1
|
Al Amin M, Dehbia Z, Nafady MH, Zehravi M, Kumar KP, Haque MA, Baig MS, Farhana A, Khan SL, Afroz T, Koula D, Tutone M, Nainu F, Ahmad I, Emran TB. Flavonoids and Alzheimer’s disease: reviewing the evidence for neuroprotective potential. Mol Cell Biochem 2025; 480:43-73. [PMID: 38568359 DOI: 10.1007/s11010-023-04922-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2025]
|
2
|
Liu X, Song X, Zhang K, Wang P, Wang Y, Han G, Du Y, Pang M, Ming D. Insights on neuropharmacological benefits and risks: Aconitum carmichaelii Debx. Biomed Pharmacother 2024; 181:117669. [PMID: 39527885 DOI: 10.1016/j.biopha.2024.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Aconitum carmichaelii Debx., a traditional herb known for its potent bioactivities, has been widely used in Traditional Chinese Medicine, particularly in the forms of Chuanwu and Fuzi. Despite the therapeutic benefits of this plant, concerns have been raised regarding its neuropharmacological actions and potential neurotoxicity. This paper provides an in-depth analysis of the neuropharmacological effects, neurotoxicological mechanisms, and toxicity biomarkers of Aconitum roots. The neuropharmacological properties are linked to alterations in neurotransmitter synthesis and ion transport modulation, while the neurotoxic effects are primarily attributed to oxidative stress responses and the induction of mitochondrial apoptosis pathways. Through metabolomic profiling, we have identified several metabolic pathways affected by Aconitum roots, with a significant impact on tryptophan metabolism, which in turn influences cardiovascular and nervous system functions, liver detoxification, and energy metabolism. Furthermore, we discuss the modulation of ion channel protein activity, which is evidenced by recent studies, suggesting a critical role in the neurotoxic effects of Aconitum. An early detection strategy for toxicity biomarkers using metabonomics is proposed, emphasizing its crucial role in enhancing the diagnosis and treatment of Aconitum poisoning. It is recommended that regular monitoring of individuals at risk of Aconitum toxicity, including habitual consumers of TCM and accidental ingestion of the plant, be conducted in order to prevent toxic outcomes. This review emphasizes the importance of understanding the dual nature of Aconitum as both a therapeutic agent and a potential neurotoxin, aiming to optimize its clinical use and ensure patient safety.
Collapse
Affiliation(s)
- Xiuyun Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Kuo Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Peng Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Guoxin Han
- The Emergency Department of the Ninth Medical Center of PLA General Hospital, Anxiang Beili, Chaoyang District, Beijing 100020, China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Meijun Pang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Dong Ming
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
3
|
Bao J, Lee BN, Wen J, Kim M, Mu S, Yang S, Davatzikos C, Long Q, Ritchie MD, Shen L. Employing Informatics Strategies in Alzheimer's Disease Research: A Review from Genetics, Multiomics, and Biomarkers to Clinical Outcomes. Annu Rev Biomed Data Sci 2024; 7:391-418. [PMID: 38848574 PMCID: PMC11525791 DOI: 10.1146/annurev-biodatasci-102423-121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Alzheimer's disease (AD) is a critical national concern, affecting 5.8 million people and costing more than $250 billion annually. However, there is no available cure. Thus, effective strategies are in urgent need to discover AD biomarkers for disease early detection and drug development. In this review, we study AD from a biomedical data scientist perspective to discuss the four fundamental components in AD research: genetics (G), molecular multiomics (M), multimodal imaging biomarkers (B), and clinical outcomes (O) (collectively referred to as the GMBO framework). We provide a comprehensive review of common statistical and informatics methodologies for each component within the GMBO framework, accompanied by the major findings from landmark AD studies. Our review highlights the potential of multimodal biobank data in addressing key challenges in AD, such as early diagnosis, disease heterogeneity, and therapeutic development. We identify major hurdles in AD research, including data scarcity and complexity, and advocate for enhanced collaboration, data harmonization, and advanced modeling techniques. This review aims to be an essential guide for understanding current biomedical data science strategies in AD research, emphasizing the need for integrated, multidisciplinary approaches to advance our understanding and management of AD.
Collapse
Affiliation(s)
- Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Brian N Lee
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Mansu Kim
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Shizhuo Mu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
4
|
Malik R, Kalra S, Pooja, Singh G, Meenu, Gahlot V, Kajal A, Rimpy. Antioxidative and neuroprotective potential of Acorus calamus linn. and Cordia dichotoma G. Forst. In Alzheimer's type dementia in rodent. Brain Res 2024; 1822:148616. [PMID: 37793605 DOI: 10.1016/j.brainres.2023.148616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The goal of this research study was to see how plant extracts of Acorus calamus Linn. and Cordia dichotoma G. Forst. overcome scopolamine-induced Alzheimer's type dementia in mice by activating the cholinergic system, anti-oxidant and protection of neuronal death in the brain (hippocampus region). Scopolamine (1 mg/kg i.p.) reduced mice's routine in behavioral parameters such as Morris Water Maze (MWM), Elevated Plus Maze (EPM), and also the locomotor activity. It also decreases antioxidant levels such as Reduced glutathione (GSH) and also Superoxide dismutase (SOD) but also increases the level of Acetylcholinesterase enzyme (AChE) in brain. Assessment of various behavioral, and biochemical parameters (AChE, SOD, GSH, and Nitrite level) were compared with each group. Acorus calamus (hydro-alcoholic 1:1) 600 mg/kg p.o. and the combination (Acorus calamus 600 mg/kg p.o. + Cordia dichotoma 750 mg/kg p.o.) group showed significant results as compared to Cordia dichotoma 750 mg/kg p.o.in behavioral as well as in biochemical parameters. Histological studies showed significant neuroprotection in the Acorus calamus-treated group and the combination-treated groups. In the future, the Acorus calamus and the combination are possibly helpful in the treatment of various cognitive disorders or it may be valuable to investigate the pharmacological potential of such plant extracts during the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India; Gurugram Global College of Pharmacy, Gurugram, India.
| | - Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Meenu
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vinod Gahlot
- HIMT College of Pharmacy, Knowledge Park - 1, Greater Noida, District - Gautam Buddh Nagar, U.P., 201310, India
| | - Anjali Kajal
- Baba Masthnath University, Rohtak, Haryana, India
| | - Rimpy
- Shandong First Medical University, China
| |
Collapse
|
5
|
Kobayashi S, Kajiwara M, Cui Y, Sako T, Sasabe T, Hayashinaka E, Wada Y, Kobayashi M. Activation of multiple neuromodulatory systems in alert rats acquiring conditioned taste aversion revealed by positron emission tomography. Brain Res 2024; 1822:148617. [PMID: 37805008 DOI: 10.1016/j.brainres.2023.148617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Conditioned taste aversion (CTA) is an essential ability for animals to consume food safely and is regulated by neuromodulatory systems including the dopamine, noradrenaline, serotonin, and acetylcholine systems. However, because few studies focused on a comprehensive understanding of whole-brain activities, how these neuromodulators contribute to the process of CTA remains an open issue. 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) can visualize activated regions within the whole brain simultaneously and noninvasively. This study aimed to understand the mechanisms of CTA, especially focusing on the retrieval process after CTA acquisition by FDG-PET imaging. CTA was established in rats who received an intraoral application of saccharin solution (IOAS) on the first day (Day 1), a LiCl i.p. injection after an IOAS on Day 2, and an IOAS on Day 3 (CTA group). The subtraction images of Day 3 of the SHAM group, which received a 0.9 % NaCl (saline) injection instead of a LiCl on Day 2, from those of Day 3 of the CTA group revealed increases in FDG signals in multiple brain regions including the substantia nigra, ventral tegmental area, locus coeruleus, dorsal raphe, and nucleus basalis magnocellularis, in addition to the hippocampus and nociception-related regions, including the parabrachial nucleus and solitary nucleus. On the other hand, the visceral pain induced by the LiCl injection increased FDG signals in the primary and secondary somatosensory and insular cortices in addition to the parabrachial nucleus and solitary nucleus. These results suggest that the retrieval process of CTA induces brain regions producing neuromodulators and pain-related brainstem.
Collapse
Affiliation(s)
- Satomi Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Mie Kajiwara
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yilong Cui
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takeo Sako
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tetsuya Sasabe
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Emi Hayashinaka
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yasuhiro Wada
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
6
|
Malik R, Kalra S, Bhatia S, Harrasi AA, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM. Overview of therapeutic targets in management of dementia. Biomed Pharmacother 2022; 152:113168. [PMID: 35701303 DOI: 10.1016/j.biopha.2022.113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dementia is defined as a gradual cognitive impairment that interferes with everyday tasks, and is a leading cause of dependency, disability, and mortality. According to the current scenario, millions of individuals worldwide have dementia. This review provides with an overview of dementia before moving on to its subtypes (neurodegenerative and non-neurodegenerative) and pathophysiology. It also discusses the incidence and severity of dementia, focusing on Alzheimer's disease with its different hypotheses such as Aβ cascade hypothesis, Tau hypothesis, inflammatory hypothesis, cholinergic and oxidative stress hypothesis. Alzheimer's disease is the most common type and a progressive neurodegenerative illness distinct by neuronal loss and resulting cognitive impairment, leading to dementia. Alzheimer's disease (AD) is considered the most familiar neurodegenerative dementias that affect mostly older population. There are still no disease-modifying therapies available for any dementias at this time, but there are various methods for lowering the risk to dementia patients by using suitable diagnostic and evaluation methods. Thereafter, the management and treatment of primary risk elements of dementia are reviewed. Finally, the future perspectives of dementia (AD) focusing on the impact of the new treatment are discussed.
Collapse
Affiliation(s)
- Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim Meraya
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK.
| |
Collapse
|
7
|
Amaryllidaceae, Lycopodiaceae Alkaloids and Coumarins—A Comparative Assessment of Safety and Pharmacological Activity. J Clin Med 2022; 11:jcm11154291. [PMID: 35893381 PMCID: PMC9332316 DOI: 10.3390/jcm11154291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
The study aimed to evaluate the safety and pharmacological activity Amaryllidaceae, Lycopodiaceae alkaloids and coumarins obtained from Narcissus triandrus L., Lycopodium clavatum L., Lycopodium annotinum L., Huperzia selago L. and Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. In the in vivo studies. The influence of the tested compounds on the central nervous system of rats was assessed in behavioral tests (locomotor activity, Y-maze, passive avoidance). In order to investigate the mechanisms of action, biochemical determinations were performed (AChE activity, BChE activity, IL-1β, IL-6 concentration). In order to assess safety, the concentrations of AST, ALT, GGT and urea and creatinine were determined. The results of the conducted studies indicate a high safety profile of the tested compounds. Behavioral tests showed that they significantly improved rodent memory in a passive avoidance test. The results of biochemical studies showed that by reducing the activity of AChE and BChE and lowering the concentration of IL-1β and IL-6, the coumarin-rich Angelica dahurica extract shows the most promising potential for future therapeutic AD strategies.
Collapse
|
8
|
Liu P, Yang Q, Yu N, Cao Y, Wang X, Wang Z, Qiu WY, Ma C. Phenylalanine Metabolism is Dysregulated in Human Hippocampus with Alzheimer's Disease Related Pathological Changes. J Alzheimers Dis 2021; 83:609-622. [PMID: 34334403 DOI: 10.3233/jad-210461] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most challenging diseases causing an increasing burden worldwide. Although the neuropathologic diagnosis of AD has been established for many years, the metabolic changes in neuropathologic diagnosed AD samples have not been fully investigated. OBJECTIVE To elucidate the potential metabolism dysregulation in the postmortem human brain samples assessed by AD related pathological examination. METHODS We performed untargeted and targeted metabolomics in 44 postmortem human brain tissues. The metabolic differences in the hippocampus between AD group and control (NC) group were compared. RESULTS The results show that a pervasive metabolic dysregulation including phenylalanine metabolism, valine, leucine, and isoleucine biosynthesis, biotin metabolism, and purine metabolism are associated with AD pathology. Targeted metabolomics reveal that phenylalanine, phenylpyruvic acid, and N-acetyl-L-phenylalanine are upregulated in AD samples. In addition, the enzyme IL-4I1 catalyzing transformation from phenylalanine to phenylpyruvic acid is also upregulated in AD samples. CONCLUSION There is a pervasive metabolic dysregulation in hippocampus with AD-related pathological changes. Our study suggests that the dysregulation of phenylalanine metabolism in hippocampus may be an important pathogenesis for AD pathology formation.
Collapse
Affiliation(s)
- Pan Liu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qian Yang
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ning Yu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yan Cao
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xue Wang
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhao Wang
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wen-Ying Qiu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Yu CC, Du YJ, Wang SQ, Liu LB, Shen F, Wang L, Lin YF, Kong LH. Experimental Evidence of the Benefits of Acupuncture for Alzheimer's Disease: An Updated Review. Front Neurosci 2021; 14:549772. [PMID: 33408601 PMCID: PMC7779610 DOI: 10.3389/fnins.2020.549772] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
As the global population ages, the prevalence of Alzheimer's disease (AD), the most common form of dementia, is also increasing. At present, there are no widely recognized drugs able to ameliorate the cognitive dysfunction caused by AD. The failure of several promising clinical trials in recent years has highlighted the urgent need for novel strategies to both prevent and treat AD. Notably, a growing body of literature supports the efficacy of acupuncture for AD. In this review, we summarize the previously reported mechanisms of acupuncture's beneficial effects in AD, including the ability of acupuncture to modulate Aβ metabolism, tau phosphorylation, neurotransmitters, neurogenesis, synapse and neuron function, autophagy, neuronal apoptosis, neuroinflammation, cerebral glucose metabolism, and brain responses. Taken together, these findings suggest that acupuncture provides therapeutic effects for AD.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Shu-Qin Wang
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Le-Bin Liu
- Department of Rehabilitation Medicine, Hubei Rongjun Hospital, Wuhan, China
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan-Fang Lin
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
10
|
Agarwal M, Alam MR, Haider MK, Malik MZ, Kim DK. Alzheimer's Disease: An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E59. [PMID: 33383712 PMCID: PMC7823376 DOI: 10.3390/nano11010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), a progressively fatal neurodegenerative disorder, is the most prominent form of dementia found today. Patients suffering from Alzheimer's begin to show the signs and symptoms, like decline in memory and cognition, long after the cellular damage has been initiated in their brain. There are several hypothesis for the neurodegeneration process; however, the lack of availability of in vivo models makes the recapitulation of AD in humans impossible. Moreover, the drugs currently available in the market serve to alleviate the symptoms and there is no cure for the disease. There have been two major hurdles in the process of finding the same-the inefficiency in cracking the complexity of the disease pathogenesis and the inefficiency in delivery of drugs targeted for AD. This review discusses the different drugs that have been designed over the recent years and the drug delivery options in the field of nanotechnology that have been found most feasible in surpassing the blood-brain barrier (BBB) and reaching the brain.
Collapse
Affiliation(s)
- Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India;
| | - Mohammad Rizwan Alam
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | | | - Md. Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
- Hanvit Institute for Medical Genetics, Daegu 42601, Korea
| |
Collapse
|
11
|
Muscarinic receptor signaling in the amygdala is required for conditioned taste aversion. Neurosci Lett 2020; 740:135466. [PMID: 33152457 DOI: 10.1016/j.neulet.2020.135466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
The sense of taste provides information regarding the nutrient content, safety or potential toxicity of an edible. This is accomplished via a combination of innate and learned taste preferences. In conditioned taste aversion (CTA), rats learn to avoid ingesting a taste that has previously been paired with gastric malaise. Recent evidence points to a role of cholinergic muscarinic signaling in the amygdala for the learning and storage of emotional memories. The present study tested the participation of muscarinic receptors in the amygdala during the formation of CTA by infusing the non-specific antagonist scopolamine into the basolateral or central subnuclei before or after conditioning, as well as before retrieval. Our data show that regardless of the site of infusion, pre-conditioning administration of scopolamine impaired CTA acquisition whereas post-conditioning infusion did not affect its storage. Also, infusions into the basolateral but not in the central amygdala before retrieval test partially reduced the expression of CTA. Our results indicate that muscarinic receptors activity is required for acquisition but not consolidation of CTA. In addition, our data add to recent evidence pointing to a role of cholinergic signaling in peri-hippocampal structures in the process of memory retrieval.
Collapse
|
12
|
Taste association capabilities differ in high- and low-yawning rats versus outbred Sprague-Dawley rats after prolonged sugar consumption. Anim Cogn 2020; 24:41-52. [PMID: 32681199 DOI: 10.1007/s10071-020-01415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/03/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Yawning is a stereotypical behavior pattern commonly associated with other behaviors such as grooming, sleepiness, and arousal. Several differences in behavioral and neurochemical characteristics have been described in high-yawning (HY) and low-yawning (LY) sublines from Sprague-Dawley (SD) rats that support they had changes in the neural mechanism between sublines. Differences in behavior and neurochemistry observed in yawning sublines could also overlap in processes needed during taste learning, particularly during conditioned taste aversion (CTA) and its latent inhibition. Therefore, the aim of this study was to analyze taste memory differences, after familiarization to novel or highly sweet stimuli, between yawning sublines and compare them with outbred SD rats. First, we evaluated changes in appetitive response during long-term sugar consumption for 14 days. Then, we evaluated the latent inhibition of CTA strength induced by this long pre-exposure, and we also measured aversive memory extinction rate. The results showed that SD rats and the two sublines developed similar CTA for novel sugar and significantly stronger appetitive memory after long-term sugar exposure. However, after 14 days of sugar exposure, HY and LY sublines were unable to develop latent inhibition of CTA after two acquisition trials and had a slower aversive memory extinction rate than outbreed rats. Thus, the inability of the HY and LY sublines to develop latent inhibition of CTA after long-term sugar exposure could be related to the time/context processes involved in long-term appetitive re-learning, and in the strong inbreeding that characterizes the behavioral traits of these sublines, suggesting that inbreeding affects associative learning, particularly after long-term exposure to sweet stimuli which reflects high familiarization.
Collapse
|
13
|
Osorio-Gómez D, Bermúdez-Rattoni F, Guzmán-Ramos K. Artificial taste avoidance memory induced by coactivation of NMDA and β-adrenergic receptors in the amygdala. Behav Brain Res 2019; 376:112193. [PMID: 31473281 DOI: 10.1016/j.bbr.2019.112193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
Abstract
The association between a taste and gastric malaise allows animals to avoid the ingestion of potentially toxic food. This association has been termed conditioned taste aversion (CTA) and relies on the activity of key brain structures such as the amygdala and the insular cortex. The establishment of this gustatory-avoidance memory is related to glutamatergic and noradrenergic activity within the amygdala during two crucial events: gastric malaise (unconditioned stimulus, US) and the post-acquisition spontaneous activity related to the association of both stimuli. To understand the functional implications of these neurochemical changes on avoidance memory formation, we assessed the effects of pharmacological stimulation of β-adrenergic and glutamatergic NMDA receptors through the administration of a mixture of L-homocysteic acid and isoproterenol into the amygdala after saccharin exposure on specific times to emulate the US and post-acquisition local signals that would be occurring naturally under CTA training. Our results show that activation of NMDA and β-adrenergic receptors generated a long-term avoidance response to saccharin, like a naturally induced rejection with LiCl. Moreover, the behavioral outcome was accompanied by changes in glutamate, norepinephrine and dopamine levels within the insular cortex, analogous to those displayed during memory retrieval of taste aversion memory. Therefore, we suggest that taste avoidance memory can be induced artificially through the emulation of specific amygdalar neurochemical signals, promoting changes in the amygdala-insular cortex circuit enabling memory establishment.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud Universidad Autónoma Metropolitana, Unidad Lerma Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Estado de México, C.P. 52005, Mexico.
| |
Collapse
|
14
|
Wu Q, Cao Y, Liu M, Liu F, Brantner AH, Yang Y, Wei Y, Zhou Y, Wang Z, Ma L, Wang F, Pei H, Li H. Traditional Chinese Medicine Shenmayizhi Decoction Ameliorates Memory And Cognitive Impairment Induced By Scopolamine Via Preventing Hippocampal Cholinergic Dysfunction In Rats. Neuropsychiatr Dis Treat 2019; 15:3167-3176. [PMID: 31814724 PMCID: PMC6858809 DOI: 10.2147/ndt.s214976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Clinical trials have illustrated that Shenmayizhi decoction (SMYZ) could improve the cognitive functions in patients with dementia. However, the mechanism needs to be explored. METHODS Fifty adult male rats (Wistar strain) were divided into five groups equally and randomly, including control, model, and SMYZ of low dose, medium dose and high dose. Rats in each group received a daily gavage of respective treatment. Rats in control and model group were administrated by the same volume of distilled water. Memory impairment was induced by intraperitoneal administration of scopolamine (0.7 mg/kg) for 5 continuous days. Four weeks later, Morris water maze (MWM) was performed to evaluate the spatial memory in all rats. Then, rats were sacrificed and the hippocampus was removed for further tests. Furthermore, Western blot analysis was employed to assess the levels of acetylcholine M1 receptor (M1), acetylcholine M2 receptor (M2), acetylcholinesterase (AChE) and cholineacetyltransferase (ChAT). AChE and ChAT activities were determined. RESULTS The SMYZ decoction significantly improved behavioral performance of rats in high dose. The SMYZ decoction in three doses exhibited anti-acetylcholinesterase activity. In addition, a high dose of SMYZ promoted ChAT activity. Moreover, a high dose of SMYZ increased the level of ChAT and declined the level of AChE assessed by Western blotting. Besides, an increased level of M1 receptor was found after treatment. CONCLUSION Shenmayizhi decoction could mitigate scopolamine-induced cognitive deficits through the preventative effect on cholinergic system dysfunction.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing100078, People’s Republic of China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Fang Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Adelheid H Brantner
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Yu Zhou
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, Groningen9747 AG, The Netherlands
| | - Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Feixue Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| |
Collapse
|
15
|
Martins AC, Morcillo P, Ijomone OM, Venkataramani V, Harrison FE, Lee E, Bowman AB, Aschner M. New Insights on the Role of Manganese in Alzheimer's Disease and Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3546. [PMID: 31546716 PMCID: PMC6801377 DOI: 10.3390/ijerph16193546] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential trace element that is naturally found in the environment and is necessary as a cofactor for many enzymes and is important in several physiological processes that support development, growth, and neuronal function. However, overexposure to Mn may induce neurotoxicity and may contribute to the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The present review aims to provide new insights into the involvement of Mn in the etiology of AD and PD. Here, we discuss the critical role of Mn in the etiology of these disorders and provide a summary of the proposed mechanisms underlying Mn-induced neurodegeneration. In addition, we review some new therapy options for AD and PD related to Mn overload.
Collapse
Affiliation(s)
- Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Omamuyovwi Meashack Ijomone
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure 340252, Nigeria;
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology and Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany;
| | - Fiona Edith Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Aaron Blaine Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| |
Collapse
|
16
|
Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 2018; 7:2. [PMID: 29423193 PMCID: PMC5789526 DOI: 10.1186/s40035-018-0107-y] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause for dementia. There are many hypotheses about AD, including abnormal deposit of amyloid β (Aβ) protein in the extracellular spaces of neurons, formation of twisted fibers of tau proteins inside neurons, cholinergic neuron damage, inflammation, oxidative stress, etc., and many anti-AD drugs based on these hypotheses have been developed. In this review, we will discuss the existing and emerging hypothesis and related therapies.
Collapse
Affiliation(s)
- Xiaoguang Du
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Xinyi Wang
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Meiyu Geng
- 2State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203 People's Republic of China
| |
Collapse
|
17
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
18
|
Molero-Chamizo A, Rivera-Urbina GN. Effects of lesions in different nuclei of the amygdala on conditioned taste aversion. Exp Brain Res 2017; 235:3517-3526. [PMID: 28861596 DOI: 10.1007/s00221-017-5078-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/28/2017] [Indexed: 11/27/2022]
Abstract
Conditioned taste aversion (CTA) is an adaptive learning that depends on brain mechanisms not completely identified. The amygdala is one of the structures that make up these mechanisms, but the involvement of its nuclei in the acquisition of CTA is unclear. Lesion studies suggest that the basolateral complex of the amygdala, including the basolateral and lateral amygdala, could be involved in CTA. The central amygdala has also been considered as an important nucleus for the acquisition of CTA in some studies. However, to the best of our knowledge, the effect of lesions of the basolateral complex of the amygdala on the acquisition of CTA has not been directly compared with the effect of lesions of the central and medial nuclei of the amygdala. The aim of this study is to compare the effect of lesions of different nuclei of the amygdala (the central and medial amygdala and the basolateral complex) on the acquisition of taste aversion in male Wistar rats. The results indicate that lesions of the basolateral complex of the amygdala reduce the magnitude of the CTA when compared with lesions of the other nuclei and with animals without lesions. These findings suggest that the involvement of the amygdala in the acquisition of CTA seems to depend particularly on the integrity of the basolateral complex of the amygdala.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Psychobiology, University of Granada, Campus Cartuja 18071, Granada, Spain. .,Department of Psychology. Psychobiology Area, University of Huelva, Campus El Carmen, 21071, Huelva, Spain.
| | | |
Collapse
|
19
|
Tuesta LM, Chen Z, Duncan A, Fowler CD, Ishikawa M, Lee BR, Liu XA, Lu Q, Cameron M, Hayes MR, Kamenecka TM, Pletcher M, Kenny PJ. GLP-1 acts on habenular avoidance circuits to control nicotine intake. Nat Neurosci 2017; 20:708-716. [PMID: 28368384 PMCID: PMC5541856 DOI: 10.1038/nn.4540] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Tobacco smokers titrate their nicotine intake to avoid its noxious effects, sensitivity to which may influence vulnerability to tobacco dependence, yet mechanisms of nicotine avoidance are poorly understood. Here we show that nicotine activates glucagon-like peptide-1 (GLP-1) neurons in the nucleus tractus solitarius (NTS). The antidiabetic drugs sitagliptin and exenatide, which inhibit GLP-1 breakdown and stimulate GLP-1 receptors, respectively, decreased nicotine intake in mice. Chemogenetic activation of GLP-1 neurons in NTS similarly decreased nicotine intake. Conversely, Glp1r knockout mice consumed greater quantities of nicotine than wild-type mice. Using optogenetic stimulation, we show that GLP-1 excites medial habenular (MHb) projections to the interpeduncular nucleus (IPN). Activation of GLP-1 receptors in the MHb-IPN circuit abolished nicotine reward and decreased nicotine intake, whereas their knockdown or pharmacological blockade increased intake. GLP-1 neurons may therefore serve as 'satiety sensors' for nicotine that stimulate habenular systems to promote nicotine avoidance before its aversive effects are encountered.
Collapse
Affiliation(s)
- Luis M Tuesta
- Department of Molecular Therapeutics, The Scripps Research Institute Jupiter, Florida, USA.,The Kellogg School of Science and Technology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Zuxin Chen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Duncan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christie D Fowler
- Department of Molecular Therapeutics, The Scripps Research Institute Jupiter, Florida, USA
| | - Masago Ishikawa
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian R Lee
- Department of Molecular Therapeutics, The Scripps Research Institute Jupiter, Florida, USA
| | - Xin-An Liu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Qun Lu
- Department of Molecular Therapeutics, The Scripps Research Institute Jupiter, Florida, USA
| | - Michael Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute Jupiter, Florida, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute Jupiter, Florida, USA
| | - Matthew Pletcher
- Department of Molecular Therapeutics, The Scripps Research Institute Jupiter, Florida, USA.,Autism Speaks, Boston, Massachusetts, USA
| | - Paul J Kenny
- Department of Molecular Therapeutics, The Scripps Research Institute Jupiter, Florida, USA
| |
Collapse
|
20
|
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol 2016; 14:101-15. [PMID: 26813123 PMCID: PMC4787279 DOI: 10.2174/1570159x13666150716165726] [Citation(s) in RCA: 980] [Impact Index Per Article: 108.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Acetylcholine (ACh) has a crucial role in the peripheral and central nervous
systems. The enzyme choline acetyltransferase (ChAT) is responsible for
synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular
acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic
vesicles. Following depolarization, ACh undergoes exocytosis reaching the
synaptic cleft, where it can bind its receptors, including muscarinic and
nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by
the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is
recycled into the presynaptic nerve terminal by the high-affinity choline
transporter (CHT1). Cholinergic neurons located in the basal forebrain,
including the neurons that form the nucleus basalis of Meynert, are severely
lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia
affecting 25 million people worldwide. The hallmarks of the disease are the
accumulation of neurofibrillary tangles and amyloid plaques. However, there is
no real correlation between levels of cortical plaques and AD-related cognitive
impairment. Nevertheless, synaptic loss is the principal correlate of disease
progression and loss of cholinergic neurons contributes to memory and attention
deficits. Thus, drugs that act on the cholinergic system represent a promising
option to treat AD patients.
Collapse
Affiliation(s)
| | | | | | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
21
|
Gallo M, Ballesteros M, Molero A, Morón I. Taste Aversion Learning as a Tool for the Study of Hippocampal and Non-Hippocampal Brain Memory Circuits Regulating Diet Selection. Nutr Neurosci 2016; 2:277-302. [DOI: 10.1080/1028415x.1999.11747284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Rodríguez-García G, Miranda MI. Opposing Roles of Cholinergic and GABAergic Activity in the Insular Cortex and Nucleus Basalis Magnocellularis during Novel Recognition and Familiar Taste Memory Retrieval. J Neurosci 2016; 36:1879-89. [PMID: 26865612 PMCID: PMC6602015 DOI: 10.1523/jneurosci.2340-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine (ACh) is thought to facilitate cortical plasticity during memory formation and its release is regulated by the nucleus basalis magnocellularis (NBM). Questions remain regarding which neuronal circuits and neurotransmitters trigger activation or suppression of cortical cholinergic activity. During novel, but not familiar, taste consumption, there is a significant increase in ACh release in the insular cortex (IC), a highly relevant structure for taste learning. Here, we evaluate how GABA inhibition modulates cholinergic transmission and its involvement during taste novelty processing and familiar taste memory retrieval. Using saccharin as a taste stimulus in a taste preference paradigm, we examined the effects of injecting the GABAA receptor agonist muscimol or the GABAA receptor antagonist bicuculline into the IC or NBM during learning or retrieval of an appetitive taste memory on taste preference in male Sprague Dawley rats. GABAA receptor agonism and antagonism had opposite effects on cortical ACh levels in novel taste presentation versus familiar taste recognition and ACh levels were associated with the propensity to acquire or retrieve a taste memory. These results indicate that the pattern of cortical cholinergic and GABAergic neuroactivity during novel taste exposure is the opposite of that which occurs during familiar taste recognition and these differing neurotransmitter system states may enable different behavioral consequences. Divergences in ACh and GABA levels may produce differential alterations in excitatory and inhibitory neural processes within the cortex during acquisition and retrieval. SIGNIFICANCE STATEMENT During learning and recall, several brain structures act together. This work demonstrates interactions between cortical cholinergic and GABAergic systems during taste learning and memory retrieval. We found that the neuroactivity pattern during novel taste exposure is opposite that which occurs during familiar taste recognition. GABAA receptors must be inactive during novel tasting to enable new memory formation, but must be active and inhibiting acetylcholine release in the cortex to allow memory retrieval. These findings indicate that GABA inhibition modulates cholinergic transmission and that cholinergic-GABAergic system interactions are important during the transition from novel to familiar memory.
Collapse
Affiliation(s)
- Gabriela Rodríguez-García
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Querétaro, México
| | - María Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Querétaro, México
| |
Collapse
|
23
|
Vishnoi S, Raisuddin S, Parvez S. Modulatory effects of an NMDAR partial agonist in MK-801-induced memory impairment. Neuroscience 2015; 311:22-33. [PMID: 26454025 DOI: 10.1016/j.neuroscience.2015.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/29/2015] [Accepted: 10/04/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Acute administration of the N-methyl-d-aspartate (NMDA) non-competitive antagonist, MK-801, impairs novel object recognition (NOR), locomotor activity in open field (OF) and conditioned taste aversion (CTA) in rodents. NMDAR partial agonist d-cycloserine (DCS) reverses these effects in NOR and CTA via modulation of glutamatergic, cholinergic and dopaminergic systems. OBJECTIVES AND METHODS To test this hypothesis, we investigated the effects of DCS, a partial NMDAR agonist, on NOR memory, locomotor activity, and CTA memory in Wistar rats on NMDA-glutamate receptor antagonism by MK-801. The potential involvement of dopaminergic and cholinergic systems in improving cognitive functions was explored. MK-801-induced cognitive deficits were assessed using NOR, OF and CTA paradigms. MK-801-induced dopamine release increase in acetylcholinesterase (AChE), mono amine oxidase (MAO) activity and increase in c-fos expression were also investigated. RESULTS The effects caused by MK-801 (0.2 mg/kg) were inhibited by administration of the NMDA receptor agonist DCS (15 mg/kg). NOR and CTA paradigms inhibited by MK-801 were attenuated by DCS administration. Moreover, DCS also blocked the MK-801-induced abnormal increase in dopamine content, AChE activity and MAO activity. However, c-fos overexpression was controlled to some extent only. CONCLUSIONS Based on the NMDAR hypo function hypothesis in some neuropsychiatric disorders, our finding suggests that improving NMDAR hypo function by agonist DCS may play a significant role.
Collapse
Affiliation(s)
- S Vishnoi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - S Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - S Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
24
|
Lin SF, Tsai YF, Tai MY, Yeh KY. Estradiol enhances the acquisition of lithium chloride-induced conditioned taste aversion in castrated male rats. Naturwissenschaften 2015; 102:52. [DOI: 10.1007/s00114-015-1303-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 12/27/2022]
|
25
|
Chemical stimulation or glutamate injections in the nucleus of solitary tract enhance conditioned taste aversion. Behav Brain Res 2015; 278:202-9. [PMID: 25251840 DOI: 10.1016/j.bbr.2014.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 11/20/2022]
Abstract
Taste memory depends on motivational and post-ingestional consequences after a single taste-illness pairing. During conditioned taste aversion (CTA), the taste and visceral pathways reach the nucleus of the solitary tract (NTS), which is the first relay in the CNS and has a vital function in receiving vagal chemical stimuli and humoral signals from the area postrema that receives peripheral inputs also via vagal afferent fibers. The specific aim of the present set of experiments was to determine if the NTS is involved in the noradrenergic and glutamatergic activation of the basolateral amygdala (BLA) during CTA. Using in vivo microdialysis, we examined whether chemical NTS stimulation induces norepinephrine (NE) and/or glutamate changes in the BLA during visceral stimulation with intraperitoneal (i.p.) injections of low (0.08 M) and high (0.3 M) concentrations of lithium chloride (LiCl) during CTA training. The results showed that strength of CTA can be elicited by chemical NTS stimulation (Ringer's high potassium solution; 110 mM KCl) and by intra-NTS microinjections of glutamate, immediately after, but not before, low LiCl i.p. injections that only induce a week aversive memory. However visceral stimulation (with low or high i.p. LiCl) did not induce significantly more NE release in the amygdala compared with the NE increment induced by NTS potassium depolarization. In contrast, high i.p. concentrations of LiCl and chemical NTS stimulation induced a modest glutamate sustained release, that it is not observed with low LiCl i.p. injections. These results indicate that the NTS mainly mediates the visceral stimulus processing by sustained releasing glutamate in the BLA, but not by directly modulating NE release in the BLA during CTA acquisition, providing new evidence that the NTS has an important function in the transmission of signals from the periphery to brain systems that process aversive memory formation.
Collapse
|
26
|
Colettis NC, Snitcofsky M, Kornisiuk EE, Gonzalez EN, Quillfeldt JA, Jerusalinsky DA. Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure. ACTA ACUST UNITED AC 2014; 21:634-45. [PMID: 25322799 PMCID: PMC4201807 DOI: 10.1101/lm.036210.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two open-field (OF) sessions of 3 min each (habituated), behaved as control animals after a weak though over-threshold training in IA. However, after OF exposure, IA LTM was formed and expressed in spite of an extensive or restricted to the hippocampus MAChR blockade. It was reported that during and after OF exposure and reexposure there was an increase in both hippocampal and cortical ACh release that would contribute to “prime the substrate,” e.g., by lowering the synaptic threshold for plasticity, leading to LTM consolidation. In the frame of the “synaptic tagging and capture” hypothesis, plasticity-related proteins synthesized during/after the previous OF could facilitate synaptic plasticity for IA in the same structure. However, IA anterograde amnesia by hippocampal protein synthesis inhibition with anisomycin was also prevented by two OF exposures, strongly suggesting that there would be alternative interpretations for the role of protein synthesis in memory formation and that another structure could also be involved in this “OF effect.”
Collapse
Affiliation(s)
- Natalia C Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Edgar E Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Emilio N Gonzalez
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Jorge A Quillfeldt
- Laboratório de Psicobiologia e Neurocomputação, Depto. de Biofísica, UFRGS, Porto Alegre 91501-970, Brazil
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
27
|
Soma S, Suematsu N, Shimegi S. Blockade of muscarinic receptors impairs the retrieval of well-trained memory. Front Aging Neurosci 2014; 6:63. [PMID: 24782760 PMCID: PMC3986532 DOI: 10.3389/fnagi.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/23/2014] [Indexed: 12/15/2022] Open
Abstract
Acetylcholine (ACh) is known to play an important role in memory functions, and its deficit has been proposed to cause the cognitive decline associated with advanced age and Alzheimer's disease (the cholinergic hypothesis). Although many studies have tested the cholinergic hypothesis for recently acquired memory, only a few have investigated the role of ACh in the retrieval process of well-trained cognitive memory, which describes the memory established from repetition and daily routine. To examine this point, we trained rats to perform a two-alternative forced-choice visual detection task. Each trial was started by having the rats pull upward a central-lever, which triggered the presentation of a visual stimulus to the right or left side of the display monitor, and then pulling upward a stimulus-relevant choice-lever located on both sides. Rats learned the task within 10 days, and the task training was continued for a month. Task performance was measured with or without systemic administration of a muscarinic ACh receptor (mAChR) antagonist, scopolamine (SCOP), prior to the test. After 30 min of SCOP administration, rats stopped manipulating any lever even though they explored the lever and surrounding environment, suggesting a loss of the task-related associative memory. Three hours later, rats were recovered to complete the trial, but the rats selected the levers irrespective of the visual stimulus, suggesting they remembered a series of lever-manipulations in association with a reward, but not association between the reward and visual stimulation. Furthermore, an m1-AChR, but not nicotinic AChR antagonist caused a similar deficit in the task execution. SCOP neither interfered with locomotor activity nor drinking behavior, while it influenced anxiety. These results suggest that the activation of mAChRs at basal ACh levels is essential for the recall of well-trained cognitive memory.
Collapse
Affiliation(s)
- Shogo Soma
- Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Naofumi Suematsu
- Department of Health and Sport Sciences, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | - Satoshi Shimegi
- Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University Osaka, Japan ; Department of Health and Sport Sciences, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| |
Collapse
|
28
|
Avila I, Lin SC. Motivational salience signal in the basal forebrain is coupled with faster and more precise decision speed. PLoS Biol 2014; 12:e1001811. [PMID: 24642480 PMCID: PMC3958335 DOI: 10.1371/journal.pbio.1001811] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/06/2014] [Indexed: 12/28/2022] Open
Abstract
The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.
Collapse
Affiliation(s)
- Irene Avila
- Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Shih-Chieh Lin
- Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Purón-Sierra L, Miranda MI. Histaminergic modulation of cholinergic release from the nucleus basalis magnocellularis into insular cortex during taste aversive memory formation. PLoS One 2014; 9:e91120. [PMID: 24625748 PMCID: PMC3953328 DOI: 10.1371/journal.pone.0091120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/07/2014] [Indexed: 11/19/2022] Open
Abstract
The ability of acetylcholine (ACh) to alter specific functional properties of the cortex endows the cholinergic system with an important modulatory role in memory formation. For example, an increase in ACh release occurs during novel stimulus processing, indicating that ACh activity is critical during early stages of memory processing. During novel taste presentation, there is an increase in ACh release in the insular cortex (IC), a major structure for taste memory recognition. There is extensive evidence implicating the cholinergic efferents of the nucleus basalis magnocellularis (NBM) in cortical activity changes during learning processes, and new evidence suggests that the histaminergic system may interact with the cholinergic system in important ways. However, there is little information as to whether changes in cholinergic activity in the IC are modulated during taste memory formation. Therefore, in the present study, we evaluated the influence of two histamine receptor subtypes, H1 in the NBM and H3 in the IC, on ACh release in the IC during conditioned taste aversion (CTA). Injection of the H3 receptor agonist R-α-methylhistamine (RAMH) into the IC or of the H1 receptor antagonist pyrilamine into the NBM during CTA training impaired subsequent CTA memory, and simultaneously resulted in a reduction of ACh release in the IC. This study demonstrated that basal and cortical cholinergic pathways are finely tuned by histaminergic activity during CTA, since dual actions of histamine receptor subtypes on ACh modulation release each have a significant impact during taste memory formation.
Collapse
Affiliation(s)
- Liliana Purón-Sierra
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - María Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| |
Collapse
|
30
|
Long-term effects of maternal deprivation on cholinergic system in rat brain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:636574. [PMID: 24711997 PMCID: PMC3966323 DOI: 10.1155/2014/636574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
Abstract
Numerous clinical studies have demonstrated an association between early stressful life events and adult life psychiatric disorders including schizophrenia. In rodents, early life exposure to stressors such as maternal deprivation (MD) produces numerous hormonal, neurochemical, and behavioral changes and is accepted as one of the animal models of schizophrenia. The stress induces acetylcholine (Ach) release in the forebrain and the alterations in cholinergic neurotransmitter system are reported in schizophrenia. The aim of this study was to examine long-term effects of maternal separation on acetylcholinesterase (AChE) activity in different brain structures and the density of cholinergic fibers in hippocampus and retrosplenial (RS) cortex. Wistar rats were separated from their mothers on the postnatal day (P) 9 for 24 h and sacrificed on P60. Control group of rats was bred under the same conditions, but without MD. Brain regions were collected for AChE activity measurements and morphometric analysis. Obtained results showed significant decrease of the AChE activity in cortex and increase in the hippocampus of MD rats. Density of cholinergic fibers was significantly increased in CA1 region of hippocampus and decreased in RS cortex. Our results indicate that MD causes long-term structure specific changes in the cholinergic system.
Collapse
|
31
|
Bermudez-Rattoni F. The forgotten insular cortex: Its role on recognition memory formation. Neurobiol Learn Mem 2014; 109:207-16. [PMID: 24406466 DOI: 10.1016/j.nlm.2014.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/21/2013] [Accepted: 01/01/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Federico Bermudez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, A.P. 70-253, México, DF 04510, Mexico.
| |
Collapse
|
32
|
Ramirez-Amaya V, Angulo-Perkins A, Chawla MK, Barnes CA, Rosi S. Sustained transcription of the immediate early gene Arc in the dentate gyrus after spatial exploration. J Neurosci 2013; 33:1631-9. [PMID: 23345235 PMCID: PMC6618719 DOI: 10.1523/jneurosci.2916-12.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/12/2012] [Accepted: 12/01/2012] [Indexed: 11/21/2022] Open
Abstract
After spatial exploration in rats, Arc mRNA is expressed in ∼2% of dentate gyrus (DG) granule cells, and this proportion of Arc-positive neurons remains stable for ∼8 h. This long-term presence of Arc mRNA following behavior is not observed in hippocampal CA1 pyramidal cells. We report here that in rats ∼50% of granule cells with cytoplasmic Arc mRNA, induced some hours previously during exploration, also show Arc expression in the nucleus. This suggests that recent transcription can occur long after the exploration behavior that elicited it. To confirm that the delayed nuclear Arc expression was indeed recent transcription, Actinomycin D was administered immediately after exploration. This treatment resulted in inhibition of recent Arc expression both when evaluated shortly after exploratory behavior as well as after longer time intervals. Together, these data demonstrate a unique kinetic profile for Arc transcription in hippocampal granule neurons following behavior that is not observed in other cell types. Among a number of possibilities, this sustained transcription may provide a mechanism that ensures that the synaptic connection weights in the sparse population of granule cells recruited during a given behavioral event are able to be modified.
Collapse
Affiliation(s)
- Victor Ramirez-Amaya
- Redes Neuronales Plásticas Laboratory, Department of Neurobiología Conductual y Cognitiva Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The cholinergic drive enhances input processing in attentional and mnemonic context by interacting with the activity of prefrontal-hippocampal networks. During development, acetylcholine modulates neuronal proliferation, differentiation, and synaptic plasticity, yet its contribution to the maturation of cognitive processing resulting from early entrainment of neuronal networks in oscillatory rhythms remains widely unknown. Here we show that cholinergic projections growing into the rat prefrontal cortex (PFC) toward the end of the first postnatal week boost the generation of nested gamma oscillations superimposed on discontinuous spindle bursts by acting on functional muscarinic but not nicotinic receptors. Although electrical stimulation of cholinergic nuclei increased the occurrence of nested gamma spindle bursts by 41%, diminishment of the cholinergic input by either blockade of the receptors or chronic immunotoxic lesion had the opposite effect. This activation of locally generated gamma episodes by direct cholinergic projections to the PFC was accompanied by indirect modulation of underlying spindle bursts via cholinergic control of hippocampal theta activity. With ongoing maturation and switch of network activity from discontinuous bursts to continuous theta-gamma rhythms, accumulating cholinergic projections acting on both muscarinic and nicotinic receptors mediated the transition from high-amplitude slow to low-amplitude fast rhythms in the PFC. By exerting multiple actions on the oscillatory entrainment of developing prefrontal-hippocampal networks, the cholinergic input may refine them for later gating processing in executive and mnemonic tasks.
Collapse
|
34
|
Gal-Ben-Ari S, Rosenblum K. Molecular mechanisms underlying memory consolidation of taste information in the cortex. Front Behav Neurosci 2012; 5:87. [PMID: 22319481 PMCID: PMC3251832 DOI: 10.3389/fnbeh.2011.00087] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste–memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.
Collapse
|
35
|
|
36
|
Mizoguchi N, Fujita S, Koshikawa N, Kobayashi M. Spatiotemporal dynamics of long-term potentiation in rat insular cortex revealed by optical imaging. Neurobiol Learn Mem 2011; 96:468-78. [PMID: 21855644 DOI: 10.1016/j.nlm.2011.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/06/2011] [Accepted: 07/25/2011] [Indexed: 01/25/2023]
Abstract
Long-term potentiation (LTP) of the gustatory cortex (GC), a part of the insular cortex (IC) around the middle cerebral artery, is a key process of gustatory learning and memory, including conditioned taste aversion learning. The rostral (rGC) and caudal GC (cGC) process different tastes; the rGC responds to hedonic and the cGC responds to aversive tastes. However, plastic changes of spatial interaction of excitatory propagation between the rGC and cGC remain unknown. The present study aimed to elucidate spatiotemporal profiles of excitatory propagation, induced by electrical stimulation (five train pulses) of the rGC/cGC before and after LTP induction, using in vivo optical imaging with a voltage-sensitive dye. We demonstrated that tetanic stimulation of the cGC induced long-lasting expansion of the excitation responding to five train stimulation of the cGC, and an increase in amplitude of optical signals in the IC. Excitatory propagation after LTP induction spread preferentially toward the rostral IC: the length constant (λ) of excitation, obtained by fitting optical signals with a monoexponential curve, was increased to 121.9% in the rostral direction, whereas λ for the caudal, dorsal, and ventral directions were 48.9%, 44.2%, and 62.5%, respectively. LTP induction was prevented by pre-application of D-APV, an NMDA receptor antagonist, or atropine, a muscarinic receptor antagonist, to the cortical surface. In contrast, rGC stimulation induced only slight LTP without direction preference. Considering the different roles of the rGC and cGC in gustatory processing, these characteristic patterns of LTP in the GC may be involved in a mechanism underlying conversion of palatability.
Collapse
Affiliation(s)
- Naoko Mizoguchi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | |
Collapse
|
37
|
Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res 2011; 221:389-411. [DOI: 10.1016/j.bbr.2010.11.036] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 12/30/2022]
|
38
|
Pirchl M, Ullrich C, Humpel C. Differential effects of short- and long-term hyperhomocysteinaemia on cholinergic neurons, spatial memory and microbleedings in vivo in rats. Eur J Neurosci 2011; 32:1516-27. [PMID: 21044172 DOI: 10.1111/j.1460-9568.2010.07434.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hyperhomocysteinaemia (HHcy) has been identified as a cardiovascular risk factor for neurodegenerative brain diseases. The aim of the present study was to investigate the effects of short (5 months) or long (15 months) HHcy in Sprague–Dawley rats in vivo. Short- and long-term HHcy differentially affected spatial memory as tested in a partially baited eight-arm radial maze. HHcy significantly reduced the number of choline acetyltransferase (ChAT)-positive neurons in the basal nucleus of Meynert and ChAT-positive axons in the cortex only after short-term but not long-term treatment, while acetylcholine levels in the cortex were decreased at both time points. Nerve growth factor (NGF) was significantly enhanced in the cortex only after 15 months of HHcy. HHcy did not affect cortical levels of amyloid precursor protein, beta-amyloid(1-42), tau and phospho-tau181 and several inflammatory markers, as well as vascular RECA-1 and laminin density. However, HHcy induced cortical microbleedings, as illustrated by intensive anti-rat IgG-positive spots in the cortex. In order to study the regulation of the key enzyme ChAT, organotypic rat brain slices were incubated with homocysteine, which induced a decline of ChAT that was counteracted by NGF treatment. In conclusion, our data demonstrate that chronic short- and long-term HHcy differentially caused memory impairment, cholinergic dysfunction, NGF expression and vascular microbleedings.
Collapse
Affiliation(s)
- Michael Pirchl
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical, University, Anichstr. 35, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
39
|
Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 2011; 221:443-65. [PMID: 21315109 DOI: 10.1016/j.bbr.2011.01.055] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 01/07/2023]
Abstract
The cholinergic systems play a pivotal role in learning and memory, and have been the centre of attention when it comes to diseases containing cognitive deficits. It is therefore not surprising, that the cholinergic transmitter system has experienced detailed examination of its role in numerous behavioural situations not least with the perspective that cognition may be rescued with appropriate cholinergic 'boosters'. Here we reviewed the literature on (i) cholinergic lesions, (ii) pharmacological intervention of muscarinic or nicotinic system, or (iii) genetic deletion of selective receptor subtypes with respect to sensory discrimination and conditioning procedures. We consider visual, auditory, olfactory and somatosensory processing first before discussing more complex tasks such as startle responses, latent inhibition, negative patterning, eye blink and fear conditioning, and passive avoidance paradigms. An overarching reoccurring theme is that lesions of the cholinergic projection neurones of the basal forebrain impact negatively on acquisition learning in these paradigms and blockade of muscarinic (and to a lesser extent nicotinic) receptors in the target structures produce similar behavioural deficits. While these pertain mainly to impairments in acquisition learning, some rare cases extend to memory consolidation. Such single case observations warranted replication and more in-depth studies. Intriguingly, receptor blockade or receptor gene knockout repeatedly produced contradictory results (for example in fear conditioning) and combined studies, in which genetically altered mice are pharmacological manipulated, are so far missing. However, they are desperately needed to clarify underlying reasons for these contradictions. Consistently, stimulation of either muscarinic (mainly M(1)) or nicotinic (predominantly α7) receptors was beneficial for learning and memory formation across all paradigms supporting the notion that research into the development and mechanisms of novel and better cholinomimetics may prove useful in the treatment of neurodegenerative or psychiatric disorders with cognitive endophenotypes.
Collapse
Affiliation(s)
- Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
40
|
Yamamoto K, Koyanagi Y, Koshikawa N, Kobayashi M. Postsynaptic Cell Type–Dependent Cholinergic Regulation of GABAergic Synaptic Transmission in Rat Insular Cortex. J Neurophysiol 2010; 104:1933-45. [DOI: 10.1152/jn.00438.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral cortex consists of multiple neuron subtypes whose electrophysiological properties exhibit diverse modulation patterns in response to neurotransmitters, including noradrenaline and acetylcholine (ACh). We performed multiple whole cell patch-clamp recording from layer V GABAergic interneurons and pyramidal cells of rat insular cortex (IC) to examine whether cholinergic effects on unitary inhibitory postsynaptic currents (uIPSCs) are differentially regulated by ACh receptors, depending on their presynaptic and postsynaptic cell subtypes. In fast-spiking (FS) to pyramidal cell synapses, carbachol (10 μM) invariably decreased uIPSC amplitude by 51.0%, accompanied by increases in paired-pulse ratio (PPR) of the second to first uIPSC amplitude, coefficient of variation (CV) of the first uIPSC amplitude, and failure rate. Carbachol-induced uIPSC suppression was dose dependent and blocked by atropine, a muscarinic ACh receptor antagonist. Similar cholinergic suppression was observed in non-FS to pyramidal cell synapses. In contrast, FS to FS/non-FS cell synapses showed heterogeneous effects on uIPSC amplitude by carbachol. In roughly 40% of pairs, carbachol suppressed uIPSCs by 35.8%, whereas in a similar percentage of pairs uIPSCs were increased by 34.8%. Non-FS to FS/non-FS cell synapses also showed carbachol-induced uIPSC facilitation by 29.2% in about half of the pairs, whereas nearly 40% of pairs showed carbachol-induced suppression of uIPSCs by 40.3%. Carbachol tended to increase uIPSC amplitude in interneuron-to-interneuron synapses with higher PPR, suggesting that carbachol facilitates GABA release in interneuron synapses with lower release probability. These results suggest that carbachol-induced effects on uIPSCs are not homogeneous but preiotropic: i.e., cholinergic modulation of GABAergic synaptic transmission is differentially regulated depending on postsynaptic neuron subtypes.
Collapse
Affiliation(s)
| | - Yuko Koyanagi
- Department of Pharmacology,
- Department of Anesthesiology, and
| | - Noriaki Koshikawa
- Department of Pharmacology,
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo; and
| | - Masayuki Kobayashi
- Department of Pharmacology,
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo; and
- Functional Probe Research Laboratory, Molecular Imaging Research Program, RIKEN, Kobe, Japan
| |
Collapse
|
41
|
Huang ZB, Wang H, Rao XR, Zhong GF, Hu WH, Sheng GQ. Different effects of scopolamine on the retrieval of spatial memory and fear memory. Behav Brain Res 2010; 221:604-9. [PMID: 20553767 DOI: 10.1016/j.bbr.2010.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/10/2010] [Accepted: 05/19/2010] [Indexed: 11/25/2022]
Abstract
Retrieval of memory is fundamental for our life as individuals. The participation of cholinergic system in memory consolidation process has been extensively studied, but there are few data concerning the function of this system in memory retrieval process. In the current study, we inject non-selective muscarinic antagonist scopolamine peripherally 20 min before training or testing to see whether cholinergic modulation has effects on the acquisition or retrieval of spatial memory by water maze task and fear memory by inhibitory avoidance task. We find that the cholinergic system is essential for the acquisition of both spatial memory and fear memory. As for the memory retrieval, the cholinergic system has a positive role in the retrieval of spatial memory, because mice injected with scopolamine 20 min before the testing in the water maze show impaired spatial memory retrieval. Whereas injection of scopolamine 20 min before the testing in the inhibitory avoidance task does not cause memory retrieval deficits. That indicates the cholinergic system is not essential for the retrieval of fear memory.
Collapse
Affiliation(s)
- Zhen-Bo Huang
- CAS Key Laboratory of Regenerative Biology, South China Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Purón-Sierra L, Sabath E, Nuñez-Jaramillo L, Miranda MI. Blockade of nucleus basalis magnocellularis or activation of insular cortex histamine receptors disrupts formation but not retrieval of aversive taste memory. Neurobiol Learn Mem 2009; 93:216-20. [PMID: 19825424 DOI: 10.1016/j.nlm.2009.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
Abstract
Recent research, using several experimental models, demonstrated that the histaminergic system is clearly involved in memory formation. This evidence suggested that during different associative learning tasks, histamine receptor subtypes have opposite functions, related to the regulation of cortical cholinergic activity. Given that cortical cholinergic activity and nucleus basalis magnocellularis (NBM) integrity are needed during taste memory formation, the aim of this study was to determine the role of histamine receptors during conditioned taste aversion (CTA). We evaluated the effects of bilateral infusions of 0.5 microl of pyrilamine (100 mM), an H(1) receptor antagonist, into the NBM, or of R-alpha-methylhistamine (RAMH) (10 mM), an H(3) receptor agonist, into the insular cortex of male Sprague-Dawley rats 20 min before acquisition and/or retrieval of conditioned taste aversion. The results showed that blockade of H(1) receptors in NBM or activation of H(3) receptors in the insular cortex impairs formation but not retrieval of aversive taste memory. These results demonstrated differential roles for histamine receptors in two important areas for taste memory formation and suggest that these effects could be related with the cortical cholinergic activity modulation during CTA acquisition.
Collapse
Affiliation(s)
- Liliana Purón-Sierra
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla, No. 3001 Juriquilla, Querétaro, Qro. 76230, Mexico
| | | | | | | |
Collapse
|
43
|
Muthuraju S, Maiti P, Solanki P, Sharma AK, Amitabh, Singh SB, Prasad D, Ilavazhagan G. Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav Brain Res 2009; 203:1-14. [PMID: 19446892 DOI: 10.1016/j.bbr.2009.03.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/17/2009] [Accepted: 03/19/2009] [Indexed: 11/26/2022]
Abstract
Hypobaric hypoxia (HBH) can produce neuropsychological disorders such as insomnia, dizziness, memory deficiencies, headache and nausea. It is well known that exposure to HBH cause alterations of neurotransmitters and cognitive impairment in terms of learning and memory. But the mechanisms are poorly understood. The present study aimed to investigate the cholinergic system alterations associated with simulated HBH induced cognitive impairment. Male Sprague-Dawley rats were exposed to HBH equivalent to 6100 m for 7 days in a simulation chamber. The cognitive performance was assessed using Morris Water Maze (MWM) task. Cholinergic markers like acetylcholine (ACh) and acetylcholinesterase (AChE) were evaluated in hippocampus and cortex of rats. Neuronal damage was also studied through morphological changes. Exposure to HBH led to impairment in relearning ability and memory retrieval and it was accompanied by decrease in ACh level and increase in AChE and led to morphological damage. Administration of AChE inhibitor (AChEI), physostigmine (PHY) and galantamine (GAL) to rats during HBH exposure resulted in amelioration of the deleterious effects induced by HBH. The AChEIs were able to improve the cholinergic activity by restoring the level of ACh by blocking the AChE activity. In addition, the AChEIs also prevented neurodegeneration by reducing the AChE level in cortical and hippocampal neurons.
Collapse
Affiliation(s)
- Sangu Muthuraju
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Clark EW, Bernstein IL. Boosting cholinergic activity in gustatory cortex enhances the salience of a familiar conditioned stimulus in taste aversion learning. Behav Neurosci 2009; 123:764-71. [PMID: 19634934 PMCID: PMC2777999 DOI: 10.1037/a0016398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cholinergic system is important for learning, memory, and responses to novel stimuli. Exposure to novel, but not familiar, tastes increases extracellular acetylcholine (ACh) levels in insular cortex (IC). To further examine whether cholinergic activation is a critical signal of taste novelty, in these studies carbachol, a direct cholinergic agonist, was infused into IC before conditioned taste aversion (CTA) training with a familiar taste. By mimicking the cholinergic activation generated by novel taste exposure, it was hypothesized that a familiar taste would be treated as novel and therefore a salient target for aversion learning. As predicted, rats infused with the agonist were able to acquire CTAs to familiar saccharin. Effects of carbachol infusion on patterns of neuronal activation during conditioned stimulus-unconditioned stimulus pairing were assessed using Fos-like immunoreactivity (FLI). Familiar taste-illness pairing following carbachol, but not vehicle, induced significant elevations of FLI in amygdala, a region with reciprocal connections to IC that is also important for CTA learning. These results support the view that IC ACh activity provides a critical signal of taste novelty that facilitates CTA acquisition.
Collapse
Affiliation(s)
- Emily Wilkins Clark
- Department of Psychology, University of Washington, Box 351525, Seattle, WA 98195-1525, USA
| | | |
Collapse
|
45
|
The nucleus basalis magnocellularis contributes to feature binding in the rat. Physiol Behav 2009; 97:313-20. [DOI: 10.1016/j.physbeh.2009.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/14/2009] [Accepted: 02/20/2009] [Indexed: 11/19/2022]
|
46
|
Botly LCP, De Rosa E. Cholinergic deafferentation of the neocortex using 192 IgG-saporin impairs feature binding in rats. J Neurosci 2009; 29:4120-30. [PMID: 19339607 PMCID: PMC6665388 DOI: 10.1523/jneurosci.0654-09.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/24/2009] [Indexed: 11/21/2022] Open
Abstract
The binding problem refers to the fundamental challenge of the CNS to integrate sensory information registered by distinct brain regions to form a unified neural representation of a stimulus. Although the human cognitive literature has established that attentional processes in frontoparietal cortices support feature binding, the neurochemical and specific downstream neuroanatomical contributions to feature binding remain unknown. Using systemic pharmacology in rats, it has been shown that the neuromodulator acetylcholine is essential for feature binding at encoding, but the neural source of such critical cholinergic neurotransmission has yet to be identified. Cholinergic efferents from the nucleus basalis magnocellularis (NBM) of the basal forebrain provide the majority of the cholinergic input to the neocortex. Accordingly, it was hypothesized that the NBM is the neural source that provides the critical neuromodulatory support for feature binding. To test this hypothesis, rats received bilateral 192 IgG-saporin lesions of the NBM, and their feature binding performance was tested using a forced-choice digging paradigm. Relative to sham-lesioned rats, NBM-lesioned rats were significantly impaired at acquiring a crossmodal feature conjunction (FC) stimulus set that required feature binding, whereas their ability to retrieve an FC stimulus set and to acquire two crossmodal feature singleton stimulus sets, one of greater difficulty than the other but neither requiring feature binding, remained intact. These behavioral findings, along with histological analyses demonstrating positive relationships between feature-binding acquisition and markers of cholinergic activity in frontoparietal regions, reveal the importance of neocortical cholinergic input from the NBM to feature binding at encoding.
Collapse
Affiliation(s)
- Leigh C. P. Botly
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada M5S 3G3, and
| | - Eve De Rosa
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada M5S 3G3, and
- Rotman Research Institute, Toronto, Ontario, Canada M6A 2E1
| |
Collapse
|
47
|
Baldi E, Mariottini C, Bucherelli C. The role of the nucleus basalis magnocellularis in fear conditioning consolidation in the rat. Learn Mem 2007; 14:855-60. [PMID: 18086829 PMCID: PMC2151023 DOI: 10.1101/lm.675907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 09/27/2007] [Indexed: 11/25/2022]
Abstract
The nucleus basalis magnocellularis (NBM) is known to be involved in the memorization of several conditioned responses. To investigate the role of the NBM in fear conditioning memorization, this neural site was subjected to fully reversible tetrodotoxin (TTX) inactivation during consolidation in adult male Wistar rats that had undergone fear training to acoustic conditioned stimulus (CS) and context. TTX was stereotaxically administered to different groups of rats at increasing intervals after the acquisition session. Memory was assessed as the conditioned freezing duration measured during retention testing, always performed 72 and 96 h after TTX administration. In this way, there was no interference with normal NBM function during either acquisition or retrieval phases, allowing any amnesic effect to be due only to consolidation disruption. The results show that for contextual fear response memory consolidation, NBM functional integrity is necessary up to 24 h post-acquisition. On the other hand, NBM functional integrity was shown to be necessary for memory consolidation of the acoustic CS fear response only immediately after acquisition and not 24-h post-acquisition. The present findings help to elucidate the role of the NBM in memory consolidation and better define the neural circuits involved in fear memories.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Department of Physiological Sciences, University of Florence, Viale G.B. Morgagni 63, I-50134, Florence, Italy
| | - Chiara Mariottini
- Department of Physiological Sciences, University of Florence, Viale G.B. Morgagni 63, I-50134, Florence, Italy
| | - Corrado Bucherelli
- Department of Physiological Sciences, University of Florence, Viale G.B. Morgagni 63, I-50134, Florence, Italy
| |
Collapse
|
48
|
Carballo-Márquez A, Vale-Martínez A, Guillazo-Blanch G, Torras-Garcia M, Boix-Trelis N, Martí-Nicolovius M. Differential effects of muscarinic receptor blockade in prelimbic cortex on acquisition and memory formation of an odor-reward task. Learn Mem 2007; 14:616-24. [PMID: 17848501 PMCID: PMC1994078 DOI: 10.1101/lm.597507] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present experiments determined the consequences of blocking muscarinic cholinergic receptors of the prelimbic (PL) cortex in the acquisition and retention of an odor-reward associative task. Rats underwent a training test (five trials) and a 24-h retention test (two retention trials and two relearning trials). In the first experiment, rats were bilaterally infused with scopolamine (20 or 5 microg/site) prior to training. Although scopolamine rats showed acquisition equivalent to PBS-injected controls, they exhibited weakened performance in the 24-h retention test measured by number of errors. In the second experiment, rats were injected with scopolamine (20 microg/site) immediately or 1 h after training and tested 24 h later. Scopolamine rats injected immediately showed severe amnesia detected in two performance measures (errors and latencies), demonstrating deficits in retention and relearning, whereas those injected 1 h later showed good 24-h test performance, similar to controls. These results suggest that muscarinic transmission in the PL cortex is essential for early memory formation, but not for acquisition, of a rapidly learned odor discrimination task. Findings corroborate the role of acetylcholine in consolidation processes and the participation of muscarinic receptors in olfactory associative tasks.
Collapse
Affiliation(s)
- Anna Carballo-Márquez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Corresponding author.E-mail ; fax 34-93-5812001
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Meritxell Torras-Garcia
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Núria Boix-Trelis
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| |
Collapse
|
49
|
Ellis LD, Krahe R, Bourque CW, Dunn RJ, Chacron MJ. Muscarinic receptors control frequency tuning through the downregulation of an A-type potassium current. J Neurophysiol 2007; 98:1526-37. [PMID: 17615127 PMCID: PMC5053812 DOI: 10.1152/jn.00564.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional role of cholinergic input in the modulation of sensory responses was studied using a combination of in vivo and in vitro electrophysiology supplemented by mathematical modeling. The electrosensory system of weakly electric fish recognizes different environmental stimuli by their unique alteration of a self-generated electric field. Variations in the patterns of stimuli are primarily distinguished based on their frequency. Pyramidal neurons in the electrosensory lateral line lobe (ELL) are often tuned to respond to specific input frequencies. Alterations in the tuning of the pyramidal neurons may allow weakly electric fish to preferentially select for certain stimuli. Here we show that muscarinic receptor activation in vivo enhances the excitability, burst firing, and subsequently the response of pyramidal cells to naturalistic sensory input. Through a combination of in vitro electrophysiology and mathematical modeling, we reveal that this enhanced excitability and bursting likely results from the down-regulation of an A-type potassium current. Further, we provide an explanation of the mechanism by which these currents can mediate frequency tuning.
Collapse
Affiliation(s)
- Lee D Ellis
- Center for Research in Neuroscience, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
50
|
Saar D, Dadon M, Leibovich M, Sharabani H, Grossman Y, Heldman E. Opposing effects on muscarinic acetylcholine receptors in the piriform cortex of odor-trained rats. Learn Mem 2007; 14:224-8. [PMID: 17353547 PMCID: PMC1838562 DOI: 10.1101/lm.452307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We combined pharmacological studies and electrophysiological recordings to investigate modifications in muscarinic acetylcholine (ACh) receptors (mAChR) in the rat olfactory (piriform) cortex, following odor-discrimination rule learning. Rats were trained to discriminate between positive and negative cues in pairs of odors, until they reached a phase of high capability to learn unfamiliar odors, using the same paradigm ("rule learning"). It has been reported that at 1-3 d after the acquisition of odor-discrimination rule learning, pyramidal neurons in the rat piriform cortex show enhanced excitability, due to a reduction in the spike-activated potassium current I(AHP), which is modulated by ACh. Further, ACh and its analog, carbachol (CCh), lost the ability to reduce the I(AHP) in neurons from trained rats. Here we show that the reduced sensitivity to CCh in the piriform cortex results from a decrease in the number of mAChRs, as well as a reduction in the affinity of the receptors to CCh. Also, it has been reported that 3-8 d after the acquisition of odor-discrimination rule learning, synaptic transmission in the piriform cortex is enhanced, and paired-pulse facilitation (PPF) in response to twin stimulations is reduced. Here, intracellular recordings from pyramidal neurons show that CCh increases PPF in the piriform cortex from odor-trained rats more than in control rats, suggesting enhanced effect of ACh in inhibiting presynaptic glutamate release after odor training.
Collapse
Affiliation(s)
- Drorit Saar
- Department of Physiology, Faculty for Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | |
Collapse
|