1
|
Fine definition of the epitopes on the human gp91 phox/NOX2 for the monoclonal antibodies CL-5 and 48. J Immunol Methods 2021; 501:113213. [PMID: 34971634 DOI: 10.1016/j.jim.2021.113213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Superoxide-producing NADPH oxidase, gp91phox/NOX2, in phagocytes plays a critical role in the host defenses against pathogens. Moreover, gp91phox/NOX2 contributes to the oxidative stress in endothelial cells. Therefore, investigating the level of gp91phox/NOX2 with immunoblotting is important for estimating the amount of superoxide produced. Here, we showed that the epitopes in human gp91phox/NOX2 recognized by monoclonal antibodies (mAbs) CL-5 and 48 were in amino acids 132-147 and 136-144, respectively. Although the epitopes were close to the N-glycosylation sites, N-glycan maturation did not affect mAbs recognition. When Pro-136 was substituted with Arg, the corresponding mouse residue, human gp91phox/NOX2 was not recognized by mAbs CL-5 and 48; however, the substitution did not affect gp91phox/NOX2-based oxidase activity. This finding explains why these mAbs specifically recognize the human but not mouse gp91phox/NOX2. Hence, these mAbs are useful for investigating the level of gp91phox/NOX2 without amino acid substitutions in the epitopes.
Collapse
|
2
|
Amjadi MF, Avner BS, Greenlee-Wacker MC, Horswill AR, Nauseef WM. Neutrophil-derived extracellular vesicles modulate the phenotype of naïve human neutrophils. J Leukoc Biol 2021; 110:917-925. [PMID: 33682200 PMCID: PMC8423865 DOI: 10.1002/jlb.3ab0520-339rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Neutrophils (PMN) regulate inflammation in many ways, including communication with other immune cells via extracellular vesicles (EVs). EVs released by human neutrophils activated with N-formylmethionyl-leucyl-phenylalanine (fMLF) (PMN-fMLF EVs) had an outside-out orientation and contained functionally important neutrophil plasma membrane proteins, including flavocytochrome b558, and enzymatically active granule proteins, elastase, and myeloperoxidase. Treatment of naïve PMN with PMN-fMLF EVs primed fMLF-stimulated NADPH oxidase activity, increased surface expression of the complement receptors CD11b/CD18 and CD35, the specific granule membrane protein CD66, and flavocytochrome b558 , and promoted phagocytosis of serum-opsonized Staphylococcus aureus. The primed oxidase activity reflected increased surface expression of flavocytochrome b558 and phosphorylation of SER345 in p47phox , two recognized mechanisms for oxidase priming. Taken together, these data demonstrate that stimulated PMN released EVs that altered the phenotype of naïve phagocytes by priming of the NADPH oxidase activity and augmenting phagocytosis, two responses that are integral to optimal PMN host defense.
Collapse
Affiliation(s)
- Maya F. Amjadi
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, 52240
| | - Benjamin S. Avner
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, 52240
- Department of Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49007
| | | | - Alexander R. Horswill
- Department of Immunology and Microbiology at University of Colorado-Denver School of Medicine, Denver, Colorado 80204
| | - William M. Nauseef
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, 52240
| |
Collapse
|
3
|
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev 2021; 46:6407522. [PMID: 34673942 DOI: 10.1093/femsre/fuab052] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel materials and many others. The importance of phage display platforms was recognized by awarding the Nobel Prize in 2018 "for the phage display of peptides and antibodies". In contrast to many review articles concerning specific applications of phage display systems published in recent years, we present an overview of this technology, including a comparison of various display systems, their advantages and disadvantages, and examples of applications in various fields of science, medicine, and the broad sense of biotechnology. Other peptide display technologies, which employ bacterial, yeast and mammalian cells, as well as eukaryotic viruses and cell-free systems, are also discussed. These powerful methods are still being developed and improved; thus, novel sophisticated tools based on phage display and other peptide display systems are constantly emerging, and new opportunities to solve various scientific, medical and technological problems can be expected to become available in the near future.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
4
|
O'Donovan B, Mandel-Brehm C, Vazquez SE, Liu J, Parent AV, Anderson MS, Kassimatis T, Zekeridou A, Hauser SL, Pittock SJ, Chow E, Wilson MR, DeRisi JL. High-resolution epitope mapping of anti-Hu and anti-Yo autoimmunity by programmable phage display. Brain Commun 2020; 2:fcaa059. [PMID: 32954318 PMCID: PMC7425417 DOI: 10.1093/braincomms/fcaa059] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Paraneoplastic neurological disorders are immune-mediated diseases understood to manifest as part of a misdirected anti-tumor immune response. Paraneoplastic neurological disorder-associated autoantibodies can assist with diagnosis and enhance our understanding of tumor-associated immune processes. We designed a comprehensive library of 49-amino-acid overlapping peptides spanning the entire human proteome, including all splicing isoforms and computationally predicted coding regions. Using this library, we optimized a phage immunoprecipitation and sequencing protocol with multiple rounds of enrichment to create high-resolution epitope profiles in serum and cerebrospinal fluid (CSF) samples from patients suffering from two common paraneoplastic neurological disorders, the anti-Yo (n = 36 patients) and anti-Hu (n = 44 patients) syndromes. All (100%) anti-Yo patient samples yielded enrichment of peptides from the canonical anti-Yo (CDR2 and CDR2L) antigens, while 38% of anti-Hu patients enriched peptides deriving from the nELAVL (neuronal embryonic lethal abnormal vision like) family of proteins, the anti-Hu autoantigenic target. Among the anti-Hu patient samples that were positive for nELAVL, we noted a restricted region of immunoreactivity. To achieve single amino acid resolution, we designed a novel deep mutational scanning phage library encoding all possible single-point mutants targeting the reactive nELAVL region. This analysis revealed a distinct preference for the degenerate motif, RLDxLL, shared by ELAVL2, 3 and 4. Lastly, phage immunoprecipitation sequencing identified several known autoantigens in these same patient samples, including peptides deriving from the cancer-associated antigens ZIC and SOX families of transcription factors. Overall, this optimized phage immunoprecipitation sequencing library and protocol yielded the high-resolution epitope mapping of the autoantigens targeted in anti-Yo and anti-Hu encephalitis patients to date. The results presented here further demonstrate the utility and high-resolution capability of phage immunoprecipitation sequencing for both basic science and clinical applications and for better understanding the antigenic targets and triggers of paraneoplastic neurological disorders.
Collapse
Affiliation(s)
- Brian O'Donovan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94158, USA
| | - Audrey V Parent
- Department of Medicine, Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark S Anderson
- Department of Medicine, Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Travis Kassimatis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anastasia Zekeridou
- Department of Neurology, Mayo Clinic, Rochester, MN 55902, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Stephen L Hauser
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN 55902, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Eric Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.,Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Xin H, Glee P, Adams A, Mohiuddin F, Eberle K. Design of a mimotope-peptide based double epitope vaccine against disseminated candidiasis. Vaccine 2019; 37:2430-2438. [PMID: 30930005 DOI: 10.1016/j.vaccine.2019.03.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Hematogenously disseminated candidiasis in humans is the third leading cause of nosocomial bloodstream infections in the US. There is no FDA approved antifungal vaccine or prophylactic/therapeutic antibody for use in humans. We first reported novel synthetic peptide and glycopeptide vaccines against Candida albicans cell surface epitopes that protect mice against disseminated candidiasis. We showed that antibodies specific for the peptide Fba (derived from C. albicans cell surface protein fructose bisphosphate aldolase) or for C. albicans cell surface glycan epitope β-1, 2-mannotriose [β-(Man)3]) are both protective. This is an important step forward in vaccine design against disseminated candidiasis in humans. However, given the complexity of oligosaccharide synthesis, in this study we performed a new strategy for use of peptide mimotopes that structurally mimic the protective glycan epitope β-(Man)3 as surrogate immunogens that substitute for the glycan part of glycopeptide [β-(Man)3-Fba] vaccine. All five selected mimotopes are immunogenic in mice and three mimotopes were able to induce protection in mice against disseminated candidiasis. Furthermore, immunization with three mimotope-peptide conjugate vaccines was also able to induce specific antibody responses, and importantly, protection against disseminated candidiasis in mice. Therefore, our new design of a mimotope-peptide based double epitope vaccine against candidiasis is a potential vaccine candidate that is economical to produce, highly efficacious and safe for use in humans.
Collapse
Affiliation(s)
- Hong Xin
- Department of MIP & Pediatrics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA.
| | - Pati Glee
- Ligocyte Pharmaceuticals, Inc., Bozeman, MT 59718, USA
| | - Abby Adams
- Department of MIP & Pediatrics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - Farhan Mohiuddin
- Loyola University, 6363 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - Karen Eberle
- Department of MIP & Pediatrics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Diebold BA, Wilder SG, De Deken X, Meitzler JL, Doroshow JH, McCoy JW, Zhu Y, Lambeth JD. Guidelines for the Detection of NADPH Oxidases by Immunoblot and RT-qPCR. Methods Mol Biol 2019; 1982:191-229. [PMID: 31172474 DOI: 10.1007/978-1-4939-9424-3_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The identification of NADPH oxidase (NOX) isoforms in tissues is essential for interpreting experiments and for next step decisions regarding cell lines, animal models, and targeted drug design. Two basic methods, immunoblotting and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), are important to monitor NOX protein and messenger RNA (mRNA) levels, respectively, for a range of investigations from understanding cell signaling events to judging NOX inhibitor efficacies. For many other genes that are expressed in high abundance, these methods may seem rather simple. However, detecting the low expression levels of endogenous NOX/DUOX is difficult and can be frustrating, so some guidelines would be helpful to those who are facing difficulties. One reason why detection is so difficult is the limited availability of vetted NOX/DUOX antibodies. Many of the commercial antibodies do not perform well in our hands, and dependable antibodies, often generated by academic laboratories, are in limited supply. Another problem is the growing trend in the NOX literature to omit end-user validation of antibodies by not providing appropriate positive and negative controls. With regard to NOX mRNA levels, knockdown of NOX/DUOX has been reported in cell lines with very low endogenous expression (C q values ≥30) or in cell lines devoid of the targeted NOX isoform (e.g., NOX4 expression in NCI-60 cancer cell panel cell line 786-0). These publications propagate misinformation and hinder progress in understanding NOX/DUOX function. This chapter provides overdue guidelines on how to validate a NOX antibody and provides general methodologies to prepare samples for optimal detection. It also includes validated methodology to perform RT-qPCR for the measurement of NOX mRNA levels, and we suggest that RT-qPCR should be performed prior to embarking on NOX protein detection.
Collapse
Affiliation(s)
- Becky A Diebold
- Department of Pathology, Emory University, Atlanta, GA, USA.
| | | | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W McCoy
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Yerun Zhu
- Department of Pathology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Jesaitis AJ, Riesselman M, Taylor RM, Brumfield S. Enhanced Immunoaffinity Purification of Human Neutrophil Flavocytochrome B for Structure Determination by Electron Microscopy. Methods Mol Biol 2019; 1982:39-59. [PMID: 31172465 DOI: 10.1007/978-1-4939-9424-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Determination of the structure of human neutrophil (PMN) flavocytochrome b (Cytb) is a necessary step for the understanding of the structure-function essentials of NADPH oxidase activity. This understanding is crucial for structure-driven therapeutic approaches addressing control of inflammation and infection. Our work on purification and sample preparation of Cytb has facilitated progress toward the goal of structure determination. Here we describe exploiting immunoaffinity purification of Cytb for initial examination of its size and shape by a combination of classical and cryoelectron microscopic (EM) methods. For these evaluations, we used conventional negative-stain transmission electron microscopy (TEM) to examine both detergent-solubilized Cytb as single particles and Cytb in phosphatidylcholine reconstituted membrane vesicles as densely packed random, partially ordered, and subcrystalline arrays. In preliminary trials, we also examined single particles by cryoelectron microscopy (cryoEM) methods. We conclude that Cytb in detergent and reconstituted in membrane is a relatively compact, symmetrical protein of about 100 Å in maximum dimension. The negative stain, preliminary cryoEM, and crude molecular models suggest that the protein is probably a heterotetramer of two p22phox and gp91phox subunits in both detergent micelles and membrane vesicles. This exploratory study also suggests that high-resolution 2D electron microscopic approaches may be accessible to human material collected from single donors.
Collapse
Affiliation(s)
- Algirdas J Jesaitis
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| | - Marcia Riesselman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Ross M Taylor
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
- Universal Cells , Seattle, WA, USA
| | - Susan Brumfield
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
8
|
Kawai C, Yamauchi A, Kuribayashi F. Monoclonal antibody 7D5 recognizes the R147 epitope on the gp91 phox , phagocyte flavocytochrome b 558 large subunit. Microbiol Immunol 2018; 62:269-280. [PMID: 29573449 DOI: 10.1111/1348-0421.12584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
Abstract
Human phagocyte flavocytochrome b558 (Cyt b), the catalytic center of nicotinamide adenine dinucleotide phosphate oxidase, consists of a heavily glycosylated large subunit (gp91phox ; Nox2) and a small subunit (p22phox ). Cyt b is a membrane-spanning complex enzyme. Chronic granulomatous disease (CGD) is predominantly caused by a mutation in the CYBB gene encoding gp91phox on the X-chromosome. Because the phagocytes of patients with CGD are not able to generate the superoxide anion, these patients are susceptible to severe infections that can be fatal. It has been suggested that the extracellular region of gp91phox is necessary for and critical to forming the epitope of mAb 7D5 and that 7D5 provides a useful tool for rapid screening of X-linked CGD by FACS. To further elucidate the mAb 7D5 epitope on human gp91phox , chimeric DNA expressed human and mouse gp91phox recombinant protein were constructed. The fusion proteins were immunostained for mAb 7D5 and analyzed by FACS and western blot analysis. The 143 ELGDRQNES151 region was found to reside at the extracellular surface on human gp91phox and to be an important epitope for the interaction with mAb 7D5, as analyzed by FACS analysis. In particular, amino acid R147 is a unique epitope on the membrane-associated Cyt b for mAb 7D5. In conclusion, it is proposed that FACS analysis using mAb 7D5 is a valuable tool for early diagnosis of CGD.
Collapse
Affiliation(s)
- Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
9
|
Cifuentes-Pagano ME, Meijles DN, Pagano PJ. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Curr Pharm Des 2016; 21:6023-35. [PMID: 26510437 DOI: 10.2174/1381612821666151029112013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow.
Collapse
Affiliation(s)
| | | | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Biomedical Science Tower, 12th Floor, Room E1247, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
10
|
Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. TRIALS IN VACCINOLOGY 2016; 5:71-83. [DOI: 10.1016/j.trivac.2016.04.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Souabni H, Machillot P, Baciou L. Contribution of lipid environment to NADPH oxidase activity: influence of sterol. Biochimie 2015; 107 Pt A:33-42. [PMID: 25448770 DOI: 10.1016/j.biochi.2014.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022]
Abstract
The NADPH-oxidase complex, which plays beneficial or detrimental role in the inflammatory and degenerative diseases, is a membrane multi-subunit complex tightly regulated in order to produce superoxide anions, precursor of oxygen reactive species (ROS), in cells. The flavocytochrome b(558) (Cytb(558)) is the catalytic core of the NADPH oxidase which consists of two membrane proteins gp91(phox) (highly glycosylated) and p22(phox). In this work we took advantage of heterologous yeast cells engineered to express wild-type bovine Cytb(558) to analyze the properties of the NADPH oxidase activity during the biosynthesis processing steps of gp91(phox) and p22(phox) within endoplasmic reticulum (ER) and plasma membrane (Pmb). Our data showed that, in yeast, the heterodimerization at the endoplasmic reticulum membranes was concomitant with high level glycosylation of gp91(phox) and the heme acquisition. This study also demonstrated that the phagocyte NADPH oxidase was active at ER membranes and that this activity was surprisingly higher at the ER compared to the Pmb membranes. We have correlated these findings with the presence of sterols in the plasma membranes and their absence in ER membranes. This correlation was confirmed by decreased superoxide anion production rates in proteoliposomes supplemented with ergosterol or cholesterol. Our data support the idea that membrane environment might be determinant for ROS regulation and that sterols could directly interact with the membrane proteins of the NADPH oxidase constraining its capacity to produce superoxide anions.
Collapse
|
12
|
|
13
|
Bechor E, Dahan I, Fradin T, Berdichevsky Y, Zahavi A, Federman Gross A, Rafalowski M, Pick E. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67 (phox.). Front Chem 2015; 3:3. [PMID: 25699251 PMCID: PMC4316792 DOI: 10.3389/fchem.2015.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/09/2015] [Indexed: 11/28/2022] Open
Abstract
The superoxide (O(·-) 2)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b 558 (a heterodimer of Nox2 and p22 (phox) ), and four cytosolic components, p47 (phox) , p67 (phox) , p40 (phox) , and Rac. The catalytic component, responsible for O(·-) 2 generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67 (phox) . Using a peptide-protein binding assay, we found that Nox2 peptides containing a (369)CysGlyCys(371) triad (CGC) bound p67 (phox) with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67 (phox) only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67 (phox) via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: (1) Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; (2) Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; (3) Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; (4) Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; (5) A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; (6) p67 (phox) , in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67 (phox) to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| |
Collapse
|
14
|
Marringa WJ, Krueger MJ, Burritt NL, Burritt JB. Honey bee hemocyte profiling by flow cytometry. PLoS One 2014; 9:e108486. [PMID: 25285798 PMCID: PMC4186811 DOI: 10.1371/journal.pone.0108486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/29/2014] [Indexed: 12/27/2022] Open
Abstract
Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure.
Collapse
Affiliation(s)
- William J. Marringa
- Department of Biology, University of Wisconsin-Stout, Menomonie, Wisconsin, United States of America
| | - Michael J. Krueger
- Department of Biology, University of Wisconsin-Stout, Menomonie, Wisconsin, United States of America
| | - Nancy L. Burritt
- Department of Biology, University of Wisconsin-Stout, Menomonie, Wisconsin, United States of America
| | - James B. Burritt
- Department of Biology, University of Wisconsin-Stout, Menomonie, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
15
|
Riesselman M, Jesaitis AJ. Affinity purification and reconstitution of human phagocyte flavocytochrome B for detection of conformational dynamics in the membrane. Methods Mol Biol 2014; 1124:413-426. [PMID: 24504965 DOI: 10.1007/978-1-62703-845-4_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Human flavocytochrome b (Cyt b) is the core electron transferase of the NADPH oxidase in phagocytes and a number of other cell types. The oxidase complex generates superoxide, initiating production of a cascade of reactive oxygen species critical for the killing of infectious agents. Many fundamental questions still remain concerning its structural dynamics and electron transfer mechanisms. In particular, Cyt b structure/function correlates in the membrane have been relatively unstudied. In order to facilitate the direct analysis of Cyt b structural dynamics in the membrane, the following method provides rapid and efficient procedures for the affinity purification of Cyt b from isolated neutrophil membrane fractions and its functional reconstitution in purified lipid preparations. The protocol presented here contains some new optimized procedures that will facilitate Cyt b isolation and reconstitution. Additional methods are presented that facilitate examination of conformational dynamics of the membrane reconstituted purified Cyt b by fluorescence resonance energy transfer (FRET) as measured by steady-state and lifetime fluorescence techniques.
Collapse
Affiliation(s)
- Marcia Riesselman
- Department of Microbiology, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
16
|
Abstract
Rapid recruitment of neutrophils to sites of infection and their ability to phagocytose and kill microbes is an important aspect of the innate immune response. Challenges associated with imaging of these cells include their short lifespan and small size and the fact that unstimulated cells are nonadherent. In addition, although cytoplasmic granules are plentiful, the abundance of many other organelles is diminished. Here we reprise methods for analysis of resting and activated cells using immunofluorescence and confocal microscopy, including kinetic analysis of phagosome maturation and degranulation, and detection of intraphagosomal superoxide accumulation. We describe approaches for rapid cell fixation and permeabilization that maximize antigen detection and discuss other variables that also affect data interpretation and image quality (such as cell spreading, degranulation, and phagocytosis). Finally, we show that these methods are also applicable to studies of neutrophil interactions with the extracellular matrix.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Inflammation Program and the Departments of Medicine and Microbiology, University of Iowa and the VA Medical Center, Iowa City, IA, USA
| |
Collapse
|
17
|
Sokolovska A, Becker CE, Ip WKE, Rathinam VAK, Brudner M, Paquette N, Tanne A, Vanaja SK, Moore KJ, Fitzgerald KA, Lacy-Hulbert A, Stuart LM. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 2013; 14:543-53. [PMID: 23644505 PMCID: PMC3708594 DOI: 10.1038/ni.2595] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/28/2013] [Indexed: 11/10/2022]
Abstract
Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.
Collapse
Affiliation(s)
- Anna Sokolovska
- Developmental Immunology and Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang Y, Zhang Y, Cuevas S, Villar VA, Escano C, Asico L, Yu P, Grandy DK, Felder RA, Armando I, Jose PA. Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase. Free Radic Biol Med 2012; 53:437-46. [PMID: 22634053 PMCID: PMC3408834 DOI: 10.1016/j.freeradbiomed.2012.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/20/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
Abstract
The dopamine D(2) receptor (D(2)R) regulates renal reactive oxygen species (ROS) production, and impaired D(2)R function results in ROS-dependent hypertension. Paraoxonase 2 (PON2), which belongs to the paraoxonase gene family, is expressed in various tissues, acting to protect against cellular oxidative stress. We hypothesized that PON2 may be involved in preventing excessive renal ROS production and thus may contribute to maintenance of normal blood pressure. Moreover, D(2)R may decrease ROS production, in part, through regulation of PON2. D(2)R colocalized with PON2 in the brush border of mouse renal proximal tubules. Renal PON2 protein was decreased (-33±6%) in D(2)(-/-) relative to D(2)(+/+) mice. Renal subcapsular infusion of PON2 siRNA decreased PON2 protein expression (-55%), increased renal oxidative stress (2.2-fold), associated with increased renal NADPH oxidase expression (Nox1, 1.9-fold; Nox2, 2.9-fold; and Nox4, 1.6-fold) and activity (1.9-fold), and elevated arterial blood pressure (systolic, 134±5 vs 93±6mmHg; diastolic, 97±4 vs 65±7mmHg; mean 113±4 vs 75±7mmHg). To determine the relevance of the PON2 and D(2)R interaction in humans, we studied human renal proximal tubule cells. Both D(2)R and PON2 were found in nonlipid and lipid rafts and physically interacted with each other. Treatment of these cells with the D(2)R/D(3)R agonist quinpirole (1μM, 24h) decreased ROS production (-35±6%), associated with decreased NADPH oxidase activity (-32±3%) and expression of Nox2 (-41±7%) and Nox4 (-47±8%) protein, and increased expression of PON2 mRNA (2.1-fold) and protein (1.6-fold) at 24h. Silencing PON2 (siRNA, 10nM, 48h) not only partially prevented the quinpirole-induced decrease in ROS production by 36%, but also increased basal ROS production (1.3-fold), which was associated with an increase in NADPH oxidase activity (1.4-fold) and expression of Nox2 (2.1-fold) and Nox4 (1.8-fold) protein. Inhibition of NADPH oxidase with diphenylene iodonium (10μM/30 min) inhibited the increase in ROS production caused by PON2 silencing. Our results suggest that renal PON2 is involved in the inhibition of renal NADPH oxidase activity and ROS production and contributes to the maintenance of normal blood pressure. PON2 is positively regulated by D(2)R and may, in part, mediate the inhibitory effect of renal D(2)R on NADPH oxidase activity and ROS production.
Collapse
Affiliation(s)
- Yu Yang
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Yanrong Zhang
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Santiago Cuevas
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Van Anthony Villar
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Crisanto Escano
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Laureano Asico
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Peiying Yu
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - David K. Grandy
- Departments of Physiology and Pharmacology, Oregon Health and Sciences University, Portland, OR 97239
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Ines Armando
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
- Corresponding author. Fax: 202-476-6582, (I.Armando)
| | - Pedro A. Jose
- Center for Molecular Physiology Research, Children's National Medical Center, George Washington University, Washington, DC 20010
| |
Collapse
|
19
|
Hess GT, Cragnolini JJ, Popp MW, Allen MA, Dougan SK, Spooner E, Ploegh HL, Belcher AM, Guimaraes CP. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins. Bioconjug Chem 2012; 23:1478-87. [PMID: 22759232 DOI: 10.1021/bc300130z] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, biotin) to correctly folded proteins (e.g., GFP, antibodies, streptavidin) in a site-specific manner, and with yields that surpass those of any reported using phage display technology. A case in point is modification of pVIII. While a phage vector limits the size of the insert into pVIII to a few amino acids, a phagemid system limits the number of copies actually displayed at the surface of M13. Using sortase-based reactions, a 100-fold increase in the efficiency of display of GFP onto pVIII is achieved. Taking advantage of orthogonal sortases, we can simultaneously target two distinct capsid proteins in the same phage particle and maintain excellent specificity of labeling. As demonstrated in this work, this is a simple and effective method for creating a variety of structures, thus expanding the use of M13 for materials science applications and as a biological tool.
Collapse
Affiliation(s)
- Gaelen T Hess
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Anionic lipid-induced conformational changes in human phagocyte flavocytochrome b precede assembly and activation of the NADPH oxidase complex. Arch Biochem Biophys 2012; 521:24-31. [PMID: 22430035 DOI: 10.1016/j.abb.2012.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 11/21/2022]
Abstract
Phagocyte NADPH oxidases generate superoxide at high rates in defense against infectious agents, a process regulated by second messenger anionic lipids using incompletely understood mechanisms. We reconstituted the catalytic core of the human neutrophil NADPH oxidase, flavocytochrome b (Cyt b) in 99% phosphatidylcholine vesicles in order to correlate anionic lipid-dependent conformational changes in membrane-bound Cyt b and oxidase activity. The anionic lipid 10:0 phosphatidic acid (10:0 PA) specifically induced conformational changes in Cyt b as measured by a combination of fluorescence resonance energy transfer methods and size exclusion chromatography. The fluorescence lifetime of a complex between Cyt b and Cascade Blue-derivatized anti-p22(phox) antibody (CCB-CS9), increased after exposure to 10:PA by ∼50% of the change observed when the complex is dissociated, indicating a structural rearrangement of p22(phox) and/or the Cyt b heme prosthetic groups. Half of the quenching relaxation occurred at 10:0 PA concentrations permissive to less than 10% full NADPH oxidase activity, but saturated near the saturation in activity in a matched cell-free oxidase assay. We conclude that anionic lipids modulate the conformation of Cyt b in the membrane and suggest they may serve to modulate the structure of Cyt b as a control mechanism for the NADPH oxidase.
Collapse
|
21
|
Ramaraj T, Angel T, Dratz EA, Jesaitis AJ, Mumey B. Antigen-antibody interface properties: composition, residue interactions, and features of 53 non-redundant structures. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:520-32. [PMID: 22246133 DOI: 10.1016/j.bbapap.2011.12.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/17/2022]
Abstract
The structures of protein antigen-antibody (Ag-Ab) interfaces contain information about how Ab recognize Ag as well as how Ag are folded to present surfaces for Ag recognition. As such, the Ab surface holds information about Ag folding that resides with the Ab-Ag interface residues and how they interact. In order to gain insight into the nature of such interactions, a data set comprised of 53 non-redundant 3D structures of Ag-Ab complexes was analyzed. We assessed the physical and biochemical features of the Ag-Ab interfaces and the degree to which favored interactions exist between amino acid residues on the corresponding interface surfaces. Amino acid compositional analysis of the interfaces confirmed the dominance of TYR in the Ab paratope-containing surface (PCS), with almost two fold greater abundance than any other residue. Additionally TYR had a much higher than expected presence in the PCS compared to the surface of the whole antibody (defined as the occurrence propensity), along with aromatics PHE, TRP, and to a lesser degree HIS and ILE. In the Ag epitope-containing surface (ECS), there were slightly increased occurrence propensities of TRP and TYR relative to the whole Ag surface, implying an increased significance over the compositionally most abundant LYS>ASN>GLU>ASP>ARG. This examination encompasses a large, diverse set of unique Ag-Ab crystal structures that help explain the biological range and specificity of Ag-Ab interactions. This analysis may also provide a measure of the significance of individual amino acid residues in phage display analysis of Ag binding.
Collapse
|
22
|
Ejlerskov P, Christensen DP, Beyaie D, Burritt JB, Paclet MH, Gorlach A, van Deurs B, Vilhardt F. NADPH oxidase is internalized by clathrin-coated pits and localizes to a Rab27A/B GTPase-regulated secretory compartment in activated macrophages. J Biol Chem 2011; 287:4835-52. [PMID: 22157766 DOI: 10.1074/jbc.m111.293696] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Here, we report that activation of different types of tissue macrophages, including microglia, by lipopolysaccharide (LPS) or GM-CSF stimulation correlates with the quantitative redistribution of NADPH oxidase (cyt b(558)) from the plasma membrane to an intracellular stimulus-responsive storage compartment. Cryo-immunogold labeling of gp91(phox) and CeCl(3) cytochemistry showed the presence of gp91(phox) and oxidant production in numerous small (<100 nm) vesicles. Cell homogenization and sucrose gradient centrifugation in combination with transferrin-HRP/DAB ablation showed that more than half of cyt b(558) is present in fractions devoid of endosomal markers, which is supported by morphological evidence to show that the cyt b(558)-containing compartment is distinct from endosomes or biosynthetic organelles. Streptolysin-O-mediated guanosine 5'-3-O-(thio)triphosphate loading of Ra2 microglia caused exocytosis of a major complement of cyt b(558) under conditions where lysosomes or endosomes were not mobilized. We establish phagocytic particles and soluble mediators ATP, TNFα, and CD40L as physiological inducers of cyt b(558) exocytosis to the cell surface, and by shRNA knockdown, we identify Rab27A/B as positive or negative regulators of vesicular mobilization to the phagosome or the cell surface, respectively. Exocytosis was followed by clathrin-dependent internalization of cyt b(558), which could be blocked by a dominant negative mutant of the clathrin-coated pit-associated protein Eps15. Re-internalized cyt b(558) did not reach lysosomes but associated with recycling endosomes and undefined vesicular elements. In conclusion, cyt b(558) depends on clathrin for internalization, and in activated macrophages NADPH oxidase occupies a Rab27A/B-regulated secretory compartment, which allows rapid agonist-induced redistribution of superoxide production in the cell.
Collapse
Affiliation(s)
- Patrick Ejlerskov
- Department of Cellular and Molecular Medicine, Panum Institute, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Taylor RM, Dratz EA, Jesaitis AJ. Invariant local conformation in p22phox p.Y72H polymorphisms suggested by mass spectral analysis of crosslinked human neutrophil flavocytochrome b. Biochimie 2011; 93:1502-9. [PMID: 21640156 PMCID: PMC4112180 DOI: 10.1016/j.biochi.2011.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/06/2011] [Indexed: 01/06/2023]
Abstract
The NADPH oxidase of phagocytic leukocytes generates superoxide that plays a critical role in innate immunity and inflammatory responses. The integral membrane protein flavocytochrome b (Cyt b, a.k.a. cytochrome b(558/559)) is the catalytic core of the complex and serves as a prototype for homologs important in regulating signaling networks in a wide variety of animal and plant cells. Our analysis identifies a naturally-occurring Tyr72/His72 polymorphism (p.Y72H) in the p22(phox) subunit of Cyt b at the protein level that has been recognized at the nucleotide level (c.214T > C, formerly C242T) and implicated in cardiovascular disease. In the present study, Cyt b was isolated from human neutrophils and reacted with chemical crosslinkers for subsequent structure analysis by MALDI mass spectrometry. Following mild chemical modification of Cyt b with two pairs of isotopically-differentiated lysine crosslinkers: BS(2)G-d(0)/d(4) and BS(3)-d(0)/d(4), the reaction mixtures were digested with trypsin and purified on C(18)ZipTips to generate samples for mass analysis. MALDI analysis of tryptic digests from each of the above reactions revealed a series of masses that could be assigned to p22(phox) residues 68-85, assuming an intra-molecular crosslink between Lys71 and Lys78. In addition to the 30 ppm mass accuracy obtained with internal mass calibration, increased confidence in the assignment of the crosslinks was provided by the presence of the diagnostic mass patterns resulting from the isotopically-differentiated crosslinking reagent pairs and the Tyr72/His72 p22(phox) polymorphisms in the crosslinked peptides. This work identifies a novel, low-resolution distance constraint in p22(phox) and suggests that the medically-relevant p.Y72H polymorphism has an invariant structural motif in this region. Because position 72 in p22(phox) lies outside regions identified as interactive with other oxidase components, the structural invariance also provides additional support for maturational differences as the source of the wide variation in observed reactive oxygen species production by cells expressing p.Y72H.
Collapse
Affiliation(s)
- Ross M. Taylor
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, MT 59717-3520, USA
| | - Edward A. Dratz
- Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry Building, Montana State University, Bozeman, MT 59717-3400, USA
| | - Algirdas J. Jesaitis
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, MT 59717-3520, USA
| |
Collapse
|
24
|
Picciocchi A, Debeurme F, Beaumel S, Dagher MC, Grunwald D, Jesaitis AJ, Stasia MJ. Role of putative second transmembrane region of Nox2 protein in the structural stability and electron transfer of the phagocytic NADPH oxidase. J Biol Chem 2011; 286:28357-69. [PMID: 21659519 PMCID: PMC3151079 DOI: 10.1074/jbc.m111.220418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/01/2011] [Indexed: 01/15/2023] Open
Abstract
Flavocytochrome b(558) (cytb) of phagocytes is a heterodimeric integral membrane protein composed of two subunits, p22(phox) and gp91(phox). The latter subunit, also known as Nox2, has a cytosolic C-terminal "dehydrogenase domain" containing FAD/NADPH-binding sites. The N-terminal half of Nox2 contains six predicted transmembrane α-helices coordinating two hemes. We studied the role of the second transmembrane α-helix, which contains a "hot spot" for mutations found in rare X(+) and X(-) chronic granulomatous disease. By site-directed mutagenesis and transfection in X-CGD PLB-985 cells, we examined the functional and structural impact of seven missense mutations affecting five residues. P56L and C59F mutations drastically influence the level of Nox2 expression indicating that these residues are important for the structural stability of Nox2. A53D, R54G, R54M, and R54S mutations do not affect spectral properties of oxidized/reduced cytb, oxidase complex assembly, FAD binding, nor iodonitrotetrazolium (INT) reductase (diaphorase) activity but inhibit superoxide production. This suggests that Ala-53 and Arg-54 are essential in control of electron transfer from FAD. Surprisingly, the A57E mutation partially inhibits FAD binding, diaphorase activity, and oxidase assembly and affects the affinity of immunopurified A57E cytochrome b(558) for p67(phox). By competition experiments, we demonstrated that the second transmembrane helix impacts on the function of the first intracytosolic B-loop in the control of diaphorase activity of Nox2. Finally, by comparing INT reductase activity of immunopurified mutated and wild type cytb under aerobiosis versus anaerobiosis, we showed that INT reduction reflects the electron transfer from NADPH to FAD only in the absence of superoxide production.
Collapse
Affiliation(s)
- Antoine Picciocchi
- From the Chronic Granulomatous Disease Diagnosis and Research Centre, Therex-TIMC/Imag, UMR CNRS 5525, Université Joseph Fourier-Grenoble 1, F-38041 Grenoble, France
| | - Franck Debeurme
- From the Chronic Granulomatous Disease Diagnosis and Research Centre, Therex-TIMC/Imag, UMR CNRS 5525, Université Joseph Fourier-Grenoble 1, F-38041 Grenoble, France
| | - Sylvain Beaumel
- From the Chronic Granulomatous Disease Diagnosis and Research Centre, Therex-TIMC/Imag, UMR CNRS 5525, Université Joseph Fourier-Grenoble 1, F-38041 Grenoble, France
| | - Marie-Claire Dagher
- From the Chronic Granulomatous Disease Diagnosis and Research Centre, Therex-TIMC/Imag, UMR CNRS 5525, Université Joseph Fourier-Grenoble 1, F-38041 Grenoble, France
| | - Didier Grunwald
- the Institut de Recherches en Sciences et Technologies pour le Vivant/Commissariat à l'Energie Atomique, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Algirdas J. Jesaitis
- the Department of Microbiology, Montana State University, Bozeman, Montana 59717-3520, and
| | - Marie-José Stasia
- From the Chronic Granulomatous Disease Diagnosis and Research Centre, Therex-TIMC/Imag, UMR CNRS 5525, Université Joseph Fourier-Grenoble 1, F-38041 Grenoble, France
- the Pôle Biologie, Centre Hospitalier Universitaire de Grenoble, F-38043 Grenoble, France
| |
Collapse
|
25
|
Hultqvist M, Sareila O, Vilhardt F, Norin U, Olsson LM, Olofsson P, Hellman U, Holmdahl R. Positioning of a polymorphic quantitative trait nucleotide in the Ncf1 gene controlling oxidative burst response and arthritis severity in rats. Antioxid Redox Signal 2011; 14:2373-83. [PMID: 21275845 DOI: 10.1089/ars.2010.3440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Ncf1 gene, encoding the P47(PHOX) protein that regulates production of reactive oxygen species (ROS) by the phagocyte NADPH oxidase (NOX2) complex, is associated with autoimmunity and arthritis severity in rats. We have now identified that the single-nucleotide polymorphism (SNP) resulting in an M153T amino acid substitution mediates arthritis resistance and thus explains the molecular polymorphism underlying the earlier identified Ncf1 gene effect. We identified the SNP in position 153 to regulate ROS production using COS(PHOX) cells transfected with mutated Ncf1. To determine the role of this SNP for control of arthritis, we used the Wistar strain, identified to carry only the postulated arthritis resistant SNP in position 153. When this Ncf1 allele was backcrossed to the arthritis susceptible DA strain, both granulocyte ROS production and arthritis resistance were restored. Position 153 is located in the hinge region between the PX and SH3 domains of P47(PHOX). Mutational analysis of this position revealed a need for an -OH group in the side chain but we found no evidence for phosphorylation. The polymorphism did not affect assembly of the P47(PHOX)/P67(PHOX) complex in the cytosol or membrane localization, but is likely to operate downstream of assembly, affecting activity of the membrane NOX2 complex.
Collapse
Affiliation(s)
- Malin Hultqvist
- Medical Inflammation Research, C12 BMC, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
New insight into the Nox4 subcellular localization in HEK293 cells: First monoclonal antibodies against Nox4. Biochimie 2011; 93:457-68. [DOI: 10.1016/j.biochi.2010.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/03/2010] [Indexed: 11/17/2022]
|
27
|
McCaffrey RL, Schwartz JT, Lindemann SR, Moreland JG, Buchan BW, Jones BD, Allen LAH. Multiple mechanisms of NADPH oxidase inhibition by type A and type B Francisella tularensis. J Leukoc Biol 2010; 88:791-805. [PMID: 20610796 PMCID: PMC2974429 DOI: 10.1189/jlb.1209811] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 05/20/2010] [Accepted: 06/09/2010] [Indexed: 01/28/2023] Open
Abstract
Ft is a facultative intracellular pathogen that infects many cell types, including neutrophils. In previous work, we demonstrated that the type B Ft strain LVS disrupts NADPH oxidase activity throughout human neutrophils, but how this is achieved is incompletely defined. Here, we used several type A and type B strains to demonstrate that Ft-mediated NADPH oxidase inhibition is more complex than appreciated previously. We confirm that phagosomes containing Ft opsonized with AS exclude flavocytochrome b(558) and extend previous results to show that soluble phox proteins were also affected, as indicated by diminished phosphorylation of p47(phox) and other PKC substrates. However, a different mechanism accounts for the ability of Ft to inhibit neutrophil activation by formyl peptides, Staphylococcus aureus, OpZ, and phorbol esters. In this case, enzyme targeting and assembly were normal, and impaired superoxide production was characterized by sustained membrane accumulation of dysfunctional NADPH oxidase complexes. A similar post-assembly inhibition mechanism also diminished the ability of anti-Ft IS to confer neutrophil activation and bacterial killing, consistent with the limited role for antibodies in host defense during tularemia. Studies of mutants that we generated in the type A Ft strain Schu S4 demonstrate that the regulatory factor fevR is essential for NADPH oxidase inhibition, whereas iglI and iglJ, candidate secretion system effectors, and the acid phosphatase acpA are not. As Ft uses multiple mechanisms to block neutrophil NADPH oxidase activity, our data strongly suggest that this is a central aspect of virulence.
Collapse
Affiliation(s)
- Ramona L. McCaffrey
- Inflammation Program and
- Departments of Medicine
- VA Medical Center, Iowa City, Iowa, USA
| | | | | | | | | | | | - Lee-Ann H. Allen
- Inflammation Program and
- Departments of Medicine
- Microbiology, and
- VA Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
28
|
Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv 2010; 28:849-58. [PMID: 20659548 DOI: 10.1016/j.biotechadv.2010.07.004] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 06/27/2010] [Accepted: 07/08/2010] [Indexed: 12/17/2022]
Abstract
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field.
Collapse
Affiliation(s)
- Jyoti Pande
- Department of Medicine, HSC 4N41 McMaster Univ, Hamilton, ON, Canada
| | | | | |
Collapse
|
29
|
El Jamali A, Valente AJ, Clark RA. Regulation of phagocyte NADPH oxidase by hydrogen peroxide through a Ca(2+)/c-Abl signaling pathway. Free Radic Biol Med 2010; 48:798-810. [PMID: 20043988 PMCID: PMC2838729 DOI: 10.1016/j.freeradbiomed.2009.12.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 12/10/2009] [Accepted: 12/22/2009] [Indexed: 01/01/2023]
Abstract
The importance of H(2)O(2) as a cellular signaling molecule has been demonstrated in a number of cell types and pathways. Here we explore a positive feedback mechanism of H(2)O(2)-mediated regulation of the phagocyte respiratory burst NADPH oxidase (NOX2). H(2)O(2) induced a dose-dependent stimulation of superoxide production in human neutrophils, as well as in K562 leukemia cells overexpressing NOX2 system components. Stimulation was abrogated by the addition of catalase, the extracellular Ca(2+) chelator BAPTA, the T-type Ca(2+) channel inhibitor mibefradil, the PKCdelta inhibitor rottlerin, or the c-Abl nonreceptor tyrosine kinase inhibitor imatinib mesylate or by overexpression of a dominant-negative form of c-Abl. H(2)O(2) induced phosphorylation of tyrosine 311 on PKCdelta and this activating phosphorylation was blocked by treatment with rottlerin, imatinib mesylate, or BAPTA. Rac GTPase activation in response to H(2)O(2) was abrogated by BAPTA, imatinib mesylate, or rottlerin. In conclusion, H(2)O(2) stimulates NOX2-mediated superoxide generation in neutrophils and K562/NOX2 cells via a signaling pathway involving Ca(2+) influx and c-Abl tyrosine kinase acting upstream of PKCdelta. This positive feedback regulatory pathway has important implications for amplifying the innate immune response and contributing to oxidative stress in inflammatory disorders.
Collapse
Affiliation(s)
- Amina El Jamali
- Department of Medicine, University of Texas Health Science Center, and South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
30
|
Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization. Mol Cell Biol 2009; 30:961-75. [PMID: 19995913 DOI: 10.1128/mcb.01393-09] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulated generation of reactive oxygen species (ROS) is primarily accomplished by NADPH oxidases (Nox). Nox1 to Nox4 form a membrane-associated heterodimer with p22(phox), creating the docking site for assembly of the activated oxidase. Signaling specificity is achieved by interaction with a complex network of cytosolic components. Nox4, an oxidase linked to cardiovascular disease, carcinogenesis, and pulmonary fibrosis, deviates from this model by displaying constitutive H(2)O(2) production without requiring known regulators. Extensive Nox4/Nox2 chimera screening was initiated to pinpoint structural motifs essential for ROS generation and Nox subcellular localization. In summary, a matching B loop was crucial for catalytic activity of both Nox enzymes. Substitution of the carboxyl terminus was sufficient for converting Nox4 into a phorbol myristate acetate (PMA)-inducible phenotype, while Nox2-based chimeras never gained constitutive activity. Changing the Nox2 but not the Nox4 amino terminus abolished ROS generation. The unique heterodimerization of a functional Nox4/p22(phox) Y121H complex was dependent on the D loop. Nox4, Nox2, and functional Nox chimeras translocated to the plasma membrane. Cell surface localization of Nox4 or PMA-inducible Nox4 did not correlate with O(2)(-) generation. In contrast, Nox4 released H(2)O(2) and promoted cell migration. Our work provides insights into Nox structure, regulation, and ROS output that will aid inhibitor design.
Collapse
|
31
|
Lewis EM, Sergeant S, Ledford B, Stull N, Dinauer MC, McPhail LC. Phosphorylation of p22phox on threonine 147 enhances NADPH oxidase activity by promoting p47phox binding. J Biol Chem 2009; 285:2959-67. [PMID: 19948736 DOI: 10.1074/jbc.m109.030643] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH oxidase comprises both cytosolic and membrane-bound subunits, which, when assembled and activated, initiate the transfer of electrons from NADPH to molecular oxygen to form superoxide. This activity, known as the respiratory burst, is extremely important in the innate immune response as indicated by the disorder chronic granulomatous disease. The regulation of this enzyme complex involves protein-protein and protein-lipid interactions as well as phosphorylation events. Previously, our laboratory demonstrated that the small membrane subunit of the oxidase complex, p22(phox), is phosphorylated in neutrophils and that its phosphorylation correlates with NADPH oxidase activity. In this study, we utilized site-directed mutagenesis in a Chinese hamster ovarian cell system to determine the phosphorylation sites within p22(phox). We also explored the mechanism by which p22(phox) phosphorylation affects NADPH oxidase activity. We found that mutation of threonine 147 to alanine inhibited superoxide production in vivo by more than 70%. This mutation also blocked phosphorylation of p22(phox) in vitro by both protein kinase C-alpha and -delta. Moreover, this mutation blocked the p22(phox)-p47(phox) interaction in intact cells. When phosphorylation was mimicked in vivo through mutation of Thr-147 to an aspartyl residue, NADPH oxidase activity was recovered, and the p22(phox)-p47(phox) interaction in the membrane was restored. Maturation of gp91(phox) was not affected by the alanine mutation, and phosphorylation of the cytosolic component p47(phox) still occurred. This study directly implicates threonine 147 of p22(phox) as a critical residue for efficient NADPH oxidase complex formation and resultant enzyme activity.
Collapse
Affiliation(s)
- Eric M Lewis
- From the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157 and
| | | | | | | | | | | |
Collapse
|
32
|
Campion Y, Jesaitis AJ, Nguyen MVC, Grichine A, Herenger Y, Baillet A, Berthier S, Morel F, Paclet MH. New p22-phox monoclonal antibodies: identification of a conformational probe for cytochrome b 558. J Innate Immun 2009; 1:556-69. [PMID: 20375611 DOI: 10.1159/000231977] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 06/07/2009] [Indexed: 11/19/2022] Open
Abstract
The phagocyte NADPH oxidase, belonging to the NADPH oxidase family (Nox), is dedicated to the production of bactericidal reactive oxygen species. The enzyme catalytic center is the cytochrome b(558), formed by 2 subunits, Nox2 (gp91-phox) and p22-phox. Cytochrome b(558) activation results from a conformational change induced by cytosolic regulatory proteins (p67-phox, p47-phox, p40-phox and Rac). The catalytic subunit is Nox2, while p22-phox is essential for both Nox2 maturation and the membrane anchorage of regulatory proteins. Moreover, it has been shown to be necessary for novel Nox activity. In order to characterize both p22-phox topology and cytochrome b(558) conformational change, 6 monoclonal antibodies were produced against purified cytochrome b(558). Phage display epitope mapping combined with a truncation analysis of recombinant p22-phox allowed the identification of epitope regions. Some of these antibodies almost completely inhibited in vitro reconstituted NADPH oxidase activity. Data analysis identified antibodies that recognized epitopes involved in either Nox2 maturation or Nox2 activation. Moreover, flow cytometry analysis and confocal microscopy performed on stimulated neutrophils showed that the monoclonal antibody 12E6 bound preferentially active cytochrome b(558). These monoclonal antibodies provided novel and unique probes to investigate maturation, activation and activity, not only of Nox2 but also of novel Nox.
Collapse
Affiliation(s)
- Yannick Campion
- GREPI, TIMC-Imag UMR 5525 CNRS/Université Joseph Fourier, Laboratoire d'Enzymologie, CHU Grenoble, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Voltage-gated proton channel is expressed on phagosomes. Biochem Biophys Res Commun 2009; 382:274-9. [DOI: 10.1016/j.bbrc.2009.03.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/04/2009] [Indexed: 01/11/2023]
|
34
|
Raad H, Paclet MH, Boussetta T, Kroviarski Y, Morel F, Quinn MT, Gougerot-Pocidalo MA, Dang PMC, El-Benna J. Regulation of the phagocyte NADPH oxidase activity: phosphorylation of gp91phox/NOX2 by protein kinase C enhances its diaphorase activity and binding to Rac2, p67phox, and p47phox. FASEB J 2009; 23:1011-22. [PMID: 19028840 PMCID: PMC2660639 DOI: 10.1096/fj.08-114553] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 10/30/2008] [Indexed: 12/24/2022]
Abstract
Neutrophils generate microbicidal oxidants through activation of a multicomponent enzyme called NADPH oxidase. During activation, the cytosolic NADPH oxidase components (p47(phox), p67(phox), p40(phox), and Rac2) translocate to the membranes, where they associate with flavocytochrome b(558), which is composed of gp91(phox)/NOX2 and p22(phox), to form the active system. During neutrophil stimulation, p47(phox), p67(phox), p40(phox), and p22(phox) are phosphorylated; however, the phosphorylation of gp91(phox)/NOX2 and its potential role have not been defined. In this study, we show that gp91(phox) is phosphorylated in stimulated neutrophils. The gp91(phox) phosphoprotein is absent in neutrophils from chronic granulomatous disease patients deficient in gp91(phox), which confirms that this phosphoprotein is gp91(phox). The protein kinase C inhibitor GF109203X inhibited phorbol 12-myristate 13-acetate-induced phosphorylation of gp91(phox), and protein kinase C (PKC) phosphorylated the recombinant gp91(phox)- cytosolic carboxy-terminal flavoprotein domain. Two-dimensional tryptic peptide mapping analysis showed that PKC phosphorylated the gp91(phox)-cytosolic tail on the same peptides that were phosphorylated on gp91(phox) in intact cells. In addition, PKC phosphorylation increased diaphorase activity of the gp91(phox) flavoprotein cytosolic domain and its binding to Rac2, p67(phox), and p47(phox). These results demonstrate that gp91(phox) is phosphorylated in human neutrophils by PKC to enhance its catalytic activity and assembly of the complex. Phosphorylation of gp91(phox)/NOX2 is a novel mechanism of NADPH oxidase regulation.
Collapse
Affiliation(s)
- Houssam Raad
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Université Paris 7, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Casbon AJ, Allen LAH, Dunn KW, Dinauer MC. Macrophage NADPH oxidase flavocytochrome B localizes to the plasma membrane and Rab11-positive recycling endosomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2325-39. [PMID: 19201887 PMCID: PMC2666390 DOI: 10.4049/jimmunol.0803476] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Flavocytochrome b(558), the catalytic core of the phagocytic NADPH oxidase, mediates the transfer of electrons from NADPH to molecular oxygen to generate superoxide for host defense. Flavocytochrome b is a membrane heterodimer consisting of a large subunit gp91(phox) (NOX2) and a smaller subunit, p22(phox). Although in neutrophils flavocytochrome b has been shown to localize to the plasma membrane and specific granules, little is known about its distribution in macrophages. Using immunofluorescent staining and live cell imaging of fluorescently tagged gp91(phox) and p22(phox), we demonstrate in a Chinese hamster ovary cell model system and in RAW 264.7 and primary murine bone marrow-derived macrophages that flavocytochrome b is found in the Rab11-positive recycling endocytic compartment, as well as in Rab5-positive early endosomes and plasma membrane. Additionally, we show that unassembled p22(phox) and gp91(phox) subunits localize to the endoplasmic reticulum, which redistribute to the cell surface and endosomal compartments following heterodimer formation. These studies show for the first time that flavocytochrome b localizes to intracellular compartments in macrophages that recycle to the plasma membrane, which may act as a reservoir to deliver flavocytochrome b to the cell surface and phagosome membranes.
Collapse
Affiliation(s)
- Amy-Jo Casbon
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lee-Ann H. Allen
- Inflammation Program, Departments of Medicine and Microbiology, University of Iowa and the Veterans Affairs Medical Center, Coralville, IA 52241
| | - Kenneth W. Dunn
- Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202
| | - Mary C. Dinauer
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
36
|
Lewis EM, Singla M, Sergeant S, Koty PP, McPhail LC. X-linked chronic granulomatous disease secondary to skewed X chromosome inactivation in a female with a novel CYBB mutation and late presentation. Clin Immunol 2008; 129:372-80. [PMID: 18774749 PMCID: PMC2599929 DOI: 10.1016/j.clim.2008.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 07/07/2008] [Accepted: 07/19/2008] [Indexed: 12/18/2022]
Abstract
Chronic granulomatous disease (CGD) is characterized by defects in the superoxide producing enzyme NADPH oxidase causing phagocytes to improperly clear invading pathogens. Here we report findings of a late presenting 16-year-old female with X-linked CGD. The patient presented with community-acquired pneumonia, but symptoms persisted for 2 weeks during triple antimicrobial coverage. Cultures revealed Aspergillus fumigatus which was resolved through aggressive voriconazole treatment. Neutrophil studies revealed NADPH oxidase activity and flavocytochrome b(558) levels that were 4-8% of controls and suggested carrier status of the mother. We found a null mutation in the CYBB gene (c.252insAG) predicting an aberrant gp91(phox) protein (p.Cys85fsX23) in the heterozygous state. Methylation analysis demonstrated extremely skewed X chromosome inactivation favoring the maternally inherited defective gene. In conclusion, a novel mutation in the CYBB gene and an extremely skewed X-inactivation event resulted in the rare expression of the CGD phenotype in a carrier female.
Collapse
Affiliation(s)
- Eric M Lewis
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Manav Singla
- Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Asthma, Allergy, & Sinus Center, Baltimore, Maryland
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Patrick P. Koty
- Section on Medical Genetics, Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Linda C. McPhail
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
37
|
von Löhneysen K, Noack D, Jesaitis AJ, Dinauer MC, Knaus UG. Mutational analysis reveals distinct features of the Nox4-p22 phox complex. J Biol Chem 2008; 283:35273-82. [PMID: 18849343 DOI: 10.1074/jbc.m804200200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integral membrane protein p22(phox) forms a heterodimeric enzyme complex with NADPH oxidases (Noxs) and is required for their catalytic activity. Nox4, a Nox linked to cardiovascular disease, angiogenesis, and insulin signaling, is unique in its ability to produce hydrogen peroxide constitutively. To date, p22(phox) constitutes the only identified regulatory component for Nox4 function. To delineate structural elements in p22(phox) essential for formation and localization of the Nox4-p22(phox) complex and its enzymatic function, truncation and point mutagenesis was used. Human lung carcinoma cells served as a heterologous expression system, since this cell type is p22(phox)-deficient and promotes cell surface expression of the Nox4-p22(phox) heterodimer. Expression of p22(phox) truncation mutants indicates that the dual tryptophan motif contained in the N-terminal amino acids 6-11 is essential, whereas the C terminus (amino acids 130-195) is dispensable for Nox4 activity. Introduction of charged residues in domains predicted to be extracellular by topology modeling was mostly tolerated, whereas the exchange of amino acids in predicted membrane-spanning domains caused loss of function or showed distinct differences in p22(phox) interaction with various Noxs. For example, the substitution of tyrosine 121 with histidine in p22(phox), which abolished Nox2 and Nox3 function in vivo, preserved Nox4 activity when expressed in lung cancer cells. Many of the examined p22(phox) mutations inhibiting Nox1 to -3 maturation did not alter Nox4-p22(phox) association, further accenting the differences between Noxs. These studies highlight the distinct interaction of the key regulatory p22(phox) subunit with Nox4, a feature which could provide the basis for selective inhibitor development.
Collapse
Affiliation(s)
- Katharina von Löhneysen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
38
|
Harraz MM, Marden JJ, Zhou W, Zhang Y, Williams A, Sharov VS, Nelson K, Luo M, Paulson H, Schöneich C, Engelhardt JF. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 2008; 118:659-70. [PMID: 18219391 DOI: 10.1172/jci34060] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 11/28/2007] [Indexed: 11/17/2022] Open
Abstract
Neurodegeneration in familial amyotrophic lateral sclerosis (ALS) is associated with enhanced redox stress caused by dominant mutations in superoxide dismutase-1 (SOD1). SOD1 is a cytosolic enzyme that facilitates the conversion of superoxide (O(2)(*-)) to H(2)O(2). Here we demonstrate that SOD1 is not just a catabolic enzyme, but can also directly regulate NADPH oxidase-dependent (Nox-dependent) O(2)(*-) production by binding Rac1 and inhibiting its GTPase activity. Oxidation of Rac1 by H(2)O(2) uncoupled SOD1 binding in a reversible fashion, producing a self-regulating redox sensor for Nox-derived O(2)(*-) production. This process of redox-sensitive uncoupling of SOD1 from Rac1 was defective in SOD1 ALS mutants, leading to enhanced Rac1/Nox activation in transgenic mouse tissues and cell lines expressing ALS SOD1 mutants. Glial cell toxicity associated with expression of SOD1 mutants in culture was significantly attenuated by treatment with the Nox inhibitor apocynin. Treatment of ALS mice with apocynin also significantly increased their average life span. This redox sensor mechanism may explain the gain-of-function seen with certain SOD1 mutations associated with ALS and defines new therapeutic targets.
Collapse
Affiliation(s)
- Maged M Harraz
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Robert C Ladner
- Dyax Corp., 300 Technology Square, Cambridge, Massachusetts 0213, USA.
| |
Collapse
|
40
|
Taylor RM, Lord CI, Riesselman MH, Gripentrog JM, Leto TL, McPhail LC, Berdichevsky Y, Pick E, Jesaitis AJ. Characterization of Surface Structure and p47phox SH3 Domain-Mediated Conformational Changes for Human Neutrophil Flavocytochrome b. Biochemistry 2007; 46:14291-304. [DOI: 10.1021/bi701626p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ross M. Taylor
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, Montana 59717, Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, Department of Biochemistry, Wake Forest University, Medical Center Boulevard, Winston-Salem, North Carolina 27157, and Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious
| | - Connie I. Lord
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, Montana 59717, Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, Department of Biochemistry, Wake Forest University, Medical Center Boulevard, Winston-Salem, North Carolina 27157, and Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious
| | - Marcia H. Riesselman
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, Montana 59717, Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, Department of Biochemistry, Wake Forest University, Medical Center Boulevard, Winston-Salem, North Carolina 27157, and Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious
| | - Jeannie M. Gripentrog
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, Montana 59717, Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, Department of Biochemistry, Wake Forest University, Medical Center Boulevard, Winston-Salem, North Carolina 27157, and Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious
| | - Thomas L. Leto
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, Montana 59717, Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, Department of Biochemistry, Wake Forest University, Medical Center Boulevard, Winston-Salem, North Carolina 27157, and Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious
| | - Linda C. McPhail
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, Montana 59717, Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, Department of Biochemistry, Wake Forest University, Medical Center Boulevard, Winston-Salem, North Carolina 27157, and Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious
| | - Yevgeny Berdichevsky
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, Montana 59717, Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, Department of Biochemistry, Wake Forest University, Medical Center Boulevard, Winston-Salem, North Carolina 27157, and Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious
| | - Edgar Pick
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, Montana 59717, Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, Department of Biochemistry, Wake Forest University, Medical Center Boulevard, Winston-Salem, North Carolina 27157, and Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious
| | - Algirdas J. Jesaitis
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, Montana 59717, Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, Department of Biochemistry, Wake Forest University, Medical Center Boulevard, Winston-Salem, North Carolina 27157, and Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious
| |
Collapse
|
41
|
Riesselman M, Miettinen HM, Gripentrog JM, Lord CI, Mumey B, Dratz EA, Stie J, Taylor RM, Jesaitis AJ. C-Terminal Tail Phosphorylation of N-Formyl Peptide Receptor: Differential Recognition of Two Neutrophil Chemoattractant Receptors by Monoclonal Antibodies NFPR1 and NFPR2. THE JOURNAL OF IMMUNOLOGY 2007; 179:2520-31. [PMID: 17675514 DOI: 10.4049/jimmunol.179.4.2520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The N-formyl peptide receptor (FPR), a G protein-coupled receptor that binds proinflammatory chemoattractant peptides, serves as a model receptor for leukocyte chemotaxis. Recombinant histidine-tagged FPR (rHis-FPR) was purified in lysophosphatidyl glycerol (LPG) by Ni(2+)-NTA agarose chromatography to >95% purity with high yield. MALDI-TOF mass analysis (>36% sequence coverage) and immunoblotting confirmed the identity as FPR. The rHis-FPR served as an immunogen for the production of 2 mAbs, NFPR1 and NFPR2, that epitope map to the FPR C-terminal tail sequences, 305-GQDFRERLI-313 and 337-NSTLPSAEVE-346, respectively. Both mAbs specifically immunoblotted rHis-FPR and recombinant FPR (rFPR) expressed in Chinese hamster ovary cells. NFPR1 also recognized recombinant FPRL1, specifically expressed in mouse L fibroblasts. In human neutrophil membranes, both Abs labeled a 45-75 kDa species (peak M(r) approximately 60 kDa) localized primarily in the plasma membrane with a minor component in the lactoferrin-enriched intracellular fractions, consistent with FPR size and localization. NFPR1 also recognized a band of M(r) approximately 40 kDa localized, in equal proportions to the plasma membrane and lactoferrin-enriched fractions, consistent with FPRL1 size and localization. Only NFPR2 was capable of immunoprecipitation of rFPR in detergent extracts. The recognition of rFPR by NFPR2 is lost after exposure of cellular rFPR to f-Met-Leu-Phe (fMLF) and regained after alkaline phosphatase treatment of rFPR-bearing membranes. In neutrophils, NFPR2 immunofluorescence was lost upon fMLF stimulation. Immunoblotting approximately 60 kDa species, after phosphatase treatment of fMLF-stimulated neutrophil membranes, was also enhanced. We conclude that the region 337-346 of FPR becomes phosphorylated after fMLF activation of rFPR-expressing Chinese hamster ovary cells and neutrophils.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- CHO Cells
- Cell Membrane/chemistry
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Chemotaxis/drug effects
- Chemotaxis/genetics
- Chemotaxis/immunology
- Chromatography, Affinity
- Cricetinae
- Cricetulus
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Gene Expression
- Humans
- Lactoferrin/chemistry
- Lactoferrin/genetics
- Lactoferrin/immunology
- Lactoferrin/metabolism
- Lysophospholipids/chemistry
- Mice
- Models, Immunological
- N-Formylmethionine Leucyl-Phenylalanine/analogs & derivatives
- N-Formylmethionine Leucyl-Phenylalanine/chemistry
- N-Formylmethionine Leucyl-Phenylalanine/immunology
- N-Formylmethionine Leucyl-Phenylalanine/metabolism
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Neutrophils/chemistry
- Neutrophils/immunology
- Neutrophils/metabolism
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- Protein Structure, Tertiary/genetics
- Receptors, Formyl Peptide/chemistry
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/immunology
- Receptors, Formyl Peptide/isolation & purification
- Receptors, Formyl Peptide/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spodoptera
Collapse
Affiliation(s)
- Marcia Riesselman
- Department of Microbiology, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 2007; 7:109. [PMID: 17612411 PMCID: PMC1940245 DOI: 10.1186/1471-2148-7-109] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/06/2007] [Indexed: 02/07/2023] Open
Abstract
Background NADPH-oxidases (Nox) and the related Dual oxidases (Duox) play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS). Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to canonical motifs, the B-loop, TM6-FAD, VXGPFG-motif, and extreme C-terminal regions were identified as important for Nox activity, as verified by mutational analysis. The presence of these non-canonical, but highly conserved regions suggests that all Nox/Duox may possess a common biological function remained in a long history of Nox/Duox evolution. Conclusion This report provides the first comprehensive analysis of the evolution and conserved functions of Nox and Duox family members, including identification of conserved amino acid residues. These results provide a guide for future structure-function studies and for understanding the evolution of biological functions of these enzymes.
Collapse
|
43
|
Gauss KA, Nelson-Overton LK, Siemsen DW, Gao Y, DeLeo FR, Quinn MT. Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-alpha. J Leukoc Biol 2007; 82:729-41. [PMID: 17537988 DOI: 10.1189/jlb.1206735] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macrophages play an important role in the pathogenesis of chronic inflammatory disease. Activation of these phagocytes induces the production of proinflammatory cytokines, such as IL-1 and TNF-alpha and the generation of reactive oxygen species (ROS), such as superoxide anion (O2*-). Recently, we found that TNF-alpha treatment of human monocytic cells (MonoMac1) and isolated human monocytes resulted in up-regulation of the NADPH oxidase gene, neutrophil cytosolic factor 2 (NCF2). These results suggested that TNF-alpha, produced by activated macrophages, could serve as an autocrine/paracrine regulator of the oxidase, resulting in increased and/or prolonged production of O2*-. To gain a better understanding of the mechanisms involved in NADPH oxidase regulation by TNF-alpha, we evaluated transcriptional regulation of oxidase genes in MonoMac1 cells and human monocytes. We show that TNF-alpha-treated cells have increased levels of mRNA and up-regulated expression of NADPH oxidase subunits p47(phox), p67(phox), and gp91(phox), as well as increased oxidase activity. Pharmacological inhibitors of NF-kappaB activation blocked TNF-alpha-induced up-regulation of NCF1, NCF2, and CYBB message, which correlated with a reduction in expression of the corresponding oxidase proteins and decreased O2*- production. These data demonstrate that the increase in and/or maintenance of O2*- production in TNF-alpha-treated MonoMac1 cells and monocytes are a result, in part, of transcriptional up-regulation of three essential NADPH oxidase genes via the NF-kappaB pathway. This novel finding supports a model, whereby TNF-alpha-dependent activation of NF-kappaB up-regulates phagocyte NADPH oxidase activity, leading to enhanced ROS production and further NF-kappaB activation, potentially contributing to sustained oxidant production in chronic inflammation.
Collapse
Affiliation(s)
- Katherine A Gauss
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Nakano Y, Banfi B, Jesaitis A, Dinauer M, Allen LA, Nauseef W. Critical roles for p22phox in the structural maturation and subcellular targeting of Nox3. Biochem J 2007; 403:97-108. [PMID: 17140397 PMCID: PMC1828898 DOI: 10.1042/bj20060819] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Otoconia are small biominerals in the inner ear that are indispensable for the normal perception of gravity and motion. Normal otoconia biogenesis requires Nox3, a Nox (NADPH oxidase) highly expressed in the vestibular system. In HEK-293 cells (human embryonic kidney cells) transfected with the Nox regulatory subunits NoxO1 (Nox organizer 1) and NoxA1 (Nox activator 1), functional murine Nox3 was expressed in the plasma membrane and exhibited a haem spectrum identical with that of Nox2, the electron transferase of the phagocyte Nox. In vitro Nox3 cDNA expressed an approximately 50 kDa primary translation product that underwent N-linked glycosylation in the presence of canine microsomes. RNAi (RNA interference)-mediated reduction of endogenous p22phox, a subunit essential for stabilization of Nox2 in phagocytes, decreased Nox3 activity in reconstituted HEK-293 cells. p22phox co-precipitated not only with Nox3 and NoxO1 from transfectants expressing all three proteins, but also with NoxO1 in the absence of Nox3, indicating that p22phox physically associated with both Nox3 and with NoxO1. The plasma membrane localization of Nox3 but not of NoxO1 required p22phox. Moreover, the glycosylation and maturation of Nox3 required p22phox expression, suggesting that p22phox was required for the proper biosynthesis and function of Nox3. Taken together, these studies demonstrate critical roles for p22phox at several distinct points in the maturation and assembly of a functionally competent Nox3 in the plasma membrane.
Collapse
Affiliation(s)
- Yoko Nakano
- *Inflammation Program, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52241, U.S.A
- †Department of Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52241, U.S.A
| | - Botond Banfi
- *Inflammation Program, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52241, U.S.A
- ‡Department of Anatomy and Cell Biology, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52241, U.S.A
| | | | - Mary C. Dinauer
- ∥Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), Microbiology/Immunology, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Lee-Ann H. Allen
- *Inflammation Program, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52241, U.S.A
- †Department of Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52241, U.S.A
| | - William M. Nauseef
- *Inflammation Program, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52241, U.S.A
- †Department of Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52241, U.S.A
- To whom correspondence should be addressed, at Inflammation Program, Department of Medicine, University of Iowa, D160 MTF, 2501 Crosspark Road, Coralville, IA 52241, U.S.A. (email )
| |
Collapse
|
45
|
Schulman IH, Zhou MS, Jaimes EA, Raij L. Dissociation between metabolic and vascular insulin resistance in aging. Am J Physiol Heart Circ Physiol 2007; 293:H853-9. [PMID: 17434977 DOI: 10.1152/ajpheart.00138.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological actions of insulin via activation of the phosphatidylinositol 3-kinase/Akt pathway in the endothelium serve to couple regulation of hemodynamic and metabolic homeostasis. Insulin resistance, endothelial dysfunction, and hypertension increase in prevalence with aging. We investigated the metabolic and endothelial actions of insulin in 24- vs. 3-mo Sprague-Dawley rats. With the use of the hyperinsulinemic euglycemic clamp, the rate of glucose infusion necessary to maintain equivalent plasma glucose (5.5 mmol/l) was similar in 24- vs. 3-mo rats, as was fasting glucose (5.2 +/- 0.33 vs. 4.4 +/- 0.37 mmol/l; mean +/- SE) and insulin (0.862 +/- 0.193 vs. 1.307 +/- 0.230 mg/l). Systolic blood pressure was higher in 24-mo rats (133 +/- 5 vs. 110 +/- 4 mmHg; P = 0.005). Endothelial nitric oxide (NO)-dependent relaxation to insulin was impaired in aortas of 24- vs. 3-mo rats (maximal response 8.9 +/- 4.3 vs. 34.9 +/- 3.9%; P = 0.002); N(G)-nitro-l-arginine methyl ester abolished insulin-mediated relaxation in 3- but not 24-mo rats. Endothelium NO-dependent (acetylcholine) and -independent (sodium nitroprusside) relaxation, as well as NADPH oxidase activity, were similar in 3- and 24-mo rats. Insulin increased aortic serine phosphorylation of Akt in 3-mo rats by 120% over 24-mo rats (P < 0.05) and serine phosphorylation of endothelial NO synthase (eNOS) in 3-mo rats by 380% over 24-mo rats (P < 0.05). Aortic expression of phosphorylated c-Jun NH(2)-terminal kinase-1 and serine phosphorylated insulin receptor substrate-1, known mediators of metabolic insulin resistance, was similar in 3- and 24-mo rats. Expression of caveolin-1, a regulator of eNOS activity and insulin signaling, was 55% lower in 24- than 3-mo rats (P = 0.002). In summary, impaired vasorelaxation to insulin in aging was independent of metabolic insulin sensitivity and associated with impaired insulin-mediated activation of the Akt/eNOS pathway, but intact activation of the acetylcholine-mediated Ca(2+)-calmodulin/eNOS pathway. Vascular insulin resistance in aging may add to the increased susceptibility of this population to vascular injury induced by traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Ivonne Hernandez Schulman
- Nephrology-Hypertension Section, Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL 33125, USA
| | | | | | | |
Collapse
|
46
|
Kennedy AD, Willment JA, Dorward DW, Williams DL, Brown GD, DeLeo FR. Dectin-1 promotes fungicidal activity of human neutrophils. Eur J Immunol 2007; 37:467-78. [PMID: 17230442 DOI: 10.1002/eji.200636653] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that facilitate identification of invading microorganisms and ultimately promote resolution of disease. Dectin-1 (beta-glucan receptor) is a PRR expressed on several cell types and has been studied on monocytes and macrophages. However, the role played by dectin-1 in the recognition and killing of fungi by PMN is unknown. We investigated the ability of dectin-1 to mediate human PMN phagocytosis and fungicidal activity. Dectin-1 was expressed on the surface of PMN from all subjects tested (n=29) and in an intracellular compartment that co-sedimented with azurophilic granules in Percoll density gradients. Soluble beta-glucan and mAb GE2 (anti-dectin-1) inhibited binding and phagocytosis of zymosan by human PMN (e.g., ingestion was inhibited 40.1% by 30 min, p<0.001), and blocked reactive oxygen species production. Notably, soluble beta-glucan and GE2 inhibited phagocytosis and killing of Candida albicans by PMN (inhibition of killing was 54.8% for beta-glucan and 36.2% for GE2, p<0.01). Our results reveal a mechanism whereby PMN dectin-1 plays a key role in the recognition and killing of fungal pathogens by the innate immune system.
Collapse
Affiliation(s)
- Adam D Kennedy
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
47
|
Larralde OG, Martinez R, Camacho F, Amin N, Aguilar A, Talavera A, Stott DI, Perez EM. Identification of hepatitis A virus mimotopes by phage display, antigenicity and immunogenicity. J Virol Methods 2007; 140:49-58. [PMID: 17129616 DOI: 10.1016/j.jviromet.2006.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 10/26/2006] [Accepted: 10/30/2006] [Indexed: 12/14/2022]
Abstract
A phage-displayed peptide approach was used to identify ligands mimicking antigenic determinants of hepatitis A virus (HAV) for the first time. Bacteriophages displaying HAV mimotopes were isolated from a phage-display peptide library by affinity selection on serum antibodies from hepatitis A patients. Selected phage-peptides were screened for reactivity with sera from HAV infected patients and healthy controls. Four cloned peptides with different sequences were identified as mimotopes of HAV; three of them showed similarity in their amino acid sequences with at least one of the VP3 and VP1 antigenic proteins of HAV. One clone was recognised by 92% of the positive sera. The phagotopes competed effectively with HAV for absorption of anti-HAV-specific antibodies in human sera, as determined by ELISA. The four phage clones induced neutralising anti-HAV antibodies in immunised mice. These results demonstrate the potential of this method to elucidate the disease related epitopes of HAV and to use these mimotopes in diagnostic applications or in the development of a mimotope-based hepatitis A vaccine without the necessity of manipulation of the virus.
Collapse
Affiliation(s)
- Osmany G Larralde
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Neutrophils are short-lived granulocytes essential for innate host defense. We describe here methods for analysis of resting and activated cells using immunofluorescence and confocal microscopy. Procedures for stimulation of adherent and suspended cells are provided along with protocols for particle opsonization and synchronized phagocytosis. Most importantly, we describe in detail methods for rapid and efficient cell fixation and permeabilization that optimize detection of granule proteins and NADPH oxidase components. Variables that impact antigen detection (such as cell spreading, degranulation, and phagocytosis) are discussed as are methods for image acquisition and analysis.
Collapse
|
49
|
Taylor RM, Maaty WSA, Lord CI, Hamilton T, Burritt JB, Bothner B, Jesaitis AJ. Cloning, sequence analysis and confirmation of derived gene sequences for three epitope-mapped monoclonal antibodies against human phagocyte flavocytochrome b. Mol Immunol 2007; 44:625-37. [PMID: 16563510 DOI: 10.1016/j.molimm.2005.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 10/28/2005] [Indexed: 11/26/2022]
Abstract
The integral membrane protein flavocytochrome b (Cyt b) is the catalytic core of the NADPH oxidase complex, a multicomponent enzyme system that initiates a cascade of reactive oxygen species that play a critical role in innate immunity and vascular physiology. Epitope-mapped, monoclonal antibodies (mAb) that recognize the large (gp91phox) and small (p22phox) subunits of Cyt b provide valuable reagents that have been used to examine structural and mechanistic aspects of oxidase function. In the present study, the heavy and light chain variable region genes of the Cyt b-specific mAbs 44.1, NS5, and NL7 have been amplified by RT-PCR, cloned and subject to DNA sequence analysis. Since the 5' degenerate primer sets used for mAb gene amplification were observed to introduce extensive heterogeneity into the heavy and light chain FR1 regions, N-terminal protein sequence analysis was also conducted to obtain the correct amino acid sequence of this region. In order to confirm the identity of the cloned genes, intact mAbs were resolved by two-dimensional electrophoresis and subject to in-gel tryptic digestion for analysis by both MALDI and nanospray LC-MS/MS. Databases searches using the derived mAb sequences predicted residues comprising CDR loops, identified candidate germline genes, and showed the respective germline genes to accurately predict the N-terminal amino acid residues for each variable region. The above studies report the amino acid sequence of Cyt b-specific mAb variable region genes with high confidence and provide essential information for future efforts at Cyt b structure analysis by resonance energy transfer and X-ray crystallography.
Collapse
Affiliation(s)
- Ross M Taylor
- Department of Microbiology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Mayrose I, Shlomi T, Rubinstein ND, Gershoni JM, Ruppin E, Sharan R, Pupko T. Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 2006; 35:69-78. [PMID: 17151070 PMCID: PMC1761437 DOI: 10.1093/nar/gkl975] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A phage-display library of random peptides is a combinatorial experimental technique that can be harnessed for studying antibody–antigen interactions. In this technique, a phage peptide library is scanned against an antibody molecule to obtain a set of peptides that are bound by the antibody with high affinity. This set of peptides is regarded as mimicking the genuine epitope of the antibody's interacting antigen and can be used to define it. Here we present PepSurf, an algorithm for mapping a set of affinity-selected peptides onto the solved structure of the antigen. The problem of epitope mapping is converted into the task of aligning a set of query peptides to a graph representing the surface of the antigen. The best match of each peptide is found by aligning it against virtually all possible paths in the graph. Following a clustering step, which combines the most significant matches, a predicted epitope is inferred. We show that PepSurf accurately predicts the epitope in four cases for which the epitope is known from a solved antibody–antigen co-crystal complex. We further examine the capabilities of PepSurf for predicting other types of protein–protein interfaces. The performance of PepSurf is compared to other available epitope mapping programs.
Collapse
Affiliation(s)
| | - Tomer Shlomi
- School of Computer Science, Tel-Aviv UniversityTel-Aviv 69978, Israel
| | | | | | - Eytan Ruppin
- School of Computer Science, Tel-Aviv UniversityTel-Aviv 69978, Israel
| | - Roded Sharan
- School of Computer Science, Tel-Aviv UniversityTel-Aviv 69978, Israel
| | - Tal Pupko
- To whom correspondence should be addressed. Tel: +972 3 640 7693; Fax: +972 3 642 2046;
| |
Collapse
|