1
|
Clayworth KV, Auld VJ. Dystroglycan mediates polarized deposition of laminin and axon ensheathment by wrapping glia. Development 2025; 152:dev204391. [PMID: 40309933 DOI: 10.1242/dev.204391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
The Drosophila peripheral nerve contains multiple layers of glial cells and an overlying extracellular matrix, which together support neuronal survival and function. The innermost glial layer, the wrapping glia (WG), ensheathes axons and facilitates action potential conduction. Recent work has identified involvement of laminin, a heterotrimeric extracellular matrix protein complex in WG development. However, the localization and function of laminin in the WG remains poorly understood. Here, we found that the α subunit, Laminin A (LanA), is dynamically expressed by WG, and loss of LanA results in a reduction in WG-axon contact. The deposition of LanA by WG is concentrated between WG and axons and is deposited preferentially around motor axons versus sensory axons. We identified Crag, a GDP-GTP exchange protein, as a factor that controls LanA deposition. We found that Dystroglycan also controls LanA deposition by the WG, and that both Dystroglycan and Dystrophin are present and necessary for WG ensheathment of axons. Thus, WG contain the highly conserved Dystroglycan/Dystrophin complex, which not only associates with deposited laminin but is necessary for the polarized deposition of laminin and the correct ensheathment of peripheral nerve axons.
Collapse
Affiliation(s)
- Katherine V Clayworth
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Vanessa J Auld
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
2
|
Clayworth K, Gilbert M, Auld V. Cell Biology Techniques for Studying Drosophila Peripheral Glial Cells. Cold Spring Harb Protoc 2024; 2024:pdb.top108159. [PMID: 37399179 DOI: 10.1101/pdb.top108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Glial cells are essential for the proper development and functioning of the peripheral nervous system (PNS). The ability to study the biology of glial cells is therefore critical for our ability to understand PNS biology and address PNS maladies. The genetic and proteomic pathways underlying vertebrate peripheral glial biology are understandably complex, with many layers of redundancy making it sometimes difficult to study certain facets of PNS biology. Fortunately, many aspects of vertebrate peripheral glial biology are conserved with those of the fruit fly, Drosophila melanogaster With simple and powerful genetic tools and fast generation times, Drosophila presents an accessible and versatile model for studying the biology of peripheral glia. We introduce here three techniques for studying the cell biology of peripheral glia of Drosophila third-instar larvae. With fine dissection tools and common laboratory reagents, third-instar larvae can be dissected, with extraneous tissues removed, revealing the central nervous system (CNS) and PNS to be processed using a standard immunolabeling protocol. To improve the resolution of peripheral nerves in the z-plane, we describe a cryosectioning method to achieve 10- to 20-µm thick coronal sections of whole larvae, which can then be immunolabeled using a modified version of standard immunolabeling techniques. Finally, we describe a proximity ligation assay (PLA) for detecting close proximity between two proteins-thus inferring protein interaction-in vivo in third-instar larvae. These methods, further described in our associated protocols, can be used to improve our understanding of Drosophila peripheral glia biology, and thus our understanding of PNS biology.
Collapse
Affiliation(s)
- Katherine Clayworth
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mary Gilbert
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vanessa Auld
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
3
|
Zhuravlev AV, Zalomaeva ES, Egozova ES, Sokurova VV, Nikitina EA, Savvateeva-Popova EV. LIM-kinase 1 effects on memory abilities and male courtship song in Drosophila depend on the neuronal type. Vavilovskii Zhurnal Genet Selektsii 2023; 27:250-263. [PMID: 37293442 PMCID: PMC10244584 DOI: 10.18699/vjgb-23-31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/10/2023] Open
Abstract
The signal pathway of actin remodeling, including LIM-kinase 1 (LIMK1) and its substrate cofilin, regulates multiple processes in neurons of vertebrates and invertebrates. Drosophila melanogaster is widely used as a model object for studying mechanisms of memory formation, storage, retrieval and forgetting. Previously, active forgetting in Drosophila was investigated in the standard Pavlovian olfactory conditioning paradigm. The role of specific dopaminergic neurons (DAN) and components of the actin remodeling pathway in different forms of forgetting was shown. In our research, we investigated the role of LIMK1 in Drosophila memory and forgetting in the conditioned courtship suppression paradigm (CCSP). In the Drosophila brain, LIMK1 and p-cofilin levels appeared to be low in specific neuropil structures, including the mushroom body (MB) lobes and the central complex. At the same time, LIMK1 was observed in cell bodies, such as DAN clusters regulating memory formation in CCSP. We applied GAL4 × UAS binary system to induce limk1 RNA interference in different types of neurons. The hybrid strain with limk1 interference in MB lobes and glia showed an increase in 3-h short-term memory (STM), without significant effects on long-term memory. limk1 interference in cholinergic neurons (CHN) impaired STM, while its interference in DAN and serotoninergic neurons (SRN) also dramatically impaired the flies' learning ability. By contrast, limk1 interference in fruitless neurons (FRN) resulted in increased 15-60 min STM, indicating a possible LIMK1 role in active forgetting. Males with limk1 interference in CHN and FRN also showed the opposite trends of courtship song parameters changes. Thus, LIMK1 effects on the Drosophila male memory and courtship song appeared to depend on the neuronal type or brain structure.
Collapse
Affiliation(s)
- A V Zhuravlev
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - E S Zalomaeva
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, RussiaHerzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E S Egozova
- Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - V V Sokurova
- Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E A Nikitina
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E V Savvateeva-Popova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Das M, Cheng D, Matzat T, Auld VJ. Innexin-Mediated Adhesion between Glia Is Required for Axon Ensheathment in the Peripheral Nervous System. J Neurosci 2023; 43:2260-2276. [PMID: 36801823 PMCID: PMC10072304 DOI: 10.1523/jneurosci.1323-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Glia are essential to protecting and enabling nervous system function and a key glial function is the formation of the glial sheath around peripheral axons. Each peripheral nerve in the Drosophila larva is ensheathed by three glial layers, which structurally support and insulate the peripheral axons. How peripheral glia communicate with each other and between layers is not well established and we investigated the role of Innexins in mediating glial function in the Drosophila periphery. Of the eight Drosophila Innexins, we found two (Inx1 and Inx2) are important for peripheral glia development. In particular loss of Inx1 and Inx2 resulted in defects in the wrapping glia leading to disruption of the glia wrap. Of interest loss of Inx2 in the subperineurial glia also resulted in defects in the neighboring wrapping glia. Inx plaques were observed between the subperineurial glia and the wrapping glia suggesting that gap junctions link these two glial cell types. We found Inx2 is key to Ca2+ pulses in the peripheral subperineurial glia but not in the wrapping glia, and we found no evidence of gap junction communication between subperineurial and wrapping glia. Rather we have clear evidence that Inx2 plays an adhesive and channel-independent role between the subperineurial and wrapping glia to ensure the integrity of the glial wrap.SIGNIFICANCE STATEMENT Gap junctions are critical for glia communication and formation of myelin in myelinating glia. However, the role of gap junctions in non-myelinating glia is not well studied, yet non-myelinating glia are critical for peripheral nerve function. We found the Innexin gap junction proteins are present between different classes of peripheral glia in Drosophila. Here Innexins form junctions to facilitate adhesion between the different glia but do so in a channel-independent manner. Loss of adhesion leads to disruption of the glial wrap around axons and leads to fragmentation of the wrapping glia membranes. Our work points to an important role for gap junction proteins in mediating insulation by non-myelinating glia.
Collapse
Affiliation(s)
- Mriga Das
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Duo Cheng
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Till Matzat
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Vanessa J Auld
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
5
|
Delta/Notch signaling in glia maintains motor nerve barrier function and synaptic transmission by controlling matrix metalloproteinase expression. Proc Natl Acad Sci U S A 2022; 119:e2110097119. [PMID: 35969789 PMCID: PMC9407389 DOI: 10.1073/pnas.2110097119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have made a surprising discovery linking Delta/Notch signaling in subperineurial glia (SPG) to the regulation of nerve ensheathment and neurotransmitter release at the Drosophila neuromuscular junction (NMJ). SPG, the counterpart of the endothelial layer in the vertebrate blood–brain barrier, form the key cellular layer that is critical for axonal ensheathment and the blood–brain barrier in Drosophila. Our findings demonstrate that Delta/Notch signaling exerts a constitutive negative inhibition on JNK signaling in SPG, thereby limiting the expression of Mmp1, a matrix metalloproteinase. SPG-specific and temporally regulated knockdown of Delta leads to breakdown of barrier function and compromises neurotransmitter release at the NMJ. Our results provide a mechanistic insight into the biology of barrier function and glia–neuron interactions. While the role of barrier function in establishing a protective, nutrient-rich, and ionically balanced environment for neurons has been appreciated for some time, little is known about how signaling cues originating in barrier-forming cells participate in maintaining barrier function and influence synaptic activity. We have identified Delta/Notch signaling in subperineurial glia (SPG), a crucial glial type for Drosophila motor axon ensheathment and the blood–brain barrier, to be essential for controlling the expression of matrix metalloproteinase 1 (Mmp1), a major regulator of the extracellular matrix (ECM). Our genetic analysis indicates that Delta/Notch signaling in SPG exerts an inhibitory control on Mmp1 expression. In the absence of this inhibition, abnormally enhanced Mmp1 activity disrupts septate junctions and glial ensheathment of peripheral motor nerves, compromising neurotransmitter release at the neuromuscular junction (NMJ). Temporally controlled and cell type–specific transgenic analysis shows that Delta/Notch signaling inhibits transcription of Mmp1 by inhibiting c-Jun N-terminal kinase (JNK) signaling in SPG. Our results provide a mechanistic insight into the regulation of neuronal health and function via glial-initiated signaling and open a framework for understanding the complex relationship between ECM regulation and the maintenance of barrier function.
Collapse
|
6
|
Byrne DJ, Garcia-Pardo ME, Cole NB, Batnasan B, Heneghan S, Sohail A, Blackstone C, O'Sullivan NC. Liver X receptor-agonist treatment rescues degeneration in a Drosophila model of hereditary spastic paraplegia. Acta Neuropathol Commun 2022; 10:40. [PMID: 35346366 PMCID: PMC8961908 DOI: 10.1186/s40478-022-01343-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of inherited, progressive neurodegenerative conditions characterised by prominent lower-limb spasticity and weakness, caused by a length-dependent degeneration of the longest corticospinal upper motor neurons. While more than 80 spastic paraplegia genes (SPGs) have been identified, many cases arise from mutations in genes encoding proteins which generate and maintain tubular endoplasmic reticulum (ER) membrane organisation. The ER-shaping proteins are essential for the health and survival of long motor neurons, however the mechanisms by which mutations in these genes cause the axonopathy observed in HSP have not been elucidated. To further develop our understanding of the ER-shaping proteins, this study outlines the generation of novel in vivo and in vitro models, using CRISPR/Cas9-mediated gene editing to knockout the ER-shaping protein ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1), mutations in which give rise to the HSP subtype SPG61. Loss of Arl6IP1 in Drosophila results in progressive locomotor deficits, emulating a key aspect of HSP in patients. ARL6IP1 interacts with ER-shaping proteins and is required for regulating the organisation of ER tubules, particularly within long motor neuron axons. Unexpectedly, we identified physical and functional interactions between ARL6IP1 and the phospholipid transporter oxysterol-binding protein-related protein 8 in both human and Drosophila model systems, pointing to a conserved role for ARL6IP1 in lipid homeostasis. Furthermore, loss of Arl6IP1 from Drosophila neurons results in a cell non-autonomous accumulation of lipid droplets in axonal glia. Importantly, treatment with lipid regulating liver X receptor-agonists blocked lipid droplet accumulation, restored axonal ER organisation, and improved locomotor function in Arl6IP1 knockout Drosophila. Our findings indicate that disrupted lipid homeostasis contributes to neurodegeneration in HSP, identifying a potential novel therapeutic avenue for the treatment of this disorder.
Collapse
Affiliation(s)
- Dwayne J Byrne
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Nelson B Cole
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Belguun Batnasan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sophia Heneghan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Anood Sohail
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
7
|
Yildirim K, Winkler B, Pogodalla N, Mackensen S, Baldenius M, Garcia L, Naffin E, Rodrigues S, Klämbt C. Redundant functions of the SLC5A transporters Rumpel, Bumpel, and Kumpel in ensheathing glial cells. Biol Open 2021; 11:274028. [PMID: 34897385 PMCID: PMC8790523 DOI: 10.1242/bio.059128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/20/2022] Open
Abstract
Neuronal processing is energy demanding, and relies on sugar metabolism. To nurture the Drosophila nervous system, the blood-brain barrier forming glial cells take up trehalose from the hemolymph and then distribute the metabolic products further to all neurons. This function is provided by glucose and lactate transporters of the solute carrier (SLC) 5A family. Here we identified three SLC5A genes that are specifically expressed in overlapping sets of CNS glial cells, rumpel, bumpel and kumpel. We generated mutants in all genes and all mutants are viable and fertile, lacking discernible phenotypes. Loss of rumpel causes subtle locomotor phenotypes and flies display increased daytime sleep. In addition, in bumpel kumpel double mutants, and to an even greater extent in rumpel bumpel kumpel triple mutants, oogenesis is disrupted at the onset of the vitollegenic phase. This indicates a partially redundant functions between these genes. Rescue experiments exploring this effect indicate that oogenesis can be affected by CNS glial cells. Moreover, expression of heterologous mammalian SLC5A transporters, with known transport properties, suggest that Bumpel and/or Kumpel transport glucose or lactate. Overall, our results imply a redundancy in SLC5A nutrient sensing functions in Drosophila glial cells, affecting ovarian development and behavior.
Collapse
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany.,Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Im Neuenheimer Feld 230, 9120 Heidelberg, Germany
| | - Bente Winkler
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Nicole Pogodalla
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Steffi Mackensen
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Marie Baldenius
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Luis Garcia
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Silke Rodrigues
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
8
|
Böhme MA, McCarthy AW, Blaum N, Berezeckaja M, Ponimaskine K, Schwefel D, Walter AM. Glial Synaptobrevin mediates peripheral nerve insulation, neural metabolic supply, and is required for motor function. Glia 2021; 69:1897-1915. [PMID: 33811396 DOI: 10.1002/glia.24000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023]
Abstract
Peripheral nerves contain sensory and motor neuron axons coated by glial cells whose interplay ensures function, but molecular details are lacking. SNARE-proteins mediate the exchange and secretion of cargo by fusing vesicles with target organelles, but how glial SNAREs contribute to peripheral nerve function is largely unknown. We, here, identify non-neuronal Synaptobrevin (Syb) as the essential vesicular SNARE in Drosophila peripheral glia to insulate and metabolically supply neurons. We show that tetanus neurotoxin light chain (TeNT-LC), which potently inhibits SNARE-mediated exocytosis from neurons, also impairs peripheral nerve function when selectively expressed in glia, causing nerve disintegration, defective axonal transport, tetanic muscle hyperactivity, impaired locomotion, and lethality. While TeNT-LC disrupts neural function by cleaving neuronal Synaptobrevin (nSyb), it targets non-neuronal Synaptobrevin (Syb) in glia, which it cleaves at low rates: Glial knockdown of Syb (but not nSyb) phenocopied glial TeNT-LC expression whose effects were reverted by a TeNT-LC-insensitive Syb mutant. We link Syb-necessity to two distinct glial subtypes: Impairing Syb function in subperineurial glia disrupted nerve morphology, axonal transport, and locomotion, likely, because nerve-isolating septate junctions (SJs) could not form as essential SJ components (like the cell adhesion protein Neurexin-IV) were mistargeted. Interference with Syb in axon-encircling wrapping glia left nerve morphology and locomotion intact but impaired axonal transport, likely because neural metabolic supply was disrupted due to the mistargeting of metabolite shuffling monocarboxylate transporters. Our study identifies crucial roles of Syb in various glial subtypes to ensure glial-glial and glial-neural interplay needed for proper nerve function, animal motility, and survival.
Collapse
Affiliation(s)
- Mathias A Böhme
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany.,Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anthony W McCarthy
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany
| | - Natalie Blaum
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany
| | - Monika Berezeckaja
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany
| | - Kristina Ponimaskine
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany
| | - David Schwefel
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander M Walter
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany.,Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Li H, Lones L, DiAntonio A. Bidirectional regulation of glial potassium buffering - glioprotection versus neuroprotection. eLife 2021; 10:62606. [PMID: 33646119 PMCID: PMC7946421 DOI: 10.7554/elife.62606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Glia modulate neuronal excitability and seizure sensitivity by maintaining potassium and water homeostasis. A salt inducible kinase 3 (SIK3)-regulated gene expression program controls the glial capacity to buffer K+ and water in Drosophila, however upstream regulatory mechanisms are unknown. Here, we identify an octopaminergic circuit linking neuronal activity to glial ion and water buffering. Under basal conditions, octopamine functions through the inhibitory octopaminergic G-protein-coupled receptor (GPCR) OctβR to upregulate glial buffering capacity, while under pathological K+ stress, octopamine signals through the stimulatory octopaminergic GPCR OAMB1 to downregulate the glial buffering program. Failure to downregulate this program leads to intracellular glia swelling and stress signaling, suggesting that turning down this pathway is glioprotective. In the eag shaker Drosophila seizure model, the SIK3-mediated buffering pathway is inactivated. Reactivation of the glial buffering program dramatically suppresses neuronal hyperactivity, seizures, and shortened life span in this mutant. These findings highlight the therapeutic potential of a glial-centric therapeutic strategy for diseases of hyperexcitability.
Collapse
Affiliation(s)
- Hailun Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, United States
| | - Lorenzo Lones
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, United States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, United States.,Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, United States
| |
Collapse
|
10
|
Wrapping glia regulates neuronal signaling speed and precision in the peripheral nervous system of Drosophila. Nat Commun 2020; 11:4491. [PMID: 32901033 PMCID: PMC7479103 DOI: 10.1038/s41467-020-18291-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the peripheral nervous system of Drosophila larvae to determine how glia regulates axonal properties. We show that wrapping glial differentiation depends on gap junctions and FGF-signaling. Abnormal glial differentiation affects axonal diameter and conductance velocity and causes mild behavioral phenotypes that can be rescued by a sphingosine-rich diet. Ablation of wrapping glia does not further impair axonal diameter and conductance velocity but causes a prominent locomotion phenotype that cannot be rescued by sphingosine. Moreover, optogenetically evoked locomotor patterns do not depend on conductance speed but require the presence of wrapping glial processes. In conclusion, our data indicate that wrapping glia modulates both speed and precision of neuronal signaling.
Collapse
|
11
|
Basigin Associates with Integrin in Order to Regulate Perineurial Glia and Drosophila Nervous System Morphology. J Neurosci 2020; 40:3360-3373. [PMID: 32265259 DOI: 10.1523/jneurosci.1397-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
The Drosophila nervous system is ensheathed by a layer of outer glial cells, the perineurial glia, and a specialized extracellular matrix, the neural lamella. The function of perineurial glial cells and how they interact with the extracellular matrix are just beginning to be elucidated. Integrin-based focal adhesion complexes link the glial membrane to the extracellular matrix, but little is known about integrin's regulators in the glia. The transmembrane Ig domain protein Basigin/CD147/EMMPRIN is highly expressed in the perineurial glia surrounding the Drosophila larval nervous system. Here we show that Basigin associates with integrin at the focal adhesions to uphold the structure of the glia-extracellular matrix sheath. Knockdown of Basigin in perineurial glia using RNAi results in significant shortening of the ventral nerve cord, compression of the glia and extracellular matrix in the peripheral nerves, and reduction in larval locomotion. We determined that Basigin is expressed in close proximity to integrin at the glial membrane, and that expression of the extracellular integrin-binding domain of Basigin is sufficient to rescue peripheral glial compression. We also found that a reduction in expression of integrin at the membrane rescues the ventral nerve cord shortening, peripheral glial compression, and locomotor phenotypes, and that reduction in the integrin-binding protein Talin can partially rescue glial compression. These results identify Basigin as a potential negative regulator of integrin in the glia, supporting proper glial and extracellular matrix ensheathment of the nervous system.SIGNIFICANCE STATEMENT The glial cells and extracellular matrix play important roles in supporting and protecting the nervous system, but the interactions between these components have not been well characterized. Our study identified expression of a conserved Ig superfamily protein, Basigin, at the glial membrane of Drosophila where it associates with the integrin-based focal adhesion complexes to ensure proper ensheathment of the CNS and PNS. Loss of Basigin in the glia results in an overall compression of the nervous system due to integrin dysregulation, which causes locomotor defects in the animals. This underlies the importance of glia-matrix communication for structural and functional support of the nervous system.
Collapse
|
12
|
Li H, Russo A, DiAntonio A. SIK3 suppresses neuronal hyperexcitability by regulating the glial capacity to buffer K + and water. J Cell Biol 2019; 218:4017-4029. [PMID: 31645458 PMCID: PMC6891094 DOI: 10.1083/jcb.201907138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023] Open
Abstract
Glial regulation of extracellular potassium (K+) helps to maintain appropriate levels of neuronal excitability. While channels and transporters mediating K+ and water transport are known, little is understood about upstream regulatory mechanisms controlling the glial capacity to buffer K+ and osmotically obliged water. Here we identify salt-inducible kinase 3 (SIK3) as the central node in a signal transduction pathway controlling glial K+ and water homeostasis in Drosophila Loss of SIK3 leads to dramatic extracellular fluid accumulation in nerves, neuronal hyperexcitability, and seizures. SIK3-dependent phenotypes are exacerbated by K+ stress. SIK3 promotes the cytosolic localization of HDAC4, thereby relieving inhibition of Mef2-dependent transcription of K+ and water transport molecules. This transcriptional program controls the glial capacity to regulate K+ and water homeostasis and modulate neuronal excitability. We identify HDAC4 as a candidate therapeutic target in this pathway, whose inhibition can enhance the K+ buffering capacity of glia, which may be useful in diseases of dysregulated K+ homeostasis and hyperexcitability.
Collapse
Affiliation(s)
- Hailun Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Alexandra Russo
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
13
|
Hall MJR, Martín-Vega D. Visualization of insect metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190071. [PMID: 31438819 DOI: 10.1098/rstb.2019.0071] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metamorphosis and, in particular, holometaboly, the development of organisms through a series of discrete stages (egg, larva, pupa, adult) that hardly resemble one another but are finely adapted to specific roles in the life cycle of the organism, has fascinated and mystified humans throughout history. However, it can be difficult to visualize the dramatic changes that occur during holometaboly without destructive sampling, traditionally through histology. However, advances in imaging technologies developed mainly for medical sciences have been applied to studies of insect metamorphosis over the past couple of decades. These include micro-computed tomography, magnetic resonance imaging and optical coherence tomography. A major advantage of these techniques is that they are rapid and non-destructive, enabling virtual dissection of an organism in any plane by anyone who has access to the image files and the necessary software. They can also be applied in some cases to visualize metamorphosis in vivo, including the periods of most rapid and dramatic morphological change. This review focusses on visualizing the intra-puparial holometabolous metamorphosis of cyclorraphous flies (Diptera), including the primary model organism for all genetic investigations, Drosophila melanogaster, and the blow flies of medical, veterinary and forensic importance, but also discusses similar studies on other insect orders. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Martin J R Hall
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Daniel Martín-Vega
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.,Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
14
|
Liu K, Jones S, Minis A, Rodriguez J, Molina H, Steller H. PI31 Is an Adaptor Protein for Proteasome Transport in Axons and Required for Synaptic Development. Dev Cell 2019; 50:509-524.e10. [PMID: 31327739 DOI: 10.1016/j.devcel.2019.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/18/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Protein degradation by the ubiquitin-proteasome system is critical for neuronal function. Neurons utilize microtubule-dependent molecular motors to allocate proteasomes to synapses, but how proteasomes are coupled to motors and how this is regulated to meet changing demand for protein breakdown remain largely unknown. We show that the conserved proteasome-binding protein PI31 serves as an adaptor to couple proteasomes with dynein light chain proteins (DYNLL1/2). The inactivation of PI31 inhibited proteasome motility in axons and disrupted synaptic proteostasis, structure, and function. Moreover, phosphorylation of PI31 by p38 MAPK enhanced binding to DYNLL1/2 and promoted the directional movement of proteasomes in axons, suggesting a mechanism to regulate loading of proteasomes onto motors. Inactivation of PI31 in mouse neurons attenuated proteasome movement in axons, indicating this process is conserved. Because mutations affecting PI31 activity are associated with human neurodegenerative diseases, impairment of PI31-mediated axonal transport of proteasomes may contribute to these disorders.
Collapse
Affiliation(s)
- Kai Liu
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sandra Jones
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Adi Minis
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jose Rodriguez
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
15
|
Shimozono M, Osaka J, Kato Y, Araki T, Kawamura H, Takechi H, Hakeda-Suzuki S, Suzuki T. Cell surface molecule, Klingon, mediates the refinement of synaptic specificity in the Drosophila visual system. Genes Cells 2019; 24:496-510. [PMID: 31124270 DOI: 10.1111/gtc.12703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/04/2019] [Accepted: 05/19/2019] [Indexed: 11/29/2022]
Abstract
In the Drosophila brain, neurons form genetically specified synaptic connections with defined neuronal targets. It is proposed that each central nervous system neuron expresses specific cell surface proteins, which act as identification tags. Through an RNAi screen of cell surface molecules in the Drosophila visual system, we found that the cell adhesion molecule Klingon (Klg) plays an important role in repressing the ectopic formation of extended axons, preventing the formation of excessive synapses. Cell-specific manipulation of klg showed that Klg is required in both photoreceptors and the glia, suggesting that the balanced homophilic interaction between photoreceptor axons and the glia is required for normal synapse formation. Previous studies suggested that Klg binds to cDIP and our genetic analyses indicate that cDIP is required in glia for ectopic synaptic repression. These data suggest that Klg play a critical role together with cDIP in refining synaptic specificity and preventing unnecessary connections in the brain.
Collapse
Affiliation(s)
- Mai Shimozono
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Jiro Osaka
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Yuya Kato
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Tomohiro Araki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Hinata Kawamura
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Hiroki Takechi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Satoko Hakeda-Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Takashi Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| |
Collapse
|
16
|
McLaughlin CN, Perry-Richardson JJ, Coutinho-Budd JC, Broihier HT. Dying Neurons Utilize Innate Immune Signaling to Prime Glia for Phagocytosis during Development. Dev Cell 2019; 48:506-522.e6. [PMID: 30745142 DOI: 10.1016/j.devcel.2018.12.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
Glia continuously survey neuronal health during development, providing trophic support to healthy neurons while rapidly engulfing dying ones. These diametrically opposed functions necessitate a foolproof mechanism enabling glia to unambiguously identify those neurons to support versus those to engulf. To ensure specificity, glia are proposed to interact with dying neurons via a series of carefully choreographed steps. However, these crucial interactions are largely obscure. Here we show that dying neurons and glia communicate via Toll-receptor-regulated innate immune signaling. Neuronal apoptosis drives processing and activation of the Toll-6 ligand, Spätzle5. This cue activates a dSARM-mediated Toll-6 transcriptional pathway in glia, which controls the expression of the Draper engulfment receptor. Pathway loss drives early-onset neurodegeneration, underscoring its functional importance. Our results identify an upstream priming signal that prepares glia for phagocytosis. Thus, a core innate immune pathway plays an unprecedented role setting the valence of neuron-glia interactions during development.
Collapse
Affiliation(s)
- Colleen N McLaughlin
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Jahci J Perry-Richardson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
17
|
Hans VR, Wendt TI, Patel AM, Patel MM, Perez L, Talbot DE, Jemc JC. Raw regulates glial population of the eye imaginal disc. Genesis 2018; 56:e23254. [DOI: 10.1002/dvg.23254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 01/25/2023]
Affiliation(s)
| | - Taylor I. Wendt
- Department of BiologyLoyola University Chicago Chicago Illinois
| | | | - Mit M. Patel
- Department of BiologyLoyola University Chicago Chicago Illinois
| | - Luselena Perez
- Department of BiologyLoyola University Chicago Chicago Illinois
| | | | | |
Collapse
|
18
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
19
|
Park HH, Park MS, Na KJ. Development of Central Nervous System in Scuttle Fly. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2018. [DOI: 10.15324/kjcls.2018.50.3.284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ho-Hyun Park
- Department of Biomedical Laboratory Science, Mokpo Science University, Mokpo, Korea
| | - Mi-Suk Park
- Department of Medical Laboratory Science, Gimhae College, Gimhae, Korea
| | - Kil-Ju Na
- Department of Radiology Science, Mokpo Science University, Mokpo, Korea
| |
Collapse
|
20
|
Lovick JK, Omoto JJ, Ngo KT, Hartenstein V. Development of the anterior visual input pathway to the Drosophila central complex. J Comp Neurol 2017; 525:3458-3475. [PMID: 28675433 DOI: 10.1002/cne.24277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
The anterior visual pathway (AVP) conducts visual information from the medulla of the optic lobe via the anterior optic tubercle (AOTU) and bulb (BU) to the ellipsoid body (EB) of the central complex. The anatomically defined neuron classes connecting the AOTU, BU, and EB represent discrete lineages, genetically and developmentally specified sets of cells derived from common progenitors (Omoto et al., Current Biology, 27, 1098-1110, 2017). In this article, we have analyzed the formation of the AVP from early larval to adult stages. The immature fiber tracts of the AVP, formed by secondary neurons of lineages DALcl1/2 and DALv2, assemble into structurally distinct primordia of the AOTU, BU, and EB within the late larval brain. During the early pupal period (P6-P48) these primordia grow in size and differentiate into the definitive subcompartments of the AOTU, BU, and EB. The primordium of the EB has a complex composition. DALv2 neurons form the anterior EB primordium, which starts out as a bilateral structure, then crosses the midline between P6 and P12, and subsequently bends to adopt the ring shape of the mature EB. Columnar neurons of the central complex, generated by the type II lineages DM1-4, form the posterior EB primordium. Starting out as an integral part of the fan-shaped body primordium, the posterior EB primordium moves forward and merges with the anterior EB primordium. We document the extension of neuropil glia around the nascent EB and BU, and analyze the relationship of primary and secondary neurons of the AVP lineages.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
21
|
Sasse S, Klämbt C. Repulsive Epithelial Cues Direct Glial Migration along the Nerve. Dev Cell 2017; 39:696-707. [PMID: 27997826 DOI: 10.1016/j.devcel.2016.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/14/2016] [Accepted: 11/19/2016] [Indexed: 11/29/2022]
Abstract
Most glial cells show pronounced migratory abilities and generally follow axonal trajectories to reach their final destination. However, the molecular cues controlling their directional migration are largely unknown. To address this, we established glial migration onto the developing Drosophila leg imaginal disc as a model. Here, CNS-derived glial cells move along nerves containing motoaxons and sensory axons. Along their path, glial cells encounter at least three choice points where directional decisions are needed. Subsequent genetic analyses allowed uncovering mechanisms that escaped previous studies. Most strikingly, we found that glial cells require the expression of the repulsive guidance receptors PlexinA/B and Robo2 to prevent breaking away from the nerve. Interestingly, the repulsive ligands are presented by the underlying leg imaginal disc epithelium, which appears to push glial cells toward the axon fascicle. In conclusion, nerve formation not only requires neuron-glia interaction but also depends on glial-epithelial communication.
Collapse
Affiliation(s)
- Sofia Sasse
- Institut für Neuro- und Verhaltensbiologie, Badestraße 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Badestraße 9, 48149 Münster, Germany.
| |
Collapse
|
22
|
Subramanian A, Siefert M, Banerjee S, Vishal K, Bergmann KA, Curts CCM, Dorr M, Molina C, Fernandes J. Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila. Dev Neurobiol 2017; 77:1144-1160. [PMID: 28388016 DOI: 10.1002/dneu.22502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/30/2022]
Abstract
Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017.
Collapse
Affiliation(s)
- Aswati Subramanian
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| | - Matthew Siefert
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Soumya Banerjee
- École Polytechnique Fédérale De Lausanne, Lausanne, CH-1015, Switzerland
| | | | - Kayla A Bergmann
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| | - Clay C M Curts
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| | - Meredith Dorr
- Barrington Health and Dental Center, 3401 East Raymond St., Indianapolis, IN, 46203
| | - Camillo Molina
- The Johns Hopkins School of Medicine, Baltimore, Maryland, 21287
| | - Joyce Fernandes
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| |
Collapse
|
23
|
Accumulation of Laminin Monomers in Drosophila Glia Leads to Glial Endoplasmic Reticulum Stress and Disrupted Larval Locomotion. J Neurosci 2016; 36:1151-64. [PMID: 26818504 DOI: 10.1523/jneurosci.1797-15.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The nervous system is surrounded by an extracellular matrix composed of large glycoproteins, including perlecan, collagens, and laminins. Glial cells in many organisms secrete laminin, a large heterotrimeric protein consisting of an α, β, and γ subunit. Prior studies have found that loss of laminin subunits from vertebrate Schwann cells causes loss of myelination and neuropathies, results attributed to loss of laminin-receptor signaling. We demonstrate that loss of the laminin γ subunit (LanB2) in the peripheral glia of Drosophila melanogaster results in the disruption of glial morphology due to disruption of laminin secretion. Specifically, knockdown of LanB2 in peripheral glia results in accumulation of the β subunit (LanB1), leading to distended endoplasmic reticulum (ER), ER stress, and glial swelling. The physiological consequences of disruption of laminin secretion in glia included decreased larval locomotion and ultimately lethality. Loss of the γ subunit from wrapping glia resulted in a disruption in the glial ensheathment of axons but surprisingly did not affect animal locomotion. We found that Tango1, a protein thought to exclusively mediate collagen secretion, is also important for laminin secretion in glia via a collagen-independent mechanism. However loss of secretion of the laminin trimer does not disrupt animal locomotion. Rather, it is the loss of one subunit that leads to deleterious consequences through the accumulation of the remaining subunits. SIGNIFICANCE STATEMENT This research presents a new perspective on how mutations in the extracellular matrix protein laminin cause severe consequences in glial wrapping and function. Glial-specific loss of the β or γ laminin subunit disrupted glia morphology and led to ER expansion and stress due to retention of other subunits. The retention of the unpaired laminin subunit was key to the glial disruption as loss of Tango1 blocked secretion of the complete laminin trimer but did not lead to glial or locomotion defects. The effects were observed in the perineurial glia that envelope the peripheral and central nervous systems, providing evidence for the importance of this class of glia in supporting nervous system function.
Collapse
|
24
|
Risse B, Otto N, Berh D, Kiel M, Klambt C. FIM$^{2c\;}$: Multicolor, Multipurpose Imaging System to Manipulate and Analyze Animal Behavior. IEEE Trans Biomed Eng 2016; 64:610-620. [PMID: 28113210 DOI: 10.1109/tbme.2016.2570598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In vivo whole-body imaging of small animals plays an important role for biomedical studies. In particular, animals like the fruit fly Drosophila melanogaster or the nematode Caenorhabditis elegans are popular model organisms for preclinical research since they offer sophisticated genetic tool-kits. Recording these translucent animals with high contrast in a large arena is however not trivial. Furthermore, fluorescent proteins are widely used to mark cells in vivo and report their functions. This paper introduces a novel optical imaging technique called FIM2c enabling simultaneous detection of the animals posture and movement as well as fluorescent markers like green fluorescent protein (GFP). FIM2c utilizes frustrated total internal reflection of two distinct wavelengths and captures both, reflected and emitted light. The resultant two-color high-contrast images are superb compared to other imaging systems for larvae or worms. This multipurpose method enables a large variety of different experimental approaches. For example, FIM2c can be used to image GFP positive cells/tissues/animals and supports the integration of fluorescent tracers into multitarget tracking paradigms. Moreover, optogenetic tools can be applied in large-scale behavioral analysis to manipulate and study neuronal functions. To demonstrate the benefit of our system, we use FIM2c to resolve colliding larvae in a high-throughput approach, which was impossible given the existing tools. Finally, we present a comprehensive database including images and locomotion features of more than 1300 resolved collisions available for the community. In conclusion, FIM2c is a versatile tool for advanced imaging and locomotion analysis for a variety of different model organisms.
Collapse
|
25
|
Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, Stender B, Janosch S, K J VV, Krishnan RT, Krishnamoorthy A, Ferreira IRS, Ejsmont RK, Finkl K, Hasse S, Kämpfer P, Plewka N, Vinis E, Schloissnig S, Knust E, Hartenstein V, Mann M, Ramaswami M, VijayRaghavan K, Tomancak P, Schnorrer F. A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 2016; 5:e12068. [PMID: 26896675 PMCID: PMC4805545 DOI: 10.7554/elife.12068] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI:http://dx.doi.org/10.7554/eLife.12068.001 The fruit fly Drosophila melanogaster is a popular model organism in biological research. Studies using Drosophila have led to important insights into human biology, because related proteins often fulfil similar roles in flies and humans. Thus, studying the role of a protein in Drosophila can teach us about what it might do in a human. To fulfil their biological roles, proteins often occupy particular locations inside cells, such as the cell’s nucleus or surface membrane. Many proteins are also only found in specific types of cell, such as neurons or muscle cells. A protein’s location thus provides clues about what it does, however cells contain many thousands of proteins and identifying the location of each one is a herculean task. Sarov et al. took on this challenge and developed a new resource to study the localisation of all Drosophila proteins during this animal’s development. First, genetic engineering was used to tag thousands of Drosophila proteins with a green fluorescent protein, so that they could be tracked under a microscope. Sarov et al. tagged about 10000 Drosophila proteins in bacteria, and then introduced almost 900 of them into flies to create genetically modified flies. Each fly line contains an extra copy of the tagged gene that codes for one tagged protein. About two-thirds of these tagged proteins appeared to work normally after they were introduced into flies. Sarov et al. then looked at over 200 of these fly lines in more detail and observed that many of the proteins were found in particular cell types and localized to specific parts of the cells. Video imaging of the tagged proteins in living fruit fly embryos and pupae revealed the proteins’ movements, while other techniques showed which proteins bind to the tagged proteins, and may therefore work together in protein complexes. This resource is openly available to the community, and so researchers can use it to study their favourite protein and gain new insights into how proteins work and are regulated during Drosophila development. Following on from this work, the next challenge will be to create more flies carrying tagged proteins, and to swap the green fluorescent tag with other experimentally useful tags. DOI:http://dx.doi.org/10.7554/eLife.12068.002
Collapse
Affiliation(s)
- Mihail Sarov
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Helena Jambor
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Dana Suchold
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Bettina Stender
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stephan Janosch
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Vinay Vikas K J
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - R T Krishnan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Aishwarya Krishnamoorthy
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Irene R S Ferreira
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Katja Finkl
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne Hasse
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Philipp Kämpfer
- Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
| | - Nicole Plewka
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elisabeth Vinis
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | | | - Elisabeth Knust
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mani Ramaswami
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - K VijayRaghavan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Pavel Tomancak
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
26
|
Kurz S, King JG, Dinglasan RR, Paschinger K, Wilson IBH. The fucomic potential of mosquitoes: Fucosylated N-glycan epitopes and their cognate fucosyltransferases. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 68:52-63. [PMID: 26617287 PMCID: PMC4707139 DOI: 10.1016/j.ibmb.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 05/12/2023]
Abstract
Fucoconjugates are key mediators of protein-glycan interactions in prokaryotes and eukaryotes. As examples, N-glycans modified with the non-mammalian core α1,3-linked fucose have been detected in various organisms ranging from plants to insects and are immunogenic in mammals. The rabbit polyclonal antibody raised against plant horseradish peroxidase (anti-HRP) is able to recognize the α1,3-linked fucose epitope and is also known to specifically stain neural tissues in the fruit fly Drosophila melanogaster. In this study, we have detected and localized the anti-HRP cross-reactivity in another insect species, the malaria mosquito vector Anopheles gambiae. We were able to identify and structurally elucidate fucosylated N-glycans including core mono- and difucosylated structures (responsible for anti-HRP cross reactivity) as well as a Lewis-type antennal modification on mosquito anionic N-glycans by applying enzymatic and chemical treatments. The three mosquito fucosyltransferase open reading frames (FucT6, FucTA and FucTC) required for the in vivo biosynthesis of the fucosylated N-glycan epitopes were identified in the Anopheles gambiae genome, cloned and recombinantly expressed in Pichia pastoris. Using a robust MALDI-TOF MS approach, we characterised the activity of the three recombinant fucosyltransferases in vitro and demonstrate that they share similar enzymatic properties as compared to their homologues from D. melanogaster and Apis mellifera. Thus, not only do we confirm the neural reactivity of anti-HRP in a mosquito species, but also demonstrate enzymatic activity for all its α1,3- and α1,6-fucosyltransferase homologues, whose specificity matches the results of glycomic analyses.
Collapse
Affiliation(s)
- Simone Kurz
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Jonas G King
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & The Malaria Research Institute, Baltimore, MD 21205, USA
| | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & The Malaria Research Institute, Baltimore, MD 21205, USA
| | | | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria.
| |
Collapse
|
27
|
Fedotov SA, Bragina JV, Besedina NG, Danilenkova LV, Kamysheva EA, Panova AA, Kamyshev NG. The effect of neurospecific knockdown of candidate genes for locomotor behavior and sound production in Drosophila melanogaster. Fly (Austin) 2015; 8:176-87. [PMID: 25494872 PMCID: PMC4594543 DOI: 10.4161/19336934.2014.983389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Molecular mechanisms underlying the functioning of central pattern generators (CPGs) are poorly understood. Investigations using genetic approaches in the model organism Drosophila may help to identify unknown molecular players participating in the formation or control of motor patterns. Here we report Drosophila genes as candidates for involvement in the neural mechanisms responsible for motor functions, such as locomotion and courtship song. Twenty-two Drosophila lines, used for gene identification, were isolated from a previously created collection of 1064 lines, each carrying a P element insertion in one of the autosomes. The lines displayed extreme deviations in locomotor and/or courtship song parameters compared with the whole collection. The behavioral consequences of CNS-specific RNAi-mediated knockdowns for 10 identified genes were estimated. The most prominent changes in the courtship song interpulse interval (IPI) were seen in flies with Sps2 or CG15630 knockdown. Glia-specific knockdown of these genes produced no effect on the IPI. Estrogen-induced knockdown of CG15630 in adults reduced the IPI. The product of the CNS-specific gene, CG15630 (a predicted cell surface receptor), is likely to be directly involved in the functioning of the CPG generating the pulse song pattern. Future studies should ascertain its functional role in the neurons that constitute the song CPG. Other genes (Sps2, CG34460), whose CNS-specific knockdown resulted in IPI reduction, are also worthy of detailed examination.
Collapse
Affiliation(s)
- Sergey A Fedotov
- a I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences ; Saint Petersburg ; Russia
| | | | | | | | | | | | | |
Collapse
|
28
|
Strauss AL, Kawasaki F, Ordway RW. A Distinct Perisynaptic Glial Cell Type Forms Tripartite Neuromuscular Synapses in the Drosophila Adult. PLoS One 2015; 10:e0129957. [PMID: 26053860 PMCID: PMC4459971 DOI: 10.1371/journal.pone.0129957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/14/2015] [Indexed: 12/02/2022] Open
Abstract
Previous studies of Drosophila flight muscle neuromuscular synapses have revealed their tripartite architecture and established an attractive experimental model for genetic analysis of glial function in synaptic transmission. Here we extend these findings by defining a new Drosophila glial cell type, designated peripheral perisynaptic glia (PPG), which resides in the periphery and interacts specifically with fine motor axon branches forming neuromuscular synapses. Identification and specific labeling of PPG was achieved through cell type-specific RNAi-mediated knockdown (KD) of a glial marker, Glutamine Synthetase 2 (GS2). In addition, comparison among different Drosophila neuromuscular synapse models from adult and larval developmental stages indicated the presence of tripartite synapses on several different muscle types in the adult. In contrast, PPG appear to be absent from larval body wall neuromuscular synapses, which do not exhibit a tripartite architecture but rather are imbedded in the muscle plasma membrane. Evolutionary conservation of tripartite synapse architecture and peripheral perisynaptic glia in vertebrates and Drosophila suggests ancient and conserved roles for glia-synapse interactions in synaptic transmission.
Collapse
Affiliation(s)
- Alexandra L. Strauss
- Department of Biology and Center for Molecular and Cellular Neuroscience, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Fumiko Kawasaki
- Department of Biology and Center for Molecular and Cellular Neuroscience, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Richard W. Ordway
- Department of Biology and Center for Molecular and Cellular Neuroscience, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Del Castillo U, Lu W, Winding M, Lakonishok M, Gelfand VI. Pavarotti/MKLP1 regulates microtubule sliding and neurite outgrowth in Drosophila neurons. Curr Biol 2014; 25:200-205. [PMID: 25557664 DOI: 10.1016/j.cub.2014.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/03/2014] [Accepted: 11/04/2014] [Indexed: 11/16/2022]
Abstract
Recently, we demonstrated that kinesin-1 can slide microtubules against each other, providing the mechanical force required for initial neurite extension in Drosophila neurons. This sliding is only observed in young neurons actively forming neurites and is dramatically downregulated in older neurons. The downregulation is not caused by the global shutdown of kinesin-1, as the ability of kinesin-1 to transport membrane organelles is not diminished in mature neurons, suggesting that microtubule sliding is regulated by a dedicated mechanism. Here, we have identified the "mitotic" kinesin-6 Pavarotti (Pav-KLP) as an inhibitor of kinesin-1-driven microtubule sliding. Depletion of Pav-KLP in neurons strongly stimulated the sliding of long microtubules and neurite outgrowth, while its ectopic overexpression in the cytoplasm blocked both of these processes. Furthermore, postmitotic depletion of Pav-KLP in Drosophila neurons in vivo reduced embryonic and larval viability, with only a few animals surviving to the third instar larval stage. A detailed examination of motor neurons in the surviving larvae revealed the overextension of axons and mistargeting of neuromuscular junctions, resulting in uncoordinated locomotion. Taken together, our results identify a new role for Pav-KLP as a negative regulator of kinesin-1-driven neurite formation. These data suggest an important parallel between long microtubule-microtubule sliding in anaphase B and sliding of interphase microtubules during neurite formation.
Collapse
Affiliation(s)
- Urko Del Castillo
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA; IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| | - Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Michael Winding
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Neuroprotection and repair of 3'-blocking DNA ends by glaikit (gkt) encoding Drosophila tyrosyl-DNA phosphodiesterase 1 (TDP1). Proc Natl Acad Sci U S A 2014; 111:15816-20. [PMID: 25331878 DOI: 10.1073/pnas.1415011111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase (TDP1) is a phylogenetically conserved enzyme critical for the removal of blocking lesions at the 3' ends of DNA or RNA. This study analyzes the Drosophila TDP1 gene ortholog glaikit (gkt) and its possible role(s) in the repair of endogenous DNA lesions and neuroprotection. To do so, we studied a homozygous PiggyBac insertion (c03958) that disrupts the 5' UTR of gkt. Protein extracts of c03958 flies were defective in hydrolyzing 3'-DNA-tyrosyl residues, demonstrating that gkt is the Drosophila TDP1. Although the mutant is generally healthy and fertile, females exhibit reduced lifespan and diminished climbing ability. This phenotype was rescued by neuronal expression of TDP1. In addition, when c03958 larvae were exposed to bleomycin, an agent that produces oxidative DNA damage, or topoisomerase I-targeted drugs (camptothecin and a noncamptothecin indenoisoquinoline derivative, LMP-776), survivors displayed rough eye patches, which were rescued by neuronal expression of TDP1. Our study establishes that gkt is the Drosophila TDP1 gene, and that it is critical for neuroprotection, normal longevity, and repair of damaged DNA.
Collapse
|
31
|
Jia DD, Zhang L, Chen Z, Wang CR, Huang FZ, Duan RH, Xia K, Tang BS, Jiang H. Lithium chloride alleviates neurodegeneration partly by inhibiting activity of GSK3β in a SCA3 Drosophila model. THE CEREBELLUM 2014; 12:892-901. [PMID: 23812869 DOI: 10.1007/s12311-013-0498-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucelotide repeat that encodes an abnormal polyglutamine (PolyQ) tract in the disease protein, ataxin-3. The formation of neuronal intranuclear inclusions in the specific brain regions is one of the pathological hallmarks of SCA3. Acceleration of the degradation of the mutant protein aggregates is proven to produce beneficial effects in SCA3 and other PolyQ diseases. Lithium is known to be neuroprotective in various models of neurodegenerative disease and can reduce the mutant protein aggregates by inducing autophagy. In this study, we explored the therapeutic potential of lithium in a SCA3 Drosophila model. We showed that chronic treatment with lithium chloride at specific doses notably prevented eye depigmentation, alleviated locomotor disability, and extended the median life spans of SCA3 transgenic Drosophila. By means of genetic approaches, we showed that co-expressing the mutant S9E, which mimicked the phosphorylated S9 state of Shaggy as done by lithium, also partly decreased toxicity of gmr-SCA3tr-Q78. Taken together, our findings suggest that lithium is a promising therapeutic agent for the treatment of SCA3 and other PolyQ diseases.
Collapse
Affiliation(s)
- Dan-Dan Jia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction. J Neurosci 2014; 34:2910-20. [PMID: 24553932 DOI: 10.1523/jneurosci.3714-13.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glial cells are emerging as important regulators of synapse formation, maturation, and plasticity through the release of secreted signaling molecules. Here we use chromatin immunoprecipitation along with Drosophila genomic tiling arrays to define potential targets of the glial transcription factor Reversed polarity (Repo). Unexpectedly, we identified wingless (wg), a secreted morphogen that regulates synaptic growth at the Drosophila larval neuromuscular junction (NMJ), as a potential Repo target gene. We demonstrate that Repo regulates wg expression in vivo and that local glial cells secrete Wg at the NMJ to regulate glutamate receptor clustering and synaptic function. This work identifies Wg as a novel in vivo glial-secreted factor that specifically modulates assembly of the postsynaptic signaling machinery at the Drosophila NMJ.
Collapse
|
33
|
Ghosh A, Kling T, Snaidero N, Sampaio JL, Shevchenko A, Gras H, Geurten B, Göpfert MC, Schulz JB, Voigt A, Simons M. A global in vivo Drosophila RNAi screen identifies a key role of ceramide phosphoethanolamine for glial ensheathment of axons. PLoS Genet 2013; 9:e1003980. [PMID: 24348263 PMCID: PMC3861124 DOI: 10.1371/journal.pgen.1003980] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/12/2013] [Indexed: 01/08/2023] Open
Abstract
Glia are of vital importance for all complex nervous system. One of the many functions of glia is to insulate and provide trophic and metabolic support to axons. Here, using glial-specific RNAi knockdown in Drosophila, we silenced 6930 conserved genes in adult flies to identify essential genes and pathways. Among our screening hits, metabolic processes were highly represented, and genes involved in carbohydrate and lipid metabolic pathways appeared to be essential in glia. One critical pathway identified was de novo ceramide synthesis. Glial knockdown of lace, a subunit of the serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathies in humans, resulted in ensheathment defects of peripheral nerves in Drosophila. A genetic dissection study combined with shotgun high-resolution mass spectrometry of lipids showed that levels of ceramide phosphoethanolamine are crucial for axonal ensheathment by glia. A detailed morphological and functional analysis demonstrated that the depletion of ceramide phosphoethanolamine resulted in axonal defasciculation, slowed spike propagation, and failure of wrapping glia to enwrap peripheral axons. Supplementing sphingosine into the diet rescued the neuropathy in flies. Thus, our RNAi study in Drosophila identifies a key role of ceramide phosphoethanolamine in wrapping of axons by glia.
Collapse
Affiliation(s)
- Aniket Ghosh
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Department of Neurology, University of Göttingen, Göttingen, Germany
| | - Tina Kling
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Department of Neurology, University of Göttingen, Göttingen, Germany
| | - Nicolas Snaidero
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Department of Neurology, University of Göttingen, Göttingen, Germany
| | - Julio L. Sampaio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Heribert Gras
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Bart Geurten
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Jörg B. Schulz
- Department of Neurology, University Medical Center, RWTH Aachen, Aachen, Germany
| | - Aaron Voigt
- Department of Neurology, University Medical Center, RWTH Aachen, Aachen, Germany
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Department of Neurology, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
34
|
Górska-Andrzejak J. Glia-related circadian plasticity in the visual system of Diptera. Front Physiol 2013; 4:36. [PMID: 23986707 PMCID: PMC3750947 DOI: 10.3389/fphys.2013.00036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/13/2013] [Indexed: 11/28/2022] Open
Abstract
The circadian changes in morphology of the first visual neuropil or lamina of Diptera represent an example of the neuronal plasticity controlled by the circadian clock (circadian plasticity). It is observed in terminals of the compound eye photoreceptor cells, the peripheral oscillators expressing the clock genes. However, it has been found also in their postsynaptic partners, the L1 and L2 monopolar cells, in which the activity of the clock genes have not yet been detected. The circadian input that the L1 and L2 receive seems to originate not only from the retina photoreceptors and from the circadian pacemaker neurons located in the brain, but also from the glial cells that express the clock genes and thus contain circadian oscillators. This paper summarizes the morphological and biochemical rhythms in glia of the optic lobe, shows how they contribute to circadian plasticity, and discusses how glial clocks may modulate circadian rhythms in the lamina.
Collapse
Affiliation(s)
- Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| |
Collapse
|
35
|
von Hilchen CM, Bustos AE, Giangrande A, Technau GM, Altenhein B. Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system. Development 2013; 140:3657-68. [PMID: 23903191 PMCID: PMC3915570 DOI: 10.1242/dev.093245] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial sheaths is not known. We used the Flybow system to label and identify each individual ePG in the living embryo and followed them into third instar larva. We demonstrate that all ePG persist until the end of larval development and some even to adulthood. We uncover the origin of all three glial sheaths and describe the larval differentiation of each peripheral glial cell in detail. Interestingly, just one ePG (ePG2) exhibits mitotic activity during larval stages, giving rise to up to 30 glial cells along a single peripheral nerve tract forming the outermost perineurial layer. The unique mitotic ability of ePG2 and the layer affiliation of additional cells were confirmed by in vivo ablation experiments and layer-specific block of cell cycle progression. The number of cells generated by this glial progenitor and hence the control of perineurial hyperplasia correlate with the length of the abdominal nerves. By contrast, the wrapping and subperineurial glia layers show enormous hypertrophy in response to larval growth. This characterisation of the embryonic origin and development of each glial sheath will facilitate functional studies, as they can now be addressed distinctively and genetically manipulated in the embryo.
Collapse
|
36
|
Chen J, Yang JT, Doctor DL, Rawlins BA, Shields BC, Vaughn JC. 5'-UTR mediated translational control of splicing assembly factor RNP-4F expression during development of the Drosophila central nervous system. Gene 2013; 528:154-62. [PMID: 23892091 DOI: 10.1016/j.gene.2013.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022]
Abstract
Drosophila RNP-4F is a highly conserved protein from yeast to human and functions as a spliceosome assembly factor during pre-mRNA splicing. Two major developmentally regulated rnp-4f mRNA isoforms have been described during fly development, designated "long" and "short," differing by a 177-nt tract in the 5'-UTR. This region potentially folds into a single long stable stem-loop by pairing of intron 0 and part of exon 2. Since the coding potential for the two isoforms is identical, the interesting question arises as to the functional significance of this evolutionarily-conserved 5'-UTR feature. Here we describe the effects of wild-type and mutated stem-loop on modulation of rnp-4f gene expression in embryos using a GFP reporter assay. In this work, a new GFP expression vector designated pUAS-Neostinger was constructed. The UAS-GAL4 system was utilized to trigger GFP expression using tissue-specific promoter driver fly lines. Fluorescence microscopy visualization, Western blotting and real-time qRT-PÇR were used to study and quantify GFP reporter protein and mRNA levels. A significant increase in GFP reporter protein expression due to presence of the wild-type stem-loop sequence/structure was unexpectedly observed with no concomitant increase in GFP reporter mRNA levels, showing that the 177-nt region enhancement acts posttranscriptionally. The effects of potential cis-acting elements within the stem-loop were evaluated using the reporter assay in two mutant constructs. Results of GFP reporter over-expression show that RNP-4F translational regulation is highly sensitive in the developing fly central nervous system. The potential molecular mechanism behind the observed translational enhancement is discussed.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biology, Cell Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gerber B, Biernacki R, Thum J. Odor-taste learning assays in Drosophila larvae. Cold Spring Harb Protoc 2013; 2013:2013/3/pdb.prot071639. [PMID: 23457337 DOI: 10.1101/pdb.prot071639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila larva is an emerging model for studies in behavioral neurogenetics because of its simplicity in terms of cell number. Despite this simplicity, basic features of neuronal organization and key behavior faculties are shared with adult flies and with mammals. Here, we describe a pavlovian-type learning assay in fruit fly larvae. A group of larvae is sequentially exposed to specific odors in the presence or the absence of sugar, and then tested to determine whether they prefer the odor previously experienced with the reward. The protocol uses a two-group, reciprocal training design: One group of Drosophila larvae is exposed to n-amyl acetate (AM) with a sugar reward (+), then subsequently exposed to 1-octanol (OCT) with no reward (denoted AM+/OCT). The other group receives the reciprocal training (AM/OCT+). The two groups of larvae are then tested for their choices between AM and OCT. Relatively higher preferences for AM after AM+/OCT training than after AM/OCT+ training reflect associative learning and are quantified by the learning index (LI). This method offers a robust, simple, cheap, and reasonably quick test for learning ability (an aversive version is available as well, using either high-concentration salt or quinine as punishment). With the concerted efforts of the Drosophila research community, we anticipate it will allow us to unravel the full circuitry underlying odor-taste learning on a single-cell level.
Collapse
|
38
|
Edwards TN, Nuschke AC, Nern A, Meinertzhagen IA. Organization and metamorphosis of glia in the Drosophila visual system. J Comp Neurol 2012; 520:2067-85. [DOI: 10.1002/cne.23071] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Mosca TJ, Hong W, Dani VS, Favaloro V, Luo L. Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice. Nature 2012; 484:237-41. [PMID: 22426000 PMCID: PMC3326183 DOI: 10.1038/nature10923] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 02/07/2012] [Indexed: 11/18/2022]
Abstract
Synapse assembly requires trans-synaptic signals between the pre- and postsynapse, but our understanding of the essential organizational molecules involved in this process remains incomplete. Teneurin proteins are conserved, epidermal growth factor (EGF)-repeat-containing transmembrane proteins with large extracellular domains. Here we show that two Drosophila Teneurins, Ten-m and Ten-a, are required for neuromuscular synapse organization and target selection. Ten-a is presynaptic whereas Ten-m is mostly postsynaptic; neuronal Ten-a and muscle Ten-m form a complex in vivo. Pre- or postsynaptic Teneurin perturbations cause severe synapse loss and impair many facets of organization trans-synaptically and cell autonomously. These include defects in active zone apposition, release sites, membrane and vesicle organization, and synaptic transmission. Moreover, the presynaptic microtubule and postsynaptic spectrin cytoskeletons are severely disrupted, suggesting a mechanism whereby Teneurins organize the cytoskeleton, which in turn affects other aspects of synapse development. Supporting this, Ten-m physically interacts with α-Spectrin. Genetic analyses of teneurin and neuroligin reveal that they have differential roles that synergize to promote synapse assembly. Finally, at elevated endogenous levels, Ten-m regulates target selection between specific motor neurons and muscles. Our study identifies the Teneurins as a key bi-directional trans-synaptic signal involved in general synapse organization, and demonstrates that proteins such as these can also regulate target selection.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
40
|
Stork T, Bernardos R, Freeman MR. Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc 2012; 2012:1-17. [PMID: 22194269 DOI: 10.1101/pdb.top067587] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glial cells are the most abundant cell type in our brains, yet we understand very little about their development and function. An accumulating body of work over the last decade has revealed that glia are critical regulators of nervous system development, function, and health. Based on morphological and molecular criteria, glia in Drosophila melanogaster are very similar to their mammalian counterparts, suggesting that a detailed investigation of fly glia has the potential to add greatly to our understanding of fundamental aspects of glial cell biology. In this article, we provide an overview of the subtypes of glial cells found in Drosophila and discuss our current understanding of their functions, the development of a subset of well-defined glial lineages, and the molecular-genetic tools available for manipulating glial subtypes in vivo.
Collapse
|
41
|
Pandey R, Blanco J, Udolph G. The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in Drosophila. PLoS One 2011; 6:e28106. [PMID: 22132223 PMCID: PMC3223219 DOI: 10.1371/journal.pone.0028106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/01/2011] [Indexed: 12/29/2022] Open
Abstract
During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail.
Collapse
Affiliation(s)
- Rahul Pandey
- Neural Development and Repair, Institute of Medical Biology, Singapore, Singapore
| | - Jorge Blanco
- Neural Development and Repair, Institute of Medical Biology, Singapore, Singapore
| | - Gerald Udolph
- Neural Development and Repair, Institute of Medical Biology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
42
|
Xie X, Auld VJ. Integrins are necessary for the development and maintenance of the glial layers in the Drosophila peripheral nerve. Development 2011; 138:3813-22. [PMID: 21828098 DOI: 10.1242/dev.064816] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peripheral nerve development involves multiple classes of glia that cooperate to form overlapping glial layers paired with the deposition of a surrounding extracellular matrix (ECM). The formation of this tubular structure protects the ensheathed axons from physical and pathogenic damage and from changes in the ionic environment. Integrins, a major family of ECM receptors, play a number of roles in the development of myelinating Schwann cells, one class of glia ensheathing the peripheral nerves of vertebrates. However, the identity and the role of the integrin complexes utilized by the other classes of peripheral nerve glia have not been determined in any animal. Here, we show that, in the peripheral nerves of Drosophila melanogaster, two integrin complexes (αPS2βPS and αPS3βPS) are expressed in the different glial layers and form adhesion complexes with integrin-linked kinase and Talin. Knockdown of the common beta subunit (βPS) using inducible RNAi in all glial cells results in lethality and glial defects. Analysis of integrin complex function in specific glial layers showed that loss of βPS in the outermost layer (the perineurial glia) results in a failure to wrap the nerve, a phenotype similar to that of Matrix metalloproteinase 2-mediated degradation of the ECM. Knockdown of βPS integrin in the innermost wrapping glia causes a loss of glial processes around axons. Together, our data suggest that integrins are employed in different glial layers to mediate the development and maintenance of the protective glial sheath in Drosophila peripheral nerves.
Collapse
Affiliation(s)
- Xiaojun Xie
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
43
|
Pereanu W, Younossi-Hartenstein A, Lovick J, Spindler S, Hartenstein V. Lineage-based analysis of the development of the central complex of the drosophila brain. J Comp Neurol 2011; 519:661-89. [DOI: 10.1002/cne.22542] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Rodrigues F, Schmidt I, Klämbt C. Comparing peripheral glial cell differentiation in Drosophila and vertebrates. Cell Mol Life Sci 2011; 68:55-69. [PMID: 20820850 PMCID: PMC11114915 DOI: 10.1007/s00018-010-0512-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 01/08/2023]
Abstract
In all complex organisms, the peripheral nerves ensure the portage of information from the periphery to central computing and back again. Axons are in part amazingly long and are accompanied by several different glial cell types. These peripheral glial cells ensure electrical conductance, most likely nature the long axon, and establish and maintain a barrier towards extracellular body fluids. Recent work has revealed a surprisingly similar organization of peripheral nerves of vertebrates and Drosophila. Thus, the genetic dissection of glial differentiation in Drosophila may also advance our understanding of basic principles underlying the development of peripheral nerves in vertebrates.
Collapse
Affiliation(s)
| | - Imke Schmidt
- Institut für Neurobiologie, Badestr. 9, 48149 Münster, Germany
| | | |
Collapse
|
45
|
Berni J, Muldal AM, Pulver SR. Using Neurogenetics and the Warmth-Gated Ion Channel TRPA1 to Study the Neural Basis of Behavior in Drosophila. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2010; 9:A5-A14. [PMID: 23494686 PMCID: PMC3597422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 07/08/2010] [Accepted: 07/31/2010] [Indexed: 10/24/2022]
Abstract
Here we describe a set of straightforward laboratory exercises that integrate the study of genetics, neuroanatomy, cellular physiology and animal behavior. We use genetic tools in Drosophila for visualizing and remotely activating ensembles of neurons with heat pulses. First, we show how to examine the anatomy of several neuronal populations using genetically encoded green fluorescent protein. Next we demonstrate how to use the warmth gated Drosophila TRPA1 (dTRPA1) cation channel to remotely activate neural circuits in flies. To demonstrate the cellular effects of dTRPA1 activation, we expressed dTRPA1 panneurally and recorded excitatory junctional potentials in muscles in response to warmed (29°C) saline. Finally, we present inexpensive techniques for delivering heat pulses to activate dTRPA1 in the neuronal groups we observed previously while flies are freely behaving. We suggest how to film and quantify resulting behavioral phenotypes with limited resources. Activating all neurons with dTRPA1 caused tetanic paralysis in larvae, while in adults it led to paralysis in males and continuous uncoordinated leg and wing movements in females. Activation of cholinergic neurons produced spasms and writhing in larvae while causing paralysis in adults. When a single class of nociceptive sensory neurons was activated, it caused lateral rolling in larvae, but no discernable effects in adults. Overall, these exercises illustrate principles of modern genetics, neuroanatomy, the ionic basis of neuronal excitability, and quantitative methods in neuroethology. Relatively few research studies have used dTRPA1 to activate neural circuits, so these exercises give students opportunities to test novel hypotheses and make actual contributions to the scientific record.
Collapse
Affiliation(s)
- Jimena Berni
- Address correspondence to: Dr. Jimena Berni, Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, Cambridge, UK.
| | | | | |
Collapse
|
46
|
Pereanu W, Kumar A, Jennett A, Reichert H, Hartenstein V. Development-based compartmentalization of the Drosophila central brain. J Comp Neurol 2010; 518:2996-3023. [PMID: 20533357 PMCID: PMC2905803 DOI: 10.1002/cne.22376] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells as well as long neurite fascicles. These fascicles are formed during the larval period, when the approximately 100 neuronal lineages that constitute the Drosophila central brain differentiate. Each lineage forms an axon tract with a characteristic trajectory in the neuropile; groups of spatially related tracts congregate into the brain fascicles that can be followed from the larva throughout metamorphosis into the adult stage. Here we provide a map of the adult brain compartments and the relevant fascicles defining compartmental boundaries. We have identified the neuronal lineages contributing to each fascicle, which allowed us to compare compartments of the larval and adult brain directly. Most adult compartments can be recognized already in the early larval brain, where they form a "protomap" of the later adult compartments. Our analysis highlights the morphogenetic changes shaping the Drosophila brain; the data will be important for studies that link early-acting genetic mechanisms to the adult neuronal structures and circuits controlled by these mechanisms.
Collapse
Affiliation(s)
- Wayne Pereanu
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
47
|
Parton RM, Vallés AM, Dobbie IM, Davis I. Drosophila larval fillet preparation and imaging of neurons. Cold Spring Harb Protoc 2010; 2010:pdb.prot5405. [PMID: 20360359 DOI: 10.1101/pdb.prot5405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Drosophila is an established system in which to study synaptic development, function, and plasticity. A particular advantage of the larval neuromuscular system is its consistent well-defined segmental arrangement of neurons and muscle targets. Indeed, the motor neurons of the Drosophila central nervous system are particularly well characterized in terms of origin, identity, morphology, and electrophysiology, and have been used for studies on axonal transport of organelles, vesicle trafficking, and recycling. To facilitate the identification of nerves and synapses in vivo, specific fluorescent protein markers can be used. For example, UASmCD8-green fluorescent protein (GFP) and UASmyr-red fluorescent protein (RFP) both preferentially label plasma membranes, whereas Discs large (DLG) reveals synapses. Gal4 drivers can be used to target all neurons (e.g., elavGal4) or specifically label motor neurons (e.g., d42Gal4). This protocol describes the dissection of Drosophila larvae to isolate neurons for live cell imaging.
Collapse
|
48
|
Larsen C, Shy D, Spindler SR, Fung S, Pereanu W, Younossi-Hartenstein A, Hartenstein V. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain. Dev Biol 2009; 335:289-304. [PMID: 19538956 PMCID: PMC2785225 DOI: 10.1016/j.ydbio.2009.06.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/09/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments.
Collapse
Affiliation(s)
- Camilla Larsen
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, 90095, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kasuya J, Kaas GA, Kitamoto T. A putative amino acid transporter of the solute carrier 6 family is upregulated by lithium and is required for resistance to lithium toxicity in Drosophila. Neuroscience 2009; 163:825-37. [PMID: 19619614 PMCID: PMC2746873 DOI: 10.1016/j.neuroscience.2009.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 11/25/2022]
Abstract
Lithium is an efficacious drug for the treatment of mood disorders, and its application is also considered a potential therapy for brain damage. However, the mechanisms underlying lithium's therapeutic action and toxic effects in the nervous system remain largely elusive. Here we report on the use of a versatile genetic model, the fruit fly Drosophila melanogaster, to discover novel molecular components involved in the lithium-responsive neurobiological process. We previously identified CG15088, which encodes a putative nutrient amino acid transporter of the solute carrier 6 (SLC6) family, as one of the genes most significantly upregulated in response to lithium treatment. This gene was the only SLC6 gene induced by lithium, and was thus designated as Lithium-inducible SLC6 transporter or List. Either RNA interference (RNAi)-mediated knockdown or complete deletion of List resulted in a remarkable increase in the susceptibility of adult flies to lithium's toxic effects, whereas transgenic expression of wild-type List significantly suppressed the lithium hypersensitive phenotype of List-deficient flies. Other ions such as sodium, potassium and chloride did not induce List upregulation, nor did they affect the viability of flies with suppressed List expression. These results indicate that lithium's biochemical or physical properties, rather than general osmotic responses, are responsible for the lithium-induced upregulation of List, as well as for the lithium-susceptible phenotype observed in List knockdown flies. Interestingly, flies became significantly more susceptible to lithium toxicity when List RNAi was specifically expressed in glia than when it was expressed in neurons or muscles, which is consistent with potential glial expression of List. These results show that the List transporter confers resistance to lithium toxicity, possibly as a consequence of its amino acid transporter activity in CNS glia. Our results have provided a new avenue of investigation toward a better understanding of the molecular and cellular mechanisms that underlie lithium-responsive neurobiological process.
Collapse
Affiliation(s)
- Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa
| | - Garrett A. Kaas
- Interdisciplinary Graduate Program in Genetics, University of Iowa
| | - Toshihiro Kitamoto
- Department of Anesthesia, Carver College of Medicine, University of Iowa
- Interdisciplinary Graduate Program in Genetics, University of Iowa
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa
| |
Collapse
|
50
|
Spindler SR, Ortiz I, Fung S, Takashima S, Hartenstein V. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain. Dev Biol 2009; 334:355-68. [PMID: 19646433 PMCID: PMC2776086 DOI: 10.1016/j.ydbio.2009.07.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 01/09/2023]
Abstract
Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the nirvana2-GAL4 driver to visualize the association of cortex and neuropile glia with axon tracts formed by different brain lineages and selectively eliminate these glial populations via induced apoptosis. The larval central brain consists of approximately 100 lineages. Each lineage forms a cohesive axon bundle, the secondary axon tract (SAT). While entering and traversing the brain neuropile, SATs interact in a characteristic way with glial cells. Some SATs are completely invested with glial processes; others show no particular association with glia, and most fall somewhere in between these extremes. Our results demonstrate that the elimination of glia results in abnormalities in SAT fasciculation and trajectory. The most prevalent phenotype is truncation or misguidance of axon tracts, or abnormal fasciculation of tracts that normally form separate pathways. Importantly, the degree of glial association with a given lineage is positively correlated with the severity of the phenotype resulting from glial ablation. Previous studies have focused on the embryonic nerve cord or adult-specific compartments to establish the role of glia. Our study provides, for the first time, an analysis of glial function in the brain during axon formation and growth in larval development.
Collapse
Affiliation(s)
| | | | | | | | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|