1
|
Bai Y, Li J, Wu X, Zhang M, Zhang Y, Chen P, Ma J, Zhang S, Zhang H, Li X, Yang Z. Mult-omics analysis reveals the lipid-lowering effects of sea buckthorn and milk thistle solid beverage in hyperlipidemic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 144:156920. [PMID: 40472616 DOI: 10.1016/j.phymed.2025.156920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 05/22/2025] [Accepted: 05/26/2025] [Indexed: 06/22/2025]
Abstract
BACKGROUND Hyperlipidemia is a common metabolic disorder and a risk factor for cardiovascular disease. The traditional medicine herb, Hippophae rhamnoides L., known as sea buckthorn, has anti-obesity and lipid-lowering effects, while Silybum marianum (L.) Gaertn, known as milk thistle, has hepatoprotective properties and exhibits antioxidant effects. PURPOSE To evaluate the effect of sea buckthorn and milk thistle solid beverage (H-S solid beverage) in alleviating hyperlipidemia in rats and explore the underlying mechanisms by analyzing plasma and liver metabolomics, lipidomics, and liver transcriptomics. METHODS A hyperlipidemic rat model was established after 2 weeks of high-fat diet (HFD) feeding in Sprague Dawley rats. The administered doses of H-S solid beverage were 0.30 g/kg/d, 0.15 g/kg/d and 0.075 g/kg/d. Serum biochemical parameter detection, histopathological section analysis, untargeted plasma and liver metabolomics, lipidomics, and liver transcriptomics were performed to determine the therapeutic effects of H-S solid beverage and predict the related pathways in rats with hyperlipidemia. Changes in genes and proteins related to lipid metabolism were detected using real-time quantitative polymerase chain reaction and western blotting. RESULTS Eighty-nine components were identified in H-S solid beverage using ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry, with flavonoids being the major constituents. The H-S solid beverage significantly reduced body weight, liver index, body fat percentage, lipid accumulation, and liver injury in HFD-fed rats. Fatty acids (FA), bile acid, phosphatidyl ethanolamine, phosphatidylcholine, triglyceride, cholesterol ester, diglyceride and phosphatidylinositol levels were significantly altered in the liver and plasma. Moreover, the transcriptomic analysis suggested that H-S solid beverage significantly altered the hepatic gene expression of cholesterol synthesis (Pdk4, Hmgcs1, and Dhcr24), lipogenesis (Scd, Angptl4, and Angptl8), and FA β-oxidation (Cpt1α, Pparδ, Acsl, Pgc-1α, and Pla2g2d). CONCLUSION The solid beverage of sea buckthorn and milk thistle was firstly demonstrated to ameliorate HFD-induced hyperlipidemia. The lipid-lowering and hepatoprotective effects of H-S solid beverage significantly regulated cholesterol synthesis and de novo lipogenesis, as well as FA β-oxidation. In summary, this study highlights the potential of H-S solid beverages for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Yuwei Bai
- School of Pharmacy, Lanzhou University, Lanzhou 730030, PR China
| | - Jianglong Li
- School of Pharmacy, Lanzhou University, Lanzhou 730030, PR China
| | - Xueqian Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730030, PR China
| | - Mei Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730030, PR China
| | - Yaping Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730030, PR China
| | - Ping Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730030, PR China
| | - Jiajing Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730030, PR China
| | - Suzhen Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730030, PR China
| | - Haicheng Zhang
- Shanghai Rongbang Enterprise Group Co., Ltd, Shanghai 201802, PR China
| | - Xiangjun Li
- Shanghai Rongbang Enterprise Group Co., Ltd, Shanghai 201802, PR China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730030, PR China.
| |
Collapse
|
2
|
Hong WH, Bharanidharan R, Kim TH, Byun JS, Bang GH, Thirugnanasambantham K, Oh J, Ibidhi R, Jang SS, Kim KH. Effects of high-protein concentrates with different rumen undegradable-to-degradable protein ratios on performance and carcass traits in 26-month-slaughtered Hanwoo steers. Anim Biosci 2025; 38:1206-1218. [PMID: 40045613 PMCID: PMC12061582 DOI: 10.5713/ab.24.0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 02/11/2025] [Indexed: 05/09/2025] Open
Abstract
OBJECTIVE This study investigated the effects of high-protein concentrates with two different rumen undegradable protein (RUP)-to-degradable protein ratios on the performance and carcass characteristics of Hanwoo steers reared for 26 months. METHODS Thirty-two Hanwoo steers (217±13 kg) were randomly allocated to eight pens (four animals/pen) and assigned to one of two concentrate treatments (four pens/treatment), low-RUP concentrate (LRUP; RUP ratio of 37:63) or high-RUP concentrate (HRUP; RUP ratio of 47:53), with a dietary crude protein (CP) content of 20% dry matter (DM) during the growing stage (8 to 17 months) and 18% DM during the fattening stage (18 to 26 months). RESULTS Increasing the RUP ratio in the concentrate reduced (p = 0.062) rumen ammonia (NH3-N) levels during the growing stage. A decrease (p<0.05) in the molar proportions of acetate and valerate, and an increase (p = 0.097) in the proportions of iso-valerate, was observed in the HRUP group. Significant improvements (p<0.05) in the average daily gain and the feed conversion ratio were observed in the HRUP group during the fattening stage. Although there were no significant group differences in carcass yield or characteristics in steers slaughtered at 26 months, a trend (p = 0.081) toward an increased rib-eye area was observed in the HRUP group. Relative mRNA expression profiling revealed higher lipid biosynthesis and lipolysis in the HRUP group at slaughter. However, no effects on intramuscular fat content was detected. CONCLUSION Raising the RUP level improved performance and intramuscular fat metabolism in Hanwoo steers. The final body weight of the steers in the HRUP group was comparable to that of Hanwoo steers raised under the conventional 30-month fattening period. Overall, feeding a high-CP concentrate with a higher RUP proportion (47% CP) may be a beneficial strategy to shorten the feeding period.
Collapse
Affiliation(s)
- Woo Hyeong Hong
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang,
Korea
| | - Rajaraman Bharanidharan
- Department of Eco-friendly Livestock Science, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang,
Korea
| | - Tae Hoon Kim
- Department of Geography, McGill University, Montreal, QC,
Canada
| | - Jun Suk Byun
- University of Maryland Center for Environmental Science, Frostburg, MD,
USA
| | | | - Krishnaraj Thirugnanasambantham
- Department of Eco-friendly Livestock Science, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang,
Korea
- Pondicherry Centre for Biological Sciences, Puducherry,
India
| | - Joonpyo Oh
- Cargill Animal Nutrition Korea, Seongnam,
Korea
| | - Ridha Ibidhi
- INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon,
France
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang,
Korea
| | - Kyoung Hoon Kim
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang,
Korea
- Department of Eco-friendly Livestock Science, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang,
Korea
| |
Collapse
|
3
|
Li J, Lin YCD, Zuo HL, Huang HY, Zhang T, Bai JW, Huang HD. Dietary Omega-3 PUFAs in Metabolic Disease Research: A Decade of Omics-Enabled Insights (2014-2024). Nutrients 2025; 17:1836. [PMID: 40507105 PMCID: PMC12157617 DOI: 10.3390/nu17111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/23/2025] [Accepted: 05/24/2025] [Indexed: 06/16/2025] Open
Abstract
Background/Objectives: The rising global prevalence of metabolic diseases (e.g., obesity, type 2 diabetes mellitus) underscores the need for effective interventions. Omega-3 polyunsaturated fatty acids (PUFAs) exhibit therapeutic potential, yet their molecular mechanisms remain unclear. This systematic review synthesizes a decade (2014-2024) of omics research to elucidate Omega-3 PUFA mechanisms in metabolic diseases and identify future directions. Methods: A PRISMA-guided search of the Web of Science identified studies on Omega-3 PUFAs, metabolic diseases, and omics. After excluding reviews, non-English articles, and irrelevant studies, 72 articles were analyzed (16 multi-omics, 17 lipidomics, 10 transcriptomics/metabolomics/microbiomics each, and 6 proteomics). Results: Omics studies demonstrated that Omega-3 PUFAs, particularly EPA and DHA, improve metabolic health through interconnected mechanisms. They regulate epigenetic processes, including DNA methylation and miRNA expression, influencing genes linked to inflammation and insulin sensitivity. Omega-3 PUFAs reduce oxidative stress by mitigating protein carbonylation and enhancing antioxidant defenses. Gut microbiota modulation is evident through increased beneficial taxa (e.g., Bacteroidetes, Akkermansia) and reduced pro-inflammatory species, correlating with improved metabolic parameters. Mitochondrial function is enhanced via upregulated fatty acid oxidation and TCA cycle activity, while anti-inflammatory effects arise from NF-κB pathway suppression and macrophage polarization toward an M2 phenotype. Challenges include interindividual variability in responses and a limited understanding of dynamic metabolic interactions. Conclusions: Omega-3 PUFAs target multiple pathways to improve metabolic health. Future research should prioritize chemoproteomics for direct target identification, multi-omics integration, and personalized strategies combining Omega-3 with therapies like calorie restriction.
Collapse
Affiliation(s)
- Jing Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.L.); (Y.-C.-D.L.); (H.-L.Z.); (H.-Y.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.L.); (Y.-C.-D.L.); (H.-L.Z.); (H.-Y.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.L.); (Y.-C.-D.L.); (H.-L.Z.); (H.-Y.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.L.); (Y.-C.-D.L.); (H.-L.Z.); (H.-Y.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tao Zhang
- R&D Center, Better Way (Shanghai) Cosmetics Co., Ltd., Shanghai 201103, China;
| | - Jin-Wei Bai
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.L.); (Y.-C.-D.L.); (H.-L.Z.); (H.-Y.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Bousquet D, Guillot N. Laminar shear stress promotes accumulation of polyunsaturated fatty acid in aortic endothelial cells through upregulation of LPCAT3 enzyme activity. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159638. [PMID: 40414415 DOI: 10.1016/j.bbalip.2025.159638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/19/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVE Endothelial cells (ECs) play an important role in tissue homeostasis. Hemodynamic laminar shear stress are involved in both the physiological and pathological function of endothelial cells EC. Lipid metabolism has emerged as a potential regulator of EC function. Here, we aim to decipher the role of laminar shear stress in the regulation of lipid metabolism in human aortic endothelial cells. APPROACH AND RESULTS Human aortic endothelial cells (HAOEC) were exposed to laminar shear stress, and lipid metabolism was analyzed. We found that laminar flow increased polyunsaturated fatty acid (PUFA) content in both neutral and polar lipids. These changes in fatty acid composition were dependent on lysophosphatidylcholine acyltransferase 3 (LPCAT3), which was specifically upregulated by laminar shear stress at both the mRNA and activity levels. Fatty acid uptake was also modulated by shear stress, partly via the LXR pathway. Notably, mechanical stimulation did not alter de novo fatty acid synthesis. However, fatty acid oxidation was upregulated in response to laminar shear stress, involving AMPK and ACC phosphorylation. These modifications in HAOEC fatty acid composition ultimately led to the release of a distinct pattern of lipid metabolites. CONCLUSION Overall these data revealed that laminar shear stress increased the turnover of FA acid and in human aortic endothelial cells through the activation of the LPCAT 3 enzyme.
Collapse
Affiliation(s)
- Delphine Bousquet
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
| | - Nicolas Guillot
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France; Labex GR-Ex, PRES Sorbonne, Paris, France; INSA Lyon, Villeurbanne, France.
| |
Collapse
|
5
|
Xu X, Tang X, Ji R, Xiang X, Liu Q, Han S, Du J, Li Y, Mai K, Ai Q. Adiponectin receptor agonist AdipoRon regulates glucose and lipid metabolism via PPARγ signaling pathway in hepatocytes of large yellow croaker (Larimichthys crocea). Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159632. [PMID: 40379087 DOI: 10.1016/j.bbalip.2025.159632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Activation of adiponectin receptors (AdipoRs) has been shown to regulate glucose and lipid metabolism in mammalian hepatocytes. However, much less is known for their roles in fish. The current study demonstrated that AdipoRon, a small-molecule activator of AdipoRs, modulated glucose and lipid metabolism in large yellow croaker. In hepatocytes of large yellow croaker, AdipoRon upregulated the mRNA expression of adipors and appl1, while increasing phosphorylation levels of AMPK and AKT. These changes indicate the activation of AdipoR-mediated signaling. Furthermore, AdipoRon promoted glucose uptake, increased intracellular glucose content, as well as upregulated genes involved in glycogen synthesis and glycolysis whereas downregulated gluconeogenesis-related genes. On the other hand, AdipoRon facilitated free fatty acid (FFA) absorption by increasing the expression of fatty acid transport genes (fat/cd36, fatp1, and fabp11). It also enhanced triglyceride (TG) synthesis, evidenced by increased triglyceride levels and upregulation of dgat2 and PPARγ, which is consistent with the effect of adiponectin (APN) in large yellow croaker. Additional evidence suggested that inhibition of PPARγ with GW9662 reduced the effects of AdipoRon on glucose uptake and lipid metabolism, indicating that PPARγ is a key mediator in these metabolic regulations. Overall, AdipoRon was found to modulate multiple metabolic processes in hepatocytes of large yellow croaker via PPARγ signaling pathway, and these findings suggested that AdipoRon might contribute to beneficial effects on metabolic homeostasis in teleosts.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Xiao Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Renlei Ji
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Chang YC, Hsieh ML, Lee HL, Hee SW, Chang CF, Yen HY, Chen YA, Chen YR, Chou YW, Li FA, Ke YY, Chen SY, Hung MS, Hung AFH, Huang JY, Chiu CH, Lin SY, Shih SF, Hsu CN, Hwang JJ, Yeh TK, Cheng TJR, Liao KCW, Laio D, Lin SW, Chen TY, Hu CM, Vogel U, Saar D, Kragelund BB, Tsou LK, Tseng YH, Chuang LM. Identification of PTGR2 inhibitors as a new therapeutic strategy for diabetes and obesity. EMBO Mol Med 2025; 17:938-966. [PMID: 40119175 DOI: 10.1038/s44321-025-00216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master transcriptional regulator of systemic insulin sensitivity and energy balance. The anti-diabetic drug thiazolidinediones (TZDs) are potent synthetic PPARγ ligands with undesirable side effects, including obesity, fluid retention, and osteoporosis. 15-keto prostaglandin E2 (15-keto-PGE2) is an endogenous PPARγ ligand metabolized by prostaglandin reductase 2 (PTGR2). Here, we confirmed that 15-keto-PGE2 binds to and activates PPARγ via covalent binding. In patients with type 2 diabetes and obese mice, serum 15-keto-PGE2 levels were decreased. Administration of 15-keto-PGE2 improves glucose homeostasis and prevented diet-induced obesity in mice. Either genetic inhibition of PTGR2 or PTGR2 inhibitor BPRPT0245 protected mice from diet-induced obesity, insulin resistance, and hepatic steatosis without causing fluid retention and osteoporosis. In conclusion, inhibition of PTGR2 is a new therapeutic approach to treat diabetes and obesity through increasing endogenous PPARγ ligands while avoiding side effects including increased adiposity, fluid retention, and osteoporosis.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Meng-Lun Hsieh
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-An Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Ya-Wen Chou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-Yu Ke
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, 11571, Taiwan
| | - Shih-Yi Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | | | - Jing-Yong Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Chu-Hsuan Chiu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Shih-Yao Lin
- AltruBio Taiwan R&D Center, Taipei, 114063, Taiwan
| | | | - Chih-Neng Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin branch, Yunlin, 64041, Taiwan
| | - Juey-Jen Hwang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin branch, Yunlin, 64041, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | | | - Karen Chia-Wen Liao
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Daniel Laio
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Shu-Wha Lin
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 100225, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, 10048, Taiwan
| | - Tzu-Yu Chen
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 11571, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Daniel Saar
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Birthe B Kragelund
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan.
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 022515, USA.
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
| |
Collapse
|
7
|
Sadrabadi F, Alker W, Sprenger H, Braeuning A, Buhrke T. A group of novel polyfluoroether substances affects lipid metabolism in human hepatocyte HepaRG cells less than classic perfluoroalkyl compounds. Toxicol In Vitro 2025; 105:106024. [PMID: 39952334 DOI: 10.1016/j.tiv.2025.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are used for numerous industrial applications including the production of fluorosurfactants. Some prominent PFAS, e.g., perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are non-degradable and therefore persist in the environment. They display various toxic properties including dysregulation of hepatic lipid metabolism. At the molecular level, these effects are mainly based on a PFAS-mediated activation of the peroxisome proliferator-activated receptor alpha (PPARα). A group of novel, degradable polyfluoroether compounds has been designed as building blocks for the production of alternative, degradable fluorosurfactants. In the present study, we examined the capacity of four of these novel polyfluoroether compounds to induce PPARα activation, increase intracellular triglyceride accumulation, and produce a cytotoxic response. In contrast to some classic PFAS including PFOA and PFOS, the novel compounds neither activated PPARα in a transactivation assay, nor did they induce expression of selected PPARα-dependent target genes in differentiated HepaRG cells, a model for human hepatocytes. They also did not induce triglyceride accumulation in HepaRG cells. The in vitro data indicate that the polyfluoroether compounds tested in the present study are not PPARα agonists. Since PPARα agonist activity is often associated with toxic responses, it can be assumed that these substances are less toxic than classic PFAS such as PFOA and PFOS, at least with respect to PPARα-dependent toxicity mechanisms.
Collapse
Affiliation(s)
- Faezeh Sadrabadi
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Wiebke Alker
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Heike Sprenger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Thorsten Buhrke
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
8
|
Panwar A, Malik SO, Adib M, Lopaschuk GD. Cardiac energy metabolism in diabetes: emerging therapeutic targets and clinical implications. Am J Physiol Heart Circ Physiol 2025; 328:H1089-H1112. [PMID: 40192025 DOI: 10.1152/ajpheart.00615.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Patients with diabetes are at an increased risk for developing diabetic cardiomyopathy and other cardiovascular complications. Alterations in cardiac energy metabolism in patients with diabetes, including an increase in mitochondrial fatty acid oxidation and a decrease in glucose oxidation, are important contributing factors to this increase in cardiovascular disease. A switch from glucose oxidation to fatty acid oxidation not only decreases cardiac efficiency due to increased oxygen consumption but it can also increase reactive oxygen species production, increase lipotoxicity, and redirect glucose into other metabolic pathways that, combined, can lead to heart dysfunction. Currently, there is a lack of therapeutics available to treat diabetes-induced heart failure that specifically target cardiac energy metabolism. However, it is becoming apparent that part of the benefit of existing agents such as GLP-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors may be related to their effects on cardiac energy metabolism. In addition, direct approaches aimed at inhibiting cardiac fatty acid oxidation or increasing glucose oxidation hold future promise as potential therapeutic approaches to treat diabetes-induced cardiovascular disease.
Collapse
Affiliation(s)
- Archee Panwar
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sufyan O Malik
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhtasim Adib
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Varghese M, Thekkelnaycke R, Soni T, Zhang J, Maddipati K, Singer K. Sex differences in the lipid profiles of visceral adipose tissue with obesity and gonadectomy. J Lipid Res 2025; 66:100803. [PMID: 40245983 PMCID: PMC12144442 DOI: 10.1016/j.jlr.2025.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/05/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
In obesity, adipose tissue (AT) expansion is accompanied by chronic inflammation. Altered lipid composition in the visceral or gonadal white AT (GWAT) directly drive AT macrophage accumulation and activation to a proinflammatory phenotype. Sex steroid hormones modulate visceral versus subcutaneous lipid accumulation that correlates with metabolic syndrome, especially in men and postmenopausal women who are more prone to abdominal obesity. Prior studies demonstrated sex differences in GWAT lipid species in HFD-fed mice, but the role of sex hormones is still unclear. We hypothesized that sex hormone alterations with gonadectomy (GX) would further impact lipid composition in the obese GWAT. Untargeted lipidomics of obese GWAT identified sex differences in phospholipids, sphingolipids, sterols, fatty acyls, saccharolipids and prenol lipids. Males had significantly more precursor fatty acids (palmitic, oleic, linoleic, and arachidonic acid) than females and GX mice. Targeted lipidomics for fatty acids and oxylipins in the HFD-fed male and female GWAT stromal vascular fraction identified higher omega-6 to omega-3 free fatty acid profile in males and differences in PUFAs-derived prostaglandins, thromboxanes, and leukotrienes. Both obese male and female GWAT stromal vascular fraction showed increased levels of arachidonic acid-derived oxylipins compared to their lean counterparts. Bulk RNA-seq of sorted GWAT AT macrophages highlighted sex and diet differences in PUFA and oxylipin metabolism genes. These findings of sexual dimorphism in both stored lipid species and PUFA-derived mediators with diet and GX emphasize sex differences in lipid metabolism pathways that drive inflammation responses and metabolic disease risk in obesity.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rajendiran Thekkelnaycke
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Jiayu Zhang
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Liu J, Deng L, Yao B, Zhang Y, Huang J, Huang S, Liang C, Shen Y, Wang X. Carboxylesterase 2A gene knockout or enzyme inhibition alleviates steatohepatitis in rats by regulating PPARγ and endoplasmic reticulum stress. Free Radic Biol Med 2025; 232:279-291. [PMID: 40089078 DOI: 10.1016/j.freeradbiomed.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Metabolic dysfunction associated steatotic liver disease (MASLD) is a widespread liver disease that progresses from simple steatosis to severe steatohepatitis stage. Despite the recognized importance of carboxylesterase 2 (CES2) in hepatic lipid metabolism, the role of CES2 in hepatic inflammation remains unclear. The rat genome encodes six Ces2 genes and Ces2a shows high expression in the liver and intestine. Lipid metabolism, inflammation, fibrosis, and endoplasmic reticulum (ER) stress were investigated in Ces2a knockout (KO) rats. KO rats showed spontaneous liver lipid accumulation due to increased lipogenesis and reduced fatty acid oxidation. Non-targeted lipidomic analysis revealed enhanced lysophosphatidylcholines (LPCs) and phosphatidylcholines (PCs) in KO rats and increased concentrations of ligands, thus activating the expression of PPARγ. Although there was simple lipid accumulation in the liver of KO rats, Ces2a deficiency showed a significant protective effect against LPS and diet-induced hepatic steatohepatitis by inhibiting ER stress regulated by PPARγ activation. In line with this, treatment with tanshinone IIA, a CES2 inhibitor, significantly alleviated the progression of steatohepatitis induced by the MCD diet. In conclusion, the increased PPARγ expression in Ces2a deficiency may counteract liver inflammation and ER stress despite the presence of simple steatosis. Therefore, CES2 inhibition represents a potential therapeutic approach for steatohepatitis.
Collapse
Affiliation(s)
- Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Luyao Deng
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
11
|
Chen F, Ma L, Liu Q, Zhou Z, Yi W. Recent advances and therapeutic applications of PPARγ-targeted ligands based on the inhibition mechanism of Ser273 phosphorylation. Metabolism 2025; 163:156097. [PMID: 39637972 DOI: 10.1016/j.metabol.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
PPARγ functions as a master ligand-dependent transcription factor that regulates the expressions of a variety of key genes related to metabolic homeostasis and inflammatory immunity. It has been recognized as a popular and druggable target in modern drug discovery. Similar to other nuclear receptors, PPARγ is a phosphoprotein, and its biological functions are regulated by phosphorylation, especially at Ser273 site which is mediated by CDK5 or ERK. In the past decade, the excessive level of PPARγ-Ser273 phosphorylation has been confirmed to be a crucial factor in promoting the occurrence and development of some major diseases. Ligands capable of inhibiting PPARγ-Ser273 phosphorylation have shown great potentials for treatment. Despite these achievements, to our knowledge, no related review focusing on this topic has been conducted so far. Therefore, we herein summarize the basic knowledge of PPARγ and CDK5/ERK-mediated PPARγ-Ser273 phosphorylation as well as its physiopathological role in representative diseases. We also review the developments and therapeutic applications of PPARγ-targeted ligands based on this mechanism. Finally, we suggest several directions for future investigations. We expect that this review can evoke more inspiration of scientific communities, ultimately facilitating the promotion of the PPARγ-Ser273 phosphorylation-involved mechanism as a promising breakthrough point for addressing the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
12
|
Vrzalova A, Vrzal R. Orchestra of ligand-activated transcription factors in the molecular symphony of SERPINE 1 / PAI-1 gene regulation. Biochimie 2025; 228:138-157. [PMID: 39321911 DOI: 10.1016/j.biochi.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is a crucial serine protease inhibitor that prevents plasminogen activation by inhibiting tissue- and urokinase-type plasminogen activators (tPA, uPA). PAI-1 is well-known for its role in modulating hemocoagulation or extracellular matrix formation by inhibiting plasmin or matrix metalloproteinases, respectively. PAI-1 is induced by pro-inflammatory cytokines across various tissues, yet its regulation by ligand-activated transcription factors is partly disregarded. Therefore, we have attempted to summarize the current knowledge on the transcriptional regulation of PAI-1 expression by the most relevant xenobiotic and endocrine receptors implicated in modulating PAI-1 levels. This review aims to contribute to the understanding of the specific, often tissue-dependent regulation of PAI-1 and provide insights into the modulation of PAI-1 levels beyond its direct inhibition.
Collapse
Affiliation(s)
- Aneta Vrzalova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
13
|
Urai H, Azegami T, Komatsu M, Takahashi R, Kubota Y, Hasegawa K, Tokuyama H, Wakino S, Hayashi K, Kanda T, Itoh H. Ghrelin Promotes Lipid Uptake into White Adipose Tissue via Endothelial Growth Hormone Secretagogue-Receptor in Mice. Nutrients 2024; 17:146. [PMID: 39796581 PMCID: PMC11722803 DOI: 10.3390/nu17010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Endothelial peroxisome proliferator-activated receptor gamma (PPARγ) regulates adipose tissue by facilitating lipid uptake into white adipocytes, but the role of endothelial lipid transport in systemic energy balance remains unclear. Ghrelin conveys nutritional information through the central nervous system and increases adiposity, while deficiency in its receptor, growth hormone secretagogue-receptor (GHSR), suppresses adiposity on a high-fat diet. This study aims to examine the effect of ghrelin/GHSR signaling in the endothelium on lipid metabolism. Methods: We compared the effects of ghrelin on adiposity and lipid uptake into adipocytes in wild-type and GHSR-null mice. Transgenic mice expressing GHSR selectively in endothelial cells were also generated and compared with global GHSR-null and wild-type mice. The impact of ghrelin on lipid uptake-related genes was assessed in cultured endothelial cells. Results: Ghrelin increased adiposity and triglyceride clearance in wild-type but not in GHSR-null mice. GHSR-null mice showed higher serum triglyceride after olive oil gavage and lower white adipose tissue (WAT) weight on a high-fat diet, suggesting impaired lipid uptake. Restoring GHSR expression in endothelial cells increased lipoprotein lipase activity, lipid uptake into WAT, and WAT weight. Ghrelin enhanced free fatty acid uptake and the expression of lipid uptake genes in cultured endothelial cells, whereas these effects were absent in GHSR-null mice-derived endothelial cells. Knockdown of PPARγ revealed that ghrelin/GHSR signaling in endothelial cells promoted lipid uptake via endothelial PPARγ. Conclusions: Endothelial GHSR is key for regulating lipid metabolism via PPARγ in response to ghrelin and for the role of endothelium in regulating white adipocyte metabolism. Targeting endothelial ghrelin signaling may be a promising therapeutic approach for managing excessive adiposity and associated metabolic disorders.
Collapse
Affiliation(s)
- Hidenori Urai
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Tatsuhiko Azegami
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Motoaki Komatsu
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Rina Takahashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Kazuhiro Hasegawa
- Division of Nephrology, Department of Internal Medicine, Tokushima University School of Medicine, Tokushima-shi 770-8503, Tokushima, Japan; (K.H.); (S.W.)
| | - Hirofumi Tokuyama
- Department of Internal Medicine, Tokyo Dental University Ichikawa General Hospital, Ichikawa-shi 272-8513, Chiba, Japan;
| | - Shu Wakino
- Division of Nephrology, Department of Internal Medicine, Tokushima University School of Medicine, Tokushima-shi 770-8503, Tokushima, Japan; (K.H.); (S.W.)
| | - Kaori Hayashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Takeshi Kanda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Matsue 693-8501, Shimane, Japan
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, Matsue 693-8501, Shimane, Japan
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| |
Collapse
|
14
|
Mansourizadeh H, Bakhtiarizadeh MR, de Almeida Regitano LC, Bruscadin JJ. Fat-tail allele-specific expression genes may affect fat deposition in tail of sheep. PLoS One 2024; 19:e0316046. [PMID: 39729475 DOI: 10.1371/journal.pone.0316046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Different sheep breeds show distinct phenotypic plasticity in fat deposition in the tails. The genetic background underlying fat deposition in the tail of sheep is complex, multifactorial, and may involve allele-specific expression (ASE) mechanism to modulate allelic expression. ASE is a common phenomenon in mammals and refers to allelic imbalanced expression modified by cis-regulatory genetic variants that can be observed at heterozygous loci. Therefore, regulatory processes behind the fat-tail formation in sheep may be to some extent explained by cis- regulatory variants, through ASE mechanism, which was investigated in the present study. An RNA-Seq-based variant calling was applied to perform genome-wide survey of ASE genes using 45 samples from seven independent studies comparing the transcriptome of fat-tail tissue between fat- and thin-tailed sheep breeds. Using a rigorous computational pipeline, 115 differential ASE genes were identified, which were narrowed down to four genes (LPL, SOD3, TCP1 and LRPAP1) for being detected in at least two studies. Functional analysis revealed that the ASE genes were mainly involved in fat metabolism. Of these, LPL was of greater importance, as 1) observed in five studies, 2) reported as ASE gene in the previous studies and 3) with a known role in fat deposition. Our findings implied that complex physiological traits, like fat-tail formation, can be better explained by considering various genetic mechanisms, which can be more finely mapped through ASE analyses. The insights gained in this study indicate that biallelic expression may not be a common mechanism in sheep fat-tail development. Hence, allelic imbalance of the fat deposition-related genes can be considered a novel layer of information for future research on genetic improvement and increased efficiency in sheep breeding programs.
Collapse
Affiliation(s)
- Hossein Mansourizadeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | | | - Jennifer Jessica Bruscadin
- Embrapa Southeast Livestock, São Carlos, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
15
|
Chen X, Schubert SL, Müller A, Pishnamaz M, Hildebrand F, Nourbakhsh M. Metabolic Activity in Human Intermuscular Adipose Tissue Directs the Response of Resident PPARγ + Macrophages to Fatty Acids. Biomedicines 2024; 13:10. [PMID: 39857594 PMCID: PMC11759838 DOI: 10.3390/biomedicines13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Peroxisome proliferator-activated receptor gamma (PPARγ) is a fatty acid-binding transcription activator of the adipokine chemerin. The key role of PPARγ in adipogenesis was established by reports on adipose tissue-resident macrophages that express PPARγ. The present study examined PPARγ+ macrophages in human skeletal muscle tissues, their response to fatty acid (FA) species, and their correlations with age, obesity, adipokine expression, and an abundance of other macrophage phenotypes. Methods: An ex vivo human skeletal muscle model with surgical specimens that were maintained without or with FAs for up to 11 days was utilized. Immunofluorescence analysis was used to detect macrophage phenotypes and mitochondrial activity. Preconfigured arrays were used to detect the expression of 34 different adipokines and chemokines. Results: Data from 14 adults revealed that PPARγ+ macrophages exclusively reside in intermuscular adipose tissue (IMAT), and their abundance correlates with the metabolic status of surrounding adipocytes during tissue maintenance in vitro for 9-11 days. Elevated fatty acid levels lead to significant increases in PPARγ+ populations, which are correlated with the donor's body mass index (BMI). Conclusions: PPARγ+ macrophages represent a distinctly specialized population of regulatory cells that reside within human IMATs in accordance with their metabolic status. Thus, future in-depth studies on IMAT-resident PPARγ+ macrophage action mechanisms will elucidate the role of skeletal muscle in the pathogenesis of human metabolic dysfunction.
Collapse
Affiliation(s)
- Xiaoying Chen
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.)
| | - Sebastian Ludger Schubert
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (S.L.S.); (M.P.); (F.H.)
| | - Aline Müller
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.)
| | - Miguel Pishnamaz
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (S.L.S.); (M.P.); (F.H.)
| | - Frank Hildebrand
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (S.L.S.); (M.P.); (F.H.)
| | - Mahtab Nourbakhsh
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.)
| |
Collapse
|
16
|
Correa-Navarro VA, Romo-Morales GDC, Sánchez-Palafox JE, Rodríguez-Ríos D, Molina-Torres J, Ramírez-Chávez E, Zaina S, Lund G. A Survey of Fatty Acid Content of the Male Reproductive System in Mice Supplemented With Arachidonic Acid. J Lipids 2024; 2024:3351340. [PMID: 39734583 PMCID: PMC11671656 DOI: 10.1155/jl/3351340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/15/2024] [Indexed: 12/31/2024] Open
Abstract
Paternal exposure to high-fat diets or individual fatty acids (FAs) including arachidonic acid (AA) modifies progeny traits by poorly understood mechanisms. Specific male reproductive system FAs may be involved in paternal inheritance, as they can modify a range of cellular components, including the epigenome. Our objective was to determine FAs in compartments of the male reproductive system that potentially affect ejaculate composition-right and left testicular interstitial fluid (TIF), vesicular gland fluid (VGF), and epididymal adipose tissue (EAT)-in mice exposed to AA or vehicle daily for 10 days (n = 9-10/group). Whole blood (WB) and interscapular brown adipose tissue (IBAT) FA profiles were used as reference. AA significantly affected only VGF FAs relative to vehicle, that is, increased and decreased levels of arachidic and docosahexaenoic acid, respectively, versus vehicle (0.28% ± 0.01% and 0.23% ± 0.03%, respectively, p = 0.049, and 2.42% ± 0.47% and 3.00% ± 0.58%, respectively, p = 0.041). AA affected distinct FAs in WB. Additionally, we uncovered AA-dependent and AA-independent FA laterality. Myristic acid was higher in AA-exposed left versus right TIF (0.68% ± 0.35% and 0.60% ± 0.11%, respectively, p = 0.004). Right TIF contained higher oleic and linoleic acid and lower stearic acid than left TIF (29.01% ± 3.07% and 24.00% ± 2.18%, respectively, p = 0.005; 9.14% ± 1.88% and 7.05% ± 1.36%, respectively, p = 0.005; and 21.90% ± 2.92% and 26.01% ± 2.46%, respectively, p = 0.036), irrespective of exposure to AA. The TIF oleic/stearic acid ratio suggested higher Stearoyl-CoA Desaturase 1 activity in the right versus the left testis (1.35 ± 0.32 and 1.00 ± 0.17, respectively, p = 1.0 × 10-4). Multitissue comparisons revealed that TIF and VGF FA profiles were distinct from WB, EAT, or IBAT counterparts, suggesting tissue-specific FA fingerprints. In conclusion, AA modulated selected VGF long-chain FAs that may impact on uterine inflammation and subsequent embryonic development. AA altered local FA synthesis or selective uptake, rather than eliciting passive uptake from WB. Additionally, we uncover a significant laterality of testis FAs that may result in asymmetric sperm cell phenotypes.
Collapse
Affiliation(s)
- Viridiana Abigail Correa-Navarro
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, 20 de Enero 929, Leon, Guanajuato, Mexico
| | - Gloria del Carmen Romo-Morales
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, 20 de Enero 929, Leon, Guanajuato, Mexico
| | - Jaime Eduardo Sánchez-Palafox
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, 20 de Enero 929, Leon, Guanajuato, Mexico
| | - Dalia Rodríguez-Ríos
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato 36824, Mexico
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, CINVESTAV Irapuato Unit, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato 36824, Mexico
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, CINVESTAV Irapuato Unit, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato 36824, Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, 20 de Enero 929, Leon, Guanajuato, Mexico
| | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato 36824, Mexico
| |
Collapse
|
17
|
Shang J, Kojetin DJ. Unanticipated mechanisms of covalent inhibitor and synthetic ligand cobinding to PPARγ. eLife 2024; 13:RP99782. [PMID: 39556436 PMCID: PMC11573348 DOI: 10.7554/elife.99782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken-but do not prevent-the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterUnited States
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical UniversityGuangzhouChina
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterUnited States
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleUnited States
- Center for Applied AI in Protein Dynamics, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
18
|
Fougerat A, Bruse J, Polizzi A, Montagner A, Guillou H, Wahli W. Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting. Prog Lipid Res 2024; 96:101303. [PMID: 39521352 DOI: 10.1016/j.plipres.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) constitute a small family of three nuclear receptors that act as lipid sensors, and thereby regulate the transcription of genes having key roles in hepatic and whole-body energy homeostasis, and in other processes (e.g., inflammation), which have far-reaching health consequences. Peroxisome proliferator-activated receptor isotype α (PPARα) is expressed in oxidative tissues, particularly in the liver, carrying out critical functions during the adaptive fasting response. Advanced omics technologies have provided insight into the vast complexity of the regulation of PPAR expression and activity, as well as their downstream effects on the physiology of the liver and its associated metabolic organs. Here, we provide an overview of the gene regulatory networks controlled by PPARα in the liver in response to fasting. We discuss impacts on liver metabolism, the systemic repercussions and benefits of PPARα-regulated ketogenesis and production of fibroblast growth factor 21 (FGF21), a fasting- and stress-inducible metabolic hormone. We also highlight current challenges in using novel methods to further improve our knowledge of PPARα in health and disease.
Collapse
Affiliation(s)
- Anne Fougerat
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France.
| | - Justine Bruse
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Alexandra Montagner
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM UMR1297, Toulouse III University, University Paul Sabatier (UPS), Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France; Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
19
|
Desai A, Loureiro ZY, DeSouza T, Yang Q, Solivan-Rivera J, Corvera S. cAMP driven UCP1 induction in human adipocytes requires ATGL-catalyzed lipolysis. Mol Metab 2024; 90:102051. [PMID: 39454826 PMCID: PMC11585812 DOI: 10.1016/j.molmet.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes. To explore this, we employed human adipocytes differentiated from progenitor cells and examined their acute response to Rsg, to the adenylate-cyclase activator forskolin (Fsk), or to both simultaneously. METHODS Adipocytes generated from primary human progenitor cells were differentiated without exposure to PPARγ agonists, and treated for 3, 6 or 78 h to Fsk, to Rsg, or to both simultaneously. Bulk RNASeq, RNAScope, RT-PCR, CRISPR-Cas9 mediated knockout, oxygen consumption and western blotting were used to assess cellular responses. RESULTS UCP1 mRNA expression was induced within 3 h of exposure to either Rsg or Fsk, indicating that Rsg's effect is independent on additional adipocyte differentiation. Although Rsg and Fsk induced distinct overall transcriptional responses, both induced genes associated with calcium metabolism, lipid droplet assembly, and mitochondrial remodeling, denoting core features of human adipocyte beiging. Unexpectedly, we found that Fsk-induced UCP1 expression was reduced by approximately 80% following CRISPR-Cas9-mediated knockout of PNPLA2, the gene encoding the triglyceride lipase ATGL. As anticipated, ATGL knockout suppressed lipolysis; however, the associated suppression of UCP1 induction indicates that maximal cAMP-mediated UCP1 induction requires products of ATGL-catalyzed lipolysis. Supporting this, we observed that the reduction in Fsk-stimulated UCP1 induction caused by ATGL knockout was reversed by Rsg, implying that the role of lipolysis in this process is to generate natural PPARγ agonists. CONCLUSIONS UCP1 transcription is known to be stimulated by transcription factors activated downstream of cAMP-dependent protein kinases. Here we demonstrate that UCP1 transcription can also be acutely induced through PPARγ-activation. Moreover, both pathways are activated in human adipocytes in response to cAMP, synergistically inducing UCP1 expression. The stimulation of PPARγ in response to cAMP may result from the production of natural PPARγ activating ligands through ATGL-mediated lipolysis.
Collapse
Affiliation(s)
- Anand Desai
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Zinger Yang Loureiro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Qin Yang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
20
|
Jia Z, Zhou Y, Chen X, Zhang L, Li Y, Chen J. Dietary bamboo charcoal powder ameliorates high-fat diet-induced hyperlipidemia by enhancing fecal lipid excretions in Sprague-Dawley rats. Front Nutr 2024; 11:1458350. [PMID: 39444574 PMCID: PMC11496288 DOI: 10.3389/fnut.2024.1458350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bamboo charcoal powder (BCP) is increasingly used as a food colorant. This study aims to evaluate the effects of BCP consumption on improving high-fat diet-induced hyperlipidemia. Methods Fifty male SD rats were randomly assigned into five groups, with 10 rats in each group: the control group was fed a low-fat diet (LFD); the model control group was fed a high-fat diet (HFD); the low-BCP dose group was fed a HFD and given 2.81 g of BCP/kg of body weight (BCP-L) by gavage; the medium-BCP dose group was fed a HFD and given 5.62 g of BCP/kg of body weight (BCP-M) by gavage; the high-BCP dose group was fed a HFD and given 11.24 g of BCP/kg of body weight (BCP-H) by gavage. Results After 90 days, the consumption of BCP caused a decrease in body weight, plasma lipids (triglyceride, cholesterol, and low-density lipoprotein (LDL)), liver triglyceride, and cholesterol levels, and liver histopathological scores. BCP caused a significant increase in superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) in liver tissues. BCP also led to an increase in 72-h fecal dry weight and crude fat in a rat metabolic cage. The analysis of fecal samples with liquid chromatography time-of-flight mass spectrometry (LC-Q-TOF-MS) showed that the biomarkers associated with BCP consumption were mainly related to fatty and amino acid metabolism. Notably, BCP treatment significantly promoted linoleic acid metabolism. Discussion These results suggest that BCP may have a preventive effect against diet-induced hyperlipidemia through the promotion of fecal fat excretion. BCP may potentially be used as an alternative functional food component for people with diet-induced hyperlipidemia.
Collapse
Affiliation(s)
- Zhenchao Jia
- Department of Prevention and Health Care, Sichuan University Hospital, Chengdu, China
| | - Yongru Zhou
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xuxi Chen
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yan Li
- Department of Prevention and Health Care, Sichuan University Hospital, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
21
|
Devchand PR, Dicay M, Wallace JL. Molecular Thumbprints: Biological Signatures That Measure Loss of Identity. Biomolecules 2024; 14:1271. [PMID: 39456204 PMCID: PMC11506567 DOI: 10.3390/biom14101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 10/28/2024] Open
Abstract
Each life is challenged to adapt to an ever-changing environment with integrity-simply put, to maintain identity. We hypothesize that this mission statement of adaptive homeostasis is particularly poignant in an adaptive response, like inflammation. A maladaptive response of unresolved inflammation can seed chronic disease over a lifetime. We propose the concept of a molecular thumbprint: a biological signature of loss of identity as a measure of incomplete return to homeostasis after an inflammatory response. Over time, personal molecular thumbprints can measure dynamic and precise trajectories to chronic inflammatory diseases and further loss of self to cancer. Why is this important? Because the phenotypes and molecular signatures of established complex inflammatory diseases are a far cry from the root of the complex problem, let alone the initial seed. Understanding the science behind key germinating seeds of disease helps to identify molecular factors of susceptibility, resilience, and early dietary or drug intervention. We pilot this hypothesis in a rat colitis model that is well-established for understanding molecular mechanisms of colonic health, disease, and transition of colitis to cancer.
Collapse
Affiliation(s)
- Pallavi R. Devchand
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.D.); (J.L.W.)
| | | | | |
Collapse
|
22
|
Pinette JA, Myers JW, Park WY, Bryant HG, Eddie AM, Wilson GA, Montufar C, Shaikh Z, Vue Z, Nunn ER, Bessho R, Cottam MA, Haase VH, Hinton AO, Spinelli JB, Cartailler JP, Zaganjor E. Disruption of nucleotide biosynthesis reprograms mitochondrial metabolism to inhibit adipogenesis. J Lipid Res 2024; 65:100641. [PMID: 39245323 PMCID: PMC11913791 DOI: 10.1016/j.jlr.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
A key organismal response to overnutrition involves the development of new adipocytes through the process of adipogenesis. Preadipocytes sense changes in the systemic nutrient status and metabolites can directly modulate adipogenesis. We previously identified a role of de novo nucleotide biosynthesis in adipogenesis induction, whereby inhibition of nucleotide biosynthesis suppresses the expression of the transcriptional regulators PPARγ and C/EBPα. Here, we set out to identify the global transcriptomic changes associated with the inhibition of nucleotide biosynthesis. Through RNA sequencing (RNAseq), we discovered that mitochondrial signatures were the most altered in response to inhibition of nucleotide biosynthesis. Blocking nucleotide biosynthesis induced rounded mitochondrial morphology, and altered mitochondrial function, and metabolism, reducing levels of tricarboxylic acid cycle intermediates, and increasing fatty acid oxidation (FAO). The loss of mitochondrial function induced by suppression of nucleotide biosynthesis was rescued by exogenous expression of PPARγ. Moreover, inhibition of FAO restored PPARγ expression, mitochondrial protein expression, and adipogenesis in the presence of nucleotide biosynthesis inhibition, suggesting a regulatory role of nutrient oxidation in differentiation. Collectively, our studies shed light on the link between substrate oxidation and transcription in cell fate determination.
Collapse
Affiliation(s)
- Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jacob W Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Heather G Bryant
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alex M Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Genesis A Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth R Nunn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ryoichi Bessho
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew A Cottam
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Volker H Haase
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Research and Medical Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Philippe Cartailler
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
23
|
Boateng E, Bonilla-Martinez R, Ahlemeyer B, Garikapati V, Alam MR, Trompak O, Oruqaj G, El-Merhie N, Seimetz M, Ruppert C, Günther A, Spengler B, Karnati S, Baumgart-Vogt E. It takes two peroxisome proliferator-activated receptors (PPAR-β/δ and PPAR-γ) to tango idiopathic pulmonary fibrosis. Respir Res 2024; 25:345. [PMID: 39313791 PMCID: PMC11421181 DOI: 10.1186/s12931-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung epithelial phenotypes, fibroblast activation, and increased extracellular matrix deposition. Transforming growth factor-beta (TGF-β)1-induced Smad signaling and downregulation of peroxisomal genes are involved in the pathogenesis and can be inhibited by peroxisome proliferator-activated receptor (PPAR)-α activation. However, the three PPARs, that is PPAR-α, PPAR-β/δ, and PPAR-γ, are known to interact in a complex crosstalk. METHODS To mimic the pathogenesis of lung fibrosis, primary lung fibroblasts from control and IPF patients with comparable levels of all three PPARs were treated with TGF-β1 for 24 h, followed by the addition of PPAR ligands either alone or in combination for another 24 h. Fibrosis markers (intra- and extracellular collagen levels, expression and activity of matrix metalloproteinases) and peroxisomal biogenesis and metabolism (gene expression of peroxisomal biogenesis and matrix proteins, protein levels of PEX13 and catalase, targeted and untargeted lipidomic profiles) were analyzed after TGF-β1 treatment and the effects of the PPAR ligands were investigated. RESULTS TGF-β1 induced the expected phenotype; e.g. it increased the intra- and extracellular collagen levels and decreased peroxisomal biogenesis and metabolism. Agonists of different PPARs reversed TGF-β1-induced fibrosis even when given 24 h after TGF-β1. The effects included the reversals of (1) the increase in collagen production by repressing COL1A2 promoter activity (through PPAR-β/δ activation); (2) the reduced activity of matrix metalloproteinases (through PPAR-β/δ activation); (3) the decrease in peroxisomal biogenesis and lipid metabolism (through PPAR-γ activation); and (4) the decrease in catalase protein levels in control (through PPAR-γ activation) and IPF (through a combined activation of PPAR-β/δ and PPAR-γ) fibroblasts. Further experiments to explore the role of catalase showed that an overexpression of catalase protein reduced collagen production. Additionally, the beneficial effect of PPAR-γ but not of PPAR-β/δ activation on collagen synthesis depended on catalase activity and was thus redox-sensitive. CONCLUSION Our data provide evidence that IPF patients may benefit from a combined activation of PPAR-β/δ and PPAR-γ.
Collapse
Affiliation(s)
- Eistine Boateng
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Rocio Bonilla-Martinez
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Vannuruswamy Garikapati
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392, Giessen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Mohammad Rashedul Alam
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Omelyan Trompak
- Department of Internal Medicine VIII, Eberhard Karls University, 72076, Tübingen, Germany
| | - Gani Oruqaj
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Department of Internal Medicine II, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, 35392, Giessen, Germany
| | - Natalia El-Merhie
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, 35392, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Clemens Ruppert
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
- UGMLC Giessen Biobank, Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
- Center for Interstitial and Rare Lung Diseases, Department of Internal Medicine, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392, Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute for Anatomy and Cell Biology, Julius Maximilians University, 97070, Würzburg, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
24
|
Shang J, Kojetin DJ. Unanticipated mechanisms of covalent inhibitor and synthetic ligand cobinding to PPARγ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594037. [PMID: 38798544 PMCID: PMC11118368 DOI: 10.1101/2024.05.15.594037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous lipids and synthetic ligands, including covalent antagonist inhibitors such as GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent antagonist inhibitors weaken-but do not prevent-the binding of other synthetic ligands via an allosteric mechanism rather than direct ligand clashing. The covalent ligands shift the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with and reduces the orthosteric binding affinity of non-covalent synthetic ligands. Crystal structures reveal different non-covalent synthetic ligand-specific cobinding mechanisms ranging from alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent ligand binding pose. Our findings not only highlight the significant flexibility of the PPARγ orthosteric pocket and its ability to accommodate multiple ligands simultaneously, but also demonstrate that GW9662 and T0070907 should not be used as reliable chemical tools to inhibit the binding of other ligands to PPARγ.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
25
|
Blaess M, Csuk R, Schätzl T, Deigner HP. Elongation of Very Long-Chain Fatty Acids (ELOVL) in Atopic Dermatitis and the Cutaneous Adverse Effect AGEP of Drugs. Int J Mol Sci 2024; 25:9344. [PMID: 39273293 PMCID: PMC11395647 DOI: 10.3390/ijms25179344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease, in particular among infants, and is characterized, among other things, by a modification in fatty acid and ceramide composition of the skin's stratum corneum. Palmitic acid and stearic acid, along with C16-ceramide and 2-hydroxy C16-ceramide, occur strikingly in AD. They coincide with a simultaneous decrease in very long-chain ceramides and ultra-long-chain ceramides, which form the outermost lipid barrier. Ceramides originate from cellular sphingolipid/ceramide metabolism, comprising a well-orchestrated network of enzymes involving various ELOVLs and CerSs in the de novo ceramide synthesis and neutral and acid CERase in degradation. Contrasting changes in long-chain ceramides and very long-chain ceramides in AD can be more clearly explained by the compartmentalization of ceramide synthesis. According to our hypothesis, the origin of increased C16-ceramide and 2-hydroxy C16-ceramide is located in the lysosome. Conversely, the decreased ultra-long-chain and very long-chain ceramides are the result of impaired ELOVL fatty acid elongation. The suggested model's key elements include the lysosomal aCERase, which has pH-dependent long-chain C16-ceramide synthase activity (revaCERase); the NADPH-activated step-in enzyme ELOVL6 for fatty acid elongation; and the coincidence of impaired ELOVL fatty acid elongation and an elevated lysosomal pH, which is considered to be the trigger for the altered ceramide biosynthesis in the lysosome. To maintain the ELOVL6 fatty acid elongation and the supply of NADPH and ATP to the cell, the polyunsaturated PPARG activator linoleic acid is considered to be one of the most suitable compounds. In the event that the increase in lysosomal pH is triggered by lysosomotropic compounds, compounds that disrupt the transmembrane proton gradient or force the breakdown of lysosomal proton pumps, non-HLA-classified AGEP may result.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| |
Collapse
|
26
|
Desai A, Yang Loureiro Z, DeSouza T, Yang Q, Solivan-Rivera J, Corvera S. PPARγ activation by lipolysis-generated ligands is required for cAMP dependent UCP1 induction in human thermogenic adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607465. [PMID: 39211160 PMCID: PMC11360943 DOI: 10.1101/2024.08.10.607465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes. To explore this, we employed human adipocytes differentiated from progenitor cells and examined their acute response to Rsg, to the adenylate-cyclase activator forskolin (Fsk), or to both simultaneously. Methods Adipocytes generated from primary human progenitor cells were differentiated without exposure to PPARγ agonists, and treated for 3, 6 or 78 hours to Fsk, to Rsg, or to both simultaneously. Bulk RNASeq, RNAScope, RT-PCR, CRISPR-Cas9 mediated knockout, oxygen consumption and western blotting were used to assess cellular responses. Results UCP1 mRNA expression was induced within 3 hours of exposure to either Rsg or Fsk, indicating that Rsg's effect is independent on additional adipocyte differentiation. Although Rsg and Fsk induced distinct overall transcriptional responses, both induced genes associated with calcium metabolism, lipid droplet assembly, and mitochondrial remodeling, denoting core features of human adipocyte beiging. Unexpectedly, we found that Fsk-induced UCP1 expression was reduced by approximately 80% following CRISPR-Cas9-mediated knockout of PNPLA2 , the gene encoding the triglyceride lipase ATGL. As anticipated, ATGL knockout suppressed lipolysis; however, the associated suppression of UCP1 induction indicates that maximal cAMP-mediated UCP1 induction requires products of ATGL-catalyzed lipolysis. Supporting this, we observed that the reduction in Fsk-stimulated UCP1 induction caused by ATGL knockout was reversed by Rsg, implying that the role of lipolysis in this process is to generate natural PPARγ agonists. Conclusion UCP1 transcription is known to be stimulated by transcription factors activated downstream of cAMP-dependent protein kinases. Here we demonstrate that UCP1 transcription can also be acutely induced through PPARγ-activation. Moreover, both pathways are activated in human adipocytes in response to cAMP, synergistically inducing UCP1 expression. The stimulation of PPARγ in response to cAMP occurs as a result of the production of natural PPARγ activating ligands through ATGL-mediated lipolysis. GRAPHICAL ABSTRACT
Collapse
|
27
|
George AJ, Birnbaum LS. Dioxins vs. PFAS: Science and Policy Challenges. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:85003. [PMID: 39133093 PMCID: PMC11318569 DOI: 10.1289/ehp14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Dioxin-like chemicals are a group of ubiquitous environmental toxicants that received intense attention in the last two decades of the 20th century. Through extensive mechanistic research and validation, the global community has agreed upon a regulatory strategy for these chemicals that centers on their common additive activation of a single receptor. Applying these regulations has led to decreased exposure in most populations studied. As dioxin-like chemicals moved out of the limelight, research and media attention has turned to other concerning contaminants, including per- and polyfluoroalkyl substances (PFAS). During the 20th century, PFAS were also being quietly emitted into the environment, but only in the last 20 years have we realized the serious threat they pose to health. There is active debate about how to appropriately classify and regulate the thousands of known PFAS and finding a solution for these "forever chemicals" is of the utmost urgency. OBJECTIVES Here, we compare important features of dioxin-like chemicals and PFAS, including the history, mechanism of action, and effective upstream regulatory strategies, with the objective of gleaning insight from the past to improve strategies for addressing PFAS. DISCUSSION The differences between these two chemical classes means that regulatory strategies for dioxin-like chemicals will not be appropriate for PFAS. PFAS exert toxicity by both receptor-based and nonreceptor-based mechanisms, which complicates mixtures evaluation and stymies efforts to develop inexpensive assays that accurately capture toxicity. Furthermore, dioxin-like chemicals were unwanted byproducts, but PFAS are useful and valuable, which has led to intense resistance against efforts to restrict their production. Nonetheless, useful lessons can be drawn from dioxin-like chemicals and applied to PFAS, including eliminating nonessential production of new PFAS and proactive investment in environmental remediation to address their extraordinarily long environmental persistence. https://doi.org/10.1289/EHP14449.
Collapse
Affiliation(s)
- Alex J. George
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Linda S. Birnbaum
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
28
|
Banerjee SK, Thurlow LR, Kannan K, Richardson AR. Glucose transporter 1 is essential for the resolution of methicillin-resistant S. aureus skin and soft tissue infections. Cell Rep 2024; 43:114486. [PMID: 38990718 PMCID: PMC11323221 DOI: 10.1016/j.celrep.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Skin/soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) pose a major healthcare burden. Distinct inflammatory and resolution phases comprise the host immune response to SSTIs. Resolution is a myeloid PPARγ-dependent anti-inflammatory phase that is essential for the clearance of MRSA. However, the signals activating PPARγ to induce resolution remain unknown. Here, we demonstrate that myeloid glucose transporter 1 (GLUT-1) is essential for the onset of resolution. MRSA-challenged macrophages are unsuccessful in generating an oxidative burst or immune radicals in the absence of GLUT-1 due to a reduction in the cellular NADPH pool. This translates in vivo as a significant reduction in lipid peroxidation products required for the activation of PPARγ in MRSA-infected mice lacking myeloid GLUT-1. Chemical induction of PPARγ during infection circumvents this GLUT-1 requirement and improves resolution. Thus, GLUT-1-dependent oxidative burst is essential for the activation of PPARγ and subsequent resolution of SSTIs.
Collapse
Affiliation(s)
- Srijon K Banerjee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Lance R Thurlow
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7450, USA
| | - Kartik Kannan
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
29
|
Singh S, Kumar A, Gupta S, Agrawal R. Curative role of natural PPARγ agonist in non-alcoholic fatty liver disease (NAFLD). Tissue Barriers 2024; 12:2289830. [PMID: 38050958 PMCID: PMC11262216 DOI: 10.1080/21688370.2023.2289830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
NAFLD is a condition that develops when the liver accumulates excess fat without alcohol consumption. This chronic liver ailment progresses along with insulin resistant and is typically not diagnosed until the patients have cirrhosis. Nuclear hormone receptor superfamily PPARs are essential for metabolism of fatty acids and glucose. In liver, lipid metabolism is regulated by nuclear receptors and PPARα, and PPARβ/δ encourages fatty acid β-oxidation. PPAR-γ, an energy-balanced receptor is a crucial regulator in NAFLD. The partial activation of PPAR-γ could lead to increased level of adiponectin and insulin sensitivity, thus improved NAFLD. Because of less side effects, natural compounds are emerged as potential therapeutic agents for NAFLD by PPARγ agonists. Although the results from preclinical studies are promising, further research is needed to determine the potential dosing and efficacy of mentioned compounds in human subjects. In this review, we summarize the effect of natural PPARγ agonist in the NAFLD.
Collapse
Affiliation(s)
- Swati Singh
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Anit Kumar
- Department of Pharmacology, Divine College of Pharmacy, Bihar, India
| | - Suruchi Gupta
- School of Pharmacy, YBN University, Ranchi, Jharkhand, India
| | - Rohini Agrawal
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| |
Collapse
|
30
|
Kaimala S, Lootah SS, Mehra N, Kumar CA, Marzooqi SA, Sampath P, Ansari SA, Emerald BS. The Long Non-Coding RNA Obesity-Related (Obr) Contributes To Lipid Metabolism Through Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401939. [PMID: 38704700 PMCID: PMC11234455 DOI: 10.1002/advs.202401939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 05/07/2024]
Abstract
Obesity is a multifactorial disease that is part of today's epidemic and also increases the risk of other metabolic diseases. Long noncoding RNAs (lncRNAs) provide one tier of regulatory mechanisms to maintain metabolic homeostasis. Although lncRNAs are a significant constituent of the mammalian genome, studies aimed at their metabolic significance, including obesity, are only beginning to be addressed. Here, a developmentally regulated lncRNA, termed as obesity related (Obr), whose expression in metabolically relevant tissues such as skeletal muscle, liver, and pancreas is altered in diet-induced obesity, is identified. The Clone 9 cell line and high-fat diet-induced obese Wistar rats are used as a model system to verify the function of Obr. By using stable expression and antisense oligonucleotide-mediated downregulation of the expression of Obr followed by different molecular biology experiments, its role in lipid metabolism is verified. It is shown that Obr associates with the cAMP response element-binding protein (Creb) and activates different transcription factors involved in lipid metabolism. Its association with the Creb histone acetyltransferase complex, which includes the cAMP response element-binding protein (CBP) and p300, positively regulates the transcription of genes involved in lipid metabolism. In addition, Obr is regulated by Pparγ in response to lipid accumulation.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Shareena Saeed Lootah
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Neha Mehra
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Saeeda Al Marzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
| | - Prabha Sampath
- A*STAR Skin Research Laboratory, Agency for Science Technology & Research (A*STAR), Singapore, 138648, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Genome Institute of Singapore, Agency for Science Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
- ASPIRE Precision Medicine, Research Institute Abu Dhabi, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
- ASPIRE Precision Medicine, Research Institute Abu Dhabi, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
| |
Collapse
|
31
|
Yoldas Celik M, Canda E, Yazici H, Erdem F, Yuksel Yanbolu A, Atik Altinok Y, Pariltay E, Akin H, Kalkan Ucar S, Coker M. Long-term clinical outcomes and management of hypertriglyceridemia in children with Apo-CII deficiency. Nutr Metab Cardiovasc Dis 2024; 34:1798-1806. [PMID: 38503616 DOI: 10.1016/j.numecd.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND AIM APO CII, one of several cofactors which regulate lipoprotein lipase enzyme activity, plays an essential role in lipid metabolism. Deficiency of APO CII is an ultra-rare autosomal recessive cause of familial chylomicronemia syndrome. We present the long-term clinical outcomes of 12 children with APO CII deficiency. METHODS AND RESULTS The data of children with genetically confirmed APO CII deficiency were evaluated retrospectively. Twelve children (8 females) with a mean follow-up of 10.1 years (±3.9) were included. At diagnosis, the median age was 60 days (13 days-10 years). Initial clinical findings included lipemic serum (41.6%), abdominal pain (41.6%), and vomiting (16.6%). At presentation, the median triglyceride (TG) value was 4341 mg/dL (range 1277-14,110). All patients were treated with a restricted fat diet, medium-chain triglyceride (MCT), and omega-3-fatty acids. In addition, seven patients (58.3%) received fibrate. Fibrate was discontinued in two patients due to rhabdomyolysis and in one patient because of cholelithiasis. Seven (58.3%) patients experienced pancreatitis during the follow-up period. One female experienced recurrent pancreatitis and was treated with fresh frozen plasma (FFP). CONCLUSIONS Apo CII deficiency is an ultra-rare autosomal recessive condition of hypertriglyceridemia associated with significant morbidity and mortality. Low-fat diet and MCT supplementation are the mainstays of therapy, while the benefit of TG-lowering agents are less well-defined.
Collapse
Affiliation(s)
- Merve Yoldas Celik
- Ege University, Medical Faculty, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey.
| | - Ebru Canda
- Ege University, Medical Faculty, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey
| | - Havva Yazici
- Ege University, Medical Faculty, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey
| | - Fehime Erdem
- Ege University, Medical Faculty, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey
| | - Ayse Yuksel Yanbolu
- Ege University, Medical Faculty, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey
| | - Yasemin Atik Altinok
- Ege University, Medical Faculty, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey
| | - Erhan Pariltay
- Ege University, Medical Faculty, Department of Medical Genetics, Izmir, Turkey
| | - Haluk Akin
- Ege University, Medical Faculty, Department of Medical Genetics, Izmir, Turkey
| | - Sema Kalkan Ucar
- Ege University, Medical Faculty, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey
| | - Mahmut Coker
- Ege University, Medical Faculty, Department of Pediatric Metabolism and Nutrition, Izmir, Turkey
| |
Collapse
|
32
|
Xia Z, Shi S, Ma X, Li F, Li X, Gaisano HY, Zhao M, Li Y, He Y, Jiang J. Mediating effect of adiponectin between free fatty acid and tumor necrosis factor-α in patients with diabetes. Nutr Diabetes 2024; 14:45. [PMID: 38886355 PMCID: PMC11183252 DOI: 10.1038/s41387-024-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Increased free fatty acid (FFA) promotes adiponectin secretion in healthy subjects and induces inflammation in diabetes. Given the potential pro-inflammatory role of adiponectin in "adiponectin paradox", we performed this study in patients with type 2 diabetes mellitus (T2DM) to assess the association of FFA with adiponectin and to investigate whether adiponectin mediates FFA-related inflammation. METHODS This cross-sectional study consisted of adult patients with T2DM. FFA, adiponectin, and tumor necrosis factor-α (TNF-α) were assayed from fasting venous blood after overnight fasting for at least 8 h. Multivariable linear regression analysis and restricted cubic splines (RCS) analysis were performed to identify the association between FFA and adiponectin. Mediation analysis was performed to determine the mediating effect of adiponectin on the association between FFA and TNF-α. RESULTS This study included 495 participants, with 332 males (67.1%) and a mean age of 47.0 ± 11.2 years. FFA was positively associated with adiponectin (b = 0.126, 95%CI: 0.036-0.215, P = 0.006) and was the main contributor to the increase of adiponectin (standardized b = 0.141). The RCS analysis demonstrated that adiponectin increased with FFA when FFA was less than 0.7 mmol/L but did not further increase thereafter (Poverall < 0.001 and Pnon-linear < 0.001). In addition, adiponectin mediated the association between FFA and TNF-α. The mediating effect was 0.08 (95%CI: 0.03-0.13, P = 0.003) and the mediating effect percentage was 26.8% (95%CI: 4.5-49.2, P = 0.02). CONCLUSIONS In patients with T2DM, FFA was positively associated with adiponectin when FFA was less than 0.7 mmol/L. Elevated adiponectin mediated FFA-related inflammation. This study may provide insights into the pro-inflammatory effect of adiponectin in T2DM.
Collapse
Affiliation(s)
- Zhang Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Shulong Shi
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Xiaoqing Ma
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Feng Li
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong, China
- Institute for Chronic Disease Management, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Xinya Li
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Mingyang Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yuhao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| | - Jiajia Jiang
- Institute for Chronic Disease Management, Jining No. 1 People's Hospital, Jining, Shandong, China.
- Postdoctoral of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
33
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
34
|
Kumar A, Laborit Labrada B, Lavallée-Bourget MH, Forest MP, Schwab M, Bellmann K, Houde V, Beauchemin N, Laplante M, Marette A. Regulation of PPARγ2 Stability and Activity by SHP-1. Mol Cell Biol 2024; 44:261-272. [PMID: 38828991 PMCID: PMC11253886 DOI: 10.1080/10985549.2024.2354959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
The protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) plays an important role in modulating glucose and lipid homeostasis. We previously suggested a potential role of SHP-1 in the regulation of peroxisome proliferator-activated receptor γ2 (PPARγ2) expression and activity but the mechanisms were unexplored. PPARγ2 is the master regulator of adipogenesis, but how its activity is regulated by tyrosine phosphorylation is largely unknown. Here, we found that SHP-1 binds to PPARγ2 primarily via its N-terminal SH2-domain. We confirmed the phosphorylation of PPARγ2 on tyrosine-residue 78 (Y78), which was reduced by SHP-1 in vitro resulting in decreased PPARγ2 stability. Loss of SHP-1 led to elevated, agonist-induced expression of the classical PPARγ2 targets FABP4 and CD36, concomitant with increased lipid content in cells expressing PPARγ2, an effect blunted by abrogation of PPARγ2 phosphorylation. Collectively, we discovered that SHP-1 affects the stability of PPARγ2 through dephosphorylation thereby influencing adipogenesis.
Collapse
Affiliation(s)
- Amit Kumar
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Beisy Laborit Labrada
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marie-Hélène Lavallée-Bourget
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marie-Pier Forest
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Michael Schwab
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Kerstin Bellmann
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Vanessa Houde
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Research Centre, Departments of Oncology, Medicine and Biochemistry, McGill University, Montreal, QC, Canada
| | - Mathieu Laplante
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer, l’Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
| |
Collapse
|
35
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Costenbader KH, Cook NR, Lee IM, Hahn J, Walter J, Bubes V, Kotler G, Yang N, Friedman S, Alexander EK, Manson JE. Vitamin D and Marine n-3 Fatty Acids for Autoimmune Disease Prevention: Outcomes Two Years After Completion of a Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol 2024; 76:973-983. [PMID: 38272846 PMCID: PMC11565399 DOI: 10.1002/art.42811] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVE In the 5.3-year randomized, 2 × 2 factorial, double-blind, placebo-controlled Vitamin D and Omega-3 Trial (VITAL), vitamin D supplementation reduced autoimmune disease (AD) incidence (hazard ratio [HR] 0.78, 95% confidence interval [CI] 0.61-0.99). Omega-3 (n-3) fatty acid supplementation showed a statistically nonsignificant reduction (HR 0.85, 95% CI 0.67-1.08). We aimed to confirm further AD cases arising during and after randomization and assess sustained effects with two years of postintervention observation. METHODS Of the 12,786 men aged ≥50 and 13,085 women aged ≥55 initially randomized, we observed surviving and willing participants for two more years. We continued to confirm annual participant-reported new AD by medical record review. Cox models calculated HRs for all confirmed incident AD, (and secondary endpoints, including probable cases, and individual ADs), during the observational and randomized periods. RESULTS A total of 21,592 participants (83.5%) were observed for two more years; 514 participants developed incident confirmed AD (236 since prior report), of whom 255 had been randomized to vitamin D versus 259 to vitamin D placebo (HR 0.98 [95% CI 0.83-1.17] at 7 years). AD was confirmed in 234 participants initially randomized to n-3 fatty acids versus 280 randomized to its placebo (HR 0.83 [95% CI 0.70-0.99] at 7 years). Of newly confirmed cases, 65 had onset during randomization; their inclusion changed randomized results as follows: HR 0.85 (95% CI 0.70-1.04) for vitamin D and HR 0.87 (95% CI 0.71-1.06) for n-3 fatty acids. CONCLUSION Two years after trial termination, the protective effects of 2000 IU/day of vitamin D dissipated, but 1,000 mg/day of n-3 fatty acids had a sustained effect in reducing AD incidence.
Collapse
Affiliation(s)
| | - Nancy R. Cook
- Brigham and Women’s Hospital and Harvard University, Boston, Massachusetts
| | - I-Min Lee
- Brigham and Women’s Hospital and Harvard University, Boston, Massachusetts
| | - Jill Hahn
- Harvard University, Boston, Massachusetts
| | | | - Vadim Bubes
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Nicole Yang
- Brigham and Women’s Hospital and Harvard University, Boston, Massachusetts
| | - Sonia Friedman
- Brigham and Women’s Hospital and Harvard University, Boston, Massachusetts
| | - Erik K. Alexander
- Brigham and Women’s Hospital and Harvard University, Boston, Massachusetts
| | - JoAnn E. Manson
- Brigham and Women’s Hospital and Harvard University, Boston, Massachusetts
| |
Collapse
|
37
|
Kranrod J, Konkel A, Valencia R, Darwesh AM, Fischer R, Schunck WH, Seubert JM. Cardioprotective properties of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids. J Biol Chem 2024; 300:107372. [PMID: 38754781 PMCID: PMC11214398 DOI: 10.1016/j.jbc.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 μM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 μM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 μM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Collapse
Affiliation(s)
- Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Valencia
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
38
|
Lu D, He A, Tan M, Mrad M, El Daibani A, Hu D, Liu X, Kleiboeker B, Che T, Hsu FF, Bambouskova M, Semenkovich CF, Lodhi IJ. Liver ACOX1 regulates levels of circulating lipids that promote metabolic health through adipose remodeling. Nat Commun 2024; 15:4214. [PMID: 38760332 PMCID: PMC11101658 DOI: 10.1038/s41467-024-48471-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
The liver gene expression of the peroxisomal β-oxidation enzyme acyl-coenzyme A oxidase 1 (ACOX1), which catabolizes very long chain fatty acids (VLCFA), increases in the context of obesity, but how this pathway impacts systemic energy metabolism remains unknown. Here, we show that hepatic ACOX1-mediated β-oxidation regulates inter-organ communication involved in metabolic homeostasis. Liver-specific knockout of Acox1 (Acox1-LKO) protects mice from diet-induced obesity, adipose tissue inflammation, and systemic insulin resistance. Serum from Acox1-LKO mice promotes browning in cultured white adipocytes. Global serum lipidomics show increased circulating levels of several species of ω-3 VLCFAs (C24-C28) with previously uncharacterized physiological role that promote browning, mitochondrial biogenesis and Glut4 translocation through activation of the lipid sensor GPR120 in adipocytes. This work identifies hepatic peroxisomal β-oxidation as an important regulator of metabolic homeostasis and suggests that manipulation of ACOX1 or its substrates may treat obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Dongliang Lu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anyuan He
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Min Tan
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marguerite Mrad
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Donghua Hu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuejing Liu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monika Bambouskova
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Tovar R, de Ceglia M, Rodríguez-Pozo M, Vargas A, Gavito A, Suárez J, Boronat A, de la Torre R, de Fonseca FR, Baixeras E, Decara J. Hydroxytyrosol Linoleoyl Ether Ameliorates Metabolic-Associated Fatty Liver Disease Symptoms in Obese Zucker Rats. ACS Pharmacol Transl Sci 2024; 7:1571-1583. [PMID: 38751648 PMCID: PMC11092116 DOI: 10.1021/acsptsci.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
A main hepatic consequence of obesity is metabolic-associated fatty liver disease (MAFLD), currently treated by improving eating habits and administrating fibrates yet often yielding suboptimal outcomes. Searching for a new therapeutic approach, we aimed to evaluate the efficacy of hydroxytyrosol linoleoyl ether (HTLE), a dual Ppar-α agonist/Cb1 antagonist with inherent antioxidant properties, as an antisteatotic agent. Using lean and obese Zucker rats, they were administrated daily doses of HTLE (3 mg/kg) over a 15-day period, evaluating its safety profile, pharmacokinetics, impact on body weight, hepatic fat content, expression of key enzymes involved in lipogenesis/fatty acid oxidation, and antioxidant capacity. HTLE decreased the body weight and food intake in both rat genotypes. Biochemical analysis demonstrated a favorable safety profile for HTLE along with decreased concentrations of urea, total cholesterol, and aspartate aminotransferase AST transaminases in plasma. Notably, HTLE exhibited potent antisteatotic effects in obese rats, evidenced by a decrease in liver fat content and downregulation of lipogenesis-related enzymes, alongside increased expression of proteins controlling lipid oxidation. Moreover, HTLE successfully counteracted the redox imbalance associated with MAFLD in obese rats, attenuating lipid peroxidation and replenishing both glutathione levels and the overall antioxidant. Our findings highlight the effectiveness of triple-action strategies in managing MAFLD effectively. Based on our results in the Zucker rat model, HTLE emerges as a promising candidate with triple functionality as an anorexigenic, antisteatotic, and antioxidant agent, offering potential relief from MAFLD symptoms associated with obesity while exhibiting minimal side effects. In conclusion, our study positions HTLE as a highly promising compound for therapeutic intervention in MAFLD treatment, warranting further exploration in clinical trials.
Collapse
Affiliation(s)
- Rubén Tovar
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
- Facultad
de Ciencias, Universidad de Málaga,
Campus Universitario de Teatinos s/n, Málaga 29010, Spain
| | - Marialuisa de Ceglia
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Miguel Rodríguez-Pozo
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Antonio Vargas
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Ana Gavito
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Juan Suárez
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
- Departamento
de Anatomía Humana, Medicina Legal e Historia de la Ciencia,
Facultad de Medicina, Universidad de Málaga,
Campus Universitario de Teatinos s/n, Málaga 29010, Spain
| | - Anna Boronat
- Grupo
de Farmacología Integrada y Neurociencia de Sistemas, Programa
de investigación en Neurociencias, Instituto de Investigaciones Médicas Hospital del Mar (IMIM), C/del Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael de la Torre
- Grupo
de Farmacología Integrada y Neurociencia de Sistemas, Programa
de investigación en Neurociencias, Instituto de Investigaciones Médicas Hospital del Mar (IMIM), C/del Dr. Aiguader 88, Barcelona 08003, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Elena Baixeras
- Departamento
de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Campus Universitario
de Teatinos s/n, Málaga 29010, Spain
| | - Juan Decara
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
- Departamento
de Anatomía Humana, Medicina Legal e Historia de la Ciencia,
Facultad de Medicina, Universidad de Málaga,
Campus Universitario de Teatinos s/n, Málaga 29010, Spain
| |
Collapse
|
40
|
Wang XX, Ding MJ, Gao J, Zhao L, Cao R, Wang XW. Modulation of host lipid metabolism by virus infection leads to exoskeleton damage in shrimp. PLoS Pathog 2024; 20:e1012228. [PMID: 38739679 PMCID: PMC11115362 DOI: 10.1371/journal.ppat.1012228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/23/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ming-Jie Ding
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ling Zhao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
41
|
Hateley C, Olona A, Halliday L, Edin ML, Ko JH, Forlano R, Terra X, Lih FB, Beltrán-Debón R, Manousou P, Purkayastha S, Moorthy K, Thursz MR, Zhang G, Goldin RD, Zeldin DC, Petretto E, Behmoaras J. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity. EBioMedicine 2024; 103:105127. [PMID: 38677183 PMCID: PMC11061246 DOI: 10.1016/j.ebiom.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Charlotte Hateley
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Antoni Olona
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Laura Halliday
- Department of Surgery and Cancer, Imperial College London, UK
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Jeong-Hun Ko
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Ximena Terra
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Raúl Beltrán-Debón
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Penelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Sanjay Purkayastha
- Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK; University of Brunel, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Guodong Zhang
- Department of Nutrition, College of Agriculture and Environmental Sciences, 3135 Meyer Hall, One Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Enrico Petretto
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
42
|
Alvarado-Ojeda ZA, Trejo-Moreno C, Ferat-Osorio E, Méndez-Martínez M, Fragoso G, Rosas-Salgado G. Role of Angiotensin II in Non-Alcoholic Steatosis Development. Arch Med Res 2024; 55:102986. [PMID: 38492325 DOI: 10.1016/j.arcmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Fatty liver is a multifactorial disease characterized by excessive accumulation of lipids in hepatocytes (steatosis), insulin resistance, oxidative stress, and inflammation. This disease has a major public health impact because it is the first stage of a chronic and degenerative process in the liver that can lead to steatohepatitis, cirrhosis, and liver cancer. Although this disease is mainly diagnosed in patients with obesity, type 2 diabetes mellitus, and dyslipidemia, recent evidence indicates that vasoactive hormones such as angiotensin II (ANGII) not only promote endothelial dysfunction (ED) and hypertension, but also cause fatty liver, increase adipose tissue, and develop a pro-steatotic environment characterized by a low-grade systemic pro-inflammatory and pro-oxidant state, with elevated blood lipid levels. The role of ANGII in lipid accumulation has been little studied, so this review aims to summarize existing reports on the possible mechanism of action of ANGII in inducing lipid accumulation in hepatocytes.
Collapse
Affiliation(s)
| | - Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marisol Méndez-Martínez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico.
| |
Collapse
|
43
|
Moran KM, Delville Y. A hamster model for stress-induced weight gain. Horm Behav 2024; 160:105488. [PMID: 38306877 DOI: 10.1016/j.yhbeh.2024.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
This review addresses the translational relevance of animal models of stress and their effects on body weight. In humans, stress, whether chronic or acute, has often been associated with increased food intake and weight gain. In view of the current obesity epidemic, this phenomenon is especially relevant. Such observations contrast with reports with commonly used laboratory animals, especially rats and mice. In these species, it is common to find individuals gaining less weight under stress, even with potent social stressors. However, there are laboratory species that present increased appetite and weight gain under stress, such as golden hamsters. Furthermore, these animals also include metabolic and behavioral similarities with humans, including hoarding behavior which is also enhanced under stress. Consequently, we propose that our comparative perspective provides useful insights for future research on the development of obesity in humans as a consequence of chronic stress exposure.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, USA.
| | - Yvon Delville
- Psychology Department, The University of Texas at Austin, USA
| |
Collapse
|
44
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
45
|
Hawley AL, Baum JI. Nutrition as the foundation for successful aging: a focus on dietary protein and omega-3 polyunsaturated fatty acids. Nutr Rev 2024; 82:389-406. [PMID: 37319363 DOI: 10.1093/nutrit/nuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Skeletal muscle plays a critical role throughout the aging process. People living with sarcopenia, a progressive and generalized loss of skeletal muscle mass and function, often experience diminished quality of life, which can be attributed to a long period of decline and disability. Therefore, it is important to identify modifiable factors that preserve skeletal muscle and promote successful aging (SA). In this review, SA was defined as (1) low cardiometabolic risk, (2) preservation of physical function, and (3) positive state of wellbeing, with nutrition as an integral component. Several studies identify nutrition, specifically high-quality protein (eg, containing all essential amino acids), and long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), as positive regulators of SA. Recently, an additive anabolic effect of protein and n-3 PUFAs has been identified in skeletal muscle of older adults. Evidence further suggests that the additive effect of protein and n-3 PUFAs may project beyond skeletal muscle anabolism and promote SA. The key mechanism(s) behind the enhanced effects of intake of protein and n-3 PUFAs needs to be defined. The first objective of this review is to evaluate skeletal muscle as a driver of cardiometabolic health, physical function, and wellbeing to promote SA. The second objective is to examine observational and interventional evidence of protein and n-3 PUFAs on skeletal muscle to promote SA. The final objective is to propose mechanisms by which combined optimal intake of high-quality protein and n-3 PUFAs likely play a key role in SA. Current evidence suggests that increased intake of protein above the Recommended Dietary Allowance and n-3 PUFAs above the Dietary Guidelines for Americans recommendations for late middle-aged and older adults is required to maintain skeletal muscle mass and to promote SA, potentially through the mechanistical target of rapamycin complex 1 (mTORC1).
Collapse
Affiliation(s)
- Aubree L Hawley
- School of Human and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jamie I Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| |
Collapse
|
46
|
Robinson JW, Martin R, Ozawa M, Elwenspoek MMC, Redaniel MT, Kurian K, Ben-Shlomo Y. Use of drugs for hyperlipidaemia and diabetes and risk of primary and secondary brain tumours: nested case-control studies using the UK Clinical Practice Research Datalink (CPRD). BMJ Open 2024; 14:e072026. [PMID: 38336454 PMCID: PMC10860117 DOI: 10.1136/bmjopen-2023-072026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Previous studies have suggested that fibrates and glitazones may have a role in brain tumour prevention. We examined if there is support for these observations using primary care records from the UK Clinical Practice Research Datalink (CPRD). DESIGN We conducted two nested case-control studies using primary and secondary brain tumours identified within CPRD between 2000 and 2016. We selected cases and controls among the population of individuals who had been treated with any anti-diabetic or anti-hyperlipidaemic medication to reduce confounding by indication. SETTING Adults older than 18 years registered with a general practitioner in the UK contributing data to CPRD. RESULTS We identified 7496 individuals with any brain tumour (4471 primary; 3025 secondary) in total. After restricting cases and controls to those prescribed any anti-diabetic or anti-hyperlipidaemic medication, there were 1950 cases and 7791 controls in the fibrate and 480 cases with 1920 controls in the glitazone analyses. Longer use of glitazones compared with all other anti-diabetic medications was associated with a reduced risk of primary (adjusted OR (aOR) 0.89 per year, 95% CI 0.80 to 0.98), secondary (aOR 0.87 per year, 95% CI 0.77 to 0.99) or combined brain tumours (aOR 0.88 per year, 95% CI 0.81 to 0.95). There was little evidence that fibrate exposure was associated with risk of either primary or secondary brain tumours. CONCLUSIONS Longer exposure to glitazones was associated with reduced primary and secondary brain tumour risk. Further basic science and population-based research should explore this finding in greater detail, in terms of replication and mechanistic studies.
Collapse
Affiliation(s)
- Jamie W Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Mio Ozawa
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martha Maria Christine Elwenspoek
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Maria Theresa Redaniel
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Kathreena Kurian
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Brain Tumour Research Centre, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| |
Collapse
|
47
|
Mazzarella L, Falvo P, Adinolfi M, Tini G, Gatti E, Piccioni R, Bonetti E, Gavilán E, Valli D, Gruszka A, Bodini M, Gallo B, Orecchioni S, de Michele G, Migliaccio E, Duso BA, Roerink S, Stratton M, Bertolini F, Alcalay M, Dellino GI, Pelicci PG. High-Fat Diet Promotes Acute Promyelocytic Leukemia through PPARδ-Enhanced Self-renewal of Preleukemic Progenitors. Cancer Prev Res (Phila) 2024; 17:59-75. [PMID: 37956420 DOI: 10.1158/1940-6207.capr-23-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Risk and outcome of acute promyelocytic leukemia (APL) are particularly worsened in obese-overweight individuals, but the underlying molecular mechanism is unknown. In established mouse APL models (Ctsg-PML::RARA), we confirmed that obesity induced by high-fat diet (HFD) enhances leukemogenesis by increasing penetrance and shortening latency, providing an ideal model to investigate obesity-induced molecular events in the preleukemic phase. Surprisingly, despite increasing DNA damage in hematopoietic stem cells (HSC), HFD only minimally increased mutational load, with no relevant impact on known cancer-driving genes. HFD expanded and enhanced self-renewal of hematopoietic progenitor cells (HPC), with concomitant reduction in long-term HSCs. Importantly, linoleic acid, abundant in HFD, fully recapitulates the effect of HFD on the self-renewal of PML::RARA HPCs through activation of peroxisome proliferator-activated receptor delta, a central regulator of fatty acid metabolism. Our findings inform dietary/pharmacologic interventions to counteract obesity-associated cancers and suggest that nongenetic factors play a key role. PREVENTION RELEVANCE Our work informs interventions aimed at counteracting the cancer-promoting effect of obesity. On the basis of our study, individuals with a history of chronic obesity may still significantly reduce their risk by switching to a healthier lifestyle, a concept supported by evidence in solid tumors but not yet in hematologic malignancies. See related Spotlight, p. 47.
Collapse
Affiliation(s)
| | - Paolo Falvo
- IRCCS European Institute of Oncology, Milan, Italy
| | | | - Giulia Tini
- IRCCS European Institute of Oncology, Milan, Italy
| | - Elena Gatti
- IRCCS European Institute of Oncology, Milan, Italy
| | | | | | | | - Debora Valli
- IRCCS European Institute of Oncology, Milan, Italy
| | | | | | | | | | | | | | - Bruno A Duso
- IRCCS European Institute of Oncology, Milan, Italy
| | - Sophie Roerink
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mike Stratton
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Myriam Alcalay
- IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan
| | - Gaetano Ivan Dellino
- IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan
| | - Pier Giuseppe Pelicci
- IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan
| |
Collapse
|
48
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Gamwell JM, Paphiti K, Hodson L, Karpe F, Pinnick KE, Todorčević M. An optimised protocol for the investigation of insulin signalling in a human cell culture model of adipogenesis. Adipocyte 2023; 12:2179339. [PMID: 36763512 PMCID: PMC9980465 DOI: 10.1080/21623945.2023.2179339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
While there is no standardized protocol for the differentiation of human adipocytes in culture, common themes exist in the use of supra-physiological glucose and hormone concentrations, and an absence of exogenous fatty acids. These factors can have detrimental effects on some aspects of adipogenesis and adipocyte function. Here, we present methods for modifying the adipogenic differentiation protocol to overcome impaired glucose uptake and insulin signalling in human adipose-derived stem cell lines derived from the stromal vascular fraction of abdominal and gluteal subcutaneous adipose tissue. By reducing the length of exposure to adipogenic hormones, in combination with a physiological glucose concentration (5 mM), and the provision of exogenous fatty acids (reflecting typical dietary fatty acids), we were able to restore early insulin signalling events and glucose uptake, which were impaired by extended use of hormones and a high glucose concentration, respectively. Furthermore, the addition of exogenous fatty acids greatly increased the storage of triglycerides and removed the artificial demand to synthesize all fatty acids by de novo lipogenesis. Thus, modifying the adipogenic cocktail can enhance functional aspects of human adipocytes in vitro and is an important variable to consider prior to in vitro investigations into adipocyte biology.
Collapse
Affiliation(s)
- Jonathan M. Gamwell
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| | - Keanu Paphiti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Katherine E. Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| | - Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| |
Collapse
|
50
|
Qiu H, Shao Z, Wen X, Liu Z, Chen Z, Qu D, Ding X, Zhang L. Efferocytosis: An accomplice of cancer immune escape. Biomed Pharmacother 2023; 167:115540. [PMID: 37741255 DOI: 10.1016/j.biopha.2023.115540] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
The clearance of apoptotic cells by efferocytes such as macrophages and dendritic cells is termed as "efferocytosis", it plays critical roles in maintaining tissue homeostasis in multicellular organisms. Currently, available studies indicate that efferocytosis-related molecules and pathways are tightly associated with cancer development, metastasis and treatment resistance, efferocytosis also induces an immunosuppressive tumor microenvironment and assists cancer cells escape from immune surveillance. In this study, we reviewed the underlying mechanisms of efferocytosis in mediating the occurrence of cancer immune escape, and then emphatically summarized the strategies of using efferocytosis as therapeutic target to enhance the anti-tumor efficacies of immune checkpoint inhibitors, hoping to provide powerful evidences for more effective therapeutic regimens of malignant tumors.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhengyang Liu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziqin Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|