1
|
Horecki M, Serwin K, Cielniak I, Siwak E, Jasik MB, Kalinowska-Nowak A, Rozpłochowski B, Aksak-Wąs B, Witak-Jędra M, Szymczak A, Szetela B, Mularska E, Witor A, Jakubowski P, Hlebowicz M, Olczak A, Łojewski W, Jabłonowska E, Mielczak K, Ząbek P, Parczewski M, Lübke N, Obermeyer M, Urbańska A, Karasińska-Cieślak M. Identifying the unknown: Application of molecular epidemiology tools to identify clustering and HIV transmission routes in Poland. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 131:105699. [PMID: 39644947 DOI: 10.1016/j.meegid.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Understanding the dynamics of HIV-1 transmission is essential for developing effective screening and intervention strategies. Viral genetic sequences provide valuable information that can be used to infer the history and patterns of viral transmission. PURPOSE Our study explores the structure and dynamics of HIV transmissions in Poland from 1999 to 2022 to elucidate key patterns related with national epidemics. METHODS To understand the temporal dynamics of transmission routes we examined HIV pol sequence data from 5705 Polish PWH. The HIV-TRAnsmission Cluster Engine (HIV-TRACE) was utilized to identify potential links between different risk groups and putative links to individuals with unreported transmission risk. RESULTS Our analyses generated 503 clusters, containing 3942 individuals, and identified 13,917 putative links. Approximately 69.1 % of the sequences formed clusters. In the dataset 32.2 % of individuals were reported MSM transmission route, 7.9 % by heterosexual, and 5.6 % by PWID transmissions. The transmission route was unknown for 54.2 % of patients. Putative transmissions from MSM to all other groups revealed that 45.1 % of links lead to people with unregistered transmission mode. For heterosexual patients, 40.2 % of connections were directed to patients lacking information on infection routes and 30.5 % to MSM individuals. Our analysis unveiled that 45.1 % of cases with unreported transmission routes may be identified as MSM, while 3.5 % might be potential non-disclosed MSM. CONCLUSIONS Genetic linkages can provide valuable insights into the transmission dynamics among individuals, even in cases where transmission risk information is missing or unreported. The observed association between MSM and unreported cases highlights the potential of molecular epidemiology to complete missing patient data.
Collapse
Affiliation(s)
- Marcin Horecki
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Karol Serwin
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Iwona Cielniak
- Faculty of Medical Science, Collegium Medicum Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Ewa Siwak
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Bociąga Jasik
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Kalinowska-Nowak
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Błażej Rozpłochowski
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland; Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Bogusz Aksak-Wąs
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Witak-Jędra
- Department of Infectious, Tropical Diseases and Immune Deficiency, Regional Hospital, Szczecin, Poland
| | - Aleksandra Szymczak
- Department of Infectious Diseases, Liver Disease and Acquired Immune Deficiencies, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Liver Disease and Acquired Immune Deficiencies, Wroclaw Medical University, Wroclaw, Poland
| | - Elżbieta Mularska
- Department of Infectious Diseases, Regional Hospital Chorzów, Poland
| | - Adam Witor
- Department of Infectious Diseases, Regional Hospital Chorzów, Poland
| | | | - Maria Hlebowicz
- Infectious Diseases, University of Warma and Mazury in Olsztyn, Olsztyn, Poland
| | - Anita Olczak
- Department of Infectious Diseases and Hepatology, Faculty of Medicine, Nicolaus Copernicus University Ludwik Rydygier Collegium, Bydgoszcz, Poland
| | - Władysław Łojewski
- Department of Infectious Diseases, Regional Hospital in Zielona Gora, Zielona Góra, Poland
| | - Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Lódz, Lódz, Poland
| | - Kaja Mielczak
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Piotr Ząbek
- Molecular Diagnostics Laboratory, Hospital for Infectious Diseases, Warsaw, Poland
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Nadine Lübke
- Institute of Virology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | | | - Anna Urbańska
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Malwina Karasińska-Cieślak
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
2
|
de Ávila AI, Soria ME, Martínez-González B, Somovilla P, Mínguez P, Salar-Vidal L, Esteban-Muñoz M, Martín-García M, Zuñiga S, Sola I, Enjuanes L, Gadea I, Perales C, Domingo E. SARS-CoV-2 biological clones are genetically heterogeneous and include clade-discordant residues. J Virol 2025; 99:e0225024. [PMID: 40272156 PMCID: PMC12090815 DOI: 10.1128/jvi.02250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Defective genomes are part of SARS-CoV-2 quasispecies. High-resolution, ultra-deep sequencing of bulk RNA from viral populations does not distinguish RNA mutations, insertions, and deletions in viable genomes from those in defective genomes. To quantify SARS-CoV-2 infectious variant progeny, virus from four individual plaques (biological clones) of a preparation of isolate USA-WA1/2020, formed on Vero E6 cell monolayers, was subjected to further biological cloning to yield 9 second-generation and 15 third-generation sub-clones. Consensus genomic sequences of the biological clones and sub-clones included an average of 2.8 variations per viable genome, relative to the consensus sequence of the parental USA-WA1/2020 virus. This value is 6.5-fold lower than the estimates for biological clones of other RNA viruses such as bacteriophage Qβ, foot-and-mouth disease virus, or hepatitis C virus in cell culture. The mutant spectrum complexity of the nsp12 (polymerase)- and spike (S)-coding region was unique in the progeny of each of 10 third-generation sub-clones; they shared 2.4% of the total of 164 different mutations and deletions scored in the 3,719 genomic residues that were screened. The presence of minority out-of-frame deletions revealed the ease of defective genome production from an individual infectious genome. Several low-frequency point mutations and deletions were clade-discordant in that they were not typical of USA-WA1/2020 but served to define the consensus sequences of future SARS-CoV-2 clades. Implications for SARS-CoV-2 adaptability and COVID-19 control of the viable genome heterogeneity and the generation of complex mutant spectra from individual genomes are discussed.IMPORTANCESequencing of biological clones is a means to identify mutations, insertions, and deletions located in viable genomes. This distinction is particularly important for viral populations, such as those of SARS-CoV-2, that contain large proportions of defective genomes. By sequencing biological clones and sub-clones, we quantified the heterogeneity of the viable complement of USA-WA1/2020 to be lower than exhibited by other RNA viruses. This difference may be due to a reduced mutation rate or to limited tolerance of the large coronavirus genome to incorporate mutations and deletions and remain functional or a combination of both influences. The presence of clade-discordant residues in the progeny of individual biological sub-clones suggests limitations in the occupation of sequence space by SARS-CoV-2. However, the complex and unique mutant spectra that are rapidly generated from individual genomes suggest an aptness to confront selective constraints.
Collapse
Affiliation(s)
- Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autonoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Martín-García
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
3
|
Mahdi M, Kiarie IW, Mótyán JA, Hoffka G, Al-Muffti AS, Tóth A, Tőzsér J. Receptor Binding for the Entry Mechanisms of SARS-CoV-2: Insights from the Original Strain and Emerging Variants. Viruses 2025; 17:691. [PMID: 40431702 PMCID: PMC12115909 DOI: 10.3390/v17050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/03/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Since its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved, giving rise to multiple variants that have significantly altered the trajectory of the COVID-19 pandemic. These variants have resulted in multiple waves of the pandemic, exhibiting characteristic mutations in the spike (S) protein that may have affected receptor interaction, tissue tropism, and cell entry mechanisms. While the virus was shown to primarily utilize the angiotensin-converting enzyme 2 (ACE2) receptor and host proteases such as transmembrane serine protease 2 (TMPRSS2) for entry into host cells, alterations in the S protein have resulted in changes to receptor binding affinity and use of alternative receptors, potentially expanding the virus's ability to infect different cell types or tissues, contributing to shifts in clinical presentation. These changes have been linked to variations in disease severity, the emergence of new clinical manifestations, and altered transmission dynamics. In this paper, we overview the evolving receptor utilization strategies of SARS-CoV-2, focusing on how mutations in the S protein may have influenced viral entry mechanisms and clinical outcomes across the ongoing pandemic waves.
Collapse
Affiliation(s)
- Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
- Department of Infectology, Faculty of Medicine, University of Debrecen, 4031 Debrecen, Hungary
| | - Irene Wanjiru Kiarie
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
- Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Aya Shamal Al-Muffti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
| |
Collapse
|
4
|
Islam MS, Ahammed MA, Akhter F, Rahman M, Molla MMH. Whole genome sequencing and molecular detection of potato virus X in Bangladesh. PLoS One 2025; 20:e0322935. [PMID: 40341848 PMCID: PMC12061425 DOI: 10.1371/journal.pone.0322935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Potato Virus X (PVX) is a significant viral pathogen affecting potato (Solanum tuberosum) crops globally, yet its molecular characterization in Bangladesh remains limited. This study presents the first whole genome sequence (WGS) and molecular analysis of PVX isolated from potato plants in Gazipur, Bangladesh. Initial virus detection was performed using DAS-ELISA on symptomatic potato leaves, followed by RT-PCR targeting the coat protein (CP) gene, which confirmed PVX presence in 'Patnai' and 'Challisha' potato varieties through a 562 bp amplicon. The WGS of the Patnai-PVX isolate was determined to be 6,435 nucleotides long and deposited in GenBank (accession: PQ527059). Genome analysis identified five major open reading frames encoding the RNA-dependent RNA polymerase (RdRp), triple gene block proteins (TGBp1, TGBp2, TGBp3), and CP. Basic Local Alignment Search Tool X (BLASTX) analysis revealed high sequence similarity with PVX isolates from neighboring regions, suggesting evolutionary conservation. Mutation analysis identified 265 SNPs, predominantly synonymous mutations, indicating maintained protein-coding integrity despite genetic variation. Fewer non-synonymous mutations were detected, potentially affecting viral protein functions and pathogenicity. Phylogenetic analysis based on the entire genome sequence placed the Bangladeshi isolate (PQ527059.1) in a well-supported clade (bootstrap value 99%) with isolates from Peru (MT752634.1, MT752612.1, MT752621.1), highlighting potential international transmission routes while also exhibiting unique genetic markers indicative of regional specificity. This comprehensive molecular characterization enhances understanding of PVX genetic diversity and evolution in Bangladesh, providing valuable insights for developing effective virus management strategies in potato cultivation.
Collapse
Affiliation(s)
- Md. Shafiqul Islam
- Tuber Crops Biotechnology and Seed Production Section, Tuber Crops Research Centre, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Md. Akash Ahammed
- Tuber Crops Biotechnology and Seed Production Section, Tuber Crops Research Centre, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Fahmida Akhter
- Tuber Crops Biotechnology and Seed Production Section, Tuber Crops Research Centre, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Mosaddiqur Rahman
- Breeder Seed Production Centre, Bangladesh Agricultural Research Institute, Debiganj, Panchagarh, Bangladesh
| | - Md. Mosharraf Hossain Molla
- Tuber Crops Biotechnology and Seed Production Section, Tuber Crops Research Centre, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| |
Collapse
|
5
|
Correia JP, Silva LRD, Silva R. Multifractal analysis and support vector machine for the classification of coronaviruses and SARS-CoV-2 variants. Sci Rep 2025; 15:15041. [PMID: 40301538 PMCID: PMC12041560 DOI: 10.1038/s41598-025-98366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
This study presents a novel approach for the classification of coronavirus species and variants of SARS-CoV-2 using Chaos Game Representation (CGR) and 2D Multifractal Detrended Fluctuation Analysis (2D MF-DFA). By extracting fractal parameters from CGR images, we constructed a state space that effectively distinguishes different species and variants. Our method achieved [Formula: see text] accuracy in species classification, with a notable [Formula: see text] accuracy for SARS-CoV-2 variants despite their genetic similarities. Using a Support Vector Machine (SVM) as a classifier further enhanced the performance. This approach, which requires fewer steps than most existing methods, offers an efficient and effective tool for viral classification, with implications for bioinformatics, public health, and vaccine development.
Collapse
Affiliation(s)
- J P Correia
- Department of Theoretical and Experimental Physics, Federal University of Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
- Department of Technology and Data Science, Getúlio Vargas Foundation, 01313-902, São Paulo, Brazil.
| | - L R da Silva
- Department of Theoretical and Experimental Physics, Federal University of Rio Grande do Norte, 59072-970, Natal-RN, Brazil
- National Institute of Science and Technology of Complex Systems, Brazilian Center for Physics Research, 22290-180, Rio de Janeiro-RJ, Brazil
| | - R Silva
- Department of Theoretical and Experimental Physics, Federal University of Rio Grande do Norte, 59072-970, Natal-RN, Brazil
- Department of Physics, Rio Grande do Norte State University, 59610-210, Mossoró-RN, Brazil
| |
Collapse
|
6
|
Grimes SL, Heaton BE, Anderson ML, Burke K, Stevens L, Lu X, Heaton NS, Denison MR, Anderson-Daniels J. The coronavirus nsp14 exoribonuclease interface with the cofactor nsp10 is essential for efficient virus replication and enzymatic activity. J Virol 2025; 99:e0170824. [PMID: 39791922 PMCID: PMC11852845 DOI: 10.1128/jvi.01708-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The in vitro enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10. We introduced alanine substitutions in nsp14 of murine hepatitis virus (MHV) at the nsp14-nsp10 interface and recovered mutant viruses with a range of impairments in replication and in vitro biochemical exonuclease activity. Two of these substitutions, nsp14 K7A and D8A, had impairments intermediate between wild type-MHV nsp14 and the known ExoN(-) D89A/E91A nsp14 catalytic inactivation mutant. All introduced nsp14-nsp10 interface alanine substitutions impaired in vitro exonuclease activity. Passage of the K7A and D8A mutant viruses selected second-site non-synonymous mutations in nsp14 associated with improved mutant virus replication and exonuclease activity. These results confirm the essential role of the nsp14-nsp10 interaction for efficient enzymatic activity and virus replication, identify proximal and long-distance determinants of nsp14-nsp10 interaction, and support targeting the nsp14-nsp10 interface for viral inhibition and attenuation.IMPORTANCECoronavirus replication requires assembly of a replication transcription complex composed of nsp's, including polymerase, helicase, exonuclease, capping enzymes, and non-enzymatic cofactors. The coronavirus nsp14 exoribonuclease mediates several functions in the viral life cycle including genomic and subgenomic RNA synthesis, RNA recombination, RNA proofreading and high-fidelity replication, and native resistance to many nucleoside analogs. The nsp-14 exonuclease activity in vitro requires the non-enzymatic cofactor nsp10, but the determinants and importance of the nsp14-nsp10 interactions during viral replication have not been defined. Here we show that for the coronavirus murine hepatitis virus, nsp14 residues at the nsp14-nsp10 interface are essential for efficient viral replication and in vitro exonuclease activity. These results shed new light on the requirements for protein interactions within the coronavirus replication transcription complex, and they may reveal novel non-active-site targets for virus inhibition and attenuation.
Collapse
Affiliation(s)
- Samantha L. Grimes
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mackenzie L. Anderson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katie Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Laura Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark R. Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
7
|
Domingo E, Martínez-González B, Somovilla P, García-Crespo C, Soria ME, de Ávila AI, Gadea I, Perales C. A general and biomedical perspective of viral quasispecies. RNA (NEW YORK, N.Y.) 2025; 31:429-443. [PMID: 39689947 PMCID: PMC11874995 DOI: 10.1261/rna.080280.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Viral quasispecies refers to the complex and dynamic mutant distributions (also termed mutant spectra, clouds, or swarms) that arise as a result of high error rates during RNA genome replication. The mutant spectrum of individual RNA virus populations is modified by continuous generation of variant genomes, competition and interactions among them, environmental influences, bottleneck events, and bloc transmission of viral particles. Quasispecies dynamics provides a new perspective on how viruses adapt, evolve, and cause disease, and sheds light on strategies to combat them. Molecular flexibility, together with ample opportunity of mutant cloud traffic in our global world, are key ingredients of viral disease emergences, as exemplified by the recent COVID-19 pandemic. In the present article, we present a brief overview of the molecular basis of mutant swarm formation and dynamics, and how the latter relates to viral disease and epidemic spread. We outline future challenges derived of the highly diverse cellular world in which viruses are necessarily installed.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | | | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
8
|
Zenchenko AA, Semenova YD, Naberezhnaya ER, Gumennaya YD, Lipatova AV, Oslovsky VE. New N 6-Substituted Adenine Derivatives with High Antiviral Activity against RNA-Containing Viruses. DOKL BIOCHEM BIOPHYS 2025; 520:38-41. [PMID: 39847294 DOI: 10.1134/s1607672924600787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 01/24/2025]
Abstract
In this work, two new compounds, N6-(4,5-dimethoxyphenyl)adenine and N6-(3,5-di-trifluoromethylphenyl)adenine, with a broad range of antiviral activity against RNA viruses were identified. We showed that these compounds exhibit pronounced antiviral activity against human poliovirus types 1, 2, and 3, belonging to enterovirus C species. Both compounds also demonstrated pronounced antiviral activity against Coxsackie viruses B3, B5, and B6, belonging to enterovirus B species. In addition, the compounds demonstrated antiviral activity against Newcastle disease virus, which belongs to the paramyxovirus genus. The compounds discovered in this work can subsequently serve as prototypes for the development of new antiviral drugs against epidemiologically significant human RNA viruses.
Collapse
Affiliation(s)
- A A Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yu D Semenova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E R Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ya D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - V E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
9
|
Yu T, Blyton MBJ, Koppetsch BS, Abajorga M, Luban J, Chappell K, Theurkauf WE, Weng Z. The Trajectory of KoRV-A Evolution Indicates Initial Integration into the Koala Germline Genome Near Coffs Harbour. RESEARCH SQUARE 2024:rs.3.rs-5671983. [PMID: 39764129 PMCID: PMC11703332 DOI: 10.21203/rs.3.rs-5671983/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background Koala Retrovirus-A is a gamma-retrovirus that is spreading across wild koala populations through horizontal and vertical transmission, contributing significantly to genomic diversity across and even within koala populations. Previous studies have estimated that KoRV-A initially integrated into the koala genome less than 50,000 years ago, but the precise origins and the patterns of spread after its endogenization remain unclear. Results In this study, we analyzed germline insertions of KoRV-A using whole-genome sequencing data from 405 wild koalas, representing nearly the species' entire geographic range. Our findings reveal an evolutionary trajectory for KoRV-A, suggesting that the initial endogenization might occur near Coffs Harbour on the Mid-north coast of NSW around the middle of the koala's range. As KoRV-A spread, certain subtypes emerged and became prevalent, two of which recombined with an ancient endogenous retrovirus, PhER, resulting in distinct recombination variants in northern and southern koala populations. Additionally, we identified a geographic barrier north of Sydney, which may have slowed the southward spread of KoRV-A into Sydney and beyond. Conclusions Our study proposes a comprehensive evolutionary pathway for KoRV-A, beginning with its initial endogenization near Coffs Harbour and highlighting barriers and diversification events that have shaped its distribution and impact on koala populations.
Collapse
|
10
|
Petushkov IV, Aralov AV, Ivanov IA, Baranov MS, Zatsepin TS, Kulbachinskiy AV. Effect of 8-Oxo-1, N6-Ethenoadenine Derivatives on the Activity of RNA Polymerases from SARS-CoV-2 and Escherichia coli. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2263-2273. [PMID: 39865038 DOI: 10.1134/s0006297924120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,N6-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn2+ ions. Escherichia coli RNA polymerase incorporated oxo-εATP opposite A residues in the template DNA strand. The presence of oxo-εA instead of adenine in the template DNA strand completely stopped transcription at the modified nucleotide. At the same time, oxo-εATP did not suppress RNA synthesis by both RNA polymerases in the presence of unmodified nucleotides. Therefore, the oxo-εA modification significantly disrupts nucleotide base pairing during RNA synthesis by RNA polymerases of different classes, and the corresponding nucleotide derivatives cannot be used as potential antiviral or antibacterial transcription inhibitors.
Collapse
Affiliation(s)
- Ivan V Petushkov
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- RUDN University, Moscow, 117198, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Organicum LLC, Moscow, 127486, Russia
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Timofey S Zatsepin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Andrey V Kulbachinskiy
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
11
|
Miraglia MC, Barrios-Benito M, Galdo-Novo S, Bucafusco D, Taffarel A, Capozzo AV, Borca MV, Pérez-Filgueira DM. Impact of Different Foot and Mouth Disease Vaccine Schemes in Cross-Neutralization Against Heterologous Serotype O Strains in Cattle. Viruses 2024; 16:1732. [PMID: 39599848 PMCID: PMC11599131 DOI: 10.3390/v16111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The high antigenic variability of the foot-and-mouth disease virus (FMDV) represents a challenge for developing prophylactic strategies, stressing the need for research into vaccines offering broad protection against a range of virus strains. Here, the heterotypic cross-reaction using different vaccine schemes against serotype O strains was studied, evaluating the impact of revaccination, antigen dose, and incorporation of additional FMDV serotypes. Naïve cattle were immunized with seven distinct FMDV vaccines, receiving three doses of the same formulation at 0, 28, and 56 days post-primary vaccination (dpv). Serum samples were collected up to 70 dpv and tested by a virus-neutralizing test against serotype O strains from a South American lineage and two strains representative of two Asian lineages. Our results showed that vaccines containing the ME-SA topotype O1/Campos strain developed cross-neutralizing responses against the two Asian viruses after the first vaccination. In contrast, significant heterotypic neutralizing antibody titers against the homologous topotype strain were only found after the second vaccination, indicating that the phylogenic relationship may differ from the antigenic profiles for these two viruses. The amount of the O1/Campos strain and the revaccination were essential factors for neutralization against the homologous- and heterologous-type O FMDV viruses. The strain composition of the vaccine was only relevant for cross-neutralization against one of the Asian strains, suggesting potential intra-serotypic divergences for this pattern.
Collapse
Affiliation(s)
- María Cruz Miraglia
- Instituto de Virología e Innovaciones Tecnológicas, CICVyA, INTA-CONICET, Buenos Aires 1686, Argentina; (M.C.M.); (A.T.)
| | - Melanie Barrios-Benito
- WOAH FMD Reference Laboratory, SENASA, Buenos Aires 1640, Argentina; (M.B.-B.); (S.G.-N.)
| | - Sabrina Galdo-Novo
- WOAH FMD Reference Laboratory, SENASA, Buenos Aires 1640, Argentina; (M.B.-B.); (S.G.-N.)
| | - Danilo Bucafusco
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires 1427, Argentina;
- Instituto de Investigaciones en Producción Animal, UBA-CONICET, Buenos Aires 1427, Argentina
| | - Ana Taffarel
- Instituto de Virología e Innovaciones Tecnológicas, CICVyA, INTA-CONICET, Buenos Aires 1686, Argentina; (M.C.M.); (A.T.)
| | - Alejandra Victoria Capozzo
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Av. Montes de Oca 745, Buenos Aires 1270, Argentina;
| | | | - Daniel Mariano Pérez-Filgueira
- Instituto de Virología e Innovaciones Tecnológicas, CICVyA, INTA-CONICET, Buenos Aires 1686, Argentina; (M.C.M.); (A.T.)
| |
Collapse
|
12
|
Rauch S, Costacurta F, Schöppe H, Peng JY, Bante D, Erisoez EE, Sprenger B, He X, Moghadasi SA, Krismer L, Sauerwein A, Heberle A, Rabensteiner T, Wang D, Naschberger A, Dunzendorfer-Matt T, Kaserer T, von Laer D, Heilmann E. Highly specific SARS-CoV-2 main protease (M pro) mutations against the clinical antiviral ensitrelvir selected in a safe, VSV-based system. Antiviral Res 2024; 231:105969. [PMID: 39053514 DOI: 10.1016/j.antiviral.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the SARS-CoV-2 pandemic, the so far two most effective approved antivirals are the protease inhibitors nirmatrelvir, in combination with ritonavir (Paxlovid) and ensitrelvir (Xocova). However, antivirals and indeed all antimicrobial drugs are sooner or later challenged by resistance mutations. Studying such mutations is essential for treatment decisions and pandemic preparedness. At the same time, generating resistant viruses to assess mutants is controversial, especially with pathogens of pandemic potential like SARS-CoV-2. To circumvent gain-of-function research with non-attenuated SARS-CoV-2, a previously developed safe system based on a chimeric vesicular stomatitis virus dependent on the SARS-CoV-2 main protease (VSV-Mpro) was used to select mutations against ensitrelvir. Ensitrelvir is clinically especially relevant due to its single-substance formulation, avoiding drug-drug interactions by the co-formulated CYP3A4 inhibitor ritonavir in Paxlovid. By treating VSV-Mpro with ensitrelvir, highly-specific resistant mutants against this inhibitor were selected, while being still fully or largely susceptible to nirmatrelvir. We then confirmed several ensitrelvir-specific mutants in gold standard enzymatic assays and SARS-CoV-2 replicons. These findings indicate that the two inhibitors can have distinct viral resistance profiles, which could determine treatment decisions.
Collapse
Affiliation(s)
- Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Ju-Yi Peng
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Ela Emilie Erisoez
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Bernhard Sprenger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Austria
| | - Xi He
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anne Heberle
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Toni Rabensteiner
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Dai Wang
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Andreas Naschberger
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Theresia Dunzendorfer-Matt
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria; Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
13
|
Zhou Y, Ouyang F, Liu X, Lu J, Hu H, Sun Q, Yang H. A Sensitivity and Consistency Comparison Between Next-Generation Sequencing and Sanger Sequencing in HIV-1 Pretreatment Drug Resistance Testing. Viruses 2024; 16:1713. [PMID: 39599828 PMCID: PMC11599105 DOI: 10.3390/v16111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Next-generation sequencing (NGS) for HIV drug resistance (DR) testing has an increasing number of applications for the detection of low-abundance drug-resistant variants (LA-DRVs) in regard to its features as a quasi-species. However, there is less information on its detection performance in DR detection with NGS. To determine the feasibility of using NGS technology in LA-DRV detection for HIV-1 pretreatment drug resistance, 80 HIV-infected individuals who had never undergone antiretroviral therapy were subjected to both NGS and Sanger sequencing (SS) in HIV-1 drug resistance testing. The results reported in this study show that NGS exhibits higher sensitivity for drug resistance identification than SS at a 5% detection threshold. NGS showed a better consistency compared with that of SS for both protease inhibitors (PIs) and integrase inhibitors (INSTIs), with a figure amounting to more than 90%, but worse consistency in nucleotide reverse transcriptase inhibitors (NRTIs), with a consistency ranging from only 61.25% to 87.50%. The consistency of non-nucleotide reverse transcriptase inhibitors (NNRTIs) between NGS and SS was around 85%. NGS showed the highest sensitivity of 87.0% at a 5% threshold. The application of NGS technology in HIV-1 genotype resistance detection in different populations infected with HIV requires further documentation and validation.
Collapse
Affiliation(s)
- Ying Zhou
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Fei Ouyang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Xiaoyan Liu
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Jing Lu
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Haiyang Hu
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Qi Sun
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Haitao Yang
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| |
Collapse
|
14
|
Hofmann N, Bartkuhn M, Becker S, Biedenkopf N, Böttcher-Friebertshäuser E, Brinkrolf K, Dietzel E, Fehling SK, Goesmann A, Heindl MR, Hoffmann S, Karl N, Maisner A, Mostafa A, Kornecki L, Müller-Kräuter H, Müller-Ruttloff C, Nist A, Pleschka S, Sauerhering L, Stiewe T, Strecker T, Wilhelm J, Wuerth JD, Ziebuhr J, Weber F, Schmitz ML. Distinct negative-sense RNA viruses induce a common set of transcripts encoding proteins forming an extensive network. J Virol 2024; 98:e0093524. [PMID: 39283124 PMCID: PMC11494938 DOI: 10.1128/jvi.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 10/23/2024] Open
Abstract
The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.
Collapse
Affiliation(s)
- Nina Hofmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Simone Hoffmann
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Nadja Karl
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Kornecki
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Christin Müller-Ruttloff
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Jennifer D. Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
15
|
Grimes SL, Heaton BE, Anderson ML, Burke K, Stevens L, Lu X, Heaton NS, Denison MR, Anderson-Daniels J. The coronavirus nsp14 exoribonuclease interface with the cofactor nsp10 is essential for efficient virus replication and enzymatic activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615217. [PMID: 39386528 PMCID: PMC11463354 DOI: 10.1101/2024.09.26.615217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Coronaviruses (CoVs) encode nonstructural proteins (nsps) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease (ExoN) in nsp14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The in vitro enzymatic activity of nsp14 ExoN is enhanced in the presence of the cofactor nsp10. We introduced alanine substitutions in nsp14 of murine hepatitis virus (MHV) at the nsp14-10 interface and recovered mutant viruses with a range of impairments in replication and in vitro biochemical exonuclease activity. Two of these substitutions, nsp14 K7A and D8A, had impairments intermediate between WT-MHV nsp14 and the known ExoN(-) D89A/E91A nsp14 catalytic inactivation mutant. All introduced nsp14-10 interface alanine substitutions impaired in vitro exonuclease activity. Passage of the K7A and D8A mutant viruses selected second-site non-synonymous mutations in nsp14 associated with improved mutant virus replication and exonuclease activity. These results confirm the essential role of the nsp14-nsp10 interaction for efficient enzymatic activity and virus replication, identify proximal and long-distance determinants of nsp14-nsp10 interaction, and support targeting the nsp14-10 interface for viral inhibition and attenuation. IMPORTANCE Coronavirus replication requires assembly of a replication transcription complex composed of nonstructural proteins (nsp), including polymerase, helicase, exonuclease, capping enzymes, and non-enzymatic cofactors. The coronavirus nsp14 exoribonuclease mediates several functions in the viral life cycle including genomic and subgenomic RNA synthesis, RNA recombination, RNA proofreading and high-fidelity replication, and native resistance to many nucleoside analogs. The nsp-14 exonuclease activity in vitro requires the non-enzymatic co-factor nsp10, but the determinants and importance the nsp14-10 interactions during viral replication have not been defined. Here we show that for the coronavirus murine hepatitis virus, nsp14 residues at the nsp14-10 interface are essential for efficient viral replication and in vitro exonuclease activity. These results shed new light on the requirements for protein interactions within the coronavirus replication transcription complex, and they may reveal novel non active-site targets for virus inhibition and attenuation.
Collapse
|
16
|
Takano T, Tsuhama H, Matsumoto Y, Doki T, Kusuhara H. Development of genogroup-specific ELISAs based on the VP1 protein to detect antibodies to GIV and GVI feline norovirus. Arch Virol 2024; 169:201. [PMID: 39292300 DOI: 10.1007/s00705-024-06137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024]
Abstract
Feline norovirus (FNoV) is a potential pathogen of feline gastroenteritis and has two genogroups (GIV and GVI). Few epidemiological studies have been conducted on FNoV. We designed two enzyme-linked immunosorbent assays (ELISAs) to identify genogroup-specific FNoV antibodies for serological surveillance. Analysis of sera from cats experimentally infected with FNoV GIV or GVI and from specific-pathogen-free (SPF) cats confirmed that the two recombinant proteins used in the assay react in a genogroup-specific manner. Of the 183 samples tested, 6.6% were positive for GIV and 26.2% were positive for GVI. Antibodies to both FNoV genogroups were detected in sera collected in 2005, seven years before FNoV was first reported.
Collapse
Affiliation(s)
- Tomomi Takano
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| | - Hideyuki Tsuhama
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Yuka Matsumoto
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Tomoyoshi Doki
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Hajime Kusuhara
- Health and Environment Research Institute, Yokkaichi, Mie, 512-1211, Japan
| |
Collapse
|
17
|
Glasner DR, Daugherty MD. Unchecked growth: Pushing the limits on RNA virus genome size in the absence of known proofreading. Proc Natl Acad Sci U S A 2024; 121:e2414223121. [PMID: 39186661 PMCID: PMC11388401 DOI: 10.1073/pnas.2414223121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Affiliation(s)
- Dustin R Glasner
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Matthew D Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
18
|
Costacurta F, Dodaro A, Bante D, Schöppe H, Peng JY, Sprenger B, He X, Moghadasi SA, Egger LM, Fleischmann J, Pavan M, Bassani D, Menin S, Rauch S, Krismer L, Sauerwein A, Heberle A, Rabensteiner T, Ho J, Harris RS, Stefan E, Schneider R, Dunzendorfer-Matt T, Naschberger A, Wang D, Kaserer T, Moro S, von Laer D, Heilmann E. A comprehensive study of SARS-CoV-2 main protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system. PLoS Pathog 2024; 20:e1012522. [PMID: 39259728 PMCID: PMC11407635 DOI: 10.1371/journal.ppat.1012522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Nirmatrelvir was the first protease inhibitor specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available protease inhibitors (nirmatrelvir and ensitrelvir) with cell-based, biochemical and SARS-CoV-2 replicon assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease inhibitor resistance mechanisms and show the relevance of specific mutations, thereby informing treatment decisions.
Collapse
Affiliation(s)
- Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Andrea Dodaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Ju-Yi Peng
- Department of Infectious Diseases and Vaccines Research, MRL, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Bernhard Sprenger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Xi He
- Department of Infectious Diseases and Vaccines Research, MRL, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lisa Maria Egger
- Institute of Molecular Biochemistry, Biocentre, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Fleischmann
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol, Austria
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Silvia Menin
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Anne Heberle
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Toni Rabensteiner
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Joses Ho
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Eduard Stefan
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol, Austria
| | - Rainer Schneider
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | | | - Andreas Naschberger
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dai Wang
- Department of Infectious Diseases and Vaccines Research, MRL, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
19
|
Siering O, Langbein M, Herrmann M, Wittwer K, von Messling V, Sawatsky B, Pfaller CK. Genetic diversity accelerates canine distemper virus adaptation to ferrets. J Virol 2024; 98:e0065724. [PMID: 39007615 PMCID: PMC11334482 DOI: 10.1128/jvi.00657-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Mareike Langbein
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Maike Herrmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Kevin Wittwer
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Bevan Sawatsky
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
21
|
Chao Z, Selivanovitch E, Kallitsis K, Lu Z, Pachaury A, Owens R, Daniel S. Recreating the biological steps of viral infection on a cell-free bioelectronic platform to profile viral variants of concern. Nat Commun 2024; 15:5606. [PMID: 38961055 PMCID: PMC11222515 DOI: 10.1038/s41467-024-49415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Viral mutations frequently outpace technologies used to detect harmful variants. Given the continual emergence of SARS-CoV-2 variants, platforms that can identify the presence of a virus and its propensity for infection are needed. Our electronic biomembrane sensing platform recreates distinct SARS-CoV-2 host cell entry pathways and reports the progression of entry as electrical signals. We focus on two necessary entry processes mediated by the viral Spike protein: virus binding and membrane fusion, which can be distinguished electrically. We find that closely related variants of concern exhibit distinct fusion signatures that correlate with trends in cell-based infectivity assays, allowing us to report quantitative differences in their fusion characteristics and hence their infectivity potentials. We use SARS-CoV-2 as our prototype, but we anticipate that this platform can extend to other enveloped viruses and cell lines to quantifiably assess virus entry.
Collapse
Affiliation(s)
- Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 124 Olin Hall, Ithaca, NY, 14853, USA
| | - Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 124 Olin Hall, Ithaca, NY, 14853, USA
| | - Konstantinos Kallitsis
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK
| | - Zixuan Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK
| | - Ambika Pachaury
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 124 Olin Hall, Ithaca, NY, 14853, USA
| | - Róisín Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 124 Olin Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Barth S, Affeldt S, Blaurock C, Lobedank I, Netsch A, Seitz K, Rümenapf T, Lamp B. Characterization of a Molecular Clone of Deformed Wing Virus B. Viruses 2024; 16:980. [PMID: 38932270 PMCID: PMC11209315 DOI: 10.3390/v16060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Honey bees (Apis mellifera) play a crucial role in agriculture through their pollination activities. However, they have faced significant health challenges over the past decades that can limit colony performance and even lead to collapse. A primary culprit is the parasitic mite Varroa destructor, known for transmitting harmful bee viruses. Among these viruses is deformed wing virus (DWV), which impacts bee pupae during their development, resulting in either pupal demise or in the emergence of crippled adult bees. In this study, we focused on DWV master variant B. DWV-B prevalence has risen sharply in recent decades and appears to be outcompeting variant A of DWV. We generated a molecular clone of a typical DWV-B strain to compare it with our established DWV-A clone, examining RNA replication, protein expression, and virulence. Initially, we analyzed the genome using RACE-PCR and RT-PCR techniques. Subsequently, we conducted full-genome RT-PCR and inserted the complete viral cDNA into a bacterial plasmid backbone. Phylogenetic comparisons with available full-length sequences were performed, followed by functional analyses using a live bee pupae model. Upon the transfection of in vitro-transcribed RNA, bee pupae exhibited symptoms of DWV infection, with detectable viral protein expression and stable RNA replication observed in subsequent virus passages. The DWV-B clone displayed a lower virulence compared to the DWV-A clone after the transfection of synthetic RNA, as evidenced by a reduced pupal mortality rate of only 20% compared to 80% in the case of DWV-A and a lack of malformations in 50% of the emerging bees. Comparable results were observed in experiments with low infection doses of the passaged virus clones. In these tests, 90% of bees infected with DWV-B showed no clinical symptoms, while 100% of pupae infected with DWV-A died. However, at high infection doses, both DWV-A and DWV-B caused mortality rates exceeding 90%. Taken together, we have generated an authentic virus clone of DWV-B and characterized it in animal experiments.
Collapse
Affiliation(s)
- Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Sebastian Affeldt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Claudia Blaurock
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Irmin Lobedank
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Anette Netsch
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Kerstin Seitz
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Till Rümenapf
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| |
Collapse
|
23
|
Rodríguez-Aguilar ED, Gutiérrez-Millán E, Rodríguez MH. Accurate Recapitulation of Chikungunya Virus Complete Coding Sequence Phylogeny Using Variable Genome Regions for Genomic Surveillance. Viruses 2024; 16:926. [PMID: 38932218 PMCID: PMC11209212 DOI: 10.3390/v16060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is transmitted by mosquito bites and causes chikungunya fever (CHIKF). CHIKV has a single-stranded RNA genome and belongs to a single serotype with three genotypes. The Asian lineage has recently emerged in the Western Hemisphere, likely due to travel-associated introduction. Genetic variation accumulates in the CHIKV genome as the virus replicates, creating new lineages. Whole genome sequencing is ideal for studying virus evolution and spread but is expensive and complex. This study investigated whether specific, highly variable regions of the CHIKV genome could recapitulate the phylogeny obtained with a complete coding sequence (CDS). Our results revealed that concatenated highly variable regions accurately reconstructed CHIKV phylogeny, exhibiting statistically indistinguishable branch lengths and tree confidence compared to CDS. In addition, these regions adequately inferred the evolutionary relationships among CHIKV isolates from the American outbreak with similar results to the CDS. This finding suggests that highly variable regions can effectively capture the evolutionary relationships among CHIKV isolates, offering a simpler approach for future studies. This approach could be particularly valuable for large-scale surveillance efforts.
Collapse
Affiliation(s)
| | | | - Mario H. Rodríguez
- Center for Infectious Disease Research, National Institute of Public Health of Mexico, Av. Universidad 655, Cuernavaca 62100, Mexico; (E.D.R.-A.); (E.G.-M.)
| |
Collapse
|
24
|
Fraenkel S, Nabeshima T, Xayavong D, Nguyen TTN, Xu Q, Kapandji M, Yamao K, Balingit JC, Pandey BD, Morita K, Hasebe F, Ngwe Tun MM, Takamatsu Y. The Development of New Primer Sets for the Amplification and Sequencing of the Envelope Gene of All Dengue Virus Serotypes. Microorganisms 2024; 12:1092. [PMID: 38930474 PMCID: PMC11205395 DOI: 10.3390/microorganisms12061092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Dengue virus (DENV) poses a significant threat to global health, infecting approximately 390 million people annually. This virus comprises four serotypes capable of causing severe disease. Genetic analyses are crucial for understanding the epidemiology, evolution, and spread of DENV. Although previous studies have focused on the envelope protein-coding (E) gene, only a few primers can efficiently detect and amplify the viral genes from multiple endemic countries simultaneously. In this study, we designed degenerate primer pairs for each DENV serotype to amplify and sequence the entire E gene, using globally representative sequences for each serotype. These primers were validated using DENV isolates from various Asian countries and demonstrated broad-spectrum detection capabilities and high-quality sequences. The primers provide effective tools for genetic analysis in the regions affected by dengue, aiding strain identification and epidemiological studies during outbreaks.
Collapse
Affiliation(s)
- Stefania Fraenkel
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki 852-8523, Japan
| | - Takeshi Nabeshima
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Kenya Research Station, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan
| | - Dalouny Xayavong
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Thi Thanh Ngan Nguyen
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Qiang Xu
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Merveille Kapandji
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kano Yamao
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Dental School, Nagasaki University, Nagasaki 852-8588, Japan
| | - Jean Claude Balingit
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| | - Basu Dev Pandey
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan
| | - Futoshi Hasebe
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Vietnam Research Station, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
25
|
Frumence E, Wilkinson DA, Klitting R, Vincent M, Mnemosyme N, Grard G, Traversier N, Li-Pat-Yuen G, Heaugwane D, Souply L, Giry C, Paty MC, Collet L, Local Laboratory Network, Gérardin P, Thouillot F, De Lamballerie X, Jaffar-Bandjee MC. Dynamics of emergence and genetic diversity of dengue virus in Reunion Island from 2012 to 2022. PLoS Negl Trop Dis 2024; 18:e0012184. [PMID: 38768248 PMCID: PMC11142707 DOI: 10.1371/journal.pntd.0012184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/31/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Dengue is a major public health concern in Reunion Island, marked by recurrent epidemics, including successive outbreaks of dengue virus serotypes 1 and 2 (DENV1 and DENV2) with over 70,000 cases confirmed since 2017. METHODOLOGY/PRINCIPAL FINDINGS In this study, we used Oxford Nanopore NGS technology for sequencing virologically-confirmed samples and clinical isolates collected between 2012 and 2022 to investigate the molecular epidemiology and evolution of DENV in Reunion Island. Here, we generated and analyzed a total of 499 DENV1, 360 DENV2, and 18 DENV3 sequences. By phylogenetic analysis, we show that different genotypes and variants of DENV have circulated in the past decade that likely originated from Seychelles, Mayotte and Southeast Asia and highly affected areas in Asia and Africa. CONCLUSIONS/SIGNIFICANCE DENV sequences from Reunion Island exhibit a high genetic diversity which suggests regular introductions of new viral lineages from various Indian Ocean islands. The insights from our phylogenetic analysis may inform local health authorities about the endemicity of DENV variants circulating in Reunion Island and may improve dengue management and surveillance. This work emphasizes the importance of strong local coordination and collaboration to inform public health stakeholders in Reunion Island, neighboring areas, and mainland France.
Collapse
Affiliation(s)
- Etienne Frumence
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - David A. Wilkinson
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Plateforme technologique CYROI, Sainte-Clotilde, Réunion, France
| | - Raphaelle Klitting
- Unité des Virus Émergents (UVE), Aix-Marseille Univ, IRD 190, INSERM 1207, Marseille, France
- CNR des Arbovirus, Marseille, France
| | | | - Nicolas Mnemosyme
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | | | - Nicolas Traversier
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Ghislaine Li-Pat-Yuen
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Diana Heaugwane
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Laurent Souply
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Claude Giry
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | | | | | | | - Patrick Gérardin
- INSERM CIC 1410, CHU de la Réunion, Saint-Pierre, Réunion, France
| | | | - Xavier De Lamballerie
- Unité des Virus Émergents (UVE), Aix-Marseille Univ, IRD 190, INSERM 1207, Marseille, France
- CNR des Arbovirus, Marseille, France
| | - Marie-Christine Jaffar-Bandjee
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| |
Collapse
|
26
|
Bunimovich L, Ram A, Skums P. Antigenic cooperation in viral populations: Transformation of functions of intra-host viral variants. J Theor Biol 2024; 580:111719. [PMID: 38158118 DOI: 10.1016/j.jtbi.2023.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/10/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In this paper, we study intra-host viral adaptation by antigenic cooperation - a mechanism of immune escape that serves as an alternative to the standard mechanism of escape by continuous genomic diversification and allows to explain a number of experimental observations associated with the establishment of chronic infections by highly mutable viruses. Within this mechanism, the topology of a cross-immunoreactivity network forces intra-host viral variants to specialize for complementary roles and adapt to the host's immune response as a quasi-social ecosystem. Here we study dynamical changes in immune adaptation caused by evolutionary and epidemiological events. First, we show that the emergence of a viral variant with altered antigenic features may result in a rapid re-arrangement of the viral ecosystem and a change in the roles played by existing viral variants. In particular, it may push the population under immune escape by genomic diversification towards the stable state of adaptation by antigenic cooperation. Next, we study the effect of a viral transmission between two chronically infected hosts, which results in the merging of two intra-host viral populations in the state of stable immune-adapted equilibrium. In this case, we also describe how the newly formed viral population adapts to the host's environment by changing the functions of its members. The results are obtained analytically for minimal cross-immunoreactivity networks and numerically for larger populations.
Collapse
Affiliation(s)
- Leonid Bunimovich
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| | - Athulya Ram
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, GA, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| | - Pavel Skums
- Department of Computer Science and Engineering, University of Connecticut, Storrs, 06269, CT, USA.
| |
Collapse
|
27
|
Carrazco-Montalvo A, Gutiérrez-Pallo D, Arévalo V, Ponce P, Rodríguez-Polit C, Alarcón D, Echeverría-Garcés G, Coloma J, Nipaz V, Cevallos V. Whole Genome Sequencing of DENV-2 isolated from Aedes aegypti mosquitoes in Esmeraldas, Ecuador. Genomic epidemiology of genotype III Southern Asian-American in the country. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579255. [PMID: 38370752 PMCID: PMC10871324 DOI: 10.1101/2024.02.06.579255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Ecuador is a tropical country reporting Dengue virus (DENV) outbreaks with areas of hyperendemic viral transmission. Entomo-virological surveillance and monitoring effort conducted in the Northwestern border province of Esmeraldas in April 2022, five pools of female Aedes aegypti mosquitoes from a rural community tested positive for DENV serotype 2 by RT-qPCR. One pool was sequenced by Illumina MiSeq, and it corresponded to genotype III Southern Asian-American. Comparison with other genomes revealed genetic similarity to a human DENV genome sequenced in 2021, also from Esmeraldas. Potential introduction events to the country could have originated from Colombia, considering the vicinity of the collection sites to the neighboring country and high human movement. The inclusion of genomic information complements entomo-virological surveillance, providing valuable insights into genetic variants. This contribution enhances our understanding of Dengue virus (DENV) epidemiology in rural areas and guides evidence-based decisions for surveillance and interventions.
Collapse
Affiliation(s)
- Andrés Carrazco-Montalvo
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Diana Gutiérrez-Pallo
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Valentina Arévalo
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Cristina Rodríguez-Polit
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Damaris Alarcón
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Victoria Nipaz
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| |
Collapse
|
28
|
Silva JM, Pinho AJ, Pratas D. AltaiR: a C toolkit for alignment-free and temporal analysis of multi-FASTA data. Gigascience 2024; 13:giae086. [PMID: 39589438 PMCID: PMC11590114 DOI: 10.1093/gigascience/giae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Most viral genome sequences generated during the latest pandemic have presented new challenges for computational analysis. Analyzing millions of viral genomes in multi-FASTA format is computationally demanding, especially when using alignment-based methods. Most existing methods are not designed to handle such large datasets, often requiring the analysis to be divided into smaller parts to obtain results using available computational resources. FINDINGS We introduce AltaiR, a toolkit for analyzing multiple sequences in multi-FASTA format using exclusively alignment-free methodologies. AltaiR enables the identification of singularity and similarity patterns within sequences and computes static and temporal dynamics without restrictions on the number or size of input sequences. It automatically filters low-quality, biased, or deviant data. We demonstrate AltaiR's capabilities by analyzing more than 1.5 million full severe acute respiratory virus coronavirus 2 sequences, revealing interesting observations regarding viral genome characteristics over time, such as shifts in nucleotide composition, decreases in average Kolmogorov sequence complexity, and the evolution of the smallest sequences not found in the human host. CONCLUSIONS AltaiR can identify temporal characteristics and trends in large numbers of sequences, making it ideal for scenarios involving endemic or epidemic outbreaks with vast amounts of available sequence data. Implemented in C with multithreading and methodological optimizations, AltaiR is computationally efficient, flexible, and dependency-free. It accepts any sequence in FASTA format, including amino acid sequences. The complete toolkit is freely available at https://github.com/cobilab/altair.
Collapse
Affiliation(s)
- Jorge M Silva
- IEETA/LASI, Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
- DETI, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
| | - Armando J Pinho
- IEETA/LASI, Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
- DETI, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
| | - Diogo Pratas
- IEETA/LASI, Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
- DETI, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
- DoV, Department of Virology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Wu Q, Kinoti WM, Habili N, Tyerman SD, Rinaldo A, Constable FE. Genetic Diversity of Grapevine Virus A in Three Australian Vineyards Using Amplicon High Throughput Sequencing (Amplicon-HTS). Viruses 2023; 16:42. [PMID: 38257742 PMCID: PMC10819895 DOI: 10.3390/v16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Shiraz disease (SD) is one of the most destructive viral diseases of grapevines in Australia and is known to cause significant economic loss to local growers. Grapevine virus A (GVA) was reported to be the key pathogen associated with this disease. This study aimed to better understand the diversity of GVA variants both within and between individual SD and grapevine leafroll disease (LRD) affected grapevines located at vineyards in South Australia. Amplicon high throughput sequencing (Amplicon-HTS) combined with median-joining networks (MJNs) was used to analyze the variability in specific gene regions of GVA variants. Several GVAII variant groups contain samples from both vineyards studied, suggesting that these GVAII variants were from a common origin. Variant groups analyzed by MJNs using the overall data set denote that there may be a possible relationship between variant groups of GVA and the geographical location of the grapevines.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Nuredin Habili
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
| | - Amy Rinaldo
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Fiona E. Constable
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
30
|
Jaya FR, Brito BP, Darling AE. Evaluation of recombination detection methods for viral sequencing. Virus Evol 2023; 9:vead066. [PMID: 38131005 PMCID: PMC10734630 DOI: 10.1093/ve/vead066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Recombination is a key evolutionary driver in shaping novel viral populations and lineages. When unaccounted for, recombination can impact evolutionary estimations or complicate their interpretation. Therefore, identifying signals for recombination in sequencing data is a key prerequisite to further analyses. A repertoire of recombination detection methods (RDMs) have been developed over the past two decades; however, the prevalence of pandemic-scale viral sequencing data poses a computational challenge for existing methods. Here, we assessed eight RDMs: PhiPack (Profile), 3SEQ, GENECONV, recombination detection program (RDP) (OpenRDP), MaxChi (OpenRDP), Chimaera (OpenRDP), UCHIME (VSEARCH), and gmos; to determine if any are suitable for the analysis of bulk sequencing data. To test the performance and scalability of these methods, we analysed simulated viral sequencing data across a range of sequence diversities, recombination frequencies, and sample sizes. Furthermore, we provide a practical example for the analysis and validation of empirical data. We find that RDMs need to be scalable, use an analytical approach and resolution that is suitable for the intended research application, and are accurate for the properties of a given dataset (e.g. sequence diversity and estimated recombination frequency). Analysis of simulated and empirical data revealed that the assessed methods exhibited considerable trade-offs between these criteria. Overall, we provide general guidelines for the validation of recombination detection results, the benefits and shortcomings of each assessed method, and future considerations for recombination detection methods for the assessment of large-scale viral sequencing data.
Collapse
Affiliation(s)
- Frederick R Jaya
- Australian Institute for Microbiology & Infection, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
- Ecology and Evolution, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory 2600, Australia
| | - Barbara P Brito
- Australian Institute for Microbiology & Infection, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, New South Wales 2568, Australia
| | - Aaron E Darling
- Australian Institute for Microbiology & Infection, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
- Illumina Australia Pty Ltd, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
31
|
Ciabatti E, González-Rueda A, de Malmazet D, Lee H, Morgese F, Tripodi M. Genomic stability of self-inactivating rabies. eLife 2023; 12:e83459. [PMID: 37921437 PMCID: PMC10666929 DOI: 10.7554/elife.83459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2023] [Indexed: 11/04/2023] Open
Abstract
Transsynaptic viral vectors provide means to gain genetic access to neurons based on synaptic connectivity and are essential tools for the dissection of neural circuit function. Among them, the retrograde monosynaptic ΔG-Rabies has been widely used in neuroscience research. A recently developed engineered version of the ΔG-Rabies, the non-toxic self-inactivating (SiR) virus, allows the long term genetic manipulation of neural circuits. However, the high mutational rate of the rabies virus poses a risk that mutations targeting the key genetic regulatory element in the SiR genome could emerge and revert it to a canonical ΔG-Rabies. Such revertant mutations have recently been identified in a SiR batch. To address the origin, incidence and relevance of these mutations, we investigated the genomic stability of SiR in vitro and in vivo. We found that "revertant" mutations are rare and accumulate only when SiR is extensively amplified in vitro, particularly in suboptimal production cell lines that have insufficient levels of TEV protease activity. Moreover, we confirmed that SiR-CRE, unlike canonical ΔG-Rab-CRE or revertant-SiR-CRE, is non-toxic and that revertant mutations do not emerge in vivo during long-term experiments.
Collapse
Affiliation(s)
| | | | | | - Hassal Lee
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Fabio Morgese
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Marco Tripodi
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
32
|
Terbot JW, Cooper BS, Good JM, Jensen JD. A Simulation Framework for Modeling the Within-Patient Evolutionary Dynamics of SARS-CoV-2. Genome Biol Evol 2023; 15:evad204. [PMID: 37950882 PMCID: PMC10664409 DOI: 10.1093/gbe/evad204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
The global impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to considerable interest in detecting novel beneficial mutations and other genomic changes that may signal the development of variants of concern (VOCs). The ability to accurately detect these changes within individual patient samples is important in enabling early detection of VOCs. Such genomic scans for rarely acting positive selection are best performed via comparison of empirical data with simulated data wherein commonly acting evolutionary factors, including mutation and recombination, reproductive and infection dynamics, and purifying and background selection, can be carefully accounted for and parameterized. Although there has been work to quantify these factors in SARS-CoV-2, they have yet to be integrated into a baseline model describing intrahost evolutionary dynamics. To construct such a baseline model, we develop a simulation framework that enables one to establish expectations for underlying levels and patterns of patient-level variation. By varying eight key parameters, we evaluated 12,096 different model-parameter combinations and compared them with existing empirical data. Of these, 592 models (∼5%) were plausible based on the resulting mean expected number of segregating variants. These plausible models shared several commonalities shedding light on intrahost SARS-CoV-2 evolutionary dynamics: severe infection bottlenecks, low levels of reproductive skew, and a distribution of fitness effects skewed toward strongly deleterious mutations. We also describe important areas of model uncertainty and highlight additional sequence data that may help to further refine a baseline model. This study lays the groundwork for the improved analysis of existing and future SARS-CoV-2 within-patient data.
Collapse
Affiliation(s)
- John W Terbot
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, Arizona, USA
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
33
|
Lin CH, Tam HMH, Yang CY, Hsieh FC, Wang JL, Yang CC, Hsu HW, Liu HP, Wu HY. Evolution of the coronavirus spike protein in the full-length genome and defective viral genome under diverse selection pressures. J Gen Virol 2023; 104:001920. [PMID: 37997889 PMCID: PMC10768696 DOI: 10.1099/jgv.0.001920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
How coronaviruses evolve by altering the structures of their full-length genome and defective viral genome (DVG) under dynamic selection pressures has not been studied. In this study, we aimed to experimentally identify the dynamic evolutionary patterns of the S protein sequence in the full-length genome and DVG under diverse selection pressures, including persistence, innate immunity and antiviral drugs. The evolutionary features of the S protein sequence in the full-length genome and in the DVG under diverse selection pressures are as follows: (i) the number of nucleotide (nt) mutations does not necessarily increase with the number of selection pressures; (ii) certain types of selection pressure(s) can lead to specific nt mutations; (iii) the mutated nt sequence can be reverted to the wild-type nt sequence under the certain type of selection pressure(s); (iv) the DVG can also undergo mutations and evolve independently of the full-length genome; and (v) DVG species are regulated during evolution under diverse selection pressures. The various evolutionary patterns of the S protein sequence in the full-length genome and DVG identified in this study may contribute to coronaviral fitness under diverse selection pressures.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hon-Man-Herman Tam
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Jiun-Long Wang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| |
Collapse
|
34
|
Wagner A, Mutschler H. Design principles and applications of synthetic self-replicating RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1803. [PMID: 37264531 DOI: 10.1002/wrna.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
With the advent of ever more sophisticated methods for the in vitro synthesis and the in vivo delivery of RNAs, synthetic mRNAs have gained substantial interest both for medical applications, as well as for biotechnology. However, in most biological systems exogeneous mRNAs possess only a limited half-life, especially in fast dividing cells. In contrast, viral RNAs can extend their lifetime by actively replicating inside their host. As such they may serve as scaffolds for the design of synthetic self-replicating RNAs (srRNA), which can be used to increase both the half-life and intracellular concentration of coding RNAs. Synthetic srRNAs may be used to enhance recombinant protein expression or induce the reprogramming of differentiated cells into pluripotent stem cells but also to create cell-free systems for research based on experimental evolution. In this article, we discuss the applications and design principles of srRNAs used for cellular reprogramming, mRNA-based vaccines and tools for synthetic biology. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Alexander Wagner
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Hannes Mutschler
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
35
|
Costacurta F, Dodaro A, Bante D, Schöppe H, Sprenger B, Moghadasi SA, Fleischmann J, Pavan M, Bassani D, Menin S, Rauch S, Krismer L, Sauerwein A, Heberle A, Rabensteiner T, Ho J, Harris RS, Stefan E, Schneider R, Kaserer T, Moro S, von Laer D, Heilmann E. A comprehensive study of SARS-CoV-2 main protease (M pro) inhibitor-resistant mutants selected in a VSV-based system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558628. [PMID: 37808638 PMCID: PMC10557589 DOI: 10.1101/2023.09.22.558628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Nirmatrelvir was the first protease inhibitor (PI) specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available PIs (nirmatrelvir and ensitrelvir) with cell-based and biochemical assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease-inhibitor-resistance mechanisms and show the relevance of specific mutations in the clinic, thereby informing treatment decisions.
Collapse
Affiliation(s)
- Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Andrea Dodaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Bernhard Sprenger
- Department of Biochemistry, University of Innsbruck, Innsbruck, 6020, Austria
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jakob Fleischmann
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, Innsbruck, 6020, Tyrol, Austria
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Silvia Menin
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anne Heberle
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Toni Rabensteiner
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Joses Ho
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, United States
| | - Eduard Stefan
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, Innsbruck, 6020, Tyrol, Austria
| | - Rainer Schneider
- Department of Biochemistry, University of Innsbruck, Innsbruck, 6020, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| |
Collapse
|
36
|
Lu C, Miu Q, Jin D, Li A, Cheng Z, Zhou Y, Wang Y, Li S. Genetic variability of rice stripe virus after its pandemic in Jiangsu. Mol Biol Rep 2023; 50:7263-7274. [PMID: 37422539 DOI: 10.1007/s11033-023-08652-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Rice stripe virus (RSV) caused a serious disease pandemic in rice in East China between 2001 and 2010. The continuous integrated managements reduced virus epidemic year by year until it was non-epidemic. As an RNA virus, its genetic variability after undergoing a long-term non-epidemic period was meaningful to study. While in 2019, the sudden occurrence of RSV in Jiangsu provided an opportunity for the study. METHODS AND RESULTS The complete genome of JY2019, an RSV isolate from Jiangyan, was determined. A genotype profile of 22 isolates from China, Japan and Korea indicated that the isolates from Yunnan formed the subtype II, and other isolates clustered the subtype I. RNA 1-3 of JY2019 isolate well-clustered in the subtype I clade, and RNA 4 was also in subtype I, but it had a slight separation from other intra-group isolates. After phylogenetic analyses, it was considered NSvc4 gene contributed to the tendency, because it exhibited an obvious trend towards the subtype II (Yunnan) group. High sequence identity (100%) of NSvc4 between JY2019 and barnyardgrass isolate from different regions demonstrated genetic variation of NSvc4 was consistent in RSV natural populations in Jiangsu in the non-epidemic period. In the phylogenetic tree of all 74 NSvc4 genes, JY2019 belonged to a minor subtype Ib, suggesting the subtype Ib isolates might have existed in natural populations before the non-epidemic period, but not a dominant population. CONCLUSIONS Our results suggested that NSvc4 gene was susceptible to selection pressure, and the subtype Ib might be more adaptable for the interaction between RSV and hosts in the non-epidemic ecological conditions.
Collapse
Affiliation(s)
- Chengye Lu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, 650201, China
| | - Qian Miu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Daoran Jin
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Aiguo Li
- Plant Protection and Quarantine Station, Agricultural Technology Extension Center of Jiangyan, Taizhou, 225500, China
| | - Zhaobang Cheng
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
37
|
Williams EP, Xue Y, Lee J, Fitzpatrick EA, Kong Y, Reichard W, Writt H, Jonsson CB. Deep spatial profiling of Venezuelan equine encephalitis virus reveals increased genetic diversity amidst neuroinflammation and cell death during brain infection. J Virol 2023; 97:e0082723. [PMID: 37560924 PMCID: PMC10506382 DOI: 10.1128/jvi.00827-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 08/11/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) causes a febrile illness that can progress to neurological disease with the possibility of death in human cases. The evaluation and optimization of therapeutics that target brain infections demands knowledge of the host's response to VEEV, the dynamics of infection, and the potential for within-host evolution of the virus. We hypothesized that selective pressures during infection of the brain may differ temporally and spatially and so we investigated the dynamics of the host response, viral transcript levels, and genetic variation of VEEV TC-83 in eight areas of the brain in mice over 7 days post-infection (dpi). Viral replication increased throughout the brain until 5-6 dpi and decreased thereafter with neurons as the main site of viral replication. Low levels of genetic diversity were noted on 1 dpi and were followed by an expansion in the genetic diversity of VEEV and nonsynonymous (Ns) mutations that peaked by 5 dpi. The pro-inflammatory response and the influx of immune cells mirrored the levels of virus and correlated with substantial damage to neurons by 5 dpi and increased activation of microglial cells and astrocytes. The prevalence and dynamics of Ns mutations suggest that the VEEV is under selection within the brain and that progressive neuroinflammation may play a role in acting as a selective pressure. IMPORTANCE Treatment of encephalitis in humans caused by Venezuelan equine encephalitis virus (VEEV) from natural or aerosol exposure is not available, and hence, there is a great interest to address this gap. In contrast to natural infections, therapeutic treatment of infections from aerosol exposure will require fast-acting drugs that rapidly penetrate the blood-brain barrier, engage sites of infection in the brain and mitigate the emergence of drug resistance. Therefore, it is important to understand not only VEEV pathogenesis, but the trafficking of the viral population within the brain, the potential for within-host evolution of the virus, and how VEEV might evolve resistance.
Collapse
Affiliation(s)
- Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jasper Lee
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Elizabeth A. Fitzpatrick
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Kong
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Walter Reichard
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Haley Writt
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
38
|
Caldwell HS, Kuo L, Pata JD, Dupuis AP, Arnold JJ, Yeager C, Stout J, Koetzner CA, Payne AF, Bialosuknia SM, Banker EM, Nolen TA, Cameron CE, Ciota AT. Maintenance of a host-specific minority mutation in the West Nile virus NS3. iScience 2023; 26:107468. [PMID: 37593454 PMCID: PMC10428113 DOI: 10.1016/j.isci.2023.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
West Nile virus (WNV), the most prevalent arthropod-borne virus (arbovirus) in the United States, is maintained in a cycle between Culex spp. mosquitoes and birds. Arboviruses exist within hosts and vectors as a diverse set of closely related genotypes. In theory, this genetic diversity can facilitate adaptation to distinct environments during host cycling, yet host-specific fitness of minority genotypes has not been assessed. Utilizing WNV deep-sequencing data, we previously identified a naturally occurring, mosquito-biased substitution, NS3 P319L. Using both cell culture and experimental infection in natural hosts, we demonstrated that this substitution confers attenuation in vertebrate hosts and increased transmissibility by mosquitoes. Biochemical assays demonstrated temperature-sensitive ATPase activity consistent with host-specific phenotypes. Together these data confirm the maintenance of host-specific minority variants in arbovirus mutant swarms, suggest a unique role for NS3 in viral fitness, and demonstrate that intrahost sequence data can inform mechanisms of host-specific adaptation.
Collapse
Affiliation(s)
- Haley S. Caldwell
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA
| | - Lili Kuo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Janice D. Pata
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Alan P. Dupuis
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Calvin Yeager
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jessica Stout
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Cheri A. Koetzner
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Anne F. Payne
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Elyse M. Banker
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Taylor A. Nolen
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA
| |
Collapse
|
39
|
Aguilar Rangel M, Dolan PT, Taguwa S, Xiao Y, Andino R, Frydman J. High-resolution mapping reveals the mechanism and contribution of genome insertions and deletions to RNA virus evolution. Proc Natl Acad Sci U S A 2023; 120:e2304667120. [PMID: 37487061 PMCID: PMC10400975 DOI: 10.1073/pnas.2304667120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
RNA viruses rapidly adapt to selective conditions due to the high intrinsic mutation rates of their RNA-dependent RNA polymerases (RdRps). Insertions and deletions (indels) in viral genomes are major contributors to both deleterious mutational load and evolutionary novelty, but remain understudied. To characterize the mechanistic details of their formation and evolutionary dynamics during infection, we developed a hybrid experimental-bioinformatic approach. This approach, called MultiMatch, extracts insertions and deletions from ultradeep sequencing experiments, including those occurring at extremely low frequencies, allowing us to map their genomic distribution and quantify the rates at which they occur. Mapping indel mutations in adapting poliovirus and dengue virus populations, we determine the rates of indel generation and identify mechanistic and functional constraints shaping indel diversity. Using poliovirus RdRp variants of distinct fidelity and genome recombination rates, we demonstrate tradeoffs between fidelity and Indel generation. Additionally, we show that maintaining translation frame and viral RNA structures constrain the Indel landscape and that, due to these significant fitness effects, Indels exert a significant deleterious load on adapting viral populations. Conversely, we uncover positively selected Indels that modulate RNA structure, generate protein variants, and produce defective interfering genomes in viral populations. Together, our analyses establish the kinetic and mechanistic tradeoffs between misincorporation, recombination, and Indel rates and reveal functional principles defining the central role of Indels in virus evolution, emergence, and the regulation of viral infection.
Collapse
Affiliation(s)
| | - Patrick T. Dolan
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Shuhei Taguwa
- Department of Biology, Stanford University, Stanford, CA94305
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
40
|
Nourinejhad Zarghani S, Al Kubrusli R, Iancev S, Jalkanen R, Büttner C, von Bargen S. Molecular Population Genetics of Aspen Mosaic-Associated Virus in Finland and Sweden. Viruses 2023; 15:1678. [PMID: 37632020 PMCID: PMC10460043 DOI: 10.3390/v15081678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Aspen mosaic-associated virus (AsMaV) is a newly identified Emaravirus, in the family Fimoviridae, Bunyavirales, associated with mosaic symptoms in aspen trees (Populus tremula). Aspen trees are widely distributed in Europe and understanding the population structure of AsMaV may aid in the development of better management strategies. The virus genome consists of five negative-sense single-stranded RNA (-ssRNA) molecules. To investigate the genetic diversity and population parameters of AsMaV, different regions of the genome were amplified and analyzed and full-length sequence of the divergent isolates were cloned and sequenced. The results show that RNA3 or nucleoprotein is a good representative for studying genetic diversity in AsMaV. Developed RT-PCR-RFLP was able to identify areas with a higher number of haplotypes and could be applied for screening the large number of samples. In general, AsMaV has a conserved genome and based on the phylogenetic studies, geographical structuring was observed in AsMaV isolates from Sweden and Finland, which could be attributed to founder effects. The genome of AsMaV is under purifying selection but not distributed uniformly on genomic RNAs. Distant AsMaV isolates displayed amino acid sequence variations compared to other isolates, and bioinformatic analysis predicted potential post-translational modification sites in some viral proteins.
Collapse
Affiliation(s)
- Shaheen Nourinejhad Zarghani
- Division Phytomedicine, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14197 Berlin, Germany; (S.N.Z.); (R.A.K.); (C.B.)
| | - Rim Al Kubrusli
- Division Phytomedicine, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14197 Berlin, Germany; (S.N.Z.); (R.A.K.); (C.B.)
| | - Serghei Iancev
- Division Phytomedicine, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14197 Berlin, Germany; (S.N.Z.); (R.A.K.); (C.B.)
| | | | - Carmen Büttner
- Division Phytomedicine, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14197 Berlin, Germany; (S.N.Z.); (R.A.K.); (C.B.)
| | - Susanne von Bargen
- Division Phytomedicine, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14197 Berlin, Germany; (S.N.Z.); (R.A.K.); (C.B.)
| |
Collapse
|
41
|
Terbot JW, Cooper BS, Good JM, Jensen JD. A simulation framework for modeling the within-patient evolutionary dynamics of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548462. [PMID: 37503016 PMCID: PMC10370031 DOI: 10.1101/2023.07.13.548462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The global impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to considerable interest in detecting novel beneficial mutations and other genomic changes that may signal the development of variants of concern (VOCs). The ability to accurately detect these changes within individual patient samples is important in enabling early detection of VOCs. Such genomic scans for positive selection are best performed via comparison of empirical data to simulated data wherein evolutionary factors, including mutation and recombination rates, reproductive and infection dynamics, and purifying and background selection, can be carefully accounted for and parameterized. While there has been work to quantify these factors in SARS-CoV-2, they have yet to be integrated into a baseline model describing intra-host evolutionary dynamics. To construct such a baseline model, we develop a simulation framework that enables one to establish expectations for underlying levels and patterns of patient-level variation. By varying eight key parameters, we evaluated 12,096 different model-parameter combinations and compared them to existing empirical data. Of these, 592 models (~5%) were plausible based on the resulting mean expected number of segregating variants. These plausible models shared several commonalities shedding light on intra-host SARS-CoV-2 evolutionary dynamics: severe infection bottlenecks, low levels of reproductive skew, and a distribution of fitness effects skewed towards strongly deleterious mutations. We also describe important areas of model uncertainty and highlight additional sequence data that may help to further refine a baseline model. This study lays the groundwork for the improved analysis of existing and future SARS-CoV-2 within-patient data.
Collapse
Affiliation(s)
- John W Terbot
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
| | - Brandon S. Cooper
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
| | - Jeffrey M. Good
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
| | - Jeffrey D. Jensen
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| |
Collapse
|
42
|
Hale GL. Flaviviruses and the Traveler: Around the World and to Your Stage. A Review of West Nile, Yellow Fever, Dengue, and Zika Viruses for the Practicing Pathologist. Mod Pathol 2023; 36:100188. [PMID: 37059228 DOI: 10.1016/j.modpat.2023.100188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Flaviviruses are a genus of single-stranded RNA viruses that impose an important and growing burden to human health. There are over 3 billion individuals living in areas where flaviviruses are endemic. Flaviviruses and their arthropod vectors (which include mosquitoes and ticks) take advantage of global travel to expand their distribution and cause severe disease in humans, and they can be grouped according to their vector and pathogenicity. The mosquito-borne flaviviruses cause a spectrum of diseases from encephalitis to hepatitis and vascular shock syndrome, congenital abnormalities, and fetal death. Neurotropic infections such as Zika virus and West Nile virus cross the blood-brain barrier and infect neurons and other cells, leading to meningoencephalitis. In the hemorrhagic fever clade, there are yellow fever virus, the prototypical hemorrhagic fever virus that infects hepatocytes, and dengue virus, which infects cells of the reticuloendothelial system and can lead to a dramatic plasma cell leakage and shock syndrome. Zika virus also causes congenital infections and fetal death and is the first and only example of a teratogenic arbovirus in humans. Diagnostic testing for flaviviruses broadly includes the detection of viral RNA in serum (particularly within the first 10 days of symptoms), viral isolation by cell culture (rarely performed due to complexity and biosafety concerns), and histopathologic evaluation with immunohistochemistry and molecular testing on formalin-fixed paraffin-embedded tissue blocks. This review focuses on 4 mosquito-borne flaviviruses-West Nile, yellow fever, dengue, and Zika virus-and discusses the mechanisms of transmission, the role of travel in geographic distribution and epidemic emergence, and the clinical and histopathologic features of each. Finally, prevention strategies such as vector control and vaccination are discussed.
Collapse
Affiliation(s)
- Gillian L Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
43
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
44
|
Jana AK, Sharawy M, May ER. Non-equilibrium virus particle dynamics: Microsecond MD simulations of the complete Flock House virus capsid under different conditions. J Struct Biol 2023; 215:107964. [PMID: 37105277 PMCID: PMC10205670 DOI: 10.1016/j.jsb.2023.107964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Flock House virus (FHV) is an animal virus and considered a model system for non-enveloped viruses. It has a small, icosahedral capsid (T=3) and a bipartite positive-sense RNA genome. We present an extensive study of the FHV capsid dynamics from all-atom molecular dynamics simulations of the complete capsid. The simulations explore different biologically relevant conditions (neutral/low pH, with/without RNA in the capsid) using the CHARMM force field. The results show that low pH destabilizes the capsid, causing radial expansion, and RNA stabilizes the capsid. The finding of low pH destabilization is biologically relevant because the capsid is exposed to low pH in the endosome, where conformational changes occur leading to genome release. We also observe structural changes at the fivefold and twofold symmetry axes that likely relate to the externalization of membrane active γ peptides through the fivefold vertex and extrusion of RNA at the twofold axis. Simulations using the Amber force field at neutral pH are also performed and display similar characteristics to the CHARMM simulations.
Collapse
Affiliation(s)
- Asis K Jana
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA; Department of Microbiology and Biotechnology, Sister Nivedita University, New Town, West Bengal 700156, India
| | - Mahmoud Sharawy
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA
| | - Eric R May
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA.
| |
Collapse
|
45
|
Ianiro G, D’Ezio V, Carpinelli L, Casella C, Bonaccorsi di Patti MC, Rosa L, Valenti P, Colasanti M, Musci G, Cutone A, Persichini T. Iron Saturation Drives Lactoferrin Effects on Oxidative Stress and Neurotoxicity Induced by HIV-1 Tat. Int J Mol Sci 2023; 24:7947. [PMID: 37175651 PMCID: PMC10178013 DOI: 10.3390/ijms24097947] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The Trans-Activator of Transcription (Tat) of Human Immunodeficiency Virus (HIV-1) is involved in virus replication and infection and can promote oxidative stress in human astroglial cells. In response, host cells activate transcription of antioxidant genes, including a subunit of System Xc- cystine/glutamate antiporter which, in turn, can trigger glutamate-mediated excitotoxicity. Here, we present data on the efficacy of bovine Lactoferrin (bLf), both in its native (Nat-bLf) and iron-saturated (Holo-bLf) forms, in counteracting oxidative stress in U373 human astroglial cells constitutively expressing the viral protein (U373-Tat). Our results show that, dependent on iron saturation, both Nat-bLf and Holo-bLf can boost host antioxidant response by up-regulating System Xc- and the cell iron exporter Ferroportin via the Nuclear factor erythroid 2-related factor (Nrf2) pathway, thus reducing Reactive Oxygen Species (ROS)-mediated lipid peroxidation and DNA damage in astrocytes. In U373-Tat cells, both forms of bLf restore the physiological internalization of Transferrin (Tf) Receptor 1, the molecular gate for Tf-bound iron uptake. The involvement of astrocytic antioxidant response in Tat-mediated neurotoxicity was evaluated in co-cultures of U373-Tat with human neuronal SH-SY5Y cells. The results show that the Holo-bLf exacerbates Tat-induced excitotoxicity on SH-SY5Y, which is directly dependent on System-Xc- upregulation, thus highlighting the mechanistic role of iron in the biological activities of the glycoprotein.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (G.M.)
| | - Veronica D’Ezio
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | - Ludovica Carpinelli
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | - Cecilia Casella
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | | | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Roma, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Roma, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Marco Colasanti
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (G.M.)
| | - Tiziana Persichini
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| |
Collapse
|
46
|
Howe-Kerr LI, Grupstra CGB, Rabbitt KM, Conetta D, Coy SR, Klinges JG, Maher RL, McConnell KM, Meiling SS, Messyasz A, Schmeltzer ER, Seabrook S, Sims JA, Veglia AJ, Thurber AR, Thurber RLV, Correa AMS. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME COMMUNICATIONS 2023; 3:27. [PMID: 37009785 PMCID: PMC10068613 DOI: 10.1038/s43705-023-00227-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Viruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates ('dinoRNAVs') to analyze their dynamics in the reef-building coral, Porites lobata. We repeatedly sampled 54 colonies harboring Cladocopium C15 dinoflagellates, across three environmentally distinct reef zones (fringing reef, back reef, and forereef) around the island of Moorea, French Polynesia over a 3-year period and spanning a reef-wide thermal stress event. By the end of the sampling period, 28% (5/18) of corals in the fringing reef experienced partial mortality versus 78% (14/18) of corals in the forereef. Over 90% (50/54) of colonies had detectable dinoRNAV infections. Reef zone influenced the composition and richness of viral mcp amino acid types ('aminotypes'), with the fringing reef containing the highest aminotype richness. The reef-wide thermal stress event significantly increased aminotype dispersion, and this pattern was strongest in the colonies that experienced partial mortality. These findings demonstrate that dinoRNAV infections respond to environmental fluctuations experienced in situ on reefs. Further, viral productivity will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis underpinning coral reef ecosystems.
Collapse
Affiliation(s)
| | - Carsten G B Grupstra
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Kristen M Rabbitt
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Dennis Conetta
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Samantha R Coy
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Oceanography, Texas A & M University, College Station, TX, USA
| | - J Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, USA
| | - Rebecca L Maher
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | | - Sonora S Meiling
- University of the Virgin Islands, St. Thomas, US Virgin Islands, USA
| | - Adriana Messyasz
- Rutgers School of Environmental and Biological Sciences, New Brunswick, NJ, USA
| | | | - Sarah Seabrook
- Oregon State University, Corvallis, OR, USA
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Jordan A Sims
- Department of BioSciences, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Alex J Veglia
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | | | | |
Collapse
|
47
|
Terbot JW, Johri P, Liphardt SW, Soni V, Pfeifer SP, Cooper BS, Good JM, Jensen JD. Developing an appropriate evolutionary baseline model for the study of SARS-CoV-2 patient samples. PLoS Pathog 2023; 19:e1011265. [PMID: 37018331 PMCID: PMC10075409 DOI: 10.1371/journal.ppat.1011265] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Over the past 3 years, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread through human populations in several waves, resulting in a global health crisis. In response, genomic surveillance efforts have proliferated in the hopes of tracking and anticipating the evolution of this virus, resulting in millions of patient isolates now being available in public databases. Yet, while there is a tremendous focus on identifying newly emerging adaptive viral variants, this quantification is far from trivial. Specifically, multiple co-occurring and interacting evolutionary processes are constantly in operation and must be jointly considered and modeled in order to perform accurate inference. We here outline critical individual components of such an evolutionary baseline model-mutation rates, recombination rates, the distribution of fitness effects, infection dynamics, and compartmentalization-and describe the current state of knowledge pertaining to the related parameters of each in SARS-CoV-2. We close with a series of recommendations for future clinical sampling, model construction, and statistical analysis.
Collapse
Affiliation(s)
- John W Terbot
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| | - Parul Johri
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| | - Schuyler W Liphardt
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
| | - Vivak Soni
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| | - Susanne P Pfeifer
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| | - Brandon S Cooper
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
| | - Jeffrey M Good
- University of Montana, Division of Biological Sciences, Missoula, Montana, United States of America
| | - Jeffrey D Jensen
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine, Tempe, Arizona, United States of America
| |
Collapse
|
48
|
Sharma A, Krishna S, Sowdhamini R. Bioinformatics Analysis of Mutations Sheds Light on the Evolution of Dengue NS1 Protein With Implications in the Identification of Potential Functional and Druggable Sites. Mol Biol Evol 2023; 40:7043264. [PMID: 36795614 PMCID: PMC9989740 DOI: 10.1093/molbev/msad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/26/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Non-structural protein (NS1) is a 350 amino acid long conserved protein in the dengue virus. Conservation of NS1 is expected due to its importance in dengue pathogenesis. The protein is known to exist in dimeric and hexameric states. The dimeric state is involved in its interaction with host proteins and viral replication, and the hexameric state is involved in viral invasion. In this work, we performed extensive structure and sequence analysis of NS1 protein, and uncovered the role of NS1 quaternary states in its evolution. A three-dimensional modeling of unresolved loop regions in NS1 structure is performed. "Conserved" and "Variable" regions within NS1 protein were identified from sequences obtained from patient samples and the role of compensatory mutations in selecting destabilizing mutations were identified. Molecular dynamics (MD) simulations were performed to extensively study the effect of a few mutations on NS1 structure stability and compensatory mutations. Virtual saturation mutagenesis, predicting the effect of every individual amino acid substitution on NS1 stability sequentially, revealed virtual-conserved and variable sites. The increase in number of observed and virtual-conserved regions across NS1 quaternary states suggest the role of higher order structure formation in its evolutionary conservation. Our sequence and structure analysis could enable in identifying possible protein-protein interfaces and druggable sites. Virtual screening of nearly 10,000 small molecules, including FDA-approved drugs, permitted us to recognize six drug-like molecules targeting the dimeric sites. These molecules could be promising due to their stable interactions with NS1 throughout the simulation.
Collapse
Affiliation(s)
- Abhishek Sharma
- National Centre for Biological Science, TIFR, Bangalore, India
| | - Sudhir Krishna
- National Centre for Biological Science, TIFR, Bangalore, India.,Department of School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Pond-403401, Goa, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Science, TIFR, Bangalore, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,Computational Biology, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| |
Collapse
|
49
|
Ranabhat NB, Fellers JP, Bruce MA, Rupp JLS. Brome mosaic virus detected in Kansas wheat co-infected with other common wheat viruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1096249. [PMID: 36938011 PMCID: PMC10022736 DOI: 10.3389/fpls.2023.1096249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Wheat breeders are developing new virus-resistant varieties; however, it is assumed that only a few viruses or well-known viruses are present in the field. New sequencing technology is allowing for better determination of natural field virus populations. For three years, 2019-2021, Kansas wheat field surveys were conducted to determine the constituents of natural field virus populations using nanopore sequencing. During analysis, brome mosaic virus (BMV) was identified for the first time in Kansas but was in association with other wheat viruses. Brome mosaic virus was identified from 29 out of 47 different Kansas counties sampled and 44% of the total samples. BMV was found co-infected with wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) in 27.8% of the samples, with WSMV only (13.9%) and co-infected with WSMV + TriMV + High Plains wheat mosaic emaravirus (HPWMoV) (13.9%). RNA genomes of Kansas BMV isolates had 99.4 to 100% nucleotide and amino acid sequence identity, respectively, to each other. RNA2a possessed relatively high divergence (π = 0.01) compared to RNA1a and RNA3a (π = 0.004). Coding regions of all BMV RNAs were considered negative for purifying selection pressure as nonsynonymous and synonymous nucleotide ratio was less than one (dNs/dS >1). The identification of BMV in Kansas virus populations adds another layer of complexity to plant breeding. This work provides information to improve tools to aid in monitoring, detecting, and determining the variation within BMV.
Collapse
Affiliation(s)
- Nar B. Ranabhat
- Department of Plant Pathology, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, United States
| | - John P. Fellers
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Myron A. Bruce
- Department of Plant Pathology, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, United States
| | - Jessica L. Shoup Rupp
- Department of Plant Pathology, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
50
|
Yin X, Popa H, Stapon A, Bouda E, Garcia-Diaz M. Fidelity of Ribonucleotide Incorporation by the SARS-CoV-2 Replication Complex. J Mol Biol 2023; 435:167973. [PMID: 36690070 PMCID: PMC9854147 DOI: 10.1016/j.jmb.2023.167973] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The SARS-CoV-2 coronavirus has caused a global pandemic. Despite the initial success of vaccines at preventing infection, genomic variation has led to the proliferation of variants capable of higher infectivity. Mutations in the SARS-CoV-2 genome are the consequence of replication errors, highlighting the importance of understanding the determinants of SARS-CoV-2 replication fidelity. The RNA-dependent RNA polymerase (RdRp) is the central catalytic subunit for SARS-CoV-2 RNA replication and genome transcription. Here, we report the fidelity of ribonucleotide incorporation by SARS-CoV-2 RdRp (nsp12), along with its co-factors nsp7/nsp8, using steady-state kinetic analysis. Our analysis suggests that in the absence of the proofreading subunit (nsp14), the nsp12/7/8 complex has a surprisingly low base substitution fidelity (10-1-10-3). This is orders of magnitude lower than the fidelity reported for other coronaviruses (10-6-10-7), highlighting the importance of proofreading for faithful SARS-CoV-2 replication. We performed a mutational analysis of all reported SARS-CoV-2 genomes and identified mutations in both nsp12 and nsp14 that appear likely to lower viral replication fidelity through mechanisms that include impairing the nsp14 exonuclease activity or its association with the RdRp. Our observations provide novel insight into the mechanistic basis of replication fidelity in SARS-CoV-2 and the potential effect of nsp12 and nsp14 mutations on replication fidelity, informing the development of future antiviral agents and SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Xingyu Yin
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Horia Popa
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Anthony Stapon
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Emilie Bouda
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|