1
|
Lomniczi A, Wright H, Castellano JM, Matagne V, Toro CA, Ramaswamy S, Plant TM, Ojeda SR. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression. Nat Commun 2015; 6:10195. [PMID: 26671628 PMCID: PMC4703871 DOI: 10.1038/ncomms10195] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/16/2015] [Indexed: 11/09/2022] Open
Abstract
In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Hollis Wright
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Juan Manuel Castellano
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA.,Department of Cell Biology, Physiology and Immunology, University of Cordoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofia (HURS), Cordoba 14004, Spain
| | - Valerie Matagne
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Carlos A Toro
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Suresh Ramaswamy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| |
Collapse
|
2
|
Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, Knoll JG, Wright H, Pfeifer GP, Ojeda SR. Epigenetic control of female puberty. Nat Neurosci 2013; 16:281-9. [PMID: 23354331 PMCID: PMC3581714 DOI: 10.1038/nn.3319] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/26/2012] [Indexed: 12/11/2022]
Abstract
The timing of puberty is controlled by many genes. The elements coordinating this process have not, however, been identified. Here we show that an epigenetic mechanism of transcriptional repression times the initiation of female puberty in rats. We identify silencers of the Polycomb group (PcG) as principal contributors to this mechanism and show that PcG proteins repress Kiss1, a puberty-activating gene. Hypothalamic expression of two key PcG genes, Eed and Cbx7, decreased and methylation of their promoters increased before puberty. Inhibiting DNA methylation blocked both events and resulted in pubertal failure. The pubertal increase in Kiss1 expression was accompanied by EED loss from the Kiss1 promoter and enrichment of histone H3 modifications associated with gene activation. Preventing the eviction of EED from the Kiss1 promoter disrupted pulsatile gonadotropin-releasing hormone release, delayed puberty and compromised fecundity. Our results identify epigenetic silencing as a mechanism underlying the neuroendocrine control of female puberty.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sharif A, Baroncini M, Prevot V. Role of glia in the regulation of gonadotropin-releasing hormone neuronal activity and secretion. Neuroendocrinology 2013; 98:1-15. [PMID: 23735672 DOI: 10.1159/000351867] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/08/2013] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final common pathway for the central control of reproduction. The coordinated and timely activation of these hypothalamic neurons, which determines sexual development and adult reproductive function, lies under the tight control of a complex array of excitatory and inhibitory transsynaptic inputs. In addition, research conducted over the past 20 years has unveiled the major contribution of glial cells to the control of GnRH neurons. Glia use a variety of molecular and cellular strategies to modulate GnRH neuronal function both at the level of their cell bodies and at their nerve terminals. These mechanisms include the secretion of bioactive molecules that exert paracrine effects on GnRH neurons, juxtacrine interactions between glial cells and GnRH neurons via adhesive molecules and the morphological plasticity of the glial coverage of GnRH neurons. It now appears that glial cells are integral components, along with upstream neuronal networks, of the central control of GnRH neuronal function. This review attempts to summarize our current knowledge of the mechanisms used by glial cells to control GnRH neuronal activity and secretion.
Collapse
Affiliation(s)
- Ariane Sharif
- INSERM, Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, Unit 837, and UDSL, School of Medicine, Lille, France.
| | | | | |
Collapse
|
4
|
Tolson KP, Chappell PE. The Changes They are A-Timed: Metabolism, Endogenous Clocks, and the Timing of Puberty. Front Endocrinol (Lausanne) 2012; 3:45. [PMID: 22645521 PMCID: PMC3355854 DOI: 10.3389/fendo.2012.00045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/08/2012] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity has increased dramatically over the last several decades, particularly in industrialized countries, often accompanied by acceleration of pubertal progression and associated reproductive abnormalities (Biro et al., 2006; Rosenfield et al., 2009). The timing of pubertal initiation and progression in mammals is likely influenced by nutritional and metabolic state, leading to the hypothesis that deviations from normal metabolic rate, such as those seen in obesity, may contribute to observed alterations in the rate of pubertal progression. While several recent reviews have addressed the effects of metabolic disorders on reproductive function in general, this review will explore previous and current models of pubertal timing, outlining a potential role of endogenous timing mechanisms such as cellular circadian clocks in the initiation of puberty, and how these clocks might be altered by metabolic factors. Additionally, we will examine recently elucidated neuroendocrine regulators of pubertal progression such as kisspeptin, explore models detailing how the mammalian reproductive axis is silenced during the juvenile period and reactivated at appropriate developmental times, and emphasize how metabolic dysfunction such as childhood obesity may alter timing cues that advance or delay pubertal progression, resulting in diminished reproductive capacity.
Collapse
Affiliation(s)
- Kristen P. Tolson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
| | - Patrick E. Chappell
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Patrick E. Chappell, Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA. e-mail:
| |
Collapse
|
5
|
Hypothalamic glial-to-neuronal signaling during puberty: influence of alcohol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2876-94. [PMID: 21845163 PMCID: PMC3155334 DOI: 10.3390/ijerph8072894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 01/06/2023]
Abstract
Mammalian puberty requires complex interactions between glial and neuronal regulatory systems within the hypothalamus that results in the timely increase in the secretion of luteinizing hormone releasing hormone (LHRH). Assessing the molecules required for the development of coordinated communication networks between glia and LHRH neuron terminals in the basal hypothalamus, as well as identifying substances capable of affecting cell-cell communication are important. One such pathway involves growth factors of the epidermal growth factor (EGF) family that bind to specific erbB receptors. Activation of this receptor results in the release of prostaglandin-E2 (PGE2) from adjacent glial cells, which then acts on the nearby LHRH nerve terminals to elicit release of the peptide. Another pathway involves novel genes which synthesize adhesion/signaling proteins responsible for the structural integrity of bi-directional glial-neuronal communication. In this review, we will discuss the influence of these glial-neuronal communication pathways on the prepubertal LHRH secretory system, and furthermore, discuss the actions and interactions of alcohol on these two signaling processes.
Collapse
|
6
|
Ojeda SR, Lomniczi A, Loche A, Matagne V, Kaidar G, Sandau US, Dissen GA. The transcriptional control of female puberty. Brain Res 2010; 1364:164-74. [PMID: 20851111 PMCID: PMC2992593 DOI: 10.1016/j.brainres.2010.09.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 12/18/2022]
Abstract
The initiation of mammalian puberty requires a sustained increase in pulsatile release of gonadotrophin releasing hormone (GnRH) from the hypothalamus. This increase is brought about by coordinated changes in transsynaptic and glial-neuronal communication, consisting of an increase in neuronal and glial stimulatory inputs to the GnRH neuronal network and the loss of transsynaptic inhibitory influences. GnRH secretion is stimulated by transsynaptic inputs provided by excitatory amino acids (glutamate) and at least one peptide (kisspeptin), and by glial inputs provided by growth factors and small bioactive molecules. The inhibitory input to GnRH neurons is mostly transsynaptic and provided by GABAergic and opiatergic neurons; however, GABA has also been shown to directly excite GnRH neurons. There are many genes involved in the control of these cellular networks, and hence in the control of the pubertal process as a whole. Our laboratory has proposed the concept that these genes are arranged in overlapping networks internally organized in a hierarchical fashion. According to this concept, the highest level of intra-network control is provided by transcriptional regulators that, by directing expression of key subordinate genes, impose genetic coordination to the neuronal and glial subsets involved in initiating the pubertal process. More recently, we have begun to explore the concept that a more dynamic and encompassing level of integrative coordination is provided by epigenetic mechanisms.
Collapse
Affiliation(s)
- Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 N.W. 185th Avenue, Beaverton, OR 97006, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Ojeda SR, Lomniczi A, Sandau U. Contribution of glial-neuronal interactions to the neuroendocrine control of female puberty. Eur J Neurosci 2010; 32:2003-10. [PMID: 21143655 PMCID: PMC3058235 DOI: 10.1111/j.1460-9568.2010.07515.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mammalian puberty is initiated by an increased pulsatile release of the neuropeptide gonadotropin-releasing hormone (GnRH) from hypothalamic neuroendocrine neurons. Although this increase is primarily set in motion by neuronal networks synaptically connected to GnRH neurons, glial cells contribute to the process via at least two mechanisms. One involves production of growth factors acting via receptors endowed with either serine-threonine kinase or tyrosine kinase activity. The other involves plastic rearrangements of glia-GnRH neuron adhesiveness. Growth factors of the epidermal growth factor family acting via erbB receptors play a major role in glia-to-GnRH neuron communication. In turn, neurons facilitate astrocytic erbB signaling via glutamate-dependent cleavage of erbB ligand precursors. The genetic disruption of erbB receptors delays female sexual development due to impaired erbB ligand-induced glial prostaglandin E(2) release. The adhesiveness of glial cells to GnRH neurons involves at least two different cell-cell communication systems endowed with both adhesive and intracellular signaling capabilities. One is provided by synaptic cell adhesion molecule (SynCAM1), which establishes astrocyte-GnRH neuron adhesiveness via homophilic interactions and the other involves the heterophilic interaction of neuronal contactin with glial receptor-like protein tyrosine phosphatase-β. These findings indicate that the interaction of glial cells with GnRH neurons involves not only secreted bioactive molecules, but also cell-surface adhesive proteins able to set in motion intracellular signaling cascades.
Collapse
Affiliation(s)
- Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health Sciences University, 505 N.W., 185th Avenue, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
8
|
Constantin S, Caraty A, Wray S, Duittoz AH. Development of gonadotropin-releasing hormone-1 secretion in mouse nasal explants. Endocrinology 2009; 150:3221-7. [PMID: 19213830 PMCID: PMC2703517 DOI: 10.1210/en.2008-1711] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulsatile release of GnRH-1 is critical to stimulate gonadotropes of the anterior pituitary. This secretory pattern seems to be inherent to GnRH-1 neurons, however, the mechanisms underlying such episodical release remain unknown. In monkey nasal explants, the GnRH-1 population exhibits synchronized calcium events with the same periodicity as GnRH-1 release, suggesting a link, though the sequence of events was unclear. GnRH-1 neurons in mouse nasal explants also exhibit synchronized calcium events. In the present work, GnRH-1 release was assayed in mouse nasal explants using radioimmunology and its relationship with calcium signaling analyzed. GnRH-1 neurons generated episodical release as early as 3 d in vitro (div) and maintained such release throughout the period studied (3-21 div). The pulse frequency remained constant, suggesting that the pulse generator is operative at an early developmental stage. In contrast, pulse amplitude increased 2-fold between 3 and 7 div, and again between 7 and 14 div, suggesting maturation in synthesizing and/or secretory mechanisms. To evaluate these possibilities, total GnRH-1 content was measured. Only a small increase in GnRH-1 content was detected between 7 and 14 div, whereas a large increase occurred between 14 and 21 div. These data indicate that GnRH-1 content was not a limiting factor for the amplitude of the pulses at 7 div but that the secretory mechanisms mature between 3 and 14 div. The application of kisspeptin-10 revealed the ability of GnRH-1 neurons to integrate signals from natural ligands into a secretory response. Finally, simultaneous sampling of medium and calcium imaging recordings indicated that the synchronized calcium events and secretory events are congruent.
Collapse
Affiliation(s)
- Stephanie Constantin
- Université de Tours, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique Unité Mixte de Recherche 6175 Centre National de la Recherche Scientifique, Nouzilly 37380, France.
| | | | | | | |
Collapse
|
9
|
Abstract
In mammals and humans, reproductive capacity is attained at puberty as the end-point of a complex series of developmental and neuroendocrine events that lead to true sexual maturity. As for humans, sexual precocity looks like a pathologic status. While for some animals, sexual precocity may be a valuable quantitative character. For some species, the character of sexual precocity was developed in the evolutionary process and stably transmitted to future generations. Sexual precocity is a complex character determined by polygenes. This review introduced the association between KiSS-1, GPR54, LHR, FSHR, CYP, ER, TGFa, IGF-, GNAS1, HSD3B2, SHBG, VDR genes and sexual precocity in mammals.
Collapse
|
10
|
Ojeda SR, Lomniczi A, Sandau US. Glial-gonadotrophin hormone (GnRH) neurone interactions in the median eminence and the control of GnRH secretion. J Neuroendocrinol 2008; 20:732-42. [PMID: 18601696 DOI: 10.1111/j.1365-2826.2008.01712.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A wealth of information now exists showing that glial cells are actively involved in the cell-cell communication process generating and disseminating information within the central nervous system. In the hypothalamus, two types of glial cells, astrocytes and ependymal cells lining the latero-ventral portion of the third ventricle (known as tanycytes), regulate the secretory activity of neuroendocrine neurones. This function, initially described for astrocytes apposing magnocellular neurones, has been more recently characterised for neurones secreting gonadotrophin hormone-releasing hormone (GnRH). The available evidence suggests that glial cells of the median eminence regulate GnRH secretion via two related mechanisms. One involves the production of growth factors acting via receptors with tyrosine kinase activity. The other involves plastic rearrangements of glia-GnRH neurone adhesiveness. GnRH axons reach the median eminence, at least in part, directed by basic fibroblast growth factor. Their secretory activity is facilitated by insulin-like growth factor 1 and members of the epidermal growth factor family. A structural complement to these soluble molecules is provided by at least three cell-cell adhesion systems endowed with signalling capabilities. One of them uses the neuronal cell adhesion molecule (NCAM), another employs the synaptic cell adhesion molecule (SynCAM), and the third one consists of neuronal contactin interacting with glial receptor-like protein tyrosine phosphatase-beta. It is envisioned that, within the median eminence, soluble factors and adhesion molecules work coordinately to control delivery of GnRH to the portal vasculature.
Collapse
Affiliation(s)
- S R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
11
|
Bi X, Shi X, Baker JR. Synthesis, characterization and stability of a luteinizing hormone-releasing hormone (LHRH)-functionalized poly(amidoamine) dendrimer conjugate. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 19:131-42. [PMID: 18177559 DOI: 10.1163/156856208783227686] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancer targeting is crucial for cancer detection, therapy and targeted drug delivery. A dendrimer-peptide conjugate has been synthesized based on poly(amidoamine) dendrimer generation 5 (PAMAM G5) as a platform and a luteinizing hormone-releasing hormone (LHRH) peptide as a targeting moiety. The synthesized conjugate was fully characterized using nuclear magnetic resonance (NMR), UV-Vis spectrometry, reverse-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Further stability experiments showed that the synthesized conjugate was stable after 72-h incubation in phosphate-buffered saline (PBS) buffer (pH 7.4) at 37 degrees C. The synthesized conjugate may find applications in biomedical targeting, gene delivery and imaging.
Collapse
Affiliation(s)
- Xiangdong Bi
- Department of Physical Sciences, Charleston Southern University, Charleston, SC 29406, USA.
| | | | | |
Collapse
|
12
|
Schneider MR, Wolf E. The epidermal growth factor receptor and its ligands in female reproduction: Insights from rodent models. Cytokine Growth Factor Rev 2008; 19:173-81. [DOI: 10.1016/j.cytogfr.2008.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Windsor-Engnell BM, Kasuya E, Mizuno M, Keen KL, Terasawa E. An increase in in vivo release of LHRH and precocious puberty by posterior hypothalamic lesions in female rhesus monkeys (Macaca mulatta). Am J Physiol Endocrinol Metab 2007; 292:E1000-9. [PMID: 17148755 PMCID: PMC2203965 DOI: 10.1152/ajpendo.00493.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that a decrease in gamma-aminobutyric acid (GABA) tone and a subsequent increase in glutamatergic tone occur in association with the pubertal increase in luteinizing hormone releasing hormone (LHRH) release in primates. To further determine the causal relationship between developmental changes in GABA and glutamate levels and the pubertal increase in LHRH release, we examined monkeys with precocious puberty induced by lesions in the posterior hypothalamus (PH). Six prepubertal female rhesus monkeys (17.4 +/- 0.1 mo of age) received lesions in the PH, three prepubertal females (17.5 +/- 0.1 mo) received sham lesions, and two females received no treatments. LHRH, GABA, and glutamate levels in the stalk-median eminence before and after lesions were assessed over two 6-h periods (0600-1200 and 1800-2400) using push-pull perfusion. Monkeys with PH lesions exhibited external signs of precocious puberty, including significantly earlier menarche in PH lesion animals (18.8 +/- 0.2 mo) than in sham/controls (25.5 +/- 0.9 mo, P<0.001). Moreover, PH lesion animals had elevated LHRH levels and higher evening glutamate levels after lesions, whereas LHRH changes did not occur in sham/controls until later. Changes in GABA release were not discernible, since evening GABA levels already deceased at 18-20 mo of age in both groups and morning levels remained at the prepubertal levels. The age of first ovulation in both groups did not differ. Collectively, PH lesions may not be a good tool to investigate the mechanism of puberty, and, taking into account the recent findings on the role of kisspeptins, the mechanism of the puberty onset in primates is more complex than we initially anticipated.
Collapse
Affiliation(s)
| | - Etsuko Kasuya
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715-1261
| | - Masaharu Mizuno
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715-1261
| | - Kim L. Keen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715-1261
| | - Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715-1261
- Department of Pediatrics, University of Wisconsin, Madison, WI 53715-1261
| |
Collapse
|
14
|
Ojeda SR, Roth C, Mungenast A, Heger S, Mastronardi C, Parent AS, Lomniczi A, Jung H. Neuroendocrine mechanisms controlling female puberty: new approaches, new concepts. ACTA ACUST UNITED AC 2006; 29:256-63; discussion 286-90. [PMID: 16466547 DOI: 10.1111/j.1365-2605.2005.00619.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sexual development and mature reproductive function are controlled by a handful of neurones that, located in the basal forebrain, produce the decapeptide luteinizing hormone releasing hormone (LHRH). LHRH is released into the portal system that connects the hypothalamus to the pituitary gland and act on the latter to stimulate the synthesis and release of gonadotrophin hormones. The pubertal activation of LHRH release requires coordinated changes in excitatory and inhibitory inputs to LHRH-secreting neurones. These inputs are provided by both transsynaptic and glia-to-neurone communication pathways. Using cellular and molecular approaches, in combination with transgenic animal models and high-throughput procedures for gene discovery, we are gaining new insight into the basic mechanisms underlying this dual control of LHRH secretion and, hence, the initiation of mammalian puberty. Our results suggest that the initiation of puberty requires reciprocal neurone-glia communication involving excitatory amino acids and growth factors, and the coordinated actions of a group of transcriptional regulators that appear to represent a higher level of control governing the pubertal process.
Collapse
Affiliation(s)
- Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon, Health & Science University, Beaverton, 97006, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lomniczi A, Cornea A, Costa ME, Ojeda SR. Hypothalamic tumor necrosis factor-alpha converting enzyme mediates excitatory amino acid-dependent neuron-to-glia signaling in the neuroendocrine brain. J Neurosci 2006; 26:51-62. [PMID: 16399672 PMCID: PMC6674310 DOI: 10.1523/jneurosci.2939-05.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glial erbB1 receptors play a significant role in the hypothalamic control of female puberty. Activation of these receptors by transforming growth factor alpha (TGFalpha) results in production of prostaglandin E2, which then stimulates luteinizing hormone releasing hormone (LHRH) neurons to secrete LHRH, the neuropeptide controlling sexual development. Glutamatergic neurons set in motion this glia-to-neuron signaling pathway by transactivating erbB1 receptors via coactivation of AMPA receptors (AMPARs) and metabotropic glutamate receptors (mGluRs). Because the metalloproteinase tumor necrosis factor alpha converting enzyme (TACE) releases TGFalpha from its transmembrane precursor before TGFalpha can bind to erbB1 receptors, we sought to determine whether TACE is required for excitatory amino acids to activate the TGFalpha-erbB1 signaling module in hypothalamic astrocytes, and thus facilitate the advent of puberty. Coactivation of astrocytic AMPARs and mGluRs caused extracellular Ca2+ influx, a Ca2+/protein kinase C-dependent increase in TACE-like activity, and enhanced release of TGFalpha. Within the hypothalamus, TACE is most abundantly expressed in astrocytes of the median eminence (ME), and its enzymatic activity increases selectively in this region at the time of the first preovulatory surge of gonadotropins. ME explants respond to stimulation of AMPARs and mGluRs with LHRH release, and this response is prevented by blocking TACE activity. In vivo inhibition of TACE activity targeted to the ME delayed the age at first ovulation, indicating that ME-specific changes in TACE activity are required for the normal timing of puberty. These results suggest that TACE is a component of the neuron-to-glia signaling process used by glutamatergic neurons to control female sexual development.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | | | |
Collapse
|
16
|
Ojeda SR, Lomniczi A, Mastronardi C, Heger S, Roth C, Parent AS, Matagne V, Mungenast AE. Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology 2006; 147:1166-74. [PMID: 16373420 DOI: 10.1210/en.2005-1136] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The initiation of mammalian puberty requires an increase in pulsatile release of GnRH from the hypothalamus. This increase is brought about by coordinated changes in transsynaptic and glial-neuronal communication. As the neuronal and glial excitatory inputs to the GnRH neuronal network increase, the transsynaptic inhibitory tone decreases, leading to the pubertal activation of GnRH secretion. The excitatory neuronal systems most prevalently involved in this process use glutamate and the peptide kisspeptin for neurotransmission/neuromodulation, whereas the most important inhibitory inputs are provided by gamma-aminobutyric acid (GABA)ergic and opiatergic neurons. Glial cells, on the other hand, facilitate GnRH secretion via growth factor-dependent cell-cell signaling. Coordination of this regulatory neuronal-glial network may require a hierarchical arrangement. One level of coordination appears to be provided by a host of unrelated genes encoding proteins required for cell-cell communication. A second, but overlapping, level might be provided by a second tier of genes engaged in specific cell functions required for productive cell-cell interaction. A third and higher level of control involves the transcriptional regulation of these subordinate genes by a handful of upper echelon genes that, operating within the different neuronal and glial subsets required for the initiation of the pubertal process, sustain the functional integration of the network. The existence of functionally connected genes controlling the pubertal process is consistent with the concept that puberty is under genetic control and that the genetic underpinnings of both normal and deranged puberty are polygenic rather than specified by a single gene. The availability of improved high-throughput techniques and computational methods for global analysis of mRNAs and proteins will allow us to not only initiate the systematic identification of the different components of this neuroendocrine network but also to define their functional interactions.
Collapse
Affiliation(s)
- Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Parent AS, Rasier G, Gerard A, Heger S, Roth C, Mastronardi C, Jung H, Ojeda SR, Bourguignon JP. Early onset of puberty: tracking genetic and environmental factors. HORMONE RESEARCH 2005; 64 Suppl 2:41-7. [PMID: 16286770 DOI: 10.1159/000087753] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Under physiological conditions, factors affecting the genetic control of hypothalamic functions are predominant in determining the individual variations in timing of pubertal onset. In pathological conditions, however, these variations can involve different genetic susceptibility and the interaction of environmental factors. The high incidence of precocious puberty in foreign children migrating to Belgium and the detection in their plasma of a long-lasting 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) residue suggest the potential role of environmental endocrine disrupting chemicals in the early onset of puberty. This hypothesis was confirmed by experimental data showing that temporary exposure of immature female rats to DDT in vivo results in early onset of puberty. We compared the gene expression profile of hypothalamic hamartoma associated or not with precocious puberty in order to identify gene networks responsible for both hamartoma-dependent sexual precocity and the onset of normal human puberty. In conclusion, pathological variations in the timing of puberty may provide unique information about the interactions of either environmental conditions or genetic susceptibility with the hypothalamic mechanism controlling the onset of sexual maturation, as shown by examples of precocious puberty following exposure to endocrine disrupters or due to hypothalamic hamartoma.
Collapse
Affiliation(s)
- Anne-Simone Parent
- Developmental Neuroendocrinology, Centre for Molecular and Cellular Neurobiology, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Prevot V, Lomniczi A, Corfas G, Ojeda SR. erbB-1 and erbB-4 receptors act in concert to facilitate female sexual development and mature reproductive function. Endocrinology 2005; 146:1465-72. [PMID: 15591145 DOI: 10.1210/en.2004-1146] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glial erbB-1 and erbB-4 receptors are key components of the process by which neuroendocrine glial cells control LHRH secretion and the onset of female puberty. We now provide evidence that these two signaling systems work in a coordinated fashion to control reproductive function. To generate animals carrying functionally impaired erbB-1 and erbB-4 receptors, we crossed Waved 2 (Wa-2+/+) mice harboring a point mutation of the erbB-1 receptor with mice expressing a dominant-negative erbB-4 receptor in astrocytes. In comparison to single-deficient mice, double-mutant animals exhibited a further delay in the onset of puberty and a strikingly diminished adult reproductive capacity. Ligand-dependent erbB receptor phosphorylation and erbB-mediated MAPK (ERK 1/2) phosphorylation were impaired in mutant astrocytes. Wa-2+/+ or double-mutant astrocytes failed to respond to TGF alpha with production of prostaglandin E2, one of the factors mediating the stimulatory effect of astroglial erbB receptor activation on LHRH release. Medium conditioned by Wa-2+/+ or double-mutant astrocytes treated with TGF alpha failed to stimulate LHRH release from GT1-7 cells. The LH response to ovariectomy was significantly attenuated in mutant mice in comparison with wild-type controls. Although the Wa-2 mutation affects all cells bearing erbB-1 receptors, these results suggest that a major defect underlying the reproductive defects of animals with impaired erbB signaling is a decreased ability of glial cells to stimulate LHRH release. Thus, a coordinated involvement of erbB-1 and erbB-4 signaling systems is required for the normalcy of sexual development and the maintenance of mature female reproductive function.
Collapse
Affiliation(s)
- Vincent Prevot
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Sciences Unversity, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
19
|
Ojeda SR, Prevot V, Heger S, Lomniczi A, Dziedzic B, Mungenast A. The Neurobiology of Female Puberty. Horm Res Paediatr 2004; 60 Suppl 3:15-20. [PMID: 14671391 DOI: 10.1159/000074495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this review, studies are described indicating that the increase in pulsatile release of gonadotropin releasing hormone that signals the initiation of puberty requires both changes in transsynaptic communication and the activation of glia-to-neuron signaling pathways. The major players in the transsynaptic control of puberty are neurons that utilize excitatory and inhibitory amino acids as transmitters. Glial cells employ a combination of trophic factors and small cell-cell signaling molecules to regulate neuronal function and thus promote sexual development. A neuron-to-glia signaling pathway mediated by excitatory amino acids serves to coordinate the simultaneous activation of transsynaptic and glia-to-neuron communication required for the advent of sexual maturity.
Collapse
Affiliation(s)
- Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, Beaverton, Ore. 97006, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Roth C, Hegemann F, Hildebrandt J, Balzer I, Witt A, Wuttke W, Jarry H. Pituitary and gonadal effects of GnRH (gonadotropin releasing hormone) analogues in two peripubertal female rat models. Pediatr Res 2004; 55:126-33. [PMID: 14605254 DOI: 10.1203/01.pdr.0000100463.84334.3f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Central precocious puberty is commonly treated by gonadotropin releasing hormone (GnRH) agonists. To compare modes of action and effectiveness of GnRH analogues and assess treatment combinations of agonistic (triptorelin) and antagonistic (cetrorelix acetate) GnRH analogues with established treatment, we used prepubertal 31-d-old ovariectomized female rats. Strongest inhibition of LH and FSH occurred after 2-d treatment with antagonist alone (LH 0.08 +/- 0.02 versus 3.2 +/- 0.56 ng/mL in controls; FSH 10.8 +/- 2.8 versus 44.2 +/- 5.0 ng/mL in controls, p < 0.001). Combined agonist/antagonist was second most effective of the treatments (after 5 d treatment, LH 0.52 +/- 0.15 versus 4.9 +/- 1.1 ng/mL in controls; p < 0.01). Pituitary gonadotropin subunit LHbeta mRNA levels were inhibited in all groups except controls, but pituitary GnRH receptor mRNA was stimulated by agonist yet unaffected by combined analogues. Explanted ovaries were incubated with either analogue, both 10-6 M. After 4 h, GnRH receptor mRNA levels were significantly reduced by antagonist but not agonist. To verify puberty-inhibiting effects of GnRH analogues, we used 26-d-old female rats with androgen-induced precocious puberty after injecting subcutaneously single 300 microg danazol on postnatal d 5. Single application of cetrorelix depot (cetrorelix embonate) reduced serum estradiol levels and pituitary LHbeta expression; GnRH receptor mRNA levels were down-regulated in the pituitary and ovary (p < 0.05). In androgen-induced precocious puberty model, single injection of antagonist effectively arrests premature hormonal activation and down-regulates pituitary and ovarian GnRH receptors. We conclude that GnRH analogue combination and especially antagonist alone treatment most directly suppress gonadotropin levels. This implies that early treatment gonadotropin flare-up associated with agonist treatment is avoidable.
Collapse
Affiliation(s)
- Christian Roth
- Children's Hospital Medical Center, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Galbiati M, Saredi S, Melcangi RC. Steroid Hormones and Growth Factors Act in an Integrated Manner at the Levels of Hypothalamic Astrocytes. Ann N Y Acad Sci 2003; 1007:162-8. [PMID: 14993050 DOI: 10.1196/annals.1286.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several growth factors (e.g., transforming growth factors beta and alpha, basic fibroblast growth factor), produced by hypothalamic astrocytes, participate in the control of hypothalamic gonadotrophin-releasing hormone (GnRH) neurons. On this basis, we have hypothesized that steroid hormones, like estrogens and progestagens, influence the GnRH neurons by modulating in glial cells the synthesis and the release of these growth factors. Data reported here indicate that the expression of transforming growth factor beta 1 is modulated in hypothalamic astrocytes by a progesterone derivative (i.e., dihydroprogesterone), while estrogens modulate that of basic fibroblast growth factor. Moreover, it is interesting to highlight that the effect of estrogens on basic fibroblast growth factor is mediated by another growth factor (i.e., transforming growth factor alpha). Altogether, the present findings support the concept that steroid hormones and growth factors act in an integrated manner at the level of hypothalamic astrocytes, thus adding a further piece of knowledge in the understanding of the mechanisms controlling GnRH neurons.
Collapse
Affiliation(s)
- Mariarita Galbiati
- Department of Endocrinology and Center of Excellence on Neurodegenerative Diseases, Via Balzaretti 9, 20133, Milan, Italy.
| | | | | |
Collapse
|
22
|
Jung H, Neumaier Probst E, Hauffa BP, Partsch CJ, Dammann O. Association of morphological characteristics with precocious puberty and/or gelastic seizures in hypothalamic hamartoma. J Clin Endocrinol Metab 2003; 88:4590-5. [PMID: 14557427 DOI: 10.1210/jc.2002-022018] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathogenesis of central precocious puberty (PP) and/or gelastic seizures due to a hypothalamic hamartoma (HH) is still under debate. We evaluated the association of clinical symptoms with morphology and localization of the HH in 34 patients. The majority (86.4%) of HHs in patients with isolated PP (n = 22; 68.2% females) revealed a parahypothalamic position without affecting the third ventricle (91%). Half of them were pedunculated, and 40.9% showed a diameter less than 10 mm. In contrast, 11 of 12 patients with seizures, eight of whom were male, presented with a sessile intrahypothalamic hamartoma, 10 of which distorted the third ventricle. Logistic regression analysis revealed an increased relative risk (RR) for epilepsy in males (RR, 4.3; 95% confidence interval, 0.96-19). However, combination of the risk factor gender with intrahypothalamic position (RR, 19; 1.3-285) and distortion of the third ventricle (RR, 10; 0.6-164) reduced the risk associated with male gender to 1.1. The position of a HH and involvement of the third ventricle are likely to be more predictive for clinical characteristics than size and shape. Male gender was associated with an intrahypothalamic HH and epilepsy, suggesting a sexually dimorphic developmental pattern of this heterotopic mass.
Collapse
Affiliation(s)
- H Jung
- Clinical Research, Internal Medicine, and Endocrinology, Lilly Deutschland GmbH, Bad Homburg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Abstract
The unfolding of pubertal growth and maturation entails multisystem collaboration. Most notably, the outflow of gonadotropins and growth hormone (GH) proceeds both independently and jointly. The current update highlights this unique dependency in the human.
Collapse
|
24
|
Abstract
Astroglial-derived factors, as transforming growth factor (TGF)alpha and TGFbeta, act in the hypothalamus to activate luteinizing hormone-releasing hormone (LHRH) secretion. Hypothalamic hamartomas (HHs) contain normal nervous tissue in a heterotopic location. When symptomatic, they cause precocious puberty and/or characteristic gelastic seizures. Thus far, the pathogenesis of these alterations remains unknown. By examining two HHs associated with sexual precocity, we found that they contained astroglial cells expressing TGFalpha, but no LHRH neurons. In a third patient with HH, only epilepsy was present, but precocious puberty developed shortly after surgery, probably as a consequence of a surgery-induced lesion. These results imply that some HHs induce sexual precocity by activating endogenous LHRH secretion via astroglial-derived factors.
Collapse
Affiliation(s)
- Heike Jung
- Clinic of Pediatrics and Genetics, University Hospital Hannover, Germany.
| | | |
Collapse
|
25
|
Ojeda SR, Prevot V, Heger S, Lomniczi A, Dziedzic B, Mungenast A. Glia-to-neuron signaling and the neuroendocrine control of female puberty. Ann Med 2003; 35:244-55. [PMID: 12846266 DOI: 10.1080/07853890310005164] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The sine qua non event of puberty is an increase in pulsatile release of gonadotrophin hormone releasing hormone (GnRH). It is now clear that this increase and, therefore, the initiation of the pubertal process itself, require both changes in transsynaptic communication and the activation of glia-to-neuron signaling pathways. While neurons that utilize excitatory and inhibitory amino acids as transmitters represent major players in the transsynaptic control of puberty, glial cells utilize a combination of trophic factors and small cell-cell signaling molecules to regulate neuronal function and, thus, promote sexual development. A coordinated increase in glutamatergic transmission accompanied by a decrease in inhibitory GABAergic tone appears to initiate the transsynaptic cascade of events leading to the pubertal increase in GnRH release. Glial cells facilitate GnRH secretion via cell-cell signaling loops mainly initiated by members of the EGF and TGF- families of trophic factors, and brought about by either these factors themselves or by chemical messengers released in response to growth factor stimulation. In turn, a neuron-to-glia communication pathway mediated by excitatory amino acids serves to coordinate the simultaneous activation of transsynaptic and glia-to-neuron communication required for the advent of sexual maturity. A different--and perhaps higher--level of control may involve the transcriptional regulation of subordinate genes that, by contributing to neuroendocrine maturation, are required for the initiation of the pubertal process.
Collapse
Affiliation(s)
- Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Melcangi RC, Martini L, Galbiati M. Growth factors and steroid hormones: a complex interplay in the hypothalamic control of reproductive functions. Prog Neurobiol 2002; 67:421-49. [PMID: 12385863 DOI: 10.1016/s0301-0082(02)00060-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms through which LHRH-secreting neurons are controlled still represent a crucial and debated field of research in the neuroendocrine control of reproduction. In the present review, we have specifically considered two potential signals reaching these hypothalamic neurons: steroid hormones and growth factors. Examples of the relevant physiological role of the interactions between these two families of biologically acting molecules have been provided. In many cases, these interactions occur at the level of hypothalamic astrocytes, which are presently accepted as functional partners of the LHRH-secreting neurons. On the basis of the observations here summarized, we have formulated the hypothesis that a functional co-operation of steroid hormones and growth factors occurring in the hypothalamic astrocytic compartment represents a key factor in the neuroendocrine control of reproductive functions.
Collapse
Affiliation(s)
- Roberto C Melcangi
- Department of Endocrinology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | | | | |
Collapse
|
27
|
Abstract
In recent years compelling evidence has been provided that cell-cell interactions involving non-neuronal cells, such as glial and endothelial cells, are important in regulating the secretion of GnRH, the neuropeptide that controls both sexual development and adult reproductive function. Modification of the anatomical relationship that exist between GnRH nerve endings and glial cell processes in the external zone of the median eminence modulates the access of GnRH nerve terminals to the portal vasculature during the oestrous cycle. The establishment of direct neuro-haemal junctions between GnRH neuroendocrine terminals and the portal vasculature on the day of pro-oestrus may be critical for the transfer of GnRH upon its release into the fenestrated capillaries of the median eminence. Notwithstanding the importance of these plastic rearrangements, glial and endothelial cells also regulate GnRH neuronal function via specific cell-cell signalling molecules. While endothelial cells of the median eminence use nitric oxide to effect this regulatory control, astrocytes employ several growth factors, and in particular those of the EGF family and their erbB receptors to facilitate GnRH release during sexual development. Loss of function of each of these erbB receptors involved in the astroglial control of GnRH secretion leads to delayed sexual development. It is clear that regulation of GnRH secretion by cell-cell communication mechanisms other than transsynaptic inputs is an important component of the central neuroendocrine process controlling mammalian reproduction.
Collapse
Affiliation(s)
- Vincent Prevot
- Division of Neuroscience, Oregon Regional Primate Research Center/Oregon Health Science University, Beaverton, 97006 USA.
| |
Collapse
|
28
|
Hou J, Li B, Yang Z, Fager N, Ma MYJ. Altered gene activity of epidermal growth factor receptor (ErbB-1) in the hypothalamus of aging female rat is linked to abnormal estrous cycles. Endocrinology 2002; 143:577-86. [PMID: 11796513 DOI: 10.1210/endo.143.2.8632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of the ErbB-1 receptor is necessary for initiating mammalian female puberty by stimulating the release of LH-releasing hormone. It remains unclear whether ErbB-1 is also required in governing reproduction during adulthood and whether altered ErbB-1 signaling is linked to changes in gonadotropin secretion in aging females. The present study examined these issues. RT-PCR was employed to determine changes in ErbB-1 mRNA levels during proestrus in both young adult (YA) and middle-aged (MA) female rats. Before the LH surge, expression levels in the preoptic area of YA rats increased to a maximal value. No such increase in ErbB-1 mRNA was found in MA rats. This difference was confirmed by the analysis of in situ hybridization histochemistry, where a stronger mRNA signal was observed in the preoptic area of YA rats compared with MA females. ErbB-1 protein levels measured by Western blot reflected this difference. A peak level of ErbB-1 mRNA in the median eminence-arcuate nucleus was detected at 0800 h in YA rats, but it was delayed in MA animals. There were intense ErbB-1 mRNA-positive cells in the arcuate nucleus. Pharmacological blockade of ErbB-1 receptor-mediated signal transduction resulted in the disruption of estrous cyclicity in YA rats. These results indicate that ErbB-1 receptors are necessary for maintaining normal estrous cycles. Consequently, age-related alterations in hypothalamic ErbB-1 gene activity may contribute to a delayed preovulatory LH secretion in aging females. Thus, the ErbB-1 signaling system plays an important role in the control of female reproduction during adulthood.
Collapse
Affiliation(s)
- Jingwen Hou
- Center for Human Molecular Genetics and Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, USA
| | | | | | | | | |
Collapse
|
29
|
Keenan DM, Veldhuis JD. Disruption of the hypothalamic luteinizing hormone pulsing mechanism in aging men. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1917-24. [PMID: 11705778 DOI: 10.1152/ajpregu.2001.281.6.r1917] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The incremental nature of neuroendocrine aging suggests that subtle system dysregulation may precede overt axis failure. The present analyses unmask threefold disruption of pulsatile gonadotropin-releasing hormone (GnRH)-luteinizing hormone (LH) secretion in the aging male. First, by way of random effects-based deconvolution analysis, we document an elevated daily GnRH-LH pulse frequency in healthy older men [namely, mean (+/-SE) 23 +/- 1 (older) vs. 15 +/- 1 (young) LH secretory bursts/24 h, P < 0.001] and lower mean LH pulse mass [3.73 +/- 0.58 (older) vs. 5.46 +/- 0.66 (young) IU/l, P = 0.038]. However, total LH secretion rates and two-compartment LH elimination kinetics were comparable in the two age cohorts. Second, using the approximate entropy statistic, we show an equivalently random order-dependent succession of LH interpulse-interval lengths in young and older men, but a marked age-related deterioration of the ad seriatim regularity of LH pulse mass series in older individuals (P = 0.0057). Third, by modeling GnRH pulse-generator output as a Weibull renewal process (generalized Gamma density) to emulate loosely coupled GnRH neuronal oscillators, we identify an age-related reduction in the frequency-independent and order-independent variability of GnRH-LH interpulse-interval sets (P = 0.08). These findings indicate that the GnRH-LH pulsing mechanism in healthy older men maintains an increased mean frequency and lower amplitude of bursting activity, a reduced uniformity of serial LH pulse-mass values, and an impaired variability among interpulse-interval lengths. Thereby, the foregoing order-dependent and order-independent alterations in GnRH-LH signal generation in the aging human suggest a general framework for exploring subtle disruption of time-sensitive regulation of other neurointegrative systems.
Collapse
Affiliation(s)
- D M Keenan
- Department of Statistics, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
30
|
|
31
|
Bilger M, Heger S, Brann DW, Paredes A, Ojeda SR. A conditional tetracycline-regulated increase in Gamma amino butyric acid production near luteinizing hormone-releasing hormone nerve terminals disrupts estrous cyclicity in the rat. Endocrinology 2001; 142:2102-14. [PMID: 11316778 DOI: 10.1210/endo.142.5.8166] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gamma amino butyric acid (GABA) is the main inhibitory neurotransmitter controlling LH-releasing hormone (LHRH) secretion in the mammalian hypothalamus. Whether alterations in GABA homeostasis within discrete regions of the neuroendocrine brain known to be targets of GABA action, such as the median eminence, can disrupt the ability of the LHRH releasing system to maintain reproductive cyclicity is not known but amenable to experimental scrutiny. The present experiments were undertaken to examine this issue. Immortalized BAS-8.1 astroglial cells were genetically modified by infection with a regulatable retroviral vector to express the gene encoding the GABA synthesizing enzyme glutamic acid decarboxylase-67 (GAD-67) under the control of a tetracycline (tet) controlled gene expression system. In this system, expression of the gene of interest is repressed by tet and activated in the absence of the antibiotic. BAS-8.1 cells carrying this regulatory cassette, and cultured in the absence of tet ("GAD on"), expressed abundant levels of GAD-67 messenger RNA and GAD enzymatic activity, and released GABA when challenged with glutamate. All of these responses were inhibited within 24 h of exposure to tet ("GAD off"). Grafting "GAD on" cells into the median eminence of late juvenile female rats, near LHRH nerve terminals, did not affect the age at vaginal opening, but greatly disrupted subsequent estrous cyclicity. These animals exhibiting long periods of persistent estrus, interrupted by occasional days in proestrus and diestrus, suggesting the occurrence of irregular ovulatory episodes. Administration of the tetracycline analog doxycycline (DOXY) in the drinking water inhibited GAD-67synthesis and restored estrous cyclicity to a pattern indistinguishable from that of control rats grafted with native BAS-8.1 cells. Animals carrying "GAD on" cells showed a small increase in serum LH and estradiol levels, and a marked elevation in serum androstenedione, all of which were obliterated by turning GAD-67 synthesis off in the grafted cells. Morphometric analysis of the ovaries revealed that both groups grafted with GABA-producing cells had an increased incidence of large antral follicles (>500 micrometer) compared with animals grafted with native BAS-8.1 cells, but that within this category the incidence of steroidogenically more active follicles (i.e. larger than 600 micrometer) was greater in "GAD on" than in "GAD off" rats. These results indicate that a regionally discrete, temporally controlled increase in GABA availability to LHRH nerve terminals in the median eminence of the hypothalamus suffices to disrupt estrous cyclicity in the rat, and raise the possibility that similar local alterations in GABA homeostasis may contribute to the pathology of hypothalamic amenorrhea/oligomenorrhea in humans.
Collapse
Affiliation(s)
- M Bilger
- Division of Neuroscience, Oregon Regional Primate Research Center/Oregon Health Sciences University, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
32
|
Viguié C, Jansen HT, Glass JD, Watanabe M, Billings HJ, Coolen L, Lehman MN, Karsch FJ. Potential for polysialylated form of neural cell adhesion molecule-mediated neuroplasticity within the gonadotropin-releasing hormone neurosecretory system of the ewe. Endocrinology 2001; 142:1317-24. [PMID: 11181550 DOI: 10.1210/endo.142.3.8000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The GnRH neurosecretory system undergoes marked structural and functional changes throughout life. The initial goal of this study was to examine the neuroanatomical relationship between GnRH neurons and a glycoprotein implicated in neuroplasticity, the polysialylated form of neural cell adhesion molecule (PSA-NCAM). Using dual label immunocytochemistry in conjunction with confocal microscopy, we determined that fibers, terminals, and perikarya of GnRH neurons in adult ovariectomized ewes are intimately associated with PSA-NCAM. In the preoptic area, intense PSA-NCAM immunoreactivity was evident around the periphery of GnRH cell bodies. The second goal of this study was to determine whether PSA-NCAM expression associated with GnRH neurons varies in conjunction with seasonal changes in the activity of the GnRH neurosecretory system in ovariectomized ewes treated with constant release implants of estradiol. During the breeding season when reproductive neuroendocrine activity was enhanced, the expression of PSA-NCAM immunoreactivity associated with GnRH neurons was significantly greater than that during anestrus when GnRH secretion was reduced. This difference, which occurred despite an unchanging ovarian steroid milieu, was not observed in preoptic area structures devoid of GnRH immunoreactivity, suggesting that the seasonal change is at least partially specific to the GnRH system. The close association between PSA-NCAM and GnRH neurons and the change in this relationship in conjunction with seasonal alterations in GnRH secretion provide anatomical evidence that this molecule may contribute to seasonal remodeling of the GnRH neurosecretory system of the adult.
Collapse
Affiliation(s)
- C Viguié
- Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109-0404, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
An increase in pulsatile release of LHRH is essential for the onset of puberty. However, the mechanism controlling the pubertal increase in LHRH release is still unclear. In primates the LHRH neurosecretory system is already active during the neonatal period but subsequently enters a dormant state in the juvenile/prepubertal period. Neither gonadal steroid hormones nor the absence of facilitatory neuronal inputs to LHRH neurons is responsible for the low levels of LHRH release before the onset of puberty in primates. Recent studies suggest that during the prepubertal period an inhibitory neuronal system suppresses LHRH release and that during the subsequent maturation of the hypothalamus this prepubertal inhibition is removed, allowing the adult pattern of pulsatile LHRH release. In fact, y-aminobutyric acid (GABA) appears to be an inhibitory neurotransmitter responsible for restricting LHRH release before the onset of puberty in female rhesus monkeys. In addition, it appears that the reduction in tonic GABA inhibition allows an increase in the release of glutamate as well as other neurotransmitters, which contributes to the increase in pubertal LHRH release. In this review, developmental changes in several neurotransmitter systems controlling pulsatile LHRH release are extensively reviewed.
Collapse
Affiliation(s)
- E Terasawa
- Department of Pediatrics, Wisconsin Regional Primate Research Center, and University of Wisconsin-Madison, 53715-1299, USA.
| | | |
Collapse
|
34
|
Abstract
Transforming growth factor alpha (TGFalpha) is a member of the epidermal growth factor (EGF) family with which it shares the same receptor, the EGF receptor (EGFR or erbB1). Identified since 1985 in the central nervous system (CNS), its functions in this organ have started to be determined during the past decade although numerous questions remain unanswered. TGFalpha is widely distributed in the nervous system, both glial and neuronal cells contributing to its synthesis. Although astrocytes appear as its main targets, mediating in part TGFalpha effects on different neuronal populations, results from different studies have raised the possibility for a direct action of this growth factor on neurons. A large array of experimental data have thus pointed to TGFalpha as a multifunctional factor in the CNS. This review is an attempt to present, in a comprehensive manner, the very diverse works performed in vitro and in vivo which have provided evidences for (i) an intervention of TGFalpha in the control of developmental events such as neural progenitors proliferation/cell fate choice, neuronal survival/differentiation, and neuronal control of female puberty onset, (ii) its role as a potent regulator of astroglial metabolism including astrocytic reactivity, (iii) its neuroprotective potential, and (iv) its participation to neuropathological processes as exemplified by astroglial neoplasia. In addition, informations regarding the complex modes of TGFalpha action at the molecular level are provided, and its place within the large EGF family is precised with regard to the potential interactions and substitutions which may take place between TGFalpha and its kindred.
Collapse
Affiliation(s)
- M P Junier
- INSERM U421, Faculté de Médecine, 8, rue du Général Sarrail, 94010, Créteil, France.
| |
Collapse
|
35
|
Roth C, Schmidberger H, Schaper O, Leonhardt S, Lakomek M, Wuttke W, Jarry H. Cranial irradiation of female rats causes dose-dependent and age-dependent activation or inhibition of pubertal development. Pediatr Res 2000; 47:586-91. [PMID: 10813581 DOI: 10.1203/00006450-200005000-00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cranial irradiation in prepubertal children with leukemia or brain tumors can lead to precocious or in high doses to late puberty. To unravel the underlying mechanisms, we developed a rat model with selective cranial Co60-irradiation technique. Infantile (12-16 d old) or juvenile (21-23 d old) female Sprague-Dawley rats received a single dose of 4, 5, 6, 9 or 2 x 9 Gy (at days 21 and 23). Each group consisted of 7-20 animals. High radiation doses (9 Gy and more) caused retardation of sexual development, whereas low radiation doses (5 or 6 Gy) led to accelerated onset of puberty in 20% of infantile irradiated rats animals as determined by vaginal opening. Interestingly, at peripubertal age (postnatal day 32-34), 5 or 6 Gy infantile irradiated rats had significantly higher serum LH levels stimulated by GnRH and estradiol levels (p < 0.05). 2 x 9 Gy irradiated rats had at the age of 3 mo a marked growth retardation and significantly lower GH levels than the controls (p < 0.05) whereas prolactin, FSH, TSH, T4, and corticosterone levels were comparable with controls. These studies demonstrate that the GnRH-pulse generator is very radiosensitive as precocious activation occurred after low dose irradiation (5 or 6 Gy) of infantile rats without any other endocrine disorder. High radiation doses (9 or 2 x 9 Gy) induced retardation of sexual maturation and later on growth hormone deficiency. Moreover this model of cranial irradiation seems to be suitable to study the molecular mechanisms of radiation induced pubertal changes.
Collapse
Affiliation(s)
- C Roth
- Children's Hospital, University of Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Goldman JM, Laws SC, Balchak SK, Cooper RL, Kavlock RJ. Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid activity in the female rat. A focus on the EDSTAC recommendations. Crit Rev Toxicol 2000; 30:135-96. [PMID: 10759430 DOI: 10.1080/10408440091159185] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In 1996, the US Environmental Protection Agency was given a mandate by Congress to develop a screening program that would evaluate whether variously identified compounds could affect human health by mimicking or interfering with normal endocrine regulatory functions. Toward this end, the Agency chartered the Endocrine Disruptor Screening and Testing Advisory Committee in October of that year that would serve to recommend a series of in vitro and in vivo protocols designed to provide a comprehensive assessment of a chemical's potential endocrine-disrupting activity. A number of these protocols have undergone subsequent modification by EPA, and this review focuses specifically on the revised in vivo screening procedure recommended under the title Research Protocol for Assessment of Pubertal Development and Thyroid Function in Juvenile Female Rats. Background literature has been provided that summarizes what is currently known about pubertal development in the female rat and the influence of various forms of pharmaceutical and toxicological insult on this process and on thyroid activity. Finally, a section is included that discusses technical issues that should be considered if the specified pubertal endpoints are to be measured and successfully evaluated.
Collapse
Affiliation(s)
- J M Goldman
- Reproductive Toxicology Division, National Health & Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | | | |
Collapse
|
37
|
Dissen GA, Lara HE, Leyton V, Paredes A, Hill DF, Costa ME, Martinez-Serrano A, Ojeda SR. Intraovarian excess of nerve growth factor increases androgen secretion and disrupts estrous cyclicity in the rat. Endocrinology 2000; 141:1073-82. [PMID: 10698183 DOI: 10.1210/endo.141.3.7396] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A single injection of estradiol valerate induces a form of cystic ovary resembling some aspects of the human polycystic ovarian syndrome. Preceding the development of follicular cysts, there is an increase in intraovarian synthesis of nerve growth factor (NGF) and the low affinity NGF receptor (p75 NGFR). Selective blockade of NGF actions and p75 NGFR synthesis in the ovary restored estrous cyclicity and ovulatory capacity in estradiol valerate-treated rats, suggesting that an increase in NGF-dependent, p75 NGFR-mediated actions within the ovary contributes to the development of cystic ovarian disease. We have tested this hypothesis by grafting NGF-producing neural progenitor cells into the ovary of juvenile rats that have been induced to ovulate precociously by a single injection of PMSG. The NGF-producing cells, detected by their content of immunoreactive p75 NGFR material, were found scattered throughout the ovary with some of them infiltrating the granulosa cell compartment of large, precystic follicles. Ovarian NGF content was 2-fold higher than in the ovary of rats receiving control cells. Estrous cyclicity was disrupted, with the animals showing prolonged periods of persistent estrus, and an almost continuous background of vaginal cornified cells at other phases of the estrous cycle. Morphometric analysis revealed that the presence of NGF-producing cells neither reduced the total number of corpora lutea per ovary nor significantly increased the formation of follicular cysts. However, the ovaries receiving these cells showed an increased incidence of precystic, type III follicles, accompanied by a reduced number of healthy antral follicles, and an increased size of both healthy and atretic follicles. These changes in follicular dynamics were accompanied by a selective increase in serum androstenedione levels. The results show that an abnormally elevated production of NGF within the ovary suffices to initiate several of the structural and functional alterations associated with the development of follicular cysts in the rat ovary.
Collapse
Affiliation(s)
- G A Dissen
- Division of Neuroscience, Oregon Regional Primate Research Center-Oregon Health Sciences University, Beaverton 97006-3448, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Neuregulins signaling via a glial erbB-2-erbB-4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. J Neurosci 1999. [PMID: 10559400 DOI: 10.1523/jneurosci.19-22-09913.1999] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of erbB-1 receptors by glial TGFalpha has been shown to be a component of the developmental program by which the neuroendocrine brain controls mammalian sexual development. The participation of other members of the erbB family may be required, however, for full signaling capacity. Here, we show that activation of astrocytic erbB-2/erbB-4 receptors plays a significant role in the process by which the hypothalamus controls the advent of mammalian sexual maturation. Hypothalamic astrocytes express both the erbB-2 and erbB-4 genes, but no erbB-3, and respond to neuregulins (NRGs) by releasing prostaglandin E(2) (PGE(2)), which acts on neurosecretory neurons to stimulate secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development. The actions of TGFalpha and NRGs in glia are synergistic and involve recruitment of erbB-2 as a coreceptor, via erbB-1 and erbB-4, respectively. Hypothalamic expression of both erbB-2 and erbB-4 increases first in a gonad-independent manner before the onset of puberty, and then, at the time of puberty, in a sex steroid-dependent manner. Disruption of erbB-2 synthesis in hypothalamic astrocytes by treatment with an antisense oligodeoxynucleotide inhibited the astrocytic response to NRGs and, to a lesser extent, that to TGFalpha and blocked the erbB-dependent, glia-mediated, stimulation of LHRH release. Intracerebral administration of the oligodeoxynucleotide to developing animals delayed the initiation of puberty. Thus, activation of the erbB-2-erbB-4 receptor complex appears to be a critical component of the signaling process by which astrocytes facilitate the acquisition of female reproductive capacity in mammals.
Collapse
|
39
|
Ma YJ, Hill DF, Creswick KE, Costa ME, Cornea A, Lioubin MN, Plowman GD, Ojeda SR. Neuregulins signaling via a glial erbB-2-erbB-4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. J Neurosci 1999; 19:9913-27. [PMID: 10559400 PMCID: PMC6782961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1999] [Revised: 09/02/1999] [Accepted: 09/02/1999] [Indexed: 02/14/2023] Open
Abstract
Activation of erbB-1 receptors by glial TGFalpha has been shown to be a component of the developmental program by which the neuroendocrine brain controls mammalian sexual development. The participation of other members of the erbB family may be required, however, for full signaling capacity. Here, we show that activation of astrocytic erbB-2/erbB-4 receptors plays a significant role in the process by which the hypothalamus controls the advent of mammalian sexual maturation. Hypothalamic astrocytes express both the erbB-2 and erbB-4 genes, but no erbB-3, and respond to neuregulins (NRGs) by releasing prostaglandin E(2) (PGE(2)), which acts on neurosecretory neurons to stimulate secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development. The actions of TGFalpha and NRGs in glia are synergistic and involve recruitment of erbB-2 as a coreceptor, via erbB-1 and erbB-4, respectively. Hypothalamic expression of both erbB-2 and erbB-4 increases first in a gonad-independent manner before the onset of puberty, and then, at the time of puberty, in a sex steroid-dependent manner. Disruption of erbB-2 synthesis in hypothalamic astrocytes by treatment with an antisense oligodeoxynucleotide inhibited the astrocytic response to NRGs and, to a lesser extent, that to TGFalpha and blocked the erbB-dependent, glia-mediated, stimulation of LHRH release. Intracerebral administration of the oligodeoxynucleotide to developing animals delayed the initiation of puberty. Thus, activation of the erbB-2-erbB-4 receptor complex appears to be a critical component of the signaling process by which astrocytes facilitate the acquisition of female reproductive capacity in mammals.
Collapse
Affiliation(s)
- Y J Ma
- Division of Neuroscience, Oregon Regional Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
McCann SM, Mastronardi C, Walczewska A, Karanth S, Rettori V, Yu WH. The role of nitric oxide in reproduction. Braz J Med Biol Res 1999; 32:1367-79. [PMID: 10559838 DOI: 10.1590/s0100-879x1999001100007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH). The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP). NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS) in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG).
Collapse
Affiliation(s)
- S M McCann
- Pennington Biomedical Research Cente, Louisiana State University, Baton Rouge, LA 70808-4124, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Ojeda SR, Ma YJ. Glial-neuronal interactions in the neuroendocrine control of mammalian puberty: facilitatory effects of gonadal steroids. JOURNAL OF NEUROBIOLOGY 1999; 40:528-40. [PMID: 10453054 DOI: 10.1002/(sici)1097-4695(19990915)40:4<528::aid-neu9>3.0.co;2-v] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is now clear that astroglial cells actively contribute to both the generation and flow of information within the central nervous system. In the hypothalamus, astrocytes regulate the secretory activity of neuroendocrine neurons. A small subset of these neurons secrete luteinizing hormone-releasing hormone (LHRH), a neuropeptide essential for sexual development and adult reproductive function. Astrocytes stimulate LHRH secretion via cell-cell signaling mechanisms involving growth factors recognized by receptors with either serine/threonine or tyrosine kinase activity. Two members of the epidermal growth factor (EGF) family and their respective tyrosine kinase receptors appear to play key roles in this regulatory process. Transforming growth factor-alpha (TGFalpha) and its distant congeners, the neuregulins (NRGs), are produced in hypothalamic astrocytes. They stimulate LHRH secretion indirectly, via activation of erbB-1/erbB-2 and erbB-4/erbB-2 receptor complexes also located on astrocytes. Activation of these receptors leads to release of prostaglandin E(2) (PGE(2)), which then binds to specific receptors on LHRH neurons to elicit LHRH secretion. Gonadal steroids facilitate this glia-to-neuron communication process by acting at three different steps along the signaling pathway. They (a) increase astrocytic gene expression of at least one of the EGF-related ligands (TGFalpha), (b) increase expression of at least two of the receptors (erbB-4 and erbB-2), and (c) enhance the LHRH response to PGE(2) by up-regulating in LHRH neurons the expression of specific PGE(2) receptor isoforms. Focal overexpression of TGFalpha in either the median eminence or preoptic area of the hypothalamus accelerates puberty. Conversely, blockade of either TGFalpha or NRG hypothalamic actions delays the process. Thus, both TGFalpha and NRGs appear to be physiological components of the central neuroendocrine mechanism controlling the initiation of female puberty. By facilitating growth factor signaling pathways in the hypothalamus, ovarian steroids accelerate the pace and progression of the pubertal process.
Collapse
Affiliation(s)
- S R Ojeda
- Division of Neuroscience, Oregon Regional Primate Research Center/Oregon Health Sciences University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
42
|
Ojeda SR, Hill J, Hill DF, Costa ME, Tapia V, Cornea A, Ma YJ. The Oct-2 POU domain gene in the neuroendocrine brain: a transcriptional regulator of mammalian puberty. Endocrinology 1999; 140:3774-89. [PMID: 10433239 DOI: 10.1210/endo.140.8.6941] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
POU homeodomain genes are transcriptional regulators that control development of the mammalian forebrain. Although they are mostly active during embryonic life, some of them remain expressed in the postnatal hypothalamus, suggesting their involvement in regulating differentiated functions of the neuroendocrine brain. We show here that Oct-2, a POU domain gene originally described in cells of the immune system, is one of the controlling components of the cell-cell signaling process underlying the hypothalamic regulation of female puberty. Lesions of the anterior hypothalamus cause sexual precocity and recapitulate some of the events leading to the normal initiation of puberty. Prominent among these events is an increased astrocytic expression of the gene encoding transforming growth factor-alpha (TGF alpha), a tropic polypeptide involved in the stimulatory control of LHRH secretion. The present study shows that such lesions result in the rapid and selective increase in Oct-2 transcripts in TGF alpha-containing astrocytes surrounding the lesion site. In both lesion-induced and normal puberty, there is a preferential increase in hypothalamic expression of the Oct-2a and Oct-2c alternatively spliced messenger RNA forms of the Oct-2 gene, with an increase in 2a messenger RNA levels preceding that in 2c and antedating the peripubertal activation of gonadal steroid secretion. Both Oct-2a and 2c trans-activate the TGF alpha gene via recognition motifs contained in the TGF alpha gene promoter. Inhibition of Oct-2 synthesis reduces TGF alpha expression in astroglial cells and delays the initiation of puberty. These results suggest that the Oct-2 gene is one of the upstream components of the glia to neuron signaling process that controls the onset of female puberty in mammals.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- DNA-Binding Proteins/genetics
- Female
- Gene Expression Regulation, Developmental
- Hypothalamus, Anterior/physiology
- Hypothalamus, Anterior/radiation effects
- Kinetics
- Mammals
- Molecular Sequence Data
- Octamer Transcription Factor-2
- Preoptic Area/physiology
- Preoptic Area/radiation effects
- Promoter Regions, Genetic
- Prosencephalon/growth & development
- Prosencephalon/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sexual Maturation/genetics
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- S R Ojeda
- Division of Neuroscience, Oregon Regional Primate Research Center/Oregon Health Sciences University, Beaverton 97006, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
McCann SM, Kimura M, Walczewska A, Karanth S, Rettori V, Yu WH. Hypothalamic control of gonadotropin secretion by LHRH, FSHRF, NO, cytokines, and leptin. Domest Anim Endocrinol 1998; 15:333-44. [PMID: 9785037 DOI: 10.1016/s0739-7240(98)00029-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gonadotropin secretion by the pituitary gland is under the control of luteinizing hormone-releasing hormone (LHRH) and the putative follicle stimulating hormone-releasing factor (FSHRF). Lamprey III LHRH is a potent FSHRF in the rat and seems to be resident in the FSH controlling area of the rat hypothalamus. It is an analog of mammalian LHRH and may be the long sought FSHRF. Gonadal steroids feedback at hypothalamic and pituitary levels to either inhibit or stimulate the release of LH and FSH, which is also affected by inhibin and activin secreted by the gonads. Important control is exercised by acetylcholine, norepinephrine (NE), dopamine, serotonin, melatonin, and glutamic acid (GA). Furthermore, LH and FSH also act at the hypothalamic level to alter secretion of gonadotropins. More recently, growth factors have been shown to have an important role. Many peptides act to inhibit or increase release of LH and the sign of their action is often reversed by estrogen. A number of cytokines act at the hypothalamic level to suppress acutely the release of LH but not FSH. NE, GA, and oxytocin stimulate LHRH release by activation of neural nitric oxide synthase (nNOS). The pathway is as follows: oxytocin and/or GA activate NE neurons in the medial basal hypothalamus (MBH) that activate NOergic neurons by alpha, (alpha 1) receptors. The NO released diffuses into LHRH terminals and induces LHRH release by activation of guanylate cyclase (GC) and cyclooxygenase. NO not only controls release of LHRH bound for the pituitary, but also that which induces mating by actions in the brain stem. An exciting recent development has been the discovery of the adipocyte hormone, leptin, a cytokine related to tumor necrosis factor (TNF) alpha. In the male rat, leptin exhibits a high potency to stimulate FSH and LH release from hemipituitaries incubated in vitro, and increases the release of LHRH from MBH explants. LHRH and leptin release LH by activation of NOS in the gonadotropes. The NO released activates GC that releases cyclic GMP, which induces LH release. Leptin induces LH release in conscious, ovariectomized estrogen-primed female rats, presumably by stimulating LHRH release. At the effective dose of estrogen to activate LH release, FSH release is inhibited. Leptin may play an important role in induction of puberty and control of LHRH release in the adult as well.
Collapse
Affiliation(s)
- S M McCann
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808-4124, USA
| | | | | | | | | | | |
Collapse
|
45
|
Rainov NG, Dobberstein KU, Sena-Esteves M, Herrlinger U, Kramm CM, Philpot RM, Hilton J, Chiocca EA, Breakefield XO. New prodrug activation gene therapy for cancer using cytochrome P450 4B1 and 2-aminoanthracene/4-ipomeanol. Hum Gene Ther 1998; 9:1261-73. [PMID: 9650611 DOI: 10.1089/hum.1998.9.9-1261] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vector-mediated transfer of prodrug-activating genes provides a promising means of cancer gene therapy. In a search for more selective and more potent bioactivating enzymes for gene therapy of malignant brain tumors, the toxicity-generating capacity of the rabbit cytochrome P450 isozyme CYP4B1 was investigated. Rabbit CYP4B1, but not rat or human isozymes, efficiently converts the inert prodrugs, 2-aminoanthracene (2-AA) and 4-ipomeanol (4-IM), into highly toxic alkylating metabolites. Toxicity of these two prodrugs was evaluated in culture in parental and genetically modified rodent (9L) and human (U87) glioma cell lines stably expressing CYP4B1, and in vivo in a subcutaneous 9L tumor model in nude mice. The most sensitive CYP4B1-expressing glioma clone, 9L4B1-60, displayed an LD50 of 2.5 microM for 2-AA and 4-IM after 48 h of prodrug incubation, whereas 20 times higher prodrug concentrations did not cause any significant toxicity to control cells. Substantial killing of control tumor cells by 2-AA was achieved by co-culturing these cells with CYP4B1-expressing cells at a ratio of 100:1, and toxic metabolites could be transferred through medium. In both CYP4B1-expressing cells and co-cultured control cells, prodrug bioactivation was associated with DNA fragmentation, as assayed by fluorescent TUNEL assays and by annexin V staining. Alkaline elution of cellular DNA after exposure to 4-IM revealed extensive protein-DNA crosslinking with single-strand breakage. Growth of 9L-4B1 tumors in nude mice was inhibited by intraperitoneal injection of 4-IM with minimal side effects. Potential advantages of the CYP4B1 gene therapy paradigm include: the low concentrations of prodrug needed to kill sensitized tumor cells; low prodrug conversion by human isozymes, thus reducing toxicity to normal cells; a tumor-killing bystander effect that can occur even without cell-to-cell contact; and the utilization of lipophilic prodrugs that can penetrate the blood-brain barrier.
Collapse
Affiliation(s)
- N G Rainov
- Molecular Neurogenetics Unit, Neurology Service, Massachusetts General Hospital, Harvard Medical School, Boston 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ojeda SR, Ma YJ. Epidermal growth factor tyrosine kinase receptors and the neuroendocrine control of mammalian puberty. Mol Cell Endocrinol 1998; 140:101-6. [PMID: 9722176 DOI: 10.1016/s0303-7207(98)00036-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years evidence has begun to accumulate indicating that the central control of mammalian puberty requires not only changes in transsynaptic communication, but also the participation of glial cells. Neurons and astrocytes control the pubertal process by regulating the secretory activity of those neurons that produce luteinizing hormone-releasing hormone (LHRH), the neuropeptide that governs sexual development. LHRH, in turn, directs sexual development by stimulating the secretion of pituitary gonadotropins. Astrocytes affect LHRH neuronal function via cell-cell signaling mechanisms involving several growth factors acting via receptors endowed with tyrosine kinase activity. We have identified two members of the epidermal growth factor/transforming growth factor alpha (EGF/TGFalpha) family and their respective receptors as key players in the glial-neuronal interactive process that regulates LHRH secretion. Our results indicate that TGFalpha and its distant congener neuregulin (NRG) are produced in hypothalamic astrocytes and stimulate LHRH release indirectly via activation of their respective receptors, located--surprisingly--not on LHRH neurons, but on astrocytes. Activation of EGF receptors by TGFalpha, and/or the erbB2/erbB4 receptor complex by NRG, leads to glial release of prostaglandin (PG) E2, which then acts directly on LHRH neurons to stimulate LHRH release. That a central blockade of TGFalpha or NRG action delays puberty, and focal overexpression of TGFalpha advances it, leads to the conclusion that both TGFalpha and NRG are physiological components of the central mechanism controlling the initiation of female puberty.
Collapse
Affiliation(s)
- S R Ojeda
- Division of Neuroscience, Oregon Regional Primate Research Center, Beaverton 97006, USA.
| | | |
Collapse
|
47
|
McCann SM, Kimura M, Walczewska A, Karanth S, Rettori V, Yu WH. Hypothalamic control of FSH and LH by FSH-RF, LHRH, cytokines, leptin and nitric oxide. Neuroimmunomodulation 1998; 5:193-202. [PMID: 9730686 DOI: 10.1159/000026337] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gonadotropin secretion by the pituitary gland is under the control of luteinizing hormone-releasing hormone (LHRH) and the putative follicle-stimulating hormone-releasing factor (FSHRF). Lamprey III LHRH is a potent FSHRF in the rat and appears to be resident in the FSH controlling area of the rat hypothalamus. It is an analog of mammalian LHRH and may be the long-sought FSHRF. Gonadal steroids feedback at hypothalamic and pituitary levels to either inhibit or stimulate the release of LH and FSH, which is also affected by inhibin and activin secreted by the gonads. Important control is exercised by acetylcholine, norepinephrine (NE), dopamine, serotonin, melatonin and glutamic acid (GA). Furthermore, LH and FSH also act at the hypothalamic level to alter secretion of gonadotropins. More recently, growth factors have been shown to have an important role. Many peptides act to inhibit or increase release of LH, and the sign of their action is often reversed by estrogen. A number of cytokines act at the hypothalamic level to suppress acutely the release of LH but not FSH. NE, GA and oxytocin stimulate LHRH release by activation of neural nitric oxide synthase (nNOS). The pathway is as follows: oxytocin and/or GA activate NE neurons in the medial basal hypothalamus (MBH) that activate NOergic neurons by alpha1 receptors. The NO released diffuses into LHRH terminals and induces LHRH release by activation of guanylate cyclase (GC) and cyclooxygenase. NO not only controls release of LHRH bound for the pituitary, but also that which induces mating by actions in the brain stem. An exciting recent development has been the discovery of the adipocyte hormone, leptin, a cytokine related to tumor necrosis factor-alpha (TNF-alpha). In the male rat, leptin exhibits a high potency to stimulate FSH and LH release from hemipituitaries incubated in vitro, and increases the release of LHRH from MBH explants by stimulating the release of NO. LHRH and leptin release LH by activation of NOS in the gonadotropes. The NO released activates GC that releases cyclic GMP which induces LH release. Leptin induces LH release in conscious, ovariectomized estrogen-primed female rats, presumably by stimulating LHRH release. At the effective dose of estrogen to activate LH release, FSH release is inhibited. Leptin may play an important role in induction of puberty and control of LHRH release in the adult as well.
Collapse
Affiliation(s)
- S M McCann
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La., USA
| | | | | | | | | | | |
Collapse
|
48
|
El Majdoubi M, Sahu A, Plant TM. Effect of estrogen on hypothalamic transforming growth factor alpha and gonadotropin-releasing hormone gene expression in the female rhesus monkey. Neuroendocrinology 1998; 67:228-35. [PMID: 9588692 DOI: 10.1159/000054318] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to study whether hypothalamic transforming growth factor alpha (TGFalpha) gene expression in the monkey is estrogen-sensitive, long-term ovariectomized rhesus macaques were implanted subcutaneously with either estradiol-containing (n = 3) or blank (n = 3) Silastic capsules. Blood samples were collected every other day while the animals were lightly sedated with ketamine hydrochloride to monitor circulating LH and estradiol concentrations. Animals were killed with a lethal dose of pentobarbital sodium after a marked suppression of LH secretion was confirmed (81 days of estradiol treatment); the preoptic area (POA), mediobasal hypothalamus (MBH) and samples of cerebral cortex were dissected out, snap-frozen in liquid nitrogen and processed for the determination of TGFalpha messenger RNA (mRNA) by ribonuclease protection assay using a cRNA probe. The opportunity was also taken to study the action of estrogen on hypothalamic GnRH mRNA levels. Although circulating estradiol concentrations of 50-150 pg/ml achieved in the steroid-treated group produced a decrease in hypothalamic GnRH mRNA levels, which was significant in the MBH, TGFalpha mRNA levels in this hypothalamic region and in the POA were not influenced by estrogen treatment. These findings indicate that TGFalpha is probably not involved in mediating the inhibitory action of estradiol on GnRH neurons. Additionally, the relevance of our results to the understanding of the neurobiological mechanisms underlying the initiation of puberty in primates is discussed.
Collapse
Affiliation(s)
- M El Majdoubi
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | |
Collapse
|