reduced PCa cell proliferation and migration and remarkably inhibited xenograft formation in mice. Applying both genomics and proteomics approaches, we provide novel information about the DCUN1D1 mechanism of action. We identified CUL3, CUL4B, RBX1, CAND1 and RPS19 proteins as DCUN1D1 binding partners. Our analysis also revealed the dysregulation of genes associated with cellular growth and proliferation, developmental, cell death and cancer pathways and the WNT/β-catenin pathway as potential mechanisms. Inhibition of DCUN1D1 leads to the inactivation of β-catenin through its phosphorylation and degradation which inhibits the downstream action of β-catenin, reducing its interaction with Lef1 in the Lef1/TCF complex that regulates Wnt target gene expression. Together our data point to an essential role of the DCUN1D1 protein in PCa which can be explored for potential targeted therapy.
Collapse
Affiliation(s)
- Akhona Vava
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (A.V.); (J.D.P.)
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (A.V.); (J.D.P.)
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI 02912, USA;
| | - Xuesong Gu
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; (X.G.); (T.A.L.)
| | - Manoj K. Bhasin
- Department of Pediatrics Bioinformatics, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Michael Myers
- Protein Networks Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | - Nelson C. Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health, Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA/School/Faculdade de Lisboa, 1169-056 Lisbon, Portugal
| | - Towia A. Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; (X.G.); (T.A.L.)
| | - Luiz F. Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (A.V.); (J.D.P.)
| |
Collapse
|
13
|
Kim JH, Lee KW, Yang HJ, Park JJ, Lee CH, Jeon YS, Yun JH, Park S, Song SJ, Kim YH, Lee JH, Moon A, Song YS. The correlation between the expression of ubiquitin-conjugating enzyme 2C and prostate cancer prognosis. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04611-7. [PMID: 36752909 DOI: 10.1007/s00432-023-04611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Ubiquitin-conjugating enzyme E2 C (UBE2C) is known to show a causal relationship with cancer development and advancement. The role of UBE2C is to control the mitotic spindle checkpoint. Excess UBE2C has been identified in patients with advanced prostate cancer. The objective of the present study was to examine positive connections between the expression of UBE2C and prognostic factors for prostate cancer. METHODS Prostate cancer patients' clinical data were analysed. Tissue microarrays (TMAs) were also performed for human prostate cancer tissues (n = 335) and adjacent non-neoplastic tissues (n = 22). TMA slides were incubated with antibodies against UBE2C. Cores were scored by a pathologist who was blind to cancer results. RESULTS Of 335 prostate cancer patients, 200 could be assessed for biochemical recurrence, clinical recurrence, and overall survival. Human prostate cancer tissues showed higher expression of UBE2C than adjacent non-neoplastic tissues. High expression level of UBE2C showed a strong positive relationship with a high prostate-specific antigen (PSA), Gleason's score, and pathological stage of prostate cancer. Patients with a higher UBE2C grade demonstrated greater lymphatic engagement of prostate cancer than those with a lower UBE2C grade. CONCLUSION The expression of UBE2C has positive correlations with several prognostic factors for prostate cancer. Thus, investigating the expression level of UBE2C staining is a promising tool for predicting prostate cancer prognosis.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University School of Medicine, 59, Daesagwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| | - Kwang Woo Lee
- Department of Urology, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Hee Jo Yang
- Department of Urology, Soonchunhyang University School of Medicine, Cheonan, Republic of Korea
| | - Jae Joon Park
- Department of Urology, Soonchunhyang University School of Medicine, 59, Daesagwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| | - Chang Ho Lee
- Department of Urology, Soonchunhyang University School of Medicine, Cheonan, Republic of Korea
| | - Youn Soo Jeon
- Department of Urology, Soonchunhyang University School of Medicine, Cheonan, Republic of Korea
| | - Jong Hyun Yun
- Department of Urology, Soonchunhyang University School of Medicine, Gumi, Republic of Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
- Department of Applied Statistics, Chung-Ang University, Seoul, Republic of Korea
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Yon Hee Kim
- Department of Pathology, Soonchunhyang University School of Medicine, Seoul, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University School of Medicine, Cheonan, Republic of Korea
| | - Ahrim Moon
- Department of Pathology, Soonchunhyang University School of Medicine, 170, Jomaru-ro, Bucheon-si, Bucheon, 14584, Gyeonggi-do, Republic of Korea.
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University School of Medicine, 59, Daesagwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea.
| |
Collapse
|
14
|
Paisana E, Cascão R, Custódia C, Qin N, Picard D, Pauck D, Carvalho T, Ruivo P, Barreto C, Doutel D, Cabeçadas J, Roque R, Pimentel J, Miguéns J, Remke M, Barata JT, Faria CC. UBE2C promotes leptomeningeal dissemination and is a therapeutic target in brain metastatic disease. Neurooncol Adv 2023; 5:vdad048. [PMID: 37215954 PMCID: PMC10195208 DOI: 10.1093/noajnl/vdad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Despite current improvements in systemic cancer treatment, brain metastases (BM) remain incurable, and there is an unmet clinical need for effective targeted therapies. Methods Here, we sought common molecular events in brain metastatic disease. RNA sequencing of thirty human BM identified the upregulation of UBE2C, a gene that ensures the correct transition from metaphase to anaphase, across different primary tumor origins. Results Tissue microarray analysis of an independent BM patient cohort revealed that high expression of UBE2C was associated with decreased survival. UBE2C-driven orthotopic mouse models developed extensive leptomeningeal dissemination, likely due to increased migration and invasion. Early cancer treatment with dactolisib (dual PI3K/mTOR inhibitor) prevented the development of UBE2C-induced leptomeningeal metastases. Conclusions Our findings reveal UBE2C as a key player in the development of metastatic brain disease and highlight PI3K/mTOR inhibition as a promising anticancer therapy to prevent late-stage metastatic brain cancer.
Collapse
Affiliation(s)
- Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | - David Pauck
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Pedro Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Clara Barreto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Delfim Doutel
- Anatomic Pathology Department, Instituto Português de Oncologia Francisco Gentil, R. Prof. Lima Basto, 1099-023, Lisboa, Portugal
| | - José Cabeçadas
- Anatomic Pathology Department, Instituto Português de Oncologia Francisco Gentil, R. Prof. Lima Basto, 1099-023, Lisboa, Portugal
| | - Rafael Roque
- Neurology Department, Laboratory of Neuropathology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - José Pimentel
- Neurology Department, Laboratory of Neuropathology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - José Miguéns
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | - Claudia C Faria
- Corresponding Author: Claudia C. Faria, Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal ()
| |
Collapse
|
15
|
Li Q, Zhang W. Progress in Anticancer Drug Development Targeting Ubiquitination-Related Factors. Int J Mol Sci 2022; 23:ijms232315104. [PMID: 36499442 PMCID: PMC9737479 DOI: 10.3390/ijms232315104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
Ubiquitination is extensively involved in critical signaling pathways through monitoring protein stability, subcellular localization, and activity. Dysregulation of this process results in severe diseases including malignant cancers. To develop drugs targeting ubiquitination-related factors is a hotspot in research to realize better therapy of human diseases. Ubiquitination comprises three successive reactions mediated by Ub-activating enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3. As expected, multiple ubiquitination enzymes have been highlighted as targets for anticancer drug development due to their dominant effect on tumorigenesis and cancer progression. In this review, we discuss recent progresses in anticancer drug development targeting enzymatic machinery components.
Collapse
|
16
|
You D, Guo J, Zhang Y, Guo L, Lu X, Huang X, Sun S, Li H. The heterogeneity of mammalian utricular cells over the course of development. Clin Transl Med 2022; 12:e1052. [PMID: 36178017 PMCID: PMC9523683 DOI: 10.1002/ctm2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The inner ear organ is a delicate tissue consisting of hair cells (HCs) and supporting cells (SCs).The mammalian inner ear HCs are terminally differentiated cells that cannot spontaneously regenerate in adults. Epithelial non-hair cells (ENHCs) in the utricle include HC progenitors and SCs, and the progenitors share similar characteristics with SCs in the neonatal inner ear. METHODS We applied single-cell sequencing to whole mouse utricles from the neonatal period to adulthood, including samples from postnatal day (P)2, P7 and P30 mice. Furthermore, using transgenic mice and immunostaining, we traced the source of new HC generation. RESULTS We identified several sensory epithelial cell clusters and further found that new HCs arose mainly through differentiation from Sox9+ progenitor cells and that only a few cells were produced by mitotic proliferation in both neonatal and adult mouse utricles. In addition, we identified the proliferative cells using the marker UbcH10 and demonstrated that in adulthood the mitotically generated HCs were primarily found in the extrastriola. Moreover, we observed that not only Type II, but also Type I HCs could be regenerated by either mitotic cell proliferation or progenitor cell differentiation. CONCLUSIONS Overall, our findings expand our understanding of ENHC cell fate and the characteristics of the vestibular organs in mammals over the course of development.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xinsheng Huang
- Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Institutes of Biomedical SciencesFudan UniversityShanghaiChina,NHC Key Laboratory of Hearing Medicine, Fudan UniversityShanghaiChina,The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
17
|
Identification of Human Cell Cycle Phase Markers Based on Single-Cell RNA-Seq Data by Using Machine Learning Methods. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2516653. [PMID: 36004205 PMCID: PMC9393965 DOI: 10.1155/2022/2516653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/17/2022]
Abstract
The cell cycle is composed of a series of ordered, highly regulated processes through which a cell grows and duplicates its genome and eventually divides into two daughter cells. According to the complex changes in cell structure and biosynthesis, the cell cycle is divided into four phases: gap 1 (G1), DNA synthesis (S), gap 2 (G2), and mitosis (M). Determining which cell cycle phases a cell is in is critical to the research of cancer development and pharmacy for targeting cell cycle. However, current detection methods have the following problems: (1) they are complicated and time consuming to perform, and (2) they cannot detect the cell cycle on a large scale. Rapid developments in single-cell technology have made dissecting cells on a large scale possible with unprecedented resolution. In the present research, we construct efficient classifiers and identify essential gene biomarkers based on single-cell RNA sequencing data through Boruta and three feature ranking algorithms (e.g., mRMR, MCFS, and SHAP by LightGBM) by utilizing four advanced classification algorithms. Meanwhile, we mine a series of classification rules that can distinguish different cell cycle phases. Collectively, we have provided a novel method for determining the cell cycle and identified new potential cell cycle-related genes, thereby contributing to the understanding of the processes that regulate the cell cycle.
Collapse
|
18
|
van Zyl T, Yan W, McAdams AM, Monavarfeshani A, Hageman GS, Sanes JR. Cell atlas of the human ocular anterior segment: Tissue-specific and shared cell types. Proc Natl Acad Sci U S A 2022; 119:e2200914119. [PMID: 35858321 PMCID: PMC9303934 DOI: 10.1073/pnas.2200914119] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
The anterior segment of the eye consists of the cornea, iris, ciliary body, crystalline lens, and aqueous humor outflow pathways. Together, these tissues are essential for the proper functioning of the eye. Disorders of vision have been ascribed to defects in all of them; some disorders, including glaucoma and cataract, are among the most prevalent causes of blindness in the world. To characterize the cell types that compose these tissues, we generated an anterior segment cell atlas of the human eye using high-throughput single-nucleus RNA sequencing (snRNAseq). We profiled 195,248 nuclei from nondiseased anterior segment tissues of six human donors, identifying >60 cell types. Many of these cell types were discrete, whereas others, especially in the lens and cornea, formed continua corresponding to known developmental transitions that persist in adulthood. Having profiled each tissue separately, we performed an integrated analysis of the entire anterior segment, revealing that some cell types are unique to a single structure, whereas others are shared across tissues. The integrated cell atlas was then used to investigate cell type-specific expression patterns of more than 900 human ocular disease genes identified through either Mendelian inheritance patterns or genome-wide association studies.
Collapse
Affiliation(s)
- Tavé van Zyl
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Wenjun Yan
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Alexi M. McAdams
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Aboozar Monavarfeshani
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA 02115
| | - Gregory S. Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132
| | - Joshua R. Sanes
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
19
|
Bao Z, Cheng J, Zhu J, Ji S, Gu K, Zhao Y, Yu S, Meng Y. Using Weighted Gene Co-Expression Network Analysis to Identify Increased MND1 Expression as a Predictor of Poor Breast Cancer Survival. Int J Gen Med 2022; 15:4959-4974. [PMID: 35601002 PMCID: PMC9117423 DOI: 10.2147/ijgm.s354826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Objective We used bioinformatics analysis to identify potential biomarker genes and their relationship with breast cancer (BC). Materials and Methods We used a weighted gene co-expression network analysis (WGCNA) to create a co-expression network based on the top 25% genes in the GSE24124, GSE33926, and GSE86166 datasets obtained from the Gene Expression Omnibus. We used the DAVID online platform to perform GO and KEGG pathway enrichment analyses and the Cytoscape CytoHubba plug-in to screen the potential genes. Then, we related the genes to prognostic values in BC using the Oncomine, GEPIA, and Kaplan–Meier Plotter databases. Findings were validated by immunohistochemical (IHC) staining in the Human Protein Atlas and the TCGA-BRCA cohort. LinkedOmics identified the interactive expressions of hub genes. We used UALCAN to evaluate the methylation levels of these hub genes. MethSurv and SurvivalMeth were used to assess the multilevel prognostic value. Finally, we assessed hub gene association with immune cell infiltration using TIMER. Results The mRNA levels of MKI67, UBE2C, GTSE1, CCNA2, and MND1 were significantly upregulated in BC, whereas ESR1, THSD4, TFF1, AGR2, and FOXA1 were significantly downregulated. The DNA methylation signature analysis showed a better prognosis in the low-risk group. Further subgroup analyses revealed that MND1 might serve as an independent risk factor for unfavorable BC prognosis. Additionally, MND1 expression levels positively correlate with the immune infiltration statuses of CD4+ T cells, CD8+ T cells, B cells, neutrophils, dendritic cells, and macrophages. Conclusion Our results indicate that the ten hub genes may be involved in BC’s carcinogenesis, development, or metastasis, and MND1 may be a potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Zhaokang Bao
- Department of Oncology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - Jiale Cheng
- Department of Oncology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - Jiahao Zhu
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - Ke Gu
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yutian Zhao
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Shiyou Yu
- Department of Oncology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - You Meng
- Department of Oncology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
- Correspondence: You Meng, Department of Oncology Surgery, The affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, 16 West Baita Road, Suzhou, Jiangsu, People’s Republic of China, Email
| |
Collapse
|
20
|
Ubiquitin conjugating enzyme E2 C (UBE2C) may play a dual role involved in the progression of thyroid carcinoma. Cell Death Dis 2022; 8:130. [PMID: 35332135 PMCID: PMC8948250 DOI: 10.1038/s41420-022-00935-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
Abstract
The present study aimed to explore the role of ubiquitin-conjugating enzyme E2 C (UBE2C) in the progress of thyroid carcinoma (THCA). We firstly explored the prognostic impact and expression level of UBE2C in THCA. Then, we performed the UBE2C knockdown and evaluated the effects on the proliferation, cell cycle distribution, apoptosis, migration, and invasion of THCA cells, as well as resistance to sorafenib. Finally, we predicted the possible pathways and explored the correlation between UBE2C with immune infiltrates. The results showed that high expression of UBE2C independently predicted a shorter disease-free survival time of THCA patients. And UBE2C also presented a better prognostic performance on the survival probability of patients. Expression analysis showed that UBE2C was statistically upregulated in THCA tissue compared with normal tissue. After UBE2C knockdown, the proliferation of THCA cells was inhibited and apoptosis was increased. These results indicated that UBE2C acted as an oncogene in THCA. However, the migration and invasion of THCA cells with UBE2C knockdown were enhanced, and the expressions of migration-related proteins were upregulated. In addition, UBE2C knockdown increased the resistance of THCA cells to sorafenib. These results implied the potential of UBE2C as a suppressor gene in THCA. The pathway analysis further predicted that metabolism-related pathways were activated in the UBE2C low expression class, and cell growth and immune-related pathways were focused on the UBE2C high expression class. Finally, we observed a significant positive relationship between UBE2C and several immune infiltrates in THCA. It followed that UBE2C high expression might play a vital role in THCA to some extent. This study revealed that UBE2C participated in the progression of THCA and may play the dual role of both oncogene and tumor suppressor gene. The detailed mechanism needed to be further investigated.
Collapse
|
21
|
Piffer AC, Santos FMD, Thomé MP, Diehl C, Garcia AWA, Kinskovski UP, Schneider RDO, Gerber A, Feltes BC, Schrank A, Vasconcelos ATR, Lenz G, Kmetzsch L, Vainstein MH, Staats CC. Transcriptomic analysis reveals that mTOR pathway can be modulated in macrophage cells by the presence of cryptococcal cells. Genet Mol Biol 2021; 44:e20200390. [PMID: 34352067 PMCID: PMC8341293 DOI: 10.1590/1678-4685-gmb-2020-0390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the etiological agents of cryptococcosis, a high mortality disease. The development of such disease depends on the interaction of fungal cells with macrophages, in which they can reside and replicate. In order to dissect the molecular mechanisms by which cryptococcal cells modulate the activity of macrophages, a genome-scale comparative analysis of transcriptional changes in macrophages exposed to Cryptococcus spp. was conducted. Altered expression of nearly 40 genes was detected in macrophages exposed to cryptococcal cells. The major processes were associated with the mTOR pathway, whose associated genes exhibited decreased expression in macrophages incubated with cryptococcal cells. Phosphorylation of p70S6K and GSK-3β was also decreased in macrophages incubated with fungal cells. In this way, Cryptococci presence could drive the modulation of mTOR pathway in macrophages possibly to increase the survival of the pathogen.
Collapse
Affiliation(s)
- Alícia C Piffer
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Francine M Dos Santos
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Marcos P Thomé
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Camila Diehl
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Ane Wichine Acosta Garcia
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Uriel Perin Kinskovski
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Rafael de Oliveira Schneider
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil
| | - Bruno César Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Augusto Schrank
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | | | - Guido Lenz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Lívia Kmetzsch
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Marilene H Vainstein
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Charley C Staats
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Huang R, Liu J, Li H, Zheng L, Jin H, Zhang Y, Ma W, Su J, Wang M, Yang K. Identification of Hub Genes and Their Correlation With Immune Infiltration Cells in Hepatocellular Carcinoma Based on GEO and TCGA Databases. Front Genet 2021; 12:647353. [PMID: 33995482 PMCID: PMC8120231 DOI: 10.3389/fgene.2021.647353] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with extremely high mortality in worldwide. HCC is hard to diagnose and has a poor prognosis due to the less understanding of the molecular pathological mechanisms and the regulation mechanism on immune cell infiltration during hepatocarcinogenesis. Herein, by performing multiple bioinformatics analysis methods, including the RobustRankAggreg (RRA) rank analysis, weighted gene co-expression network analysis (WGCNA), and a devolution algorithm (CIBERSORT), we first identified 14 hub genes (NDC80, DLGAP5, BUB1B, KIF20A, KIF2C, KIF11, NCAPG, NUSAP1, PBK, ASPM, FOXM1, TPX2, UBE2C, and PRC1) in HCC, whose expression levels were significantly up-regulated and negatively correlated with overall survival time. Moreover, we found that the expression of these hub genes was significantly positively correlated with immune infiltration cells, including regulatory T cells (Treg), T follicular helper (TFH) cells, macrophages M0, but negatively correlated with immune infiltration cells including monocytes. Among these hub genes, KIF2C and UBE2C showed the most significant correlation and were associated with immune cell infiltration in HCC, which was speculated as the potential prognostic biomarker for guiding immunotherapy.
Collapse
Affiliation(s)
- Rui Huang
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Jinying Liu
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Hui Li
- Lanzhou Maternity and Child Health Care Hospital, Lanzhou, China
| | - Lierui Zheng
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Haojun Jin
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Yaqing Zhang
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Wei Ma
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Junhong Su
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Min Wang
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Kun Yang
- Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
23
|
Presta I, Novellino F, Donato A, La Torre D, Palleria C, Russo E, Malara N, Donato G. UbcH10 a Major Actor in Cancerogenesis and a Potential Tool for Diagnosis and Therapy. Int J Mol Sci 2020; 21:E2041. [PMID: 32192022 PMCID: PMC7139792 DOI: 10.3390/ijms21062041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/22/2023] Open
Abstract
Malignant transformation is a multistep process in which several molecular entities become dysregulated and result in dysfunction in the regulation of cell proliferation. In past years, scientists have gradually dissected the pathways involved in the regulation of the cell cycle. The mitotic ubiquitin-conjugating enzymes UbcH10, has been extensively studied since its cloning and characterization and it has been identified as a constantly overexpressed factor in many types of cancer. In this paper, we have reviewed the literature about UbcH10 in human cancer, pointing out the association between its overexpression and exacerbation of cancer phenotype. Moreover, many recalled studied demonstrated how immunohistochemistry or RT-PCR analysis can distinguish normal tissues and benign lesions from malignant neoplasms. In other experimental studies, many of the consequences of UbcH10 overexpression, such as increased proliferation, metastasizing, cancer progression and resistance to anticancer drugs are reversed through gene silencing techniques. In recent years, many authors have defined UbcH10 evaluation in cancer patients as a useful tool for diagnosis and therapy. This opinion is shared by the authors who advertise how it would be useful to start using in clinical practice the notions acquired about this important moleculein the carcinogenesis of many human malignancies.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Fabiana Novellino
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR) Viale Europa, 88100 Catanzaro, Italy;
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (D.L.T.)
| | - Domenico La Torre
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (D.L.T.)
| | - Caterina Palleria
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Emilio Russo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giuseppe Donato
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| |
Collapse
|
24
|
Dupont MA, Humbert C, Huber C, Siour Q, Guerrera IC, Jung V, Christensen A, Pouliet A, Garfa-Traoré M, Nitschké P, Injeyan M, Millar K, Chitayat D, Shannon P, Girisha KM, Shukla A, Mechler C, Lorentzen E, Benmerah A, Cormier-Daire V, Jeanpierre C, Saunier S, Delous M. Human IFT52 mutations uncover a novel role for the protein in microtubule dynamics and centrosome cohesion. Hum Mol Genet 2020; 28:2720-2737. [PMID: 31042281 DOI: 10.1093/hmg/ddz091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations in genes encoding components of the intraflagellar transport (IFT) complexes have previously been associated with a spectrum of diseases collectively termed ciliopathies. Ciliopathies relate to defects in the formation or function of the cilium, a sensory or motile organelle present on the surface of most cell types. IFT52 is a key component of the IFT-B complex and ensures the interaction of the two subcomplexes, IFT-B1 and IFT-B2. Here, we report novel IFT52 biallelic mutations in cases with a short-rib thoracic dysplasia (SRTD) or a congenital anomaly of kidney and urinary tract (CAKUT). Combining in vitro and in vivo studies in zebrafish, we showed that SRTD-associated missense mutation impairs IFT-B complex assembly and IFT-B2 ciliary localization, resulting in decreased cilia length. In comparison, CAKUT-associated missense mutation has a mild pathogenicity, thus explaining the lack of skeletal defects in CAKUT case. In parallel, we demonstrated that the previously reported homozygous nonsense IFT52 mutation associated with Sensenbrenner syndrome [Girisha et al. (2016) A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy. Clin. Genet., 90, 536-539] leads to exon skipping and results in a partially functional protein. Finally, our work uncovered a novel role for IFT52 in microtubule network regulation. We showed that IFT52 interacts and partially co-localized with centrin at the distal end of centrioles where it is involved in its recruitment and/or maintenance. Alteration of this function likely contributes to centriole splitting observed in Ift52-/- cells. Altogether, our findings allow a better comprehensive genotype-phenotype correlation among IFT52-related cases and revealed a novel, extra-ciliary role for IFT52, i.e. disruption may contribute to pathophysiological mechanisms.
Collapse
Affiliation(s)
- Marie Alice Dupont
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Camille Humbert
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Céline Huber
- Laboratory of Molecular and Physiopathological bases of osteochondrodysplasia, INSERM, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Siour
- Laboratory of Molecular and Physiopathological bases of osteochondrodysplasia, INSERM, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, Paris Descartes-Sorbonne Paris Cité University, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent Jung
- Proteomics Platform 3P5-Necker, Paris Descartes-Sorbonne Paris Cité University, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Anni Christensen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Aurore Pouliet
- Genomics Core Facility, Imagine Institute and Structure Fédérative de Recherche Necker, INSERM UMR1163 and INSERM US24/CNRS UMS3633, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Meriem Garfa-Traoré
- Cell Imaging Platform UMS 24, Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS3633, Paris, France
| | - Patrick Nitschké
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Bioinformatics Core Facility, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Marie Injeyan
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn Millar
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Charlotte Mechler
- Assistance Publique - Hôpitaux de Paris, Louis Mourier Hospital, Colombes, France
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Valérie Cormier-Daire
- Laboratory of Molecular and Physiopathological bases of osteochondrodysplasia, INSERM, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Cécile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Marion Delous
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
25
|
Le-Bel G, Cortez Ghio S, Guérin LP, Bisson F, Germain L, Guérin SL. Irradiated Human Fibroblasts as a Substitute Feeder Layer to Irradiated Mouse 3T3 for the Culture of Human Corneal Epithelial Cells: Impact on the Stability of the Transcription Factors Sp1 and NFI. Int J Mol Sci 2019; 20:ijms20246296. [PMID: 31847118 PMCID: PMC6940969 DOI: 10.3390/ijms20246296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Because of the worldwide shortage of graftable corneas, alternatives to restore visual impairments, such as the production of a functional human cornea by tissue engineering, have emerged. Self-renewal of the corneal epithelium through the maintenance of a sub-population of corneal stem cells is required to maintain the functionality of such a reconstructed cornea. We previously reported an association between stem cell differentiation and the level to which they express the transcription factors Sp1 and NFI. In this study, we investigated the impact of replacing irradiated 3T3 (i3T3) murine fibroblast feeder cells by irradiated human corneal fibroblasts (iHFL) on the expression of Sp1 and NFI and evaluated their contribution to the proliferative properties of human corneal epithelial cells (hCECs) in both monolayer cultures and human tissue engineered corneas (hTECs). hCECs co-cultured with iHFL could be maintained for up to two more passages than when they were grown with i3T3. Western Blot and electrophoretic mobility shift assays (EMSAs) revealed no significant difference in the feeder-layer dependent increase in Sp1 at both the protein and DNA binding level, respectively, between HCECs grown with either i3T3 or iHFL. On the other hand, a significant increase in the expression and DNA binding of NFI was observed at each subsequent passage when hCECs were co-cultured along with i3T3. These changes were found to result from an increased expression of the NFIA and NFIB isoforms in hCECs grown with i3T3. Exposure of hCECs to cycloheximide revealed an increased stability of NFIB that likely resulted from post-translational glycosylation of this protein when these cells were co-cultured with i3T3. In addition, iHFL were as efficient as i3T3 at preserving corneal, slow-cycling, epithelial stem cells in the basal epithelium of the reconstructed hTECs. Furthermore, we observed an increased expression of genes whose encoded products promote hCECs differentiation along several passages in hCECs co-cultured with either type of feeder layer. Therefore, the iHFL feeder layer appears to be the most effective at maintaining the proliferative properties of hCECs in culture most likely by preserving high levels of Sp1 and low levels of NFIB, which is known for its gene repressor and cell differentiation properties.
Collapse
Affiliation(s)
- Gaëtan Le-Bel
- Centre LOEX de l’Université Laval, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec -Université Laval, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada; (G.L.-B.); (S.C.G.); (L.-P.G.); (F.B.); (L.G.)
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sergio Cortez Ghio
- Centre LOEX de l’Université Laval, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec -Université Laval, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada; (G.L.-B.); (S.C.G.); (L.-P.G.); (F.B.); (L.G.)
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Louis-Philippe Guérin
- Centre LOEX de l’Université Laval, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec -Université Laval, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada; (G.L.-B.); (S.C.G.); (L.-P.G.); (F.B.); (L.G.)
- Département d’Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Francis Bisson
- Centre LOEX de l’Université Laval, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec -Université Laval, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada; (G.L.-B.); (S.C.G.); (L.-P.G.); (F.B.); (L.G.)
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- Centre LOEX de l’Université Laval, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec -Université Laval, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada; (G.L.-B.); (S.C.G.); (L.-P.G.); (F.B.); (L.G.)
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre LOEX de l’Université Laval, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec -Université Laval, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada; (G.L.-B.); (S.C.G.); (L.-P.G.); (F.B.); (L.G.)
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
26
|
Wild T, Budzowska M, Hellmuth S, Eibes S, Karemore G, Barisic M, Stemmann O, Choudhary C. Deletion of APC7 or APC16 Allows Proliferation of Human Cells without the Spindle Assembly Checkpoint. Cell Rep 2019; 25:2317-2328.e5. [PMID: 30485802 PMCID: PMC6289045 DOI: 10.1016/j.celrep.2018.10.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/07/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
The multisubunit ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. APC/C is tightly regulated by the spindle assembly checkpoint (SAC), which involves MPS1 and MAD2-dependent temporal inhibition of APC/C. We analyzed the contribution of the APC/C subunits APC7 and APC16 to APC/C composition and function in human cells. APC16 is required for APC7 assembly into APC/C, whereas APC16 assembles independently of APC7. APC7 and APC16 knockout cells display no major defects in mitotic progression, cyclin B1 degradation, or SAC response, but APC/C lacking these two subunits shows reduced ubiquitylation activity in vitro. Strikingly, deletion of APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display accelerated mitosis and require SAC-independent MPS1 function for genome stability. These findings reveal that the composition of APC/C critically influences the importance of the SAC in humans. APC16 is required for in vivo assembly of APC7 into APC/C APC7 or APC16 deletion has no major effect on mitosis Deletion of APC7 or APC16 provides synthetic viability to MAD2 deletion
Collapse
Affiliation(s)
- Thomas Wild
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Magda Budzowska
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability (CCS), Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Susana Eibes
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Gopal Karemore
- Protein Imaging Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Marin Barisic
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Chunaram Choudhary
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
27
|
Wang X, Yin L, Yang L, Zheng Y, Liu S, Yang J, Cui H, Wang H. Silencing ubiquitin-conjugating enzyme 2C inhibits proliferation and epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. FEBS J 2019; 286:4889-4909. [PMID: 31715067 DOI: 10.1111/febs.15134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/08/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) is a core ubiquitin-conjugating enzyme in the ubiquitin-proteasome system that promotes cell cycle progression. Previous studies have indicated that UBE2C mediates tumorigenesis and progression in various cancers, but its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. This study elucidated the function of UBE2C in PDAC tumorigenesis and progression by determining UBE2C expression via real-time qPCR, western blotting and immunohistochemistry. The associations between UBE2C expression and clinicopathological characteristics and survival were assessed using a tissue microarray based on a multicentre PDAC cohort. We found that UBE2C was strongly expressed in PDAC patient tissues and was negatively associated with clinical stage, lymph node metastasis, perineural invasion and survival (all P < 0.05). Multivariate analysis revealed that high UBE2C expression is an independent risk factor for PDAC (P = 0.001). In the PDAC cell lines CFPAC-1 and Panc-1, silencing UBE2C suppressed cell proliferation by inducing G1/S arrest mediated by downregulation of cyclin D1. Furthermore, UBE2C knockdown decreased the migration of PDAC cells in vitro by downregulating epithelial-mesenchymal transition (EMT). RNA-seq analysis showed that upon silencing UBE2C in CFPAC-1 cells, cyclin D1 and vimentin were downregulated by approximately 3.5-fold and 2.6-fold, respectively, and the major enriched pathways were related to cell cycle progression. Experiments on tumour-bearing mice injected with CFPAC-1 cells indicated that UBE2C depletion significantly inhibits tumour growth in vivo. These results suggest that UBE2C is involved in the development and progression of PDAC by regulating cell proliferation and EMT. UBE2C is a novel potential therapeutic target for pancreatic cancer. DATABASE: Data are available in the GEO database under accession number GSE137172.
Collapse
Affiliation(s)
- Xianxing Wang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangyu Yin
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Ludi Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yao Zheng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Songsong Liu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Jiali Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
28
|
Prediction of lymphovascular space invasion in endometrial cancer using the 55-gene signature selected by DNA microarray analysis. PLoS One 2019; 14:e0223178. [PMID: 31557240 PMCID: PMC6762169 DOI: 10.1371/journal.pone.0223178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Lymphovascular space invasion (LVSI) is considered to be the beginning of lymphogenous and hematogenous metastases. It is strongly related to dissemination, and therefore could be a valuable predictive sign of lymph node metastases and distant spread. Recently, the presence of LVSI in endometrial cancer (EC) has been shown to be an independent prognostic factor. The preoperative diagnosis of LVSI by pathological examination is difficult and LVSI is detected after surgery. The aim of the current study was to explore candidate genes as potential diagnostic biomarkers and determine whether they are predictors of LVSI in patients with EC. A total of 88 surgical specimens obtained from EC patients who had undergone surgical resection at Fukushima Medical University Hospital between 2010 and 2015 were analyzed using DNA microarray. LVSI was significantly associated with poor prognostic factors in EC such as higher tumor grade, lymph node metastasis, deep myometrium invasion, advanced stage and recurrence. Fifty-five candidate genes were significantly differentially expressed between 26 LVSI-positive and 62 LVSI-negative samples. All 88 samples were divided into two groups according to hierarchical clustering of 55 genes. Regarding diagnostic accuracy, sensitivity and negative predictive value were both high (92% and 95%, respectively); further, specificity and positive predictive value were both moderate (63% and 71%, respectively). Our data suggests that the 55-gene signature could contribute to predicting LVSI in EC, and provide clinically important information for better management. The molecular signatures of 55 genes may be also useful for understanding the underlying mechanism of LVSI.
Collapse
|
29
|
Liu G, Zhao J, Pan B, Ma G, Liu L. UBE2C overexpression in melanoma and its essential role in G2/M transition. J Cancer 2019; 10:2176-2184. [PMID: 31258721 PMCID: PMC6584412 DOI: 10.7150/jca.32731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022] Open
Abstract
Ubiquitin‑conjugating enzyme E2C (UBE2C) is a key regulator of cell cycle progression, and its aberrant expression has been implicated in various malignancies. However, its clinical and biological roles in malignant melanoma is still unclear. In this study, we found a significant high expression level of UBE2C in melanoma by an in silico analysis of The Cancer Genome Atlas (TCGA) database, which was further validated using fresh melanoma samples. The KM plotter showed that UBE2C level was statistically related to the overall survival (OS) of melanoma patients (p<0.01). RNA interference of UBE2C inhibited the growth of melanoma cells via deactivating ERK/Akt signaling pathways, and blocked the G2/M transition through downregulation of both the level and the activity of mitosis promoting factor (MPF), triggering the apoptosis of melanoma cells. Further, silencing of UBE2C significantly inhibited the xenografted tumor growth on nude mice, indicating an important role of UBE2C in melanoma growth in vivo. Together, our results show that UBE2C may serve as a novel prognostic biomarker as well as a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- Guolong Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jun Zhao
- Department of Bone & Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Boyu Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Gang Ma
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
30
|
A Comprehensive Bioinformatics Analysis of UBE2C in Cancers. Int J Mol Sci 2019; 20:ijms20092228. [PMID: 31067633 PMCID: PMC6539744 DOI: 10.3390/ijms20092228] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ubiquitination is one of the main post-translational modification of proteins. It plays key roles in a broad range of cellular functions, including protein degradation, protein interactions, and subcellular location. In the ubiquitination system, different proteins are involved and their dysregulation can lead to various human diseases, including cancers. By using data available from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases, we here show that the ubiquitin conjugating enzyme, E2C (UBE2C), is overexpressed in all 27 cancers we investigated. UBE2C expression is significantly higher in late-stage tumors, which might indicate its involvement in tumor progression and invasion. This study also revealed that patients with higher UBE2C levels showed a shorter overall survival (OS) time and worse OS prognosis. Moreover, our data show that UBE2C higher-expression leads to worse disease-free survival prognosis (DFS), indicating that UBE2C overexpression correlates with poor clinical outcomes. We also identified genes with positive correlations with UBE2C in several cancers. We found a number of poorly studied genes (family with sequence similarity 72-member D, FAM72D; meiotic nuclear divisions 1, MND1; mitochondrial fission regulator 2, MTFR2; and POC1 centriolar protein A, POC1A) whose expression correlates with UBE2C. These genes might be considered as new targets for cancers therapies since they showed overexpression in several cancers and correlate with worse OS prognosis.
Collapse
|
31
|
UBE2C Induces Cisplatin Resistance via ZEB1/2-Dependent Upregulation of ABCG2 and ERCC1 in NSCLC Cells. JOURNAL OF ONCOLOGY 2019; 2019:8607859. [PMID: 30693031 PMCID: PMC6333017 DOI: 10.1155/2019/8607859] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Objectives Cisplatin (DDP) is one of the most commonly used chemotherapeutic drugs for several cancers, including non-small-cell lung cancer (NSCLC). However, resistance to DDP eventually develops, limiting its further application. New therapy targets are urgently needed to reverse DDP resistance. Methods The mRNA expression of UBE2C, ZEB1/2, ABCG2, and ERCC1 was analyzed by reverse transcription-polymerase chain reaction. The protein levels of these molecules were analyzed by Western blotting and immunofluorescent staining. Cell proliferation was detected by CCK8 and MTT assays. Cell migration and invasion were analyzed by wound healing assay and Transwell assays. Promoter activities and gene transcription were analyzed by luciferase reporter assay. Results In this study, we examined the effect of UBE2C and ZEB1/2 expression levels in DDP-resistant cells of NSCLC. We confirmed that aberrant expression of UBE2C and ZEB1/2 plays a critical role in repressing the DDP sensitivity to NSCLC cells. Additionally, knockdown of UBE2C significantly sensitized resistant cells to DDP by repressing the expression of ZEB1/2. Mechanistic investigations indicated that UBE2C transcriptionally regulated ZEB1/2 by accelerating promoter activity. This study revealed that ZEB1/2 promotes the epithelial mesenchymal transition and expression of ABCG2 and ERCC1 to participate in UBE2C-mediated NSCLC DDP-resistant cell progression, metastasis, and invasion. Conclusion UBE2C may be a novel therapy target for NSCLC for sensitizing cells to the chemotherapeutic agent DDP.
Collapse
|
32
|
Good MC, Heald R. Preparation of Cellular Extracts from Xenopus Eggs and Embryos. Cold Spring Harb Protoc 2018; 2018:pdb.prot097055. [PMID: 29437998 DOI: 10.1101/pdb.prot097055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-free cytoplasmic extracts prepared from Xenopus eggs have been used extensively to recapitulate and characterize intracellular events in vitro. Egg extracts can be induced to transit the cell cycle and reconstitute assembly of dynamic structures including the interphase nucleus and the mitotic spindle. In this protocol, methods are described for preparing crude cytoplasmic extracts from Xenopus eggs and embryos that are arrested in metaphase of the cell cycle. The basic protocol uses unfertilized Xenopus laevis eggs, which are crushed by centrifugation in the presence of EGTA to preserve the natural cytostatic factor (CSF) activity that maintains high levels of Cdk1/cyclin B kinase and metaphase arrest. In the second method, the basic procedure is adapted for Xenopus tropicalis eggs with minor modifications to accommodate differences in frog size, timing of egg laying, and temperature and salt sensitivity. The third variation takes advantage of the synchronous divisions of fertilized X. laevis eggs to generate extracts from embryos, which are arrested in metaphase by the addition of nondegradable cyclin B and an inhibitor of the anaphase-promoting complex (APC) that together stabilize Cdk1/cyclin B kinase activity. Because they are obtained in much smaller amounts and their cell cycles are less perfectly synchronized, extracts prepared from embryos are less robust than egg extracts. X. laevis egg extracts have been used to study a wide range of cellular processes. In contrast, X. tropicalis egg extracts and X. laevis embryo extracts have been used primarily to characterize molecular mechanisms regulating spindle and nuclear size.
Collapse
Affiliation(s)
- Matthew C Good
- Department of Cellular and Developmental Biology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
33
|
Hormaechea-Agulla D, Kim Y, Song MS, Song SJ. New Insights into the Role of E2s in the Pathogenesis of Diseases: Lessons Learned from UBE2O. Mol Cells 2018; 41:168-178. [PMID: 29562734 PMCID: PMC5881090 DOI: 10.14348/molcells.2018.0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Abstract
Intracellular communication via ubiquitin (Ub) signaling impacts all aspects of cell biology and regulates pathways critical to human development and viability; therefore aberrations or defects in Ub signaling can contribute to the pathogenesis of human diseases. Ubiquitination consists of the addition of Ub to a substrate protein via coordinated action of E1-activating, E2-conjugating and E3-ligating enzymes. Approximately 40 E2s have been identified in humans, and most are thought to be involved in Ub transfer; although little information is available regarding the majority of them, emerging evidence has highlighted their importance to human health and disease. In this review, we focus on recent insights into the pathogenetic roles of E2s (particularly the ubiquitin-conjugating enzyme E2O [UBE2O]) in debilitating diseases and cancer, and discuss the tantalizing prospect that E2s may someday serve as potential therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Youngjo Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151,
Korea
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
- Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151,
Korea
| |
Collapse
|
34
|
Nicolau-Neto P, Palumbo A, De Martino M, Esposito F, de Almeida Simão T, Fusco A, Nasciutti LE, Meireles Da Costa N, Ribeiro Pinto LF. UBE2C Is a Transcriptional Target of the Cell Cycle Regulator FOXM1. Genes (Basel) 2018; 9:genes9040188. [PMID: 29596365 PMCID: PMC5924530 DOI: 10.3390/genes9040188] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
FOXM1 (forkhead box protein M1) is a transcription factor that participates in all stages of tumor development, mainly through the control of cell cycle and proliferation, regulating the expression of genes involved in G1/S and G2/M transition and M phase progression. The ubiquitin conjugating enzyme E2 (UBE2C) is a member of the anaphase promoting complex/cyclosome, promoting the degradation of several target proteins along cell cycle progression, during metaphase/anaphase transition. FOXM1 and UBE2C have been found overexpressed in a wide range of different solid tumors. Therefore, the aim of this study was to investigate whether UBE2C is a transcriptional target of FOXM1, using esophageal squamous cell carcinoma (ESCC) as a model, in addition to several cancer-deposited data. Our results show that FOXM1 and UBE2C expression present a positive correlation in normal tissues and in 25 distinct tumor types, including ESCC, where these genes are overexpressed. Moreover, FOXM1 binds to UBE2C promoter region in ESCC cell line and transcriptionally activates it, leading to UBE2C upregulation. In conclusion, this study provides evidences that FOXM1 transcriptionally regulates UBE2C expression in ESCC and their deregulation may be a general phenomenon in human neoplasias.
Collapse
Affiliation(s)
- Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti 37, Rio de Janeiro 20231-050, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Prédio de Ciências da Saúde-Ilha do Fundão, A. Carlos Chagas, Rio de Janeiro 21941-902, RJ, Brazil.
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| | - Tatiana de Almeida Simão
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87, Fundos, Pavilhão Américo Piquet Carneiro-4° Andar, Rio de Janeiro 20551-030, RJ, Brazil.
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Prédio de Ciências da Saúde-Ilha do Fundão, A. Carlos Chagas, Rio de Janeiro 21941-902, RJ, Brazil.
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti 37, Rio de Janeiro 20231-050, RJ, Brazil.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti 37, Rio de Janeiro 20231-050, RJ, Brazil.
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87, Fundos, Pavilhão Américo Piquet Carneiro-4° Andar, Rio de Janeiro 20551-030, RJ, Brazil.
| |
Collapse
|
35
|
UBE2C is overexpressed in ESCC tissues and its abrogation attenuates the malignant phenotype of ESCC cell lines. Oncotarget 2018; 7:65876-65887. [PMID: 27588470 PMCID: PMC5323199 DOI: 10.18632/oncotarget.11674] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
The esophageal squamous cell carcinoma (ESCC) is widely known as a highly lethal and poor understood cancer, then requiring the search for novel molecular markers to improve its management and patients survival. Recently, ubiquitin-conjugating enzyme E2C (UBE2C) has been figuring as a prominent tumor biomarker candidate, once it has been recognized as a key player in cell cycle progression. In this way, the aim of this study was to evaluate the expression profile of UBE2C gene and protein in ESCC samples, as well as its diagnostic and prognostic marker potential, and its contribution to ESSC genesis and/or progression by performing in vitro functional assays. The analysis of UBE2C gene expression in 52 paired ESCC samples (tumor and respective histologically normal surrounding tissue), by qRT-PCR, revealed that this gene is overexpressed in 73% of ESCC samples. Subsequently, immunohistochemical analysis confirmed that UBE2C protein expression was upregulated in all ESCC cases, but absent in the histologically normal tumor surrounding tissues. Moreover, we showed that UBE2C mRNA expression was able to accurately discriminate ESCC tissue from both healthy esophageal and histologically normal tumor surrounding tissues, pointing out its role as a diagnostic marker for this cancer. Finally, we report that UBE2C affects proliferation rates and cell cycle profile of ESCC cell lines, by directly interfering with cyclin B1 protein levels, suggesting its involvement in crucial steps of ESCC carcinogenesis.
Collapse
|
36
|
Strickland M, Ehrlich LS, Watanabe S, Khan M, Strub MP, Luan CH, Powell MD, Leis J, Tjandra N, Carter CA. Tsg101 chaperone function revealed by HIV-1 assembly inhibitors. Nat Commun 2017; 8:1391. [PMID: 29123089 PMCID: PMC5680296 DOI: 10.1038/s41467-017-01426-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 09/15/2017] [Indexed: 01/08/2023] Open
Abstract
HIV-1 replication requires Tsg101, a component of cellular endosomal sorting complex required for transport (ESCRT) machinery. Tsg101 possesses an ubiquitin (Ub) E2 variant (UEV) domain with a pocket that can bind PT/SAP motifs and another pocket that can bind Ub. The PTAP motif in the viral structural precursor polyprotein, Gag, allows the recruitment of Tsg101 and other ESCRTs to virus assembly sites where they mediate budding. It is not known how or even whether the UEV Ub binding function contributes to virus production. Here, we report that disruption of UEV Ub binding by commonly used drugs arrests assembly at an early step distinct from the late stage involving PTAP binding disruption. NMR reveals that the drugs form a covalent adduct near the Ub-binding pocket leading to the disruption of Ub, but not PTAP binding. We conclude that the Ub-binding pocket has a chaperone function involved in bud initiation.
Collapse
Affiliation(s)
- Madeleine Strickland
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lorna S Ehrlich
- Department of Molecular Genetics & Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - Susan Watanabe
- Department of Molecular Genetics & Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - Mahfuz Khan
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Michael D Powell
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Jonathan Leis
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Carol A Carter
- Department of Molecular Genetics & Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5222, USA.
| |
Collapse
|
37
|
Zöllner SK, Selvanathan SP, Graham GT, Commins RMT, Hong SH, Moseley E, Parks S, Haladyna JN, Erkizan HV, Dirksen U, Hogarty MD, Üren A, Toretsky JA. Inhibition of the oncogenic fusion protein EWS-FLI1 causes G 2-M cell cycle arrest and enhanced vincristine sensitivity in Ewing's sarcoma. Sci Signal 2017; 10:10/499/eaam8429. [PMID: 28974650 DOI: 10.1126/scisignal.aam8429] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ewing's sarcoma (ES) is a rare and highly malignant cancer that grows in the bones or surrounding tissues mostly affecting adolescents and young adults. A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), which is generated from a chromosomal translocation, is implicated in driving most ES cases by modulation of transcription and alternative splicing. The small-molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis in ES cells. We aimed to identify both the underlying mechanism of the drug and potential combination therapies that might enhance its antitumor activity. We tested 69 anticancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G2-M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1-mediated generation of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding the ubiquitin ligase UBE2C, which, in part, contributed to the increase in cyclin B1. YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus, a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients.
Collapse
Affiliation(s)
- Stefan K Zöllner
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.,Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Saravana P Selvanathan
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Garrett T Graham
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Ryan M T Commins
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Sung Hyeok Hong
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Eric Moseley
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Sydney Parks
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Jessica N Haladyna
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Hayriye V Erkizan
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Colket Translational Research Building, Room 3020, 3501 Civic Center Boulevard, Philadelphia, PA 19014, USA
| | - Aykut Üren
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Jeffrey A Toretsky
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.
| |
Collapse
|
38
|
Traynard P, Fauré A, Fages F, Thieffry D. Logical model specification aided by model-checking techniques: application to the mammalian cell cycle regulation. Bioinformatics 2017; 32:i772-i780. [PMID: 27587700 DOI: 10.1093/bioinformatics/btw457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MOTIVATION Understanding the temporal behaviour of biological regulatory networks requires the integration of molecular information into a formal model. However, the analysis of model dynamics faces a combinatorial explosion as the number of regulatory components and interactions increases. RESULTS We use model-checking techniques to verify sophisticated dynamical properties resulting from the model regulatory structure in the absence of kinetic assumption. We demonstrate the power of this approach by analysing a logical model of the molecular network controlling mammalian cell cycle. This approach enables a systematic analysis of model properties, the delineation of model limitations, and the assessment of various refinements and extensions based on recent experimental observations. The resulting logical model accounts for the main irreversible transitions between cell cycle phases, the sequential activation of cyclins, and the inhibitory role of Skp2, and further emphasizes the multifunctional role for the cell cycle inhibitor Rb. AVAILABILITY AND IMPLEMENTATION The original and revised mammalian cell cycle models are available in the model repository associated with the public modelling software GINsim (http://ginsim.org/node/189). CONTACT thieffry@ens.fr SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pauline Traynard
- Computational Systems Biology Team, Institut de Biologie de L'Ecole Normale Supérieure (IBENS), CNRS, Inserm, Ecole Normale Supérieure, PSL Research University, Paris, France EPI Lifeware, Inria Inria Saclay Ile-de-France, Palaiseau, France
| | - Adrien Fauré
- Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| | - François Fages
- EPI Lifeware, Inria Inria Saclay Ile-de-France, Palaiseau, France
| | - Denis Thieffry
- Computational Systems Biology Team, Institut de Biologie de L'Ecole Normale Supérieure (IBENS), CNRS, Inserm, Ecole Normale Supérieure, PSL Research University, Paris, France EPI Lifeware, Inria Inria Saclay Ile-de-France, Palaiseau, France
| |
Collapse
|
39
|
Kraft S, Moore JB, Muzikansky A, Scott KL, Duncan LM. Differential UBE2C and HOXA1 expression in melanocytic nevi and melanoma. J Cutan Pathol 2017; 44:843-850. [DOI: 10.1111/cup.12997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Stefan Kraft
- Pathology Service and Dermatopathology Unit; Massachusetts General Hospital and Harvard Medical School; Boston Massachusetts
| | - Johanna B. Moore
- Pathology Service and Dermatopathology Unit; Massachusetts General Hospital and Harvard Medical School; Boston Massachusetts
- Department of Dermatopathology; Western Pathology Inc; San Luis Obispo California
| | - Alona Muzikansky
- Biostatistics Center; Massachusetts General Hospital and Harvard Medical School; Boston Massachusetts
| | - Kenneth L. Scott
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - Lyn M. Duncan
- Pathology Service and Dermatopathology Unit; Massachusetts General Hospital and Harvard Medical School; Boston Massachusetts
| |
Collapse
|
40
|
Cacciola NA, Calabrese C, Malapelle U, Pellino G, De Stefano A, Sepe R, Sgariglia R, Quintavalle C, Federico A, Bianco A, Uchimura Bastos A, Milone M, Bellevicine C, Milone F, Carlomagno C, Selvaggi F, Troncone G, Fusco A, Pallante P. UbcH10 expression can predict prognosis and sensitivity to the antineoplastic treatment for colorectal cancer patients. Mol Carcinog 2016; 55:793-807. [PMID: 25917796 DOI: 10.1002/mc.22322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 01/13/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequent and deadly malignancies worldwide. Despite the progresses made in diagnosis and treatment, the identification of tumor markers is still a strong clinical need, because current treatments are efficacious only in a subgroup of patients. UbcH10 represents a potential candidate biomarker, whose expression levels could be employed to predict response or resistance to chemotherapy or targeted agents. UbcH10 mRNA and protein expression levels have been evaluated in a large group of CRC patients and correlated with clinico-pathological characteristics, including KRAS mutations. Moreover, the endogenous levels of UbcH10 and its role on cell growth have been evaluated in CRC cells. Finally, to investigate the impact of UbcH10 protein expression on the response to irinotecan, its active metabolite SN-38 and cetuximab treatment, UbcH10 silencing experiments were carried-out on two colon carcinoma cell lines, Caco-2, and DLD1. Overexpression of UbcH10 mRNA and protein was observed in the vast majority of patients analyzed. UbcH10 suppression decreased CRC cell growth rate (at least in part through deregulation of Cyclin B and ERK1) and sensitized them to pharmacological treatments with irinotecan, SN-38 and cetuximab (at least in part through a down-regulation of AKT). Taken together, these findings indicate that UbcH10 expression regulates CRC growth and could play an important role in the personalization of the therapy of CRC patients.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Chiara Calabrese
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Gianluca Pellino
- Unit of General Surgery, Second University of Naples, Piazza Miraglia 2, Naples, Italy
| | - Alfonso De Stefano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Romina Sepe
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Roberta Sgariglia
- Department of Public Health, University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Cristina Quintavalle
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
- Institute of Pathology, Molecular Pathology Division, University of Basel, Schonbeinstrasse 40, Basel, Switzerland
| | - Antonella Federico
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Antonio Bianco
- Department of Public Health, University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - André Uchimura Bastos
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Marco Milone
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Francesco Milone
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Chiara Carlomagno
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Francesco Selvaggi
- Unit of General Surgery, Second University of Naples, Piazza Miraglia 2, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| | - Alfredo Fusco
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
- National Cancer Institute-INCA, Rua André Cavalcanti, 37-Centro, CEP 20231-050, Rio de Janeiro, Brazil
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via S. Pansini 5, Naples, Italy
| |
Collapse
|
41
|
Ma R, Kang X, Zhang G, Fang F, DU Y, Lv H. High expression of UBE2C is associated with the aggressive progression and poor outcome of malignant glioma. Oncol Lett 2016; 11:2300-2304. [PMID: 26998166 DOI: 10.3892/ol.2016.4171] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 12/18/2015] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2C (UBE2C) is a key regulator of cell cycle progression and is involved in the tumorigenesis of a variety of cancers. Previous studies have demonstrated that UBE2C is an important factor in the malignant progression of astrocytic tumors. However, the association between UBE2C expression and clinical prognosis of glioma patients has not been defined. In the present study, the expression of UBE2C in gliomas and non-cancerous brain tissues were detected by microarray and immunohistochemical analysis. The association between UBE2C expression and clinicopathological characteristics of the glioma patients was evaluated. The Kaplan-Meier method and multivariate Cox's proportional hazards model were used to analyze the survival time of the patients. The results demonstrated that the expression levels of UBE2C in anaplastic gliomas and glioblastoma (GBM) patients were significantly higher compared to low-grade gliomas, in microarray and immunohistochemistry analysis. A higher UBE2C expression was associated with a significantly decreased overall survival time in patients possessing anaplastic gliomas (P<0.01) and GBMs (P<0.05). Multivariate analysis of 80 GBM patients revealed that UBE2C expression was an independent prognostic factor. To the best of our knowledge, the present data suggest for the first time that UBE2C overexpression is strongly associated with an aggressive progression and poor outcome of malignant glioma. Therefore, UBE2C overexpression may be used as a predictor of poor prognosis in patients with malignant glioma.
Collapse
Affiliation(s)
- Ruimin Ma
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Xixiong Kang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Guojun Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Fang Fang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Yamei DU
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Hong Lv
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| |
Collapse
|
42
|
Ben-Eliezer I, Pomerantz Y, Galiani D, Nevo N, Dekel N. Appropriate expression of Ube2C and Ube2S controls the progression of the first meiotic division. FASEB J 2015. [PMID: 26207029 DOI: 10.1096/fj.15-274522] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Timely degradation of protein regulators of the cell cycle is essential for the completion of cell division. This degradation is promoted by the E3 anaphase-promoting complex/cyclosome (APC/C) and mediated by the E2 ubiquitin-conjugating enzymes (Ube2s). Unlike the ample information gathered regarding the meiotic E3 APC/C, the E2s participating in this cell division have never been studied. We identified Ube2C, -S, and -D3 as the E2 enzymes that regulate APC/C activity during meiosis of mouse oocytes. Their depletion reduces the levels of the first meiotic cytokinesis by 50%, and their overexpression doubles and accelerates its completion (50% as compared with 4% at 11 h). We also demonstrated that these E2s take part in ensuring appropriate spindle formation. It is noteworthy that high levels of Ube2C bring about the resumption of the first meiotic division, regardless of the formation of the spindle, overriding the spindle assembly checkpoint. Thus, alongside their canonical function in protein degradation, Ube2C and -S also control the extrusion of the first polar body. Overall, our study characterizes new regulators and unveils the novel roles they play during the meiotic division. These findings shed light on faithful chromosome segregation in oocytes and may contribute to better understanding of aneuploidy and its consequent genetic malformations.
Collapse
Affiliation(s)
- Inbal Ben-Eliezer
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Pomerantz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dalia Galiani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Nevo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
43
|
Maternal Wnt/STOP signaling promotes cell division during early Xenopus embryogenesis. Proc Natl Acad Sci U S A 2015; 112:5732-7. [PMID: 25901317 DOI: 10.1073/pnas.1423533112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During Xenopus development, Wnt signaling is thought to function first after midblastula transition to regulate axial patterning via β-catenin-mediated transcription. Here, we report that Wnt/glycogen synthase kinase 3 (GSK3) signaling functions posttranscriptionally already in mature oocytes via Wnt/stabilization of proteins (STOP) signaling. Wnt signaling is induced in oocytes after their entry into meiotic metaphase II and declines again upon exit into interphase. Wnt signaling inhibits Gsk3 and thereby protects proteins from polyubiquitination and degradation in mature oocytes. In a protein array screen, we identify a cluster of mitotic effector proteins that are polyubiquitinated in a Gsk3-dependent manner in Xenopus. Consequently inhibition of maternal Wnt/STOP signaling, but not β-catenin signaling, leads to early cleavage arrest after fertilization. The results support a novel role for Wnt signaling in cell cycle progression independent of β-catenin.
Collapse
|
44
|
Wang ST, Li DZ, Li JM, Fang J, Li HZ, Tong PJ, Liu FC. Lentivirus-mediated RNA interference targeting UbcH10 reduces cell growth and invasion of human osteosarcoma cells via inhibition of Ki-67 and matrix metalloproteinases. Oncol Lett 2015; 9:2171-2176. [PMID: 26137034 DOI: 10.3892/ol.2015.3023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is the most commonly diagnosed primary malignancy affecting the bone. UbcH10 is a cancer-related E2-ubiquitin-conjugating enzyme. An overexpression of UbcH10 is significantly associated with tumor grade and cellular proliferation. However, limited evidence exists with regard to the biological function of UbcH10 in OS. The present study created a UbcH10 knockdown OS cell line using lentivirus-mediated RNA interference. The expression of UbcH10 was significantly reduced in UbcH10-targeted small hairpin RNA-expressing lentivirus OS cells. The downregulation of UbcH10 suppressed OS cell proliferation and colony formation ability via decreased Ki-67 expression. UbcH10 knockdown OS cells exhibited impaired invasion and migration abilities. Furthermore, knockdown of UbcH10 led to decreased levels of matrix metalloproteinase-3 and -9 in OS cells. The present study demonstrated the role of UbcH10 in OS cell proliferation, invasion and migration, which suggests that UbcH10 may be a potential candidate for OS therapy.
Collapse
Affiliation(s)
- Shan-Tao Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 510012, P.R. China ; Department of Orthopedics, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Dan-Zhi Li
- Department of Orthopedics, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Jian-Min Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 510012, P.R. China
| | - Jun Fang
- Department of Orthopedics, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Hua-Zhuang Li
- Department of Orthopedics, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Pei-Jian Tong
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Fu-Cun Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
45
|
Wang C, Pan YH, Shan M, Xu M, Bao JL, Zhao LM. Knockdown of UbcH10 enhances the chemosensitivity of dual drug resistant breast cancer cells to epirubicin and docetaxel. Int J Mol Sci 2015; 16:4698-712. [PMID: 25739083 PMCID: PMC4394443 DOI: 10.3390/ijms16034698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/05/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is one of the most common and lethal cancers in women. As a hub gene involved in a diversity of tumors, the ubiquitin-conjugating enzyme H10 (UbcH10), may also play some roles in the genesis and development of breast cancer. In the current study, we found that the expression of UbcH10 was up-regulated in some breast cancer tissues and five cell lines. We established a dual drug resistant cell line MCF-7/EPB (epirubicin)/TXT (docetaxel) and a lentiviral system expressing UbcH10 shRNA to investigate the effects of UbcH10 knockdown on the chemosensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel. The knockdown of UbcH10 inhibited the proliferation of both MCF-7 and MCF-7/EPB/TXT cells, due to the G1 phase arrest in cell cycle. Furthermore, UbcH10 knockdown increased the sensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel and promoted the apoptosis induced by these two drugs. Protein detection showed that, in addition to inhibiting the expression of Ki67 and cyclin D1, UbcH10 RNAi also impaired the increased BCL-2 and MDR-1 expression levels in MCF-7/EPB/TXT cells, which may contribute to abating the drug resistance in the breast cancer cells. Our research in the current study demonstrated that up-regulation of UbcH10 was involved in breast cancer and its knockdown can inhibit the growth of cancer cells and increase the chemosensitivity of the dual drug resistant breast cancer cells to epirubicin and docetaxel, suggesting that UbcH10 may be a promising target for the therapy of breast cancer.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai 20002, China.
| | - Yun-Hao Pan
- Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai 20002, China.
| | - Ming Shan
- Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai 20002, China.
| | - Ming Xu
- Department of Pathology, Central Hospital of Huangpu District, Shanghai 20002, China.
| | - Jia-Lin Bao
- Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai 20002, China.
| | - Li-Ming Zhao
- Department of Respiratory Disease, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai 200433, China.
| |
Collapse
|
46
|
Li SZ, Song Y, Zhang HH, Jin BX, Liu Y, Liu WB, Zhang XD, Du RL. UbcH10 overexpression increases carcinogenesis and blocks ALLN susceptibility in colorectal cancer. Sci Rep 2014; 4:6910. [PMID: 25376843 PMCID: PMC4223683 DOI: 10.1038/srep06910] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
Cyclins are essential for cell proliferation, the cell cycle and tumorigenesis in all eukaryotes. UbcH10 regulates the degradation of cyclins in a ubiquitin-dependent manner. Here, we report that UbcH10 is likely involved in tumorigenesis. We found that cancer cells exposed to n-acetyl-leu-leu-norleucinal (ALLN) treatment and UbcH10 depletion exhibit a synergistic therapeutic effect. Abundant expression of UbcH10 drives resistance to ALLN-induced cell death, while cells deficient in UbcH10 were susceptible to ALLN-induced cell death. The depletion of UbcH10 hindered tumorigenesis both in vitro and in vivo, as assessed by colony formation, growth curve, soft agar and xenograft assays. These phenotypes were efficiently rescued through the introduction of recombinant UbcH10. In the UbcH10-deficient cells, alterations in the expression of cyclins led to cell cycle changes and subsequently decreases in tumorigenesis. The tumorigenesis of xenograft tumors from UbcH10-deficient cells treated with ALLN was decreased relative to wild-type cells treated with ALLN in nude mice. On the molecular level, we observed that UbcH10 deficiency enhances the activation of caspase 8 and caspase 3 but not caspase 9 to impair cell viability upon ALLN treatment. Collectively, our results suggest that, as an oncogene, UbcH10 is a potential drug target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Shang-Ze Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Song
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui-Hui Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bing-Xue Jin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bin Liu
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao-Dong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Run-Lei Du
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
47
|
Shuliang S, Lei C, Guangwu J, Changjie L. Involvement of ubiquitin-conjugating enzyme E2C in proliferation and invasion of prostate carcinoma cells. Oncol Res 2014; 21:121-7. [PMID: 24512726 DOI: 10.3727/096504013x13832473329953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2C (UBE2C) has been found to participate in the process of several cancers. However, the role of UBE2C in prostate cancer has not been reported. To investigate the function of UBE2C in prostate cancer, several methods were used. UBE2C promoted the proliferation and viability of prostate cancer cells through MTT and colony formation assay and increased the number of invaded or migrated cells in Matrigel or Transwell assay based on its function of inducing EMT. UBE2C also promoted tumor formation in vivo. Our results suggest that UBE2C acts as an oncogene in prostate cancer progression and may be a candidate marker of diagnosis for this disease.
Collapse
Affiliation(s)
- Song Shuliang
- Shandong University School of Ocean, Weihai, Shandong, China
| | | | | | | |
Collapse
|
48
|
Zhang Q, Liu S, Zhang Q, Xiong Z, Wang AR, Myers L, Melamed J, Tang WW, You Z. Interleukin-17 promotes development of castration-resistant prostate cancer potentially through creating an immunotolerant and pro-angiogenic tumor microenvironment. Prostate 2014; 74:869-79. [PMID: 24691769 PMCID: PMC4063299 DOI: 10.1002/pros.22805] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Interleukin-17 (IL-17) has been demonstrated to promote formation and growth of hormone-naïve prostate adenocarcinoma in mice. IL-17's role in development of castration-resistant prostate cancer is unknown. In the present study, we investigated IL-17's role in castration-resistant prostate cancer in a mouse model. METHODS IL-17 receptor C (IL-17RC) deficient mice were interbred with Pten conditional mutant mice to produce RC(+) mice that maintained IL-17RC expression and RC(-) mice that were IL-17RC deficient. Male RC(+) and RC(-) mice were Pten-null and were castrated at 16 weeks of age when invasive prostate cancer had already formed. At 30 weeks of age, all male mice were analyzed for the prostate phenotypes. RESULTS RC(-) mice displayed prostates that were smaller than RC(+) mice. Approximately 23% of prostatic glands in RC(-) mice, in contrast to 65% of prostatic glands in RC(+) mice, developed invasive adenocarcinomas. Compared to castrate RC(+) mice, castrate RC(-) mouse prostate had lower rates of cellular proliferation and higher rates of apoptosis as well as lower levels of MMP7, YBX1, MTA1, and UBE2C proteins. In addition, castrate RC(-) mouse prostate had less angiogenesis, which was associated with decreased levels of COX-2 and VEGF. Moreover, castrate RC(-) mouse prostate had fewer inflammatory cells including lymphocytes, myeloid-derived suppressor cells, and macrophages. CONCLUSIONS Taken together, our findings suggest that IL-17 promotes development of invasive prostate adenocarcinomas under castrate conditions, potentially through creating an immunotolerant and pro-angiogenic tumor microenvironment.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
| | - Sen Liu
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
| | - Qingsong Zhang
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
- Department of Orthopaedic Surgery, Tulane University, New Orleans, Louisiana 70112
| | - Zhenggang Xiong
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Alun R. Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Leann Myers
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Wendell W. Tang
- Department of Pathology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121
| | - Zongbing You
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
- Department of Orthopaedic Surgery, Tulane University, New Orleans, Louisiana 70112
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, Louisiana 70112
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana 70112
- Tulane Center for Aging, Tulane University, New Orleans, Louisiana 70112
- Corresponding Author: Zongbing You, Department of Structural & Cellular Biology, Tulane University School of Medicine, 1430 Tulane Ave SL 49, New Orleans, LA 70112; Phone: 504-988-0467; FAX: 504-988-1687;
| |
Collapse
|
49
|
McDonald JT, Briggs C, Szelag H, Peluso M, Schneider D, Perepletchikov A, Klement GL, Tuerk I, Hlatky L. Chronic low dose-rate radiation down-regulates transcription related to mitosis and chromosomal movement similar to acute high dose in prostate cells. Int J Radiat Biol 2014; 90:231-40. [PMID: 24397407 DOI: 10.3109/09553002.2014.877175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Despite concerns over risks from exposure to low-dose ionizing radiations encountered in the environment and workplace, the molecular consequences of these exposures, particularly at representative doses and dose-rates, remains poorly understood. MATERIALS AND METHODS Using a novel flood source construct, we performed a direct comparison of genome-wide gene expression regulations resulting from exposure of primary human prostate fibroblast cultures to acute (10 cGy and 200 cGy) and longer-term chronic (1.0-2.45 cGy cumulative over 24 h) exposures. RESULTS Expression profiling showed significant differential regulation of 396 genes with no measureable changes in the acute 10 cGy dose. However, there were 106 genes in common between samples given an acute 200 cGy dose compared to those given chronic doses, most of which were decreased and related to cell cycle or chromosomal movement in M-phase. Biological pathway analysis showed decreases in cell cycle, chromosomal movement, cell survival and DNA replication, recombination and repair as well as a predicted activation of transcriptional regulators TP53, RB1 and CDKN2A. In agreement with these results, prostate epithelial cells given 200 cGy or chronic doses displayed functional decreases in proliferation and mitotic cells. CONCLUSIONS In summary, we showed a contrast to the common observation of constant or reduced effect per unit dose as the dose (acute) was diminished, that even very low total doses delivered chronically could rival the perturbing effect of acute doses 100 times as intense. Underscored is the importance of the means of dose delivery, shown to be as important as dose size when considering biologic effect.
Collapse
Affiliation(s)
- J Tyson McDonald
- Center of Cancer Systems Biology, GeneSys Research Institute (GRI)/Tufts University School of Medicine , Boston
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xie C, Powell C, Yao M, Wu J, Dong Q. Ubiquitin-conjugating enzyme E2C: a potential cancer biomarker. Int J Biochem Cell Biol 2013; 47:113-7. [PMID: 24361302 DOI: 10.1016/j.biocel.2013.11.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
Abstract
The ubiquitin-conjugating enzymes 2C (UBE2C) is an integral component of the ubiquitin proteasome system. UBE2C consists of a conserved core domain containing the catalytic Cys residue and an N-terminal extension. The core domain is required for ubiquitin adduct formation by interacting with the ubiquitin-fold domain in the E1 enzyme, and contributes to the E3 enzyme binding. UBE2C N-terminal extension regulates E3 enzyme activity as a part of an intrinsic inhibitory mechanism. UBE2C is required for the destruction of mitotic cyclins and securin, which are essential for spindle assembly checkpoint and mitotic exit. The UBE2C mRNA and/or protein levels are aberrantly increased in many cancer types with poor clinical outcomes. Accumulation of UBE2C stimulates cell proliferation and anchorage-independent growth. UBE2C transgenic mice are prone to develop spontaneous tumors and carcinogen-induced tumor with evidence of chromosome aneuploidy.
Collapse
Affiliation(s)
- Chanlu Xie
- School of Science and Health, The University of Western Sydney, Australia
| | - Chris Powell
- School of Science and Health, The University of Western Sydney, Australia
| | - Mu Yao
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jianmin Wu
- The Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Qihan Dong
- School of Science and Health, The University of Western Sydney, Australia; Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|