1
|
Nguyen PM, Park MS, Chow M, Chang JH, Wrischnik L, Chan WK. Benzo[a]pyrene increases the Nrf2 content by downregulating the Keap1 message. Toxicol Sci 2010; 116:549-61. [PMID: 20498004 DOI: 10.1093/toxsci/kfq150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We employed the suppressive subtractive hybridization to identify 41 up- and downregulated transcripts in Jurkat cells after benzo[a]pyrene (BaP) treatment. Among the 21 downregulated transcripts, we found that BaP suppresses the Keap1 transcript by 7.5-fold. Subsequent analyses revealed that BaP significantly suppresses the Keap1 message and protein levels to about 40 and 60%, respectively, of the vehicle controls in Jurkat cells without reactive oxygen species involvement. In addition, the nuclear Nrf2 (nuclear factor erythroid 2-related factor) protein content is significantly increased by 2.6-fold. The same BaP treatment to Hepa1c1c7 cells also downregulates the Keap1 message and protein levels to a similar extent. When we treated Jurkat cells with 3-(4-morpholinyl)propyl isothiocyanate, which is known to increase the amount of the Nrf2 content, we found that there is no change in the Keap1 message, but the amount of the Keap1 (kelch-like ECH-associated protein 1) protein is reduced to 75% of the vehicle controls. Although both Nrf2 target messages nqo1 and gstp1 are upregulated by BaP in Jurkat cells, only GSTP1 is upregulated at the protein level. Unlike Hepa1c1c7 cells, Jurkat cells have no detectable aryl hydrocarbon receptor and BaP metabolites, minimal CYP1A1 activity, and no quinone oxidoreductase 1 (NQO1) activity. We concluded that BaP, but not its metabolites, increases the amount of the nuclear Nrf2 protein by downregulating the Keap1 message in Jurkat cells.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Department of Labour Physiology, Vietnam Military Medical University, Hadong, Hanoi, Vietnam
| | | | | | | | | | | |
Collapse
|
2
|
Cloning and characterization of SARI (suppressor of AP-1, regulated by IFN). Proc Natl Acad Sci U S A 2008; 105:20906-11. [PMID: 19074269 DOI: 10.1073/pnas.0807975106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a novel basic leucine zipper containing type I IFN-inducible early response gene SARI (Suppressor of AP-1, Regulated by IFN). Steady-state SARI mRNA expression was detected in multiple lineage-specific normal cells, but not in their transformed/tumorigenic counterparts. In normal and cancer cells, SARI expression was induced 2 h after fibroblast IFN (IFN-beta) treatment with 1 U/ml of IFN-beta. Antisense inhibition of SARI protected HeLa cells from IFN-beta-mediated growth inhibition. As a corollary, overexpression of SARI inhibited growth and induced apoptosis in cancer cells, but not in normal cells. SARI interacted with c-Jun via its leucine zipper, resulting in inhibition of DNA binding of activator protein (AP-1) complex and consequently AP-1-dependent gene expression. Transformed cells relying on AP-1 activity for proliferative advantage demonstrated increased susceptibility to SARI-mediated growth inhibition. These findings uncover a novel mode of IFN-induced anti-tumor growth suppression and suggest potential gene therapy applications for SARI.
Collapse
|
3
|
Ghose K, Dey S, Barton H, Loake GJ, Basu D. Differential profiling of selected defence-related genes induced on challenge with Alternaria brassicicola in resistant white mustard and their comparative expression pattern in susceptible India mustard. MOLECULAR PLANT PATHOLOGY 2008; 9:763-75. [PMID: 19019005 PMCID: PMC6640447 DOI: 10.1111/j.1364-3703.2008.00497.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lack of availability of sources of resistance against Alternaria brassicicola within the family Brassicaceae has made oilseed mustard plants a target for one of the most damaging and widespread fungal diseases, Alternaria black spot. Of the other non-host-resistant/tolerant plants, Sinapis alba, white mustard, is considered to be the most important apart from Arabidopsis. To understand the defence response of S. alba upon incompatible interaction with this pathogen, a functional genomic approach using cDNA amplified fragment length polymorphism was performed. The highly reproducible bands, found to be either more amplified or uniquely present in infected S. alba plants compared with non-infected plants, were further subjected to comparative reverse Northern analysis in the incompatible white mustard (S. alba) and compatible India mustard (Brassica juncea L.) plants. The suppression of 46% of the genes in the compatible background indicates the possibility of effective and specific recognition of Alternaria in S. alba. Analysis of the 118 genes up-regulated specifically in infected S. alba compared with B. juncea showed that 98 genes have similarity to proteins such as receptor-like protein kinase genes, genes involved with calcium-mediated signalling and salicylic acid-dependent genes as well as other genes of known function in Arabidopsis. The apparent expression profile data were further confirmed for selected genes by quantitative real-time polymerase chain reaction analysis. Classification of these genes on the basis of their induction pattern in Arabidopsis indicates that the expression profile of several of these genes was distinct in S. alba compared with B. juncea.
Collapse
Affiliation(s)
- Kaushik Ghose
- Department of Botany, Bose Institute, 93/1, A.P.C. Road, Kolkata-700009, West Bengal, India
| | | | | | | | | |
Collapse
|
4
|
Complete open reading frame (C-ORF) technique: rapid and efficient method for obtaining complete protein coding sequences. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008. [PMID: 18217682 DOI: 10.1007/978-1-59745-335-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Several approaches, generally referred to as rapid amplification of cDNA ends, are currently used as a means of obtaining full-length cDNA clones by PCR. However, these protocols are not infallible and in specific instances they have proven unsuccessful, emphasizing a need for further refinement. A novel method, the complete open reading frame (C-ORF) technique, is presently described, which has proven successful in cases, where standard rapid amplification of cDNA ends (RACE) has not worked. In C-ORF, the 5' PCR primer site is provided by a degenerative stem-loop annealing primer, which consists of a stem-loop structure and a 3' random 12-mer. degenerative stem-loop annealing primer is designed to anneal at random sites of the first strand cDNA, while promoting second strand synthesis from the end of given cDNA. Although this technique manifests weak sequence preference for GC-rich regions, in practice it has been successfully applied to clone both known and unknown genes with varying regions of GC-rich content. C-ORF does not use additional enzymes other than reverse transcriptase and Taq polymerase making it a cost-effective and relatively simple method that should be of general utility for gene cloning in multiple laboratories.
Collapse
|
5
|
Reciprocal subtraction differential RNA display (RSDD): an efficient technology for cloning differentially expressed genes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 383:1-14. [PMID: 18217675 DOI: 10.1007/978-1-59745-335-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Identification of differentially expressed genes is an essential step in comprehending the molecular basis of complex physiological and pathological processes. Subtraction hybridization and differential RNA display (DDRT-PCR) are two methods that are widely and successfully employed to clone differentially expressed genes. Unfortunately, both methods have inherent problems and limitations requiring improvements in the technique. A combination of these two methods termed reciprocal subtraction differential RNA display is described here that considerably reduces the complexity of DDRT-PCR and facilitates the rapid and efficient identification and cloning of both abundant and rare differentially expressed genes.
Collapse
|
6
|
Boukerche H, Su ZZ, Kang DC, Fisher PB. Cloning differentially expressed genes using rapid subtraction hybridization (RaSH). METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 383:15-29. [PMID: 18217676 DOI: 10.1007/978-1-59745-335-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Differential gene expression represents the entry point for comprehending complex biological processes. In this context, identification and cloning of differentially expressed genes represent critical elements in this process. Many techniques have been developed to facilitate achieving these objectives. Although effective in many situations, most currently described approaches are not trouble-free and have limitations, including complexity of performance, redundancy of gene identification (reflecting cloning biases) and false-positive gene identification. A detailed methodology to perform a rapid and efficient cloning approach, called rapid subtraction hybridization is described in this chapter. This strategy has been applied successfully to a number of cell culture systems and biological processes, including terminal differentiation and cancer progression in human melanoma cells, resistance or sensitivity to HIV-1 in human T cells and gene expression changes following infection of normal human fetal astrocytes with HIV-1 or treatment with neutrotoxic agents. Based on its simplicity of performance and high frequency of genuine differential gene identification, the rapid subtraction hybridization (RaSH) approach will allow wide applications in diverse systems and biological contexts.
Collapse
Affiliation(s)
- Habib Boukerche
- Department of Pathology, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY, USA
| | | | | | | |
Collapse
|
7
|
Schuster A, Kubicek CP, Friedl MA, Druzhinina IS, Schmoll M. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics 2007; 8:449. [PMID: 18053205 PMCID: PMC2234433 DOI: 10.1186/1471-2164-8-449] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/04/2007] [Indexed: 11/30/2022] Open
Abstract
Background In fungi, light is primarily known to influence general morphogenesis and both sexual and asexual sporulation. In order to expand the knowledge on the effect of light in fungi and to determine the role of the light regulatory protein ENVOY in the implementation of this effect, we performed a global screen for genes, which are specifically effected by light in the fungus Hypocrea jecorina (anamorph Trichoderma reesei) using Rapid Subtraction Hybridization (RaSH). Based on these data, we analyzed whether these genes are influenced by ENVOY and if overexpression of ENVOY in darkness would be sufficient to execute its function. Results The cellular functions of the detected light responsive genes comprised a variety of roles in transcription, translation, signal transduction, metabolism, and transport. Their response to light with respect to the involvement of ENVOY could be classified as follows: (i) ENVOY-mediated upregulation by light; (ii) ENVOY-independent upregulation by light; (iii) ENVOY-antagonized upregulation by light; ENVOY-dependent repression by light; (iv) ENVOY-independent repression by light; and (v) both positive and negative regulation by ENVOY of genes not responsive to light in the wild-type. ENVOY was found to be crucial for normal growth in light on various carbon sources and is not able to execute its regulatory function if overexpressed in the darkness. Conclusion The different responses indicate that light impacts fungi like H. jecorina at several cellular processes, and that it has both positive and negative effects. The data also emphasize that ENVOY has an apparently more widespread cellular role in this process than only in modulating the response to light.
Collapse
Affiliation(s)
- Andrè Schuster
- Division of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria.
| | | | | | | | | |
Collapse
|
8
|
Emdad L, Sarkar D, Su ZZ, Lee SG, Kang DC, Bruce JN, Volsky DJ, Fisher PB. Astrocyte elevated gene-1: recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration. Pharmacol Ther 2007; 114:155-70. [PMID: 17397930 PMCID: PMC2039930 DOI: 10.1016/j.pharmthera.2007.01.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 01/01/2023]
Abstract
Tumor progression and metastasis are complex processes involving intricate interplay among multiple gene products. Astrocyte elevated gene (AEG)-1 was cloned as an human immunodeficiency virus (HIV)-1-inducible and tumor necrosis factor-alpha (TNF-alpha)-inducible transcript in primary human fetal astrocytes (PHFA) by a rapid subtraction hybridization approach. AEG-1 down-regulates the expression of the glutamate transporter EAAT2; thus, it is implicated in glutamate-induced excitotoxic damage to neurons as evident in HIV-associated neurodegeneration. Interestingly, AEG-1 expression is elevated in subsets of breast cancer, glioblastoma multiforme and melanoma cells, and AEG-1 cooperates with Ha-ras to augment the transformed phenotype of normal immortal cells. Moreover, AEG-1 is overexpressed in >95% of human malignant glioma samples when compared with normal human brain. Overexpression of AEG-1 increases and siRNA inhibition of AEG-1 decreases migration and invasion of human glioma cells, respectively. AEG-1 contains a lung-homing domain facilitating breast tumor metastasis to lungs. These findings indicate that AEG-1 might play a pivotal role in the pathogenesis, progression and metastasis of diverse cancers. Our recent observations indicate that AEG-1 exerts its effects by activating the nuclear factor kappa B (NF-kappaB) pathway and AEG-1 is a downstream target of Ha-ras and plays an important role in Ha-ras-mediated tumorigenesis. These provocative findings are intensifying interest in AEG-1 as a crucial regulator of tumor progression and metastasis and as a potential mediator of neurodegeneration. In this review, we discuss the cloning, structure and function(s) of AEG-1 and provide recent insights into the diverse actions and intriguing properties of this molecule.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Devanand Sarkar
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Zao-Zhong Su
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Seok-Geun Lee
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Dong-chul Kang
- Ilsong Institute of Life Science, Hallym University, Republic of Korea
| | - Jeffrey N. Bruce
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - David J. Volsky
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- St. Luke's Roosevelt Medical Center, New York, NY
| | - Paul B. Fisher
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| |
Collapse
|
9
|
Fisher PB, Sarkar D, Lebedeva IV, Emdad L, Gupta P, Sauane M, Su ZZ, Grant S, Dent P, Curiel DT, Senzer N, Nemunaitis J. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24): novel gene therapeutic for metastatic melanoma. Toxicol Appl Pharmacol 2006; 224:300-7. [PMID: 17208263 PMCID: PMC2739016 DOI: 10.1016/j.taap.2006.11.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/11/2006] [Accepted: 11/13/2006] [Indexed: 11/30/2022]
Abstract
A potentially less toxic approach for cancer therapy comprises induction of tumor cells to lose growth potential irreversibly and terminally differentiate. Combining this scheme termed 'differentiation therapy of cancer' with subtraction hybridization to human melanoma cells resulted in the cloning of melanoma differentiation associated (mda) genes displaying elevated expression as a consequence of induction of terminal differentiation. One originally novel gene, mda-7, was found to display elevated expression in normal melanocytes and nevi with progressive loss of expression as a consequence of melanoma development and progression to metastasis. Based on structure, biochemical properties and chromosomal location, mda-7 has now been reclassified as interleukin (IL)-24, a member of the expanding IL-10 family of cytokines. In vitro cell culture and in vivo animal studies indicate that mda-7/IL-24 selectively induces programmed cell death (apoptosis) in multiple human cancers (including melanomas), without harming normal cells, and promotes profound anti-tumor activity in nude mice containing human tumor xenografts. Based on these remarkable properties, a Phase I clinical trial was conducted to test the safety of administration of mda-7/IL-24 by a replication incompetent adenovirus (Ad.mda-7; INGN 241) in patients with advanced solid cancers including melanoma. mda-7/IL-24 was found to be safe and to promote significant clinical activity, particularly in the context of patients with metastatic melanoma. These results provide an impetus for further clinical studies and document a central paradigm of cancer therapy, namely translation of basic science from the "bench to the bedside."
Collapse
Affiliation(s)
- Paul B Fisher
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pathak RU, Kanungo MS. Subtractive differential display: a modified differential display technique for isolating differentially expressed genes. Mol Biol Rep 2006; 34:41-6. [PMID: 17094010 DOI: 10.1007/s11033-006-9010-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 07/24/2006] [Indexed: 11/28/2022]
Abstract
Differential display (DD) is a novel PCR-based technique, very commonly used to study differentially expressed genes at the mRNA level. In this paper we report a modified version of this technique that we have used to study the differences between the mRNA population from brain tissue of adult and old rats. We have modified the technique to enhance reproducibility and reduce false positives and redundancy. It is fast and does not require any expensive or uncommon reagent. We choose to call it as subtractive differential display as it is a differential display performed over subtracted mRNA population. We have used this protocol successfully to clone a number of age-related differentially expressed sequences from rat brain that need to be sequenced to establish the gene identity.
Collapse
Affiliation(s)
- Rashmi U Pathak
- Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| | | |
Collapse
|
11
|
Gupta P, Su ZZ, Lebedeva IV, Sarkar D, Sauane M, Emdad L, Bachelor MA, Grant S, Curiel DT, Dent P, Fisher PB. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther 2006; 111:596-628. [PMID: 16464504 PMCID: PMC1781515 DOI: 10.1016/j.pharmthera.2005.11.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 02/07/2023]
Abstract
"Differentiation therapy" provides a unique and potentially effective, less toxic treatment paradigm for cancer. Moreover, combining "differentiation therapy" with molecular approaches presents an unparalleled opportunity to identify and clone genes mediating cancer growth control, differentiation, senescence, and programmed cell death (apoptosis). Subtraction hybridization applied to human melanoma cells induced to terminally differentiate by treatment with fibroblast interferon (IFN-beta) plus mezerein (MEZ) permitted cloning of melanoma differentiation associated (mda) genes. Founded on its novel properties, one particular mda gene, mda-7, now classified as a member of the interleukin (IL)-10 gene family (IL-24) because of conserved structure, chromosomal location, and cytokine-like properties has become the focus of attention of multiple laboratories. When administered by transfection or adenovirus-transduction into a spectrum of tumor cell types, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) induces apoptosis, whereas no toxicity is apparent in normal cells. mda-7/IL-24 displays potent "bystander antitumor" activity and also has the capacity to enhance radiation lethality, to induce immune-regulatory activities, and to inhibit tumor angiogenesis. Based on these remarkable attributes and effective antitumor therapy in animal models, this cytokine has taken the important step of entering the clinic. In a Phase I clinical trial, intratumoral injections of adenovirus-administered mda-7/IL-24 (Ad.mda-7) was safe, elicited tumor-regulatory and immune-activating processes, and provided clinically significant activity. This review highlights our current understanding of the diverse activities and properties of this novel cytokine, with potential to become a prominent gene therapy for cancer.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sarkar D, Fisher PB. Polynucleotide phosphorylase: an evolutionary conserved gene with an expanding repertoire of functions. Pharmacol Ther 2006; 112:243-63. [PMID: 16733069 DOI: 10.1016/j.pharmthera.2006.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 11/19/2022]
Abstract
RNA metabolism plays a seminal role in regulating diverse physiological processes. Polynucleotide phosphorylase (PNPase) is an evolutionary conserved 3',5' exoribonuclease, which plays a central role in RNA processing in bacteria and plants. Human polynucleotide phosphorylase (hPNPase old-35) was cloned using an inventive strategy designed to identify genes regulating the fundamental physiological processes of differentiation and senescence. Although hPNPase old-35 structurally and biochemically resembles PNPase of other species, targeted overexpression and inhibition studies reveal that hPNPase old-35 has evolved to serve more specialized functions in humans. The present review provides a global perspective on the structure and function of PNPase and then focuses on hPNPase old-35 in the contexts of differentiation and senescence.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
13
|
Schmoll M, Kubicek CP. ooc1, a unique gene expressed only during growth of Hypocrea jecorina (anamorph: Trichoderma reesei) on cellulose. Curr Genet 2005; 48:126-33. [PMID: 15959723 DOI: 10.1007/s00294-005-0585-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 04/20/2005] [Accepted: 04/25/2005] [Indexed: 11/29/2022]
Abstract
To grow on cellulose as a carbon source, Hypocrea jecorina (Trichoderma reesei) expresses and secretes a number of cellulases. This mechanism of induction by an insoluble carbon source has been controversially explained, but is most frequently attributed to the formation of the beta-1,2-diglucoside sophorose, a powerful soluble inducer of cellulases, by means of transglycosylation by constitutive or conidia-bound beta-glycoside hydrolases. Some recent results, however, have put the role of sophorose as the mediator of cellulose induction in question. Here we used the rapid subtraction hybridization approach to clone genes expressed by H. jecorina in the presence of cellulose but not upon incubation with sophorose. From a total of 96 expressed sequence tag (EST) fragments, 37 putative positives--representing ten different genes--were selected and analysed. All of them were present in the genome sequence of H. jecorina. Three of them encode proteins known from H. jecorina, five encode enzymes involved in secondary metabolism and one gene encodes an as yet unknown member of glycoside hydrolase family 30. Two EST fragments had no orthologues in other fungi. One of them made up for 25 of the 37 EST fragments analysed. The corresponding gene (only expressed on cellulose, ooc1) encodes a small secreted 10.5-kDa protein. The ooc1 transcript is only detectable during growth on cellulose in darkness, but not on cellulose in light or in the presence of other cellulase inducers (sophorose, lactose), nor is it formed during growth on glucose or glycerol. Its expression is strongly reduced, but not completely abolished in the cellulase non-inducible mutant QM 9978. The results of this study provide evidence that induction of gene expression by cellulose does not necessarily correlate with that by sophorose.
Collapse
Affiliation(s)
- Monika Schmoll
- Division of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Austria.
| | | |
Collapse
|
14
|
Kang DC, Fisher PB. Complete open reading frame (C-ORF) technology: simple and efficient technique for cloning full-length protein-coding sequences. Gene 2005; 353:1-7. [PMID: 15927425 DOI: 10.1016/j.gene.2005.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/15/2005] [Accepted: 04/01/2005] [Indexed: 11/25/2022]
Abstract
Technical difficulties in full-length cDNA cloning hinder successful characterization of many unknown and potentially novel expressed sequence tags (ESTs). We presently describe improved methods for cDNA cloning. This scheme is based on the polymerase chain reaction and utilizes a degenerate stem-loop annealing primer (dSLAP), consisting of a stem-loop structure followed by 12 random nucleotides, and is called the C-ORF (complete open reading frame) technique. The dSLAP is designed to anneal to first-strand cDNA, while suppressing second-strand synthesis from internal sites because of its bulky stem-loop structure. The C-ORF technique consists of three steps: reverse transcription, dSLAP annealing plus the second-strand synthesis, and PCR amplification. Applications of dSLAP to both known and previously unknown cDNA targets resulted in cloning of their complete open reading frames, in most cases after a single application of the C-ORF method. The currently described protocol is simple and does not require unusual molecular biology reagents, except for reverse transcriptase, Taq polymerase and a DNA primer, which makes it readily amenable for cloning purposes in individual laboratories. Moreover, this approach has wide applicability and in principle can be used to identify the protein-coding region of virtually any gene in which limited or incomplete sequence information is available.
Collapse
Affiliation(s)
- Dong-Chul Kang
- Ilsong Institute of Life Science, Hallym University, 1605-4, Kwanyang-dong, Dongan-gu, Anyang, Kyonggi-do, Republic of Korea
| | | |
Collapse
|
15
|
Lorkowski S, Cullen P. High-throughput analysis of mRNA expression: microarrays are not the whole story. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.3.377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Schmoll M, Zeilinger S, Mach RL, Kubicek CP. Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol 2004; 41:877-87. [PMID: 15288024 DOI: 10.1016/j.fgb.2004.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 06/08/2004] [Indexed: 02/07/2023]
Abstract
The cellulase system of the filamentous fungus Hypocrea jecorina (Trichoderma reesei) is encoded by several cellobiohydrolase, endoglucanase and beta-glucosidase genes, which are co-ordinately expressed upon induction by cellulose or the disaccharide sophorose. To identify genes, which are specifically expressed under these inducing conditions and possibly related to the induction process, we applied rapid subtraction hybridization (RaSH) to sophorose induced mRNAs from the wild-type strain H. jecorina QM9414 and a mutant strain H. jecorina QM9978, which is defective in the induction of cellulase gene expression. From a total of 224 clones, 22 gene fragments representing 20 different genes were analyzed. These included one gene encoding a PAS-domain protein with similarity to the Neurospora clock modulator VIVID; one gene similar to Podospora anserina ami1 involved in nuclear migration and the genes encoding translation elongation factor 1alpha, the transcriptional activator Hap5, and myo-inositol-1-phosphate synthase; in addition, several genes were detected, whose function is unknown. Some of them did not even have potential homologues in the Neurospora or Fusarium genome databases. The differential regulation of expression of those 20 genes by sophorose in wild-type and mutant was verified by Northern blotting. Their consistent response to additional inducing conditions (cellulose) confirms their interconnection with cellulase formation.
Collapse
Affiliation(s)
- Monika Schmoll
- Division of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria.
| | | | | | | |
Collapse
|
17
|
Martins de Lima T, de Oliveira Rodrigues L, Bengtson MH, Sogayar MC, Bezerra CNA, Rebouças NA, Curi R. Identification of genes regulated by oleic acid in Jurkat cells by suppressive subtractive hybridization analysis. FEBS Lett 2004; 576:320-4. [PMID: 15498555 DOI: 10.1016/j.febslet.2004.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 08/20/2004] [Accepted: 09/06/2004] [Indexed: 11/17/2022]
Abstract
In this study, the effect of oleic acid (50 microM) on gene expression of Jurkat cells (human T lymphocytes cell line) was examined using the suppressive subtractive hybridization approach. This technique allowed us to identify genes with higher or lower expression after cell treatment with oleic acid as compared to untreated cells. Oleic acid upregulated the expression of the translation elongation factor alpha 1 and ATP synthase 8 and downregulated gp96 (human tumor rejection antigen gp96), heat-shock protein 60 and subtilisin-like protein 4. These results suggest that oleic acid, at plasma physiological concentration, can regulate the expression of important genes to maintain the machinery that ensures cell functioning.
Collapse
Affiliation(s)
- Thais Martins de Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 1524, Butantã, São Paulo, SP 05508-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
With an information explosion on the molecular mechanism of oncogenesis, the completion of the human genome sequence project, and the advances in genomic and proteomic methods, many therapeutic targets for various cancers have been identified. It is timely that a number of new drug development techniques have been developed in this last decade. Candidate drug targets can now be efficiently validated with RNA interference and transgenic animals studies. Combinatorial chemistry provides large numbers of chemical compounds for drug lead discovery and optimization. High throughput assays and high content cell-based assays, in conjunction with sophisticated robotics, are now available for screening large numbers of compounds. Based on X-ray crystallographic structure data, drug leads can be discovered through in silico screening of virtual libraries. By applying these various drug discovery techniques, it is anticipated that more potent and specific anti-cancer agents will be discovered within the next decade.
Collapse
Affiliation(s)
- Ruiwu Liu
- Division of Hematology & Oncology, Department of Internal Medicine, UC Davis Cancer Center, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
19
|
Li H, Gu X, Dawson VL, Dawson TM. Identification of calcium- and nitric oxide-regulated genes by differential analysis of library expression (DAzLE). Proc Natl Acad Sci U S A 2004; 101:647-52. [PMID: 14701905 PMCID: PMC327202 DOI: 10.1073/pnas.0305145101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Indexed: 11/18/2022] Open
Abstract
Using a method of expression profiling called differential analysis of cDNA library expression (DAzLE), we report the expression profile of late response genes in a model of activity-dependent neuronal survival and neurite outgrowth. Using DAzLE, we isolated differentially expressed genes from cultured rat embryonic cortical neurons after KCl (50 mM)-mediated membrane depolarization. We identified 469 activity-dependent regulated genes, of which 174 are genes of unknown function. The regulation of 63 genes was found to be nitric oxide (NO)-dependent. Identifiable genes fell into several major categories, including signal transduction pathways, neuronal development, DNA replication, gene transcription, protein metabolism, energy regulatory proteins, and antiapoptotic proteins. These genes may be important in activity-dependent neuron survival and development. Furthermore, these late response genes provide the tools to begin to investigate downstream events in activity-dependent neuronal survival and development. The major advantage of DAzLE is that it provides a nearly complete and relatively comprehensive differential screening profile that has the potential to be a powerful and useful tool in other fields of study.
Collapse
Affiliation(s)
- Huiwu Li
- Institute for Cell Engineering and Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
20
|
Su ZZ, Kang DC, Chen Y, Pekarskaya O, Chao W, Volsky DJ, Fisher PB. Identification of gene products suppressed by human immunodeficiency virus type 1 infection or gp120 exposure of primary human astrocytes by rapid subtraction hybridization. J Neurovirol 2003; 9:372-89. [PMID: 12775420 DOI: 10.1080/13550280390201263] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegeneration and human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) are the major disease manifestations of HIV-1 colonization of the central nervous system (CNS). In the brain, HIV-1 replicates in microglial cells and infiltrating macrophages and it persists in a low-productive, noncytolytic state in astrocytes. Astrocytes play critical roles in the maintenance of the brain microenvironment, responses to injury, and in neuronal signal transmission, and disruption of these functions by HIV-1 could contribute to HAD. To better understand the potential effects of HIV-1 on astrocyte biology, the authors investigated changes in gene expression using an efficient and sensitive rapid subtraction hybridization approach, RaSH. Primary human astrocytes were isolated from abortus brain tissue, low-passage cells were infected with HIV-1 or mock infected, and total cellular RNAs were isolated at multiple time points over a period of 1 week. This approach is designed to identify gene products modulated early and late after HIV-1 infection and limits the cloning of genes displaying normal cell-cycle fluctuations in astrocytes. By subtracting temporal cDNAs derived from HIV-1-infected astrocytes from temporal cDNAs made from uninfected cells, 10 genes displaying reduced expression in infected cells, termed astrocyte suppressed genes (ASGs), were identified and their suppression was confirmed by Northern blot hybridization. Both known and novel ASGs, not reported in current DNA databases, that are down-regulated by HIV-1 infection are described. Northern blotting confirms suppression of the same panel of ASGs by treatment of astrocytes with recombinant HIV-1 envelope glycoprotein, gp120. These results extend our previous analysis of astrocyte genes induced or enhanced by HIV-1 infection and together they suggest that HIV-1 and viral proteins have profound effects on astrocyte physiology, which may influence their function in the CNS.
Collapse
Affiliation(s)
- Zao-Zhong Su
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Myokai F, Oyama M, Nishimura F, Ohira T, Yamamoto T, Arai H, Takashiba S, Murayama Y. Unique genes induced by mechanical stress in periodontal ligament cells. J Periodontal Res 2003; 38:255-61. [PMID: 12753362 DOI: 10.1034/j.1600-0765.2003.00602.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The aim of this study is to isolate mechanical stress-induced genes (MSGens) from human periodontal ligament (PDL) cells and to analyze profiles of the mRNA expression of these genes. BACKGROUND Differential expression of genes in PDL cells under physiological stress such as occlusal force is thought to be orchestrated not only for the remodeling of PDL itself but also for the repair and regeneration of periodontal tissues. However, little is known about the genes expressed in PDL cells under mechanical stress. METHODS The cDNA from mechanical stress-applied human PDL cells was subtracted against the cDNA from static control cells. The subtracted cDNA was amplified by polymerase chain reaction (PCR) and cloned for further analysis. RESULTS Among 68 independent clones isolated, 15 contained DNA fragments greater than 250 bp. Reverse Northern analysis revealed a marked induction of MSGen-15 and MSGen-28 mRNA expression in the mechanical stress-applied cells. However, little difference in the magnitude of expression for the other MSGens was detected between the stress-applied cells and the control cells. After nucleotide sequencing and the analysis of homology with known genes, five clones were identified; ribosomal protein S27 (MSGen-9), MRG 15 (MSGen-15), androgen-binding protein (MSGen-18), cathepsin H (MSGen-28), and cytochrome c (MSGen-47). Interestingly, it has been reported that MRG 15 is a novel transcription factor involved in the regulation of cell growth and senescence. The remaining 10 clones, classified into six sequence types, had no significant homology with any known genes. CONCLUSIONS These results suggest that many known and unknown genes are expressed in response to mechanical stress in PDL cells, and that a transcription factor, MRG 15, may be responsible for molecular events in PDL cells under mechanical stress.
Collapse
Affiliation(s)
- Fumio Myokai
- Department of Periodontal Science, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Risatti GR, Pomp D, Donis RO. Patterns of cellular gene expression in cells infected with cytopathic or non-cytopathic bovine viral diarrhea virus. Anim Biotechnol 2003; 14:31-49. [PMID: 12887178 DOI: 10.1081/abio-120020184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bovine viral diarrhea virus (BVDV) infection in cattle is responsible for mucosal disease; an invariably fatal syndrome characterized by the recovery of two BVDV strains: cytopathic (cp) or noncytopathic (ncp). To understand the cellular responses to cp BVDV infection, we carried out differential display-polymerase chain reaction (DD-PCR) analysis of gene expression in infected cells. Altered expression of 14 genes involved in several functions was observed in cells infected with cp BVDV: (1) immune regulation, such as CD46, FKBP-12, and osteopontin (OPN); (2) apoptosis-related cysteine proteases like calpain; (3) signaling plasma membrane proteins such as integrin beta1, and prion protein; and (4) unknown function genes. Northern blot analysis of the expression of these genes in ncp BVDV infected cells revealed that while the expression of some genes was affected as in cp BVDV infected cells, others show a clearly contrary change. We postulate that a cause-effect relationship may exist between the differential gene expression alterations that characterize cp and ncp BVDV infections and the unique diseases associated with each BVDV biotype.
Collapse
Affiliation(s)
- Guillermo R Risatti
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0905, USA
| | | | | |
Collapse
|
23
|
Su ZZ, Chen Y, Kang DC, Chao W, Simm M, Volsky DJ, Fisher PB. Customized rapid subtraction hybridization (RaSH) gene microarrays identify overlapping expression changes in human fetal astrocytes resulting from human immunodeficiency virus-1 infection or tumor necrosis factor-alpha treatment. Gene 2003; 306:67-78. [PMID: 12657468 DOI: 10.1016/s0378-1119(03)00404-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genes displaying altered expression as a function of human immunodeficiency virus (HIV)-1 infection of cultured primary human fetal astrocytes (PHFA) were previously identified using a rapid subtraction hybridization (RaSH) method. This scheme identified both known and novel genes displaying elevated expression, astrocyte elevated genes (AEG), and decreased expression, astrocyte suppressed genes (ASG), in PHFA as a consequence of infection with HIV-1 or treatment with HIV-1 envelope glycoprotein (gp120). RaSH also identified both known and novel genes displaying enhanced (HR) or reduced (HS) expression in HIV-1 resistant versus HIV-1 susceptible human T-cell clones. In the present study, a customized microarray approach employing these RaSH-derived genes was used to distinguish overlapping gene expression changes occurring in PHFA as a function of treatment with HIV-1 and the neurotoxic agent tumor necrosis factor (TNF)-alpha. RaSH cDNAs were spotted (microarrayed) on nylon membranes and probed with temporally isolated reverse transcribed cDNAs from HIV-1-infected and TNF-alpha-treated PHFA. This strategy identified genes displaying parallel changes after TNF-alpha treatment as observed following HIV-1 infection. Confirmation of genuine differential expression was achieved by Northern blotting. These studies document that TNF-alpha can induce a set of corresponding changes in specific AEGs and ASGs as does HIV-1 infection in PHFA. Furthermore, this customized microarray approach with RaSH-derived clones represents an efficient and sensitive methodology for elucidating molecular changes in PHFA occurring as a consequence of treatment with pharmacological agents affecting astrocyte physiology.
Collapse
Affiliation(s)
- Zao-zhong Su
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu J, Liu H, Zhang X, Gao P, Wang J, Hu Z. Identification and characterization of P15RS, a novel P15(INK4b) related gene on G1/S progression. Biochem Biophys Res Commun 2002; 299:880-5. [PMID: 12470661 DOI: 10.1016/s0006-291x(02)02684-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To screen genes involved in P15(INK4b) regulation during cell cycle, differential display method was applied to compare mRNAs from G(1) synchronized cells of MLIK6, which overexpressed P15(INK4b) gene, and its control MLC2. By using this approach, 15 cDNA fragments that were preferentially expressed in MLIK6 cells, but not in MLC2 cells, were screened out. A novel gene named P15RS was identified with further analysis. Combining the sequence from DD-PCR, homology analysis against EST database and RACE, a 4,404 bp complete cDNA sequence of P15RS was generated. Sequence analysis revealed that P15RS cDNA encoded a 312-amino-acid peptide containing a RAR domain that is involved in regulation of nuclear pre-mRNA, which suggests that P15RS may be a nuclear regulation protein. Genomic sequence analysis demonstrated that human P15RS gene was localized on chromosome 18q12 with seven exons and six introns. Expressing antisense P15RS in MLIK6 cells can up-regulate the expression of cyclinD1 and cyclinE. These data indicate that P15RS may act as a negative regulator in G(1) phase.
Collapse
Affiliation(s)
- Jun Liu
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | | | |
Collapse
|
25
|
Pillutla RC, Fisher PB, Blume AJ, Goldstein NI. Target validation and drug discovery using genomic and protein-protein interaction technologies. Expert Opin Ther Targets 2002; 6:517-31. [PMID: 12223066 DOI: 10.1517/14728222.6.4.517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
After the successful completion of the human genome project, mapping of the human proteome has become the next important challenge facing the biotech and pharmaceutical industries. Identification of the 'right' target(s) is now a critical part of the process because of the cost of drug discovery. Compounding this situation is the fact that the pharmaceutical industry faces a further challenge of being able to sustain current and historical growth rates. Hence, the discovery of new drug targets is important for developing new drug leads that can become preclinical drug candidates. Proteomics is the next phase of the effort whereby the human genome can be understood. However, mapping the human proteome presents a daunting challenge. Proteomics involves several essential components with the most significant being the discovery and description of all protein-protein interactions. Once this compendium is available, a secondary and equally important initiative will be to decipher proteins that are differentially expressed in any given disease condition. At this point, the critical focus will be to select the most relevant proteins, understand their partner interactions and then further winnow them to the point where they are relevant pharmaceutical target candidates. This paradigm can be compared to finding the relevant 'needle in the proteome haystack'. This review describes the use of genomic and protein-protein interaction technologies to identify and validate these 'needles' as the first step in the drug discovery process.
Collapse
|
26
|
Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K, Dent P, Fisher PB. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci U S A 2002; 99:10054-9. [PMID: 12114539 PMCID: PMC126623 DOI: 10.1073/pnas.152327199] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2002] [Accepted: 05/31/2002] [Indexed: 12/11/2022] Open
Abstract
Subtraction hybridization identified melanoma differentiation-associated gene-7 (mda-7) as a gene induced during terminal differentiation in human melanoma cells. On the basis of structure, chromosomal localization and cytokine-like properties, mda-7 is classified as IL-24. Administration of mda-7/IL-24 by means of a replication-incompetent adenovirus (Ad.mda-7) induces apoptosis selectively in diverse human cancer cells without inducing harmful effects in normal fibroblast or epithelial cells. The present studies investigated the mechanism underlying this differential apoptotic effect. Infection of melanoma cells, but not normal immortal melanocytes, with Ad.mda-7 induced a time- and dose-dependent increase in expression, mRNA and protein, of a family of growth arrest and DNA damage (GADD)-inducible genes, which correlated with induction of apoptosis. Among the members of the GADD family of genes, GADD153, GADD45 alpha, and GADD34 displayed marked, and GADD45 gamma showed minimal induction. Treatment of melanoma cells with SB203580, a selective inhibitor of the p38 mitogen-activated protein kinase (MAPK) pathway, effectively inhibited Ad.mda-7-induced apoptosis. Additional support for an involvement of the p38 MAPK pathway in Ad.mda-7-mediated apoptosis was documented by using an adenovirus expressing a dominant negative mutant of p38 MAPK. Infection with Ad.mda-7 increased the phosphorylation of p38 MAPK and heat shock protein 27 in melanoma cells but not in normal immortal melanocytes. In addition, SB203580 effectively inhibited Ad.mda-7-mediated induction of the GADD family of genes in a time- and dose-dependent manner, and it effectively blocked Ad.mda-7-mediated down-regulation of the antiapoptotic protein BCL-2. Inhibition of GADD genes by an antisense approach either alone or in combination also effectively blocked Ad.mda-7-induced apoptosis in melanoma cells. These results support the hypothesis that Ad.mda-7 mediates induction of the GADD family of genes by means of the p38 MAPK pathway, thereby resulting in the selective induction of apoptosis in human melanoma cells.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ueki S, Citovsky V. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nat Cell Biol 2002; 4:478-86. [PMID: 12055637 DOI: 10.1038/ncb806] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systemic movement is central to plant viral infection. Exposure of tobacco plants to low levels of cadmium ions blocks the systemic spread of turnip vein-clearing tobamovirus (TVCV). We identified a tobacco glycine-rich protein, cdiGRP, specifically induced by low concentrations of cadmium and expressed in the cell walls of plant vascular tissues. Constitutive cdiGRP expression inhibited systemic transport of TVCV, whereas suppression of cdiGRP production allowed TVCV movement in the presence of cadmium. cdiGRP exerted its inhibitory effect on TVCV transport by enhancing callose deposits in the vasculature. So cdiGRP may function to control plant viral systemic movement.
Collapse
Affiliation(s)
- Shoko Ueki
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
28
|
Su ZZ, Gopalkrishnan RV, Narayan G, Dent P, Fisher PB. Progression elevated gene-3, PEG-3, induces genomic instability in rodent and human tumor cells. J Cell Physiol 2002; 192:34-44. [PMID: 12115734 DOI: 10.1002/jcp.10114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genomic instability is a fundamental component of cancer progression. Subtraction hybridization identified a novel rodent gene, progression elevated gene-3 (PEG-3) whose expression directly correlates with cancer aggressiveness and progression. Moreover, ectopic expression of PEG-3 in rodent or human tumor cells produces an aggressive transformed phenotype. We demonstrate that PEG-3 expression in rodent tumor cells correlates directly with genomic instability as characterized by alterations in chromosome composition and structure. Additionally, elevated endogenous or ectopic expression of PEG-3 in rodent and human tumor cells, respectively, enhances gene amplification, as monitored by resistance to methothrexate (MTX) and amplification of the dihydrofolate reductase (dhfr) gene. Stable expression of PEG-3 in normal cloned rat embryo fibroblast (CREF) cells marginally elevates MTX resistance, but morphology remains unaltered and anchorage independence is not induced, suggesting that these phenotypes are separable in immortal cells and gene amplification may precede the acquisition of morphological and oncogenic transformation. The present studies document that stable, inducible, and transient expression of PEG-3 in cancer cells augments genomic instability. In these contexts, one mechanism by which PEG-3 influences cancer progression may be by preferentially facilitating the development of genomic changes in evolving cancer cells.
Collapse
Affiliation(s)
- Zao-Zhong Su
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
29
|
Su ZZ, Kang DC, Chen Y, Pekarskaya O, Chao W, Volsky DJ, Fisher PB. Identification and cloning of human astrocyte genes displaying elevated expression after infection with HIV-1 or exposure to HIV-1 envelope glycoprotein by rapid subtraction hybridization, RaSH. Oncogene 2002; 21:3592-602. [PMID: 12032861 DOI: 10.1038/sj.onc.1205445] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Revised: 02/15/2002] [Accepted: 02/21/2002] [Indexed: 01/28/2023]
Abstract
Neurodegeneration and dementia are common complications of AIDS caused by human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system. HIV-1 target cells in the brain include microglia, infiltrating macrophages and astrocytes, but rarely neurons. Astrocytes play an important role in the maintenance of the synaptic micro-environment and in neuronal signal transmission. To investigate potential changes in cellular gene expression associated with HIV-1 infection of astrocytes, we employed an efficient and sensitive rapid subtraction hybridization approach, RaSH. Primary human astrocytes were isolated from abortus brain tissue and low-passage cells were infected with HIV-1. To identify genes that display both early and late expression modifications after HIV-1 infection and to avoid cloning genes displaying normal cell cycle fluctuations in astrocytes, RNAs were isolated and pooled from 6, 12, 24 h and 3 and 7 day uninfected and infected cells and used for RaSH. Temporal cDNA libraries were prepared from double-stranded cDNAs that were enzymatically digested into small fragments, ligated to adapters, PCR amplified, and hybridized by incubation of tester and driver PCR fragments. By subtracting temporal cDNAs derived from uninfected astrocytes from temporal cDNAs made from HIV-1 infected cells, genes displaying elevated expression in virus infected cells, termed astrocyte elevated genes (AEGs), were identified. Both known and novel AEGs, not reported in current DNA databases, are described that display early or late expression kinetics following HIV-1 infection or treatment with recombinant HIV-1 envelope glycoprotein (gp120). For selected AEGs, expression of their protein products was also tested by Western blotting and found to display elevated expression following HIV-1 infection. The comparable pattern of regulation of the AEGs following HIV-1 infection or gp120 treatment suggest that HIV-1 exposure of astrocytes, even in the absence of productive infection, can induce changes in cellular gene expression.
Collapse
Affiliation(s)
- Zao-Zhong Su
- Department of Pathology and Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Gopalkrishnan RV, Kang DC, Fisher PB. Molecular markers and determinants of prostate cancer metastasis. J Cell Physiol 2001; 189:245-56. [PMID: 11748582 DOI: 10.1002/jcp.10023] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although intensely studied, the molecular and biochemical determinants of prostate cancer development and progression remain ill-defined. Moreover, current markers and methodologies cannot distinguish between a tumor that will remain indolent and not impinge on patient survival, versus a tumor with aggressive traits culminating in metastatic spread and death. Once prostate cancer is confirmed the most significant threat to a patient's survival and quality of life involves tumor metastasis. Radical surgery notwithstanding, prostate cancer accounts for 10% of all cancer-related deaths primarily arising through development of metastasis. Metastasis markers demonstrating an acceptable level of reliability are an obvious necessity if disproportionate and costly treatment is to be avoided and a reasonably accurate determination of clinical prognosis and measure of successful response to treatment is to be made. Therapeutic strategies that specifically inhibit metastatic spread are not presently possible and may not become available in the immediate future. This is because, while localized tumorigenesis has been relatively amenable to detection, analysis and treatment, metastasis remains a relatively undefined, complex and underexplored area of prostate cancer research. New findings in the field such subclasses of genes called metastasis suppressors and cancer progression suppressors, have opened up exciting avenues of investigation. We review current methodological approaches, model experimental systems and genes presently known or having potential involvement in human prostate cancer metastasis.
Collapse
Affiliation(s)
- R V Gopalkrishnan
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
31
|
Huang EY, Madireddi MT, Gopalkrishnan RV, Leszczyniecka M, Su Z, Lebedeva IV, Kang D, Jiang H, Lin JJ, Alexandre D, Chen Y, Vozhilla N, Mei MX, Christiansen KA, Sivo F, Goldstein NI, Mhashilkar AB, Chada S, Huberman E, Pestka S, Fisher PB. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene 2001; 20:7051-63. [PMID: 11704829 DOI: 10.1038/sj.onc.1204897] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2001] [Revised: 08/01/2001] [Accepted: 08/07/2001] [Indexed: 12/15/2022]
Abstract
Abnormalities in cellular differentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell differentiation. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful effects occur when mda-7 is expressed in normal epithelial or fibroblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Hu-mda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-beta plus MEZ. Mda-7 expression is also induced during megakaryocyte differentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-beta+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-beta+MEZ and induction of endogenous mda-7 mRNA by combination treatment did not result in significant intracellular MDA-7 protein. Radiation hybrid mapping assigned the mda-7 gene to human chromosome 1q, at 1q 32.2 to 1q41, an area containing a cluster of genes associated with the IL-10 family of cytokines. Mda-7 represents a differentiation, growth and apoptosis associated gene with potential utility for the gene-based therapy of diverse human cancers.
Collapse
MESH Headings
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/isolation & purification
- Apoptosis/genetics
- Base Sequence
- Carcinoma/pathology
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Division/genetics
- Chromosomes, Human, Pair 1/genetics
- Cloning, Molecular
- Dimethyl Sulfoxide/pharmacology
- Diterpenes
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes
- Genes, Tumor Suppressor
- Glioblastoma/pathology
- Growth Substances/biosynthesis
- Growth Substances/genetics
- Growth Substances/isolation & purification
- HL-60 Cells/metabolism
- HL-60 Cells/pathology
- Humans
- Interferon Type I/pharmacology
- Interleukins
- K562 Cells/metabolism
- K562 Cells/pathology
- Male
- Melanocytes/metabolism
- Melanoma/chemistry
- Melanoma/genetics
- Melanoma/pathology
- Molecular Sequence Data
- Molecular Weight
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/isolation & purification
- Neoplasms/genetics
- Organ Specificity
- Osteosarcoma/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Recombinant Fusion Proteins/physiology
- Recombinant Proteins
- Terpenes/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Transfection
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- E Y Huang
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lievens S, Goormachtig S, Holsters M. A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward. Nucleic Acids Res 2001; 29:3459-68. [PMID: 11522814 PMCID: PMC55879 DOI: 10.1093/nar/29.17.3459] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2001] [Revised: 07/11/2001] [Accepted: 07/11/2001] [Indexed: 11/13/2022] Open
Abstract
Screening for differentially expressed genes is a straightforward approach to study the molecular basis of a biological system. In the last 10 years, differential screening technology has evolved rapidly and currently high-throughput tools for genome-wide transcript profiling, such as expressed sequence tags and microarray analysis, are becoming widely available. Here, an overview of this (r)evolution is given with emphasis on the differential display method, which for many years has been the preferred technique of scientists in diverse fields of research. Differential display has also been the method of choice for the identification of genes involved in the symbiotic interaction between Azorhizobium caulinodans and Sesbania rostrata. The advantages with respect to tissue specificity of this particular model system for legume nodulation and the results of a screening for early nodulation-related genes have been considered in the context of transcriptome analyses in other rhizobium-legume interactions.
Collapse
Affiliation(s)
- S Lievens
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
33
|
Park JS, Qiao L, Su ZZ, Hinman D, Willoughby K, McKinstry R, Yacoub A, Duigou GJ, Young CS, Grant S, Hagan MP, Ellis E, Fisher PB, Dent P. Ionizing radiation modulates vascular endothelial growth factor (VEGF) expression through multiple mitogen activated protein kinase dependent pathways. Oncogene 2001; 20:3266-80. [PMID: 11423976 DOI: 10.1038/sj.onc.1204258] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2000] [Revised: 01/03/2001] [Accepted: 01/07/2001] [Indexed: 11/09/2022]
Abstract
We investigated the role of radiation-induced mitogen activated protein kinase (MAPK) pathway activity in the regulation of proliferation, cell survival and vascular endothelial growth factor (VEGF) production in primary astrocytes and in T9 and RT2 glioblastoma cells derived from Fisher 344 rats. In these cells, ionizing radiation (2 Gy) caused activation of the MAPK pathway which was blocked by specific inhibitor drugs. Blunting of radiation-induced MAPK activity weakly enhanced radiation-induced apoptosis 24 h after exposure in RT2 cells. Furthermore, blunting of MAPK activation weakly enhanced the ability of radiation to reduce RT2 cell growth in clonogenic growth assays. These findings argue that inhibition of MAPK signaling reduces proliferation and enhances cell killing by ionizing radiation in transformed astrocytes. Proliferation and survival of cancer cells has been linked in vivo to enhanced expression of angiogenic growth factors. Recently we demonstrated that the gene product of a novel rodent radiation-responsive gene, progression elevated gene 3 (PEG-3), could enhance vascular endothelial growth factor (VEGF) promoter activity in rodent fibroblasts, leading to increased VEGF protein levels and tumorigenic behavior in vivo. Thus PEG-3 and VEGF expression could be expected to directly correlate with the oncogenic potential of transformed cells. RT2 cells expressed more PEG-3 and VEGF protein than T9 cells, and were more tumorigenic in vivo than T9 cells. Radiation activated the PEG-3 promoter via MAPK signaling and ectopic over-expression of PEG-3 enhanced both basal MAPK activity and basal VEGF promoter activity. Basal MAPK activity partially correlated with basal VEGF promoter activity and VEGF protein levels in primary astrocytes, T9 and RT2 cells. Radiation increased the activity of the VEGF promoter and VEGF protein levels in primary astrocytes, T9 and RT2 cells which were dependent upon MAPK function. Furthermore, inhibition of AP-1 transcription factor signaling by dominant negative c-Jun (TAM67) also significantly reduced basal, and to a lesser extent radiation-induced, VEGF promoter function in RT2 cells. Collectively, our data demonstrate that radiation-induced MAPK signaling can both protect cells from radiation-induced cell death as well as enhance protein levels of pro-angiogenic factors such as VEGF. Enhanced VEGF expression in RT2 cells may be mediated via MAPK and JNK pathway signaling which converges upon the AP-1 transcription factor complex.
Collapse
Affiliation(s)
- J S Park
- Department of Radiation Oncology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Simm M, Su Z, Huang EY, Chen Y, Jiang H, Volsky DJ, Fisher PB. Cloning of differentially expressed genes in an HIV-1 resistant T cell clone by rapid subtraction hybridization, RaSH. Gene 2001; 269:93-101. [PMID: 11376941 DOI: 10.1016/s0378-1119(01)00456-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An HIV-1 resistant T cell clone R1c2 has been generated that carries mutant, latent HIV-1 in a minority of the cell population. Resistant cells express HIV-1 receptors CD4 and CXCR4 and display resistance to infection by wild type (wt) HIV-1 at the level of virus transcription. To begin to define the repertoire of genes modulated in R1c2 cells that correlate with and potentially control expression of the HIV-1 resistance phenotype we have employed a rapid subtraction hybridization (RaSH) technique. For this approach, cDNA libraries were prepared from double-stranded cDNAs that were enzymatically digested into small fragments, ligated to adapters, PCR amplified followed by incubation of tester and driver PCR fragments. The RaSH scheme resulted in the cloning of genes displaying differential expression between HIV-1 resistant (R1c2) and susceptible (SupT1) cells, including known genes and those not described in current DNA databases. Analysis of the pattern of expression of the differentially expressed genes documented eleven genes with enhanced (HR clones) and six genes with reduced (HS clones) expression in HIV-1 resistant versus HIV-1 susceptible T-cell clones.
Collapse
Affiliation(s)
- M Simm
- Molecular Virology Laboratory, St. Luke's-Roosevelt Hospital Center, Columbia University, New York, NY 10019, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB. Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 2001; 90:105-56. [PMID: 11578655 DOI: 10.1016/s0163-7258(01)00132-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current cancer therapies are highly toxic and often nonspecific. A potentially less toxic approach to treating this prevalent disease employs agents that modify cancer cell differentiation, termed 'differentiation therapy.' This approach is based on the tacit assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment, results in tumor reprogramming and a concomitant loss in proliferative capacity and induction of terminal differentiation or apoptosis (programmed cell death). Laboratory studies that focus on elucidating mechanisms of action are demonstrating the effectiveness of 'differentiation therapy,' which is now beginning to show translational promise in the clinical setting.
Collapse
Affiliation(s)
- M Leszczyniecka
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
36
|
Kang D, Jiang H, Wu Q, Pestka S, Fisher PB. Cloning and characterization of human ubiquitin-processing protease-43 from terminally differentiated human melanoma cells using a rapid subtraction hybridization protocol RaSH. Gene 2001; 267:233-42. [PMID: 11313150 DOI: 10.1016/s0378-1119(01)00384-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Defects in growth control and differentiation occur frequently in human cancers. In the case of human melanoma cells, treatment with a combination of fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss of proliferative potential and tumorigenic properties with a concomitant induction of terminal differentiation. These changes in cellular properties are associated with an induction and suppression in specific subsets of genes that occur in a temporal manner. To identify the complete repertoire of gene changes occurring during melanoma reversion to a more differentiated state a number of molecular approaches are being used. These include, subtraction hybridization using temporally spaced cDNA libraries, random cDNA isolation and evaluation by reverse Northern blotting and high throughput microarray analysis of subtracted cDNA clones. In the present study we have used a novel approach, rapid subtraction hybridization (RaSH), to identify and clone an additional gene of potential relevance to cancer growth control and terminal cell differentiation. RaSH has identified a human ubiquitin-processing protease gene, HuUBP43, that is differentially expressed in melanoma cells as a function of treatment with IFN-beta or IFN-beta + MEZ. HuUBP43 is a type I interferon inducible gene that is upregulated in a diverse panel of normal and tumor cells when treated with IFN-beta via the JAK/STAT kinase pathway. This gene may contribute to the phenotypic changes induced by IFN-beta during growth arrest and differentiation in human melanoma cells and other cell types as well as the antiviral and growth inhibitory effects of interferon.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Cell Differentiation
- Cloning, Molecular/methods
- Diterpenes
- Endopeptidases/genetics
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- HeLa Cells
- Humans
- Interferon-beta/pharmacology
- Male
- Melanoma/genetics
- Melanoma/pathology
- Molecular Sequence Data
- Nucleic Acid Hybridization/methods
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/drug effects
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Terpenes/pharmacology
- Tissue Distribution
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Ubiquitin Thiolesterase
Collapse
Affiliation(s)
- D Kang
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, BB-15-1501, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
37
|
Su Z, Shi Y, Friedman R, Qiao L, McKinstry R, Hinman D, Dent P, Fisher PB. PEA3 sites within the progression elevated gene-3 (PEG-3) promoter and mitogen-activated protein kinase contribute to differential PEG-3 expression in Ha-ras and v-raf oncogene transformed rat embryo cells. Nucleic Acids Res 2001; 29:1661-71. [PMID: 11292838 PMCID: PMC31320 DOI: 10.1093/nar/29.8.1661] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2001] [Revised: 02/19/2001] [Accepted: 03/01/2001] [Indexed: 11/13/2022] Open
Abstract
Transformation of normal cloned rat embryo fibroblast (CREF) cells with cellular oncogenes results in acquisition of anchorage-independent growth and oncogenic potential in nude mice. These cellular changes correlate with an induction in the expression of a cancer progression-promoting gene, progression elevated gene-3 (PEG-3). To define the mechanism of activation of PEG-3 as a function of transformation by the Ha-ras and v-raf oncogenes, evaluations of the signaling and transcriptional regulation of the approximately 2.0 kb promoter region of the PEG-3 gene, PEG-Prom, was undertaken. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and tested for promoter activity in CREF and oncogene-transformed CREF cells. An analysis was also performed using CREF cells doubly transformed with Ha-ras and the Ha-ras specific suppressor gene Krev-1, which inhibits the transformed phenotype in vitro. These assays document an association between expression of the transcription regulator PEA3 and PEG-3. The levels of PEA3 and PEG-3 RNA and proteins are elevated in the oncogenically transformed CREF cells, and reduced in transformation and tumorigenic suppressed Ha-ras/Krev-1 doubly transformed CREF cells. Enhanced tumorigenic behavior, PEG-3 promoter function and PEG-3 expression in Ha-ras transformed cells were all dependent upon increased activity within the mitogen-activated protein kinase (MAPK) pathway. Electrophoretic mobility shift assays and DNase I footprinting experiments indicate that PEA3 binds to sites within the PEG-Prom in transformed rodent cells in an area adjacent to the TATA box in a MAPK-dependent fashion. These findings demonstrate an association between Ha-ras and v-raf transformation of CREF cells with elevated PEA3 and PEG-3 expression, and they implicate MAPK signaling via PEA3 as a signaling cascade involved in activation of the PEG-Prom.
Collapse
Affiliation(s)
- Z Su
- Department of Urology, Department of Pathology and Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jiang H, Kang DC, Alexandre D, Fisher PB. RaSH, a rapid subtraction hybridization approach for identifying and cloning differentially expressed genes. Proc Natl Acad Sci U S A 2000; 97:12684-9. [PMID: 11058161 PMCID: PMC18824 DOI: 10.1073/pnas.220431297] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human melanoma cells growth-arrest irreversibly and terminally differentiate on treatment with a combination of fibroblast interferon and the protein kinase C activator mezerein. This experimental protocol also results in a loss of tumorigenic potential and profound changes in gene expression. Various cloning and cDNA microarray strategies are being used to determine the complete spectrum of gene expression changes underlying these alterations in human melanoma cells. An efficient approach, Rapid Subtraction Hybridization (RaSH), has been developed that is permitting the identification of genes of potential relevance to cancer growth control and terminal cell differentiation. RaSH cDNA libraries are prepared from double-stranded cDNAs that are enzymatically digested into small fragments, ligated to adapters, and PCR amplified followed by incubation of tester and driver PCR fragments. This subtraction hybridization scheme is technically simple and results in the identification of a high proportion of differentially expressed sequences, including known genes and those not described in current DNA databases. The RaSH approach represents an efficient methodology for identifying and cloning genes displaying differential expression that associate with and potentially regulate complex biological processes.
Collapse
Affiliation(s)
- H Jiang
- Departments of Pathology, Urology, and Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
39
|
Fuchs B, Zhang K, Bolander ME, Sarkar G. Identification of differentially expressed genes by mutually subtracted RNA fingerprinting. Anal Biochem 2000; 286:91-8. [PMID: 11038279 DOI: 10.1006/abio.2000.4792] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mutually subtracted RNA fingerprinting (SuRF) method has been developed that allows efficient identification of differentially expressed sequence tags between two samples. Mutual subtractions of two RNA samples are achieved by first synthesizing cDNAs using oligo(dT) coupled with magnetic beads which are then reciprocally hybridized to starting RNA samples to remove common mRNAs between them. The second step involves differential fingerprinting of the subtracted RNA samples by polymerase chain reaction with specially designed degenerate primers. SuRF was applied to identify alteration in gene expression pertinent to osteogenic sarcoma which was achieved by employing the method between FOB (an immortalized fetal osteoblast) and MG63 (an osteosarcoma) cell lines. An estimated 10% of the total expressed genes in these two cell types were screened by the method. This analysis identified 96 differentially expressed sequences, none of which was identified repeatedly. A subset of these sequences was subsequently confirmed to have differential expression between the two cell types. Removal of common mRNAs prior to differential display should diminish redundant identification of abundant genes and increase the chance of identifying rare differentially expressed genes.
Collapse
Affiliation(s)
- B Fuchs
- Department of Orthopedics, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
40
|
Su Z, Shi Y, Fisher PB. Cooperation between AP1 and PEA3 sites within the progression elevated gene-3 (PEG-3) promoter regulate basal and differential expression of PEG-3 during progression of the oncogenic phenotype in transformed rat embryo cells. Oncogene 2000; 19:3411-21. [PMID: 10918598 DOI: 10.1038/sj.onc.1203666] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer is a progressive disease in which a tumor cell temporally develops qualitatively new transformation related phenotypes or a further elaboration of existing transformation associated properties. Subtraction hybridization identified a novel gene associated with transformation progression in mutant adenovirus type 5, H5ts125, transformed rat embryo cells, progression elevated gene-3 (PEG-3). To define the mechanism by which expression of PEG-3 is enhanced as a function of cancer progression a 5'-flanking promoter region of approximately 2.0-kb, PEG-Prom, was isolated, cloned and characterized. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and evaluated for promoter activity during cancer progression. These assays demonstrate a requirement for AP1 and PEA3 sites adjacent to the TATA box region of PEG-3 in mediating basal promoter activity and the enhanced expression of PEG-3 in progressed H5ts125-transformed rat embryo cells. An involvement of AP1 and PEA3 in PEG-3 regulation was also confirmed by electrophoretic mobility shift assays (EMSA) and transfection studies with cJun and PEA3 expression vectors. Our findings document the importance of both AP1 and PEA3 transcription factors in mediating basal and elevated expression of PEG-3 in H5ts125-transformed rat embryo cells displaying an aggressive and progressed cancer phenotype.
Collapse
Affiliation(s)
- Z Su
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
41
|
Zhong GY, Riov J, Goren R, Holland D. Competitive hybridization: theory and application in isolation and quantification of differentially regulated genes. Anal Biochem 2000; 282:129-35. [PMID: 10860509 DOI: 10.1006/abio.2000.4581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Competitive hybridization is a simple yet powerful method that was developed to screen cDNA libraries for differentially regulated genes. The method is based on competition between unlabeled cDNA from the mRNA of one sample and labeled cDNA from another sample. By manipulating the amount of competing unlabeled cDNA, background signals from the nonregulated genes can be increased or reduced, enabling the signals from differentially regulated genes to be contrasted and to be identified in a quantitative manner. To demonstrate the feasibility of the method, we screened a citrus cDNA library for ethylene-induced genes and identified three genes with different levels of ethylene induction. The mathematical basis of the method and its possible application in gene chip technology are discussed.
Collapse
Affiliation(s)
- G Y Zhong
- Kenedy-Leigh Centre for Horticultural Research, Hebrew University of Jerusalem, Rehovot, 76-100, Israel
| | | | | | | |
Collapse
|
42
|
Madireddi MT, Dent P, Fisher PB. Regulation of mda-7 gene expression during human melanoma differentiation. Oncogene 2000; 19:1362-8. [PMID: 10713678 DOI: 10.1038/sj.onc.1203424] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induction of irreversible growth arrest and terminal differentiation in human melanoma cells following treatment with recombinant human fibroblast interferon (IFN-beta) and mezerein (MEZ) results in elevated expression of a specific melanoma differentiation associated gene, mda-7. Experiments were conducted to define the mechanism involved in the regulation of mda-7 expression in differentiating human melanoma cells. The mda-7 gene is actively transcribed in uninduced HO-1 human melanoma cells and the rate of transcription of mda-7 is not significantly enhanced by treatment with IFN-beta, MEZ or IFN-beta+MEZ. The high basal activity of the mda-7 promoter in uninduced melanoma cells and the absence of enhancing effect upon treatment with differentiation inducers is corroborated by transfection studies using the promoter region of mda-7 linked to a luciferase reporter gene containing the SV40 polyadenylation signal sequence. RT - PCR analysis detects the presence of low levels of mda-7 transcripts in uninduced and concomitant increases in differentiation inducer treated HO-1 cells. However, steady-state mda-7 mRNA is detected only in IFN-beta+MEZ and to a lesser degree in MEZ treated cells. We show that induction of terminal differentiation of HO-1 cells with IFN-beta+MEZ dramatically increases the half-life of mda-7 mRNA while treatment with cycloheximide results in detectable mda-7 mRNA in control and inducer treated cells. These observations confirm constitutive activity of the mda-7 promoter in HO-1 cells irrespective of differentiation status suggesting posttranscriptional processes as important determinants of mda-7 expression during terminal differentiation. The 3' UTR region of mda-7 contains AU-rich elements (ARE) that contribute to rapid mda-7 mRNA turnover during proliferation and reversible differentiation, a process controlled by a labile protein factor(s). Substitution of the SV40 polyadenylation signal sequence in the luciferase reporter plasmid with the mda-7-ARE-3'-UTR renders the Luciferase message unstable when expressed in proliferating and reversibly differentiated melanoma cells. In contrast, the luciferase message is stabilized when the mda-7-ARE-3'-UTR construct is expressed in terminally differentiated HO-1 cells. These results provide compelling evidence that mda-7 expression during terminal differentiation in human melanoma cells is regulated predominantly at a posttranscriptional level.
Collapse
Affiliation(s)
- M T Madireddi
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
43
|
Su ZZ, Goldstein NI, Jiang H, Wang MN, Duigou GJ, Young CS, Fisher PB. PEG-3, a nontransforming cancer progression gene, is a positive regulator of cancer aggressiveness and angiogenesis. Proc Natl Acad Sci U S A 1999; 96:15115-20. [PMID: 10611347 PMCID: PMC24782 DOI: 10.1073/pnas.96.26.15115] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1999] [Accepted: 10/25/1999] [Indexed: 11/18/2022] Open
Abstract
Cancer is a progressive disease culminating in acquisition of metastatic potential by a subset of evolving tumor cells. Generation of an adequate blood supply in tumors by production of new blood vessels, angiogenesis, is a defining element in this process. Although extensively investigated, the precise molecular events underlying tumor development, cancer progression, and angiogenesis remain unclear. Subtraction hybridization identified a genetic element, progression elevated gene-3 (PEG-3), whose expression directly correlates with cancer progression and acquisition of oncogenic potential by transformed rodent cells. We presently demonstrate that forced expression of PEG-3 in tumorigenic rodent cells, and in human cancer cells, increases their oncogenic potential in nude mice as reflected by a shorter tumor latency time and the production of larger tumors with increased vascularization. Moreover, inhibiting endogenous PEG-3 expression in progressed rodent cancer cells by stable expression of an antisense expression vector extinguishes the progressed cancer phenotype. Cancer aggressiveness of PEG-3 expressing rodent cells correlates directly with increased RNA transcription, elevated mRNA levels, and augmented secretion of vascular endothelial growth factor (VEGF). Furthermore, transient ectopic expression of PEG-3 transcriptionally activates VEGF in transformed rodent and human cancer cells. Taken together these data demonstrate that PEG-3 is a positive regulator of cancer aggressiveness, a process regulated by augmented VEGF production. These studies also support an association between expression of a single nontransforming cancer progression-inducing gene, PEG-3, and the processes of cancer aggressiveness and angiogenesis. In these contexts, PEG-3 may represent an important target molecule for developing cancer therapeutics and inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Z Z Su
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|