1
|
Bedinger DH, Adams SH. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators. Mol Cell Endocrinol 2015; 415:143-56. [PMID: 26277398 DOI: 10.1016/j.mce.2015.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 12/17/2022]
Abstract
Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic and mitogenic responses to insulin are regulated by divergent post-receptor signaling mechanisms downstream from the activated insulin receptor (IR). However, the anabolic and growth-promoting properties of insulin require tissue-specific inter-relationships between the two pathways, and the nature and scope of insulin-regulated processes vary greatly across tissues. Understanding the nuances of this interplay between metabolic and growth-regulating properties of insulin would have important implications for development of novel insulin and IR modulator therapies that stimulate insulin receptor activation in both pathway- and tissue-specific manners. This review will provide a unique perspective focusing on the roles of "metabolic" and "mitogenic" actions of insulin signaling in various tissues, and how these networks should be considered when evaluating selective pharmacologic approaches to prevent or treat metabolic disease.
Collapse
Affiliation(s)
| | - Sean H Adams
- Arkansas Children's Nutrition Center and University of Arkansas for Medical Sciences, Department of Pediatrics, Little Rock, AR, USA
| |
Collapse
|
2
|
Wellhauser L, Gojska NM, Belsham DD. Delineating the regulation of energy homeostasis using hypothalamic cell models. Front Neuroendocrinol 2015; 36:130-49. [PMID: 25223866 DOI: 10.1016/j.yfrne.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function.
Collapse
Affiliation(s)
- Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Nicole M Gojska
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Denise D Belsham
- Departments of Physiology, Medicine and OB/GYN, University of Toronto, Toronto, Ontario M5G 1A8, Canada; Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
3
|
Nazarians-Armavil A, Chalmers JA, Lee CB, Ye W, Belsham DD. Cellular insulin resistance disrupts hypothalamic mHypoA-POMC/GFP neuronal signaling pathways. J Endocrinol 2014; 220:13-24. [PMID: 24134870 DOI: 10.1530/joe-13-0334] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
POMC neurons play a central role in the maintenance of whole-body energy homeostasis. This balance requires proper regulation of POMC neurons by metabolic hormones, such as insulin. However, the heterogeneous cellular population of the intact hypothalamus presents challenges for examining the molecular mechanisms underlying the potent anorexigenic effects of POMC neurons, and there is currently a complete lack of mature POMC neuronal cell models for study. To this end, we have generated novel, immortalized, adult-derived POMC-expressing/α-MSH-secreting cell models, mHypoA-POMC/GFP lines 1-4, representing the fluorescence-activated cell-sorted POMC population from primary POMC-eGFP mouse hypothalamus. The presence of Pomc mRNA in these cell lines was confirmed, and α-MSH was detected via immunofluorescence. α-MSH secretion in the mHypoA-POMC/GFP-1 was found to increase in response to 10 ng/ml ciliary neurotrophic factor (CNTF) or 10 nM insulin as determined by enzyme immunoassay. Further experiments using the mHypoA-POMC/GFP-1 cell line revealed that 10 ng/ml CNTF increases Pomc mRNA at 1 and 2 h after treatment, whereas insulin elicited an increase in Pomc mRNA level and decreases in insulin receptor (Insr (Ir)) mRNA level at 4 h. Furthermore, the activation of IR-mediated downstream second messengers was examined by western blot analysis, following the induction of cellular insulin resistance, which resulted in a loss of insulin-mediated regulation of Pomc and Ir mRNAs. The development of these immortalized neurons will be invaluable for the elucidation of the cellular and molecular mechanisms that underlie POMC neuronal function under normal and perturbed physiological conditions.
Collapse
Affiliation(s)
- Anaies Nazarians-Armavil
- Departments of Physiology, Obstetrics and Gynaecology Medicine, University of Toronto, Medical Sciences Building 3344, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8 Division of Cellular and Molecular Biology, Toronto Genera Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
4
|
Munir KM, Chandrasekaran S, Gao F, Quon MJ. Mechanisms for food polyphenols to ameliorate insulin resistance and endothelial dysfunction: therapeutic implications for diabetes and its cardiovascular complications. Am J Physiol Endocrinol Metab 2013; 305:E679-86. [PMID: 23900418 PMCID: PMC4073986 DOI: 10.1152/ajpendo.00377.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rising epidemic of diabetes is a pressing issue in clinical medicine worldwide from both healthcare and economic perspectives. This is fueled by overwhelming increases in the incidence and prevalence of obesity. Obesity and diabetes are characterized by both insulin resistance and endothelial dysfunction that lead to substantial increases in cardiovascular morbidity and mortality. Reciprocal relationships between insulin resistance and endothelial dysfunction tightly link metabolic diseases including obesity and diabetes with their cardiovascular complications. Therefore, therapeutic approaches that target either insulin resistance or endothelial dysfunction alone are likely to simultaneously improve both metabolic and cardiovascular pathophysiology and disease outcomes. Moreover, combination therapies with agents targeting distinct mechanisms are likely to have additive or synergistic benefits. Conventional therapies for diabetes and its cardiovascular complications that are both safe and effective are insufficient to meet rising demand. Large, robust, epidemiologic studies demonstrate beneficial metabolic and cardiovascular health effects for many functional foods containing various polyphenols. However, precise molecular mechanisms of action for food polyphenols are largely unknown. Moreover, translation of these insights into effective clinical therapies has not been fully realized. Nevertheless, some functional foods are likely sources for safe and effective therapies and preventative strategies for metabolic diseases and their cardiovascular complications. In this review, we emphasize recent progress in elucidating molecular, cellular, and physiological actions of polyphenols from green tea (EGCG), cocoa (ECG), and citrus fruits (hesperedin) that are related to improving metabolic and cardiovascular pathophysiology. We also discuss a rigorous comprehensive approach to studying functional foods that is essential for developing novel, effective, and safe medications derived from functional foods that will complement existing conventional drugs.
Collapse
Affiliation(s)
- Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland; and
| | | | | | | |
Collapse
|
5
|
Abstract
Insulin has important vascular actions to stimulate production of nitric oxide from endothelium. This leads to capillary recruitment, vasodilation, increased blood flow, and subsequent augmentation of glucose disposal in classical insulin target tissues (e.g., skeletal muscle). Phosphatidylinositol 3-kinase-dependent insulin-signaling pathways regulating endothelial production of nitric oxide share striking parallels with metabolic insulin-signaling pathways. Distinct MAPK-dependent insulin-signaling pathways (largely unrelated to metabolic actions of insulin) regulate secretion of the vasoconstrictor endothelin-1 from endothelium. These and other cardiovascular actions of insulin contribute to coupling metabolic and hemodynamic homeostasis under healthy conditions. Cardiovascular diseases are the leading cause of morbidity and mortality in insulin-resistant individuals. Insulin resistance is typically defined as decreased sensitivity and/or responsiveness to metabolic actions of insulin. This cardinal feature of diabetes, obesity, and dyslipidemia is also a prominent component of hypertension, coronary heart disease, and atherosclerosis that are all characterized by endothelial dysfunction. Conversely, endothelial dysfunction is often present in metabolic diseases. Insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase-dependent signaling that in vascular endothelium contributes to a reciprocal relationship between insulin resistance and endothelial dysfunction. The clinical relevance of this coupling is highlighted by the findings that specific therapeutic interventions targeting insulin resistance often also ameliorate endothelial dysfunction (and vice versa). In this review, we discuss molecular mechanisms underlying cardiovascular actions of insulin, the reciprocal relationships between insulin resistance and endothelial dysfunction, and implications for developing beneficial therapeutic strategies that simultaneously target metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Ranganath Muniyappa
- Diabetes Unit, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, Maryland 20892-1632, USA
| | | | | | | |
Collapse
|
6
|
Abstract
The insulin resistance syndrome refers to a constellation of findings, including glucose intolerance, obesity, dyslipidemia, and hypertension, that promote the development of type 2 diabetes, cardiovascular disease, cancer, and other disorders. Defining the pathophysiological links between insulin resistance, the insulin resistance syndrome, and its sequelae is critical to understanding and treating these disorders. Over the past decade, two approaches have provided important insights into how changes in insulin signaling produce the spectrum of phenotypes associated with insulin resistance. First, studies using tissue-specific knockouts or tissue-specific reconstitution of the insulin receptor in vivo in mice have enabled us to deconstruct the insulin resistance syndromes by dissecting the contributions of different tissues to the insulin-resistant state. Second, in vivo and in vitro studies of the complex network of insulin signaling have provided insight into how insulin resistance can develop in some pathways whereas insulin sensitivity is maintained in others. These data, taken together, give us a framework for understanding the relationship between insulin resistance and the insulin resistance syndromes.
Collapse
Affiliation(s)
- Sudha B Biddinger
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
7
|
Price RD, Yamaji T, Yamamoto H, Higashi Y, Hanaoka K, Yamazaki S, Ishiye M, Aramori I, Matsuoka N, Mutoh S, Yanagihara T, Gold BG. FK1706, a novel non-immunosuppressive immunophilin: neurotrophic activity and mechanism of action. Eur J Pharmacol 2005; 509:11-9. [PMID: 15713424 DOI: 10.1016/j.ejphar.2004.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 12/07/2004] [Accepted: 12/10/2004] [Indexed: 01/19/2023]
Abstract
Immunophilin ligands are neuroregenerative agents, characterized by binding to FK506 binding proteins (FKBPs), which stimulate recovery of neurons in a variety of injury paradigms. Here we report the discovery of a novel, non-immunosuppressive immunophilin ligand, FK1706. FK1706, a derivative of FK506, showed similarly high affinity for two FKBP subtypes, FKBP-12 and FKBP-52, but inhibited T-cell proliferation and interleukin-2 cytokine production with much lower potency and efficacy than FK506. FK1706 (0.1 to 10 nM) significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in SH-SY5Y cells, as did FK506. This neurite potentiation could be blocked by an anti-FKBP-52 antibody, as well as by specific pharmacological inhibitors of phospholipase C (PLC), phosphatidylinositol 3-kinase (PI3K), and the Ras/Raf/Mitogen-Activated Protein Kinase (MAPK) signaling pathway. FK1706 also potentiated NGF-induced MAPK activation, with a similar dose-dependency to that necessary for potentiating neurite outgrowth. Taken together, these data suggest that FK1706 is a non-immunosuppressive immunophilin ligand with significant neurotrophic effects, putatively mediated via FKBP-52 and the Ras/Raf/MAPK signaling pathway, and therefore that FK1706 may have therapeutic potential in a variety of neurological disorders.
Collapse
Affiliation(s)
- Raymond D Price
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Altunbaş H, Balci MK, Karayalçin U. No effect of simvastatin treatment on insulin sensitivity in patients with primary hypercholesterolemia. Endocr Res 2003; 29:265-75. [PMID: 14535628 DOI: 10.1081/erc-120025034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Statins, in addition to cholesterol lowering, have nonlipid effects on formation and progression of atheromatous plaque. Insulin resistance and hyperinsulinemia may have detrimental influences on the arterial wall. Statins (may also) inhibit insulin signal transferring in vascular smooth cell cultures. However, their effect on insulin sensitivity remains controversial. Therefore, we decided to investigate the effect of simvastatin on insulin sensitivity in hypercholesterolemic patients. PATIENTS AND METHODS Eighteen patients with primary hypercholesterolemia were divided into simvastatin group (n = 9; 4 females, 5 males; BMI 30.6 +/- 4 kg/m2; mean ages 57 +/- 6 years) and placebo group (n = 9; 4 females, 5 males; BMI 28 +/- 2.9 kg/m2; mean ages 49 +/- 10 years). Simvastatin (20 mg/day) or placebo were given for 2 months. Total and HDL cholesterol were measured and LDL cholesterol was calculated by Friedewald formula. Insulin sensitivity was determined by using euglycemic hyperinsulinemic clamp technique [40 microU/m2/min insulin infusion rate; glucose disposal rate (M)= mg/kg/min] before and after treatment. RESULTS Plasma levels of total, LDL and HDL cholesterol decreased significantly in simvastatin group after treatment (p = 0.000, p = 0.000, and p = 0.048, respectively). Plasma levels of total cholesterol decreased significantly (p = 0.032), whereas LDL and HDL levels remained unchanged in placebo group. M value (mg/kg/min) decreased insignificantly in simvastatin group (4.32 +/- 1.57 vs. 3.71 +/- 1.91) and increased in placebo group (3.55 +/- 1.91 vs. 3.95 +/- 0.95). CONCLUSION Short-term simvastatin treatment did not affect insulin sensitivity determined by "gold standard" euglycemic hyperinsulinemic clamp method in hypercholesterolemic patients in this research. Further studies with simvastatin using higher doses and longer duration should be performed.
Collapse
Affiliation(s)
- Hasan Altunbaş
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University School of Medicine, Antalya, Turkey
| | | | | |
Collapse
|
9
|
Otton R, Carvalho CRO, Mendonça JR, Curi R. Low proliferation capacity of lymphocytes from alloxan-diabetic rats: involvement of high glucose and tyrosine phosphorylation of Shc and IRS-1. Life Sci 2002; 71:2759-71. [PMID: 12383882 DOI: 10.1016/s0024-3205(02)02141-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The proliferation capacity of lymphocytes obtained from mesenteric lymph nodes of control and alloxan-diabetic (40 mg/kg) rats in response to concanavalin A (ConA) and lipopolysaccharide (LPS) stimuli was examined. Proliferation response of lymphocytes from diabetic rats was significantly reduced under Con A (43%) and LPS (46%) stimulation as compared with the control group. Insulin (166 microM) promoted a marked increase of lymphocyte proliferation (7.5-fold) in the control group and this response was much lower (2.6-fold) in lymphocyte from diabetic rats. Cells were also cultured in medium containing glucose at 5, 10 or 20 mM. High glucose concentration (20 mM) caused a marked inhibition of lymphocyte proliferation reaching the values of the diabetic group. In lymphocytes from control rats, the degree of Shc tyrosine phosphorylation was gradually increased, whereas that of cells from diabetic rats was much lower in response to insulin. In lymphocytes obtained from control rats, the tyrosine phosphorylation of IRS-1 was time-dependent on insulin. In cells from diabetic rats, the basal tyrosine phosphorylation of IRS-1 was higher than that of control rats, however, there was no further phosphorylation after insulin addition. We conclude that the response of lymphocyte proliferation from diabetic rats to Con A and LPS stimuli is decreased but insulin was able to promote a significant proliferative effect on these cells. Also, high glycemia in addition to the lack of insulin participates in the reduced proliferation capacity of lymphocytes from diabetic rats.
Collapse
Affiliation(s)
- Rosemari Otton
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900, Butantan, Brazil.
| | | | | | | |
Collapse
|
10
|
Pandey SK, Théberge JF, Bernier M, Srivastava AK. Phosphatidylinositol 3-kinase requirement in activation of the ras/C-raf-1/MEK/ERK and p70(s6k) signaling cascade by the insulinomimetic agent vanadyl sulfate. Biochemistry 1999; 38:14667-75. [PMID: 10545192 DOI: 10.1021/bi9911886] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanisms by which inorganic salts of the trace element vanadium mediate their insulinomimetic effects are not clearly understood and were investigated. We have shown previously that vanadium salts activate mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase activities (PI3-K) via a pathway that does not involve the insulin receptor (IR) tyrosine kinase function [Pandey, S. K., Anand-Srivastava, M. B., and Srivastava, A. K. (1998) Biochemistry 37, 7006-7014]. Herein, we have examined a possible role of PI3-K in the vanadyl sulfate (VS)-mediated increase in the level of ras-MAPK activation as well as the contribution of signaling components upstream to MAPK in this VS response. Treatment of IR-overexpressing cells with VS resulted in an increased level of tyrosine phosphorylation of p44(mapk) (ERK-1) and p42(mapk) (ERK-2) along with stimulation of MAPK, MAPK kinase (MEK), and C-raf-1 activities, and ras activation. Preincubation with wortmannin and LY294002, two structurally and mechanistically different inhibitors of PI3-K, blocked the VS-mediated increase in MAPK activity and phosphorylation of ERK-1 and ERK-2. Furthermore, wortmannin inhibited activation of ras, C-raf-1, and MEK in response to VS. The addition of a farnesyltransferase inhibitor, B581, to cells reduced the level of MAPK activation as well as ERK-1 and ERK-2 phosphorylation stimulated by VS. Finally, VS increased PI3-K activity in ras immunoprecipitates. A VS-mediated increase in p70(s6k) activity was also found to be inhibited by wortmannin. Taken together, these results demonstrate that the insulinomimetic effects of VS may be mediated, in part, by PI3-K-dependent stimulation of the ras-MAPK and p70(s6k) pathways.
Collapse
Affiliation(s)
- S K Pandey
- Research Centre, Centre hospitalier de l'Université de Montréal, Campus Hôtel-Dieu, Departments of Medicine and Physiology, University of Montreal, Montreal, Quebec H2W 1T8, Canada
| | | | | | | |
Collapse
|
11
|
Goalstone ML, Leitner JW, Golovchenko I, Stjernholm MR, Cormont M, Le Marchand-Brustel Y, Draznin B. Insulin promotes phosphorylation and activation of geranylgeranyltransferase II. Studies with geranylgeranylation of rab-3 and rab-4. J Biol Chem 1999; 274:2880-4. [PMID: 9915824 DOI: 10.1074/jbc.274.5.2880] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab proteins play a crucial role in the trafficking of intracellular vesicles. Rab proteins are GTPases that cycle between an inactive GDP-bound form and an active GTP-bound conformation. A prerequisite to Rab activation by GTP loading is its post-translational modification by the addition of geranylgeranyl moieties to highly conserved C-terminal cysteine residues. We examined the effect of insulin on the activity of geranylgeranyltransferase II (GGTase II) in 3T3-L1 fibroblasts and adipocytes. In fibroblasts, insulin increased the enzymatic activity of GGTase II 2.5-fold after 1 h of incubation, an effect that is blocked by perillyl alcohol, an inhibitor of prenyltransferases, but not by the geranylgeranyltransferase I inhibitor, GGTI-298, or the farnesyltransferase inhibitor, alpha-hydroxyfarnesylphosphonic acid. Concomitantly, insulin stimulated the phosphorylation of the GGTase II alpha-subunit without any effect on the GGTase II beta-subunit. At the same time, insulin also increased the amounts of geranylgeranylated Rab-3 in 3T3-L1 fibroblasts from 44 +/- 1.2% in control cells to 63 +/- 3.8 and 64 +/- 6.1% after 1 and 24 h of incubation, respectively. In adipocytes, insulin increased the amounts of geranylgeranylated Rab-4 from 38 +/- 0.6% in control cells to 56 +/- 1.7 and 60 +/- 2.6% after 1 and 24 h of incubation, respectively. In both fibroblasts and adipocytes, the presence of perillyl alcohol blocked the ability of insulin to increase geranylgeranylation of Rab-4, whereas GGTI-298 and alpha-hydroxyfarnesylphosphonic acid were without effect, indicating that insulin activates GGTase II. In summary, insulin promotes phosphorylation and activation of GGTase II in both 3T3 L1 fibroblasts and adipocytes and increases the amounts of geranylgeranylated Rab-3 and Rab-4 proteins.
Collapse
Affiliation(s)
- M L Goalstone
- Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Mahata SK, Mahata M, Wu H, Parmer RJ, O'Connor DT. Neurotrophin activation of catecholamine storage vesicle protein gene expression: signaling to chromogranin a biosynthesis. Neuroscience 1999; 88:405-24. [PMID: 10197763 DOI: 10.1016/s0306-4522(98)00225-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nerve growth factor differentiates precursor cells into sympathetic neurons. Does acquisition of a "neuronal" phenotype after nerve growth factor involve biosynthesis of chromogranin A, the major soluble protein in chromaffin granule cores? Nerve growth factor activated chromogranin A gene expression 7.6-fold in PC12 pheochromocytoma cells, and similarly activated PC12-transfected mouse, rat or human chromogranin A promoter/reporter constructs. Chromogranin A promoter 5'-deletions narrowed the nerve growth factor response element to a region from - 77 to - 61 bp upstream of the cap site, a region containing the chromogranin A cyclic AMP response element (TGACGTAA). Three different site-directed mutations of the cyclic AMP response element each reduced the nerve growth factor effect by >90%. Transfer of the cyclic AMP response element to a heterologous (thymidine kinase) promoter activated that promoter approximately 5-fold after nerve growth factor, while transfer of a cyclic AMP response element point-gap mutant (TGA-GTAA) to a heterologous promoter abolished the nerve growth factor effect. These findings indicate that the cyclic AMP response element in cis is, at least in part, both necessary and sufficient to activate the chromogranin A gene. Chemical blockade of the nerve growth factor receptor TrkA or the mitogen-activated protein kinase pathway component MEK substantially diminished nerve growth factor-induced expression of chromogranin A. By contrast, the response of chromogranin A to nerve growth factor was not impaired after blockade of phospholipase C-gamma or phosphoinositide-3 kinase. Chemical blockade of TrkA, Ras, MEK or mitogen-activated protein kinase similarly inhibited nerve growth factor activation of chromogranin A. Expression of constitutively activated Ras, Raf or MEK mutants increased chromogranin A promoter activity. Expression of dominant negative (inhibitory) mutants of Sos, Ha-Ras, Rafl, mitogen-activated protein kinase, ribosomal protein S6 serine kinase II (CREB kinase) or CREB (KCREB) each inhibited the nerve growth factor-induced increase in chromogranin A promoter activity. Thus, each component of the mitogen-activated protein kinase pathway is crucially involved in relaying the nerve growth factor signal in trans to the chromogranin A gene, in the following proposed sequence: nerve growth factor --> TrkA --> Shc/Grb2/Sos --> Ras --> Raf --> MEK --> mitogen-activated protein kinase --> ribosomal protein S6 serine kinase II --> CREB cyclic AMP response element.
Collapse
Affiliation(s)
- S K Mahata
- Department of Medicine and Center for Molecular Genetics, University of California, San Diego, USA
| | | | | | | | | |
Collapse
|
13
|
Wagle A, Jivraj S, Garlock GL, Stapleton SR. Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase. J Biol Chem 1998; 273:14968-74. [PMID: 9614103 DOI: 10.1074/jbc.273.24.14968] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) controls the flow of carbon through the pentose phosphate pathway and also produces NADPH needed for maintenance of reduced glutathione and reductive biosynthesis. Hepatic expression of G6PDH is known to respond to several dietary and hormonal factors, but the mechanism behind regulation of this expression has not been characterized. We show that insulin similarly induces expression of endogenous hepatic G6PDH and a reporter construct containing 935 base pairs of the G6PDH promoter linked to luciferase in transient transfection assays. Using well tested and structurally distinct inhibitors of Ras farnesylation, lovastatin and B581, and a specific inhibitor of mitogen-activated protein kinase kinase activation, PD 98059, we show that the Ras/Raf/mitogen-activated protein kinase pathway is not utilized for the insulin-induced stimulation of G6PDH gene expression in primary rat hepatocytes. Similarly, using well characterized inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY 294002, we show that PI 3-kinase activity is necessary for the induction of G6PDH expression by insulin. Rapamycin, an inhibitor of FRAP protein, which is involved in the activation of pp70 S6 kinase, blocks the insulin induction of G6PDH, suggesting that S6 kinase is also necessary for the insulin induction of G6PDH expression.
Collapse
Affiliation(s)
- A Wagle
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The Ras pathway lies in the center of signalling cascades of numerous growth-promoting factors. The Ras pathway appears to connect signalling events that begin at the plasma membrane with nuclear events. Insulin is one of the major stimulants of the Ras signalling pathway. The influence of insulin on this pathway consists of five important events: (1) p21Ras activation is promoted by insulin stimulation of the guanine nucleotide exchange factor, Sos, resulting in increased GTP-loading of p21Ras; (2) p21Ras deactivation involves the hyperphosphorylation of Sos; (3) insulin increases farnesyltransferase (FTase) activity that farnesylates p21Ras; (4) increased amounts of farnesylated p21Ras translocate to the plasma membrane where they can be activated by other growth-promoting agents; and (5) cellular responses to other growth factors are potentiated by insulin-stimulated pre-loading of the plasma membrane with farnesylated p21Ras.
Collapse
Affiliation(s)
- M L Goalstone
- Department of Medicine, Denver Veterans Affairs Medical Center, University of Colorado Health Sciences Center, 80220, USA
| | | |
Collapse
|
15
|
Lee-Kwon W, Park D, Bernier M. Involvement of the Ras/extracellular signal-regulated kinase signalling pathway in the regulation of ERCC-1 mRNA levels by insulin. Biochem J 1998; 331 ( Pt 2):591-7. [PMID: 9531502 PMCID: PMC1219393 DOI: 10.1042/bj3310591] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Expression of DNA repair enzymes, which includes ERCC-1, might be under the control of hormonal and growth factor stimulation. In the present study it was observed that insulin increased ERCC-1 mRNA levels both in Chinese hamster ovary cells overexpressing human insulin receptors (HIRc cells) and in fully differentiated 3T3-L1 adipocytes. To investigate the mechanisms underlying the increase in ERCC-1 gene expression in HIRc cells, we used a variety of pharmacological tools known to inhibit distinct signalling pathways. None of these inhibitors affected the amount of ERCC-1 mRNA in unstimulated cells. The pretreatment of cells with two chemically unrelated phosphatidylinositol 3'-kinase inhibitors, wortmannin and LY294002, failed to block the doubling of ERCC-1 mRNA content by insulin. Similarly, inhibition of pp70 S6 kinase by rapamycin had no apparent effects on this insulin response. In contrast, altering the p21(ras)-dependent pathway with either manumycin, an inhibitor of Ras farnesylation, or PD98059, an inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase, suppressed the induction of ERCC-1 mRNA by insulin (P<0.001). Furthermore inhibition of RNA and protein synthesis negatively regulated the expression of this insulin-regulated gene (P<0.005). These results suggest that insulin enhances ERCC-1 mRNA levels by the activation of the Ras-ERK-dependent pathway without the involvement of the phosphatidylinositol 3'-kinase/pp70 S6 kinase.
Collapse
Affiliation(s)
- W Lee-Kwon
- Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
16
|
Goalstone M, Carel K, Leitner JW, Draznin B. Insulin stimulates the phosphorylation and activity of farnesyltransferase via the Ras-mitogen-activated protein kinase pathway. Endocrinology 1997; 138:5119-24. [PMID: 9389491 DOI: 10.1210/endo.138.12.5621] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Farnesylation of p21Ras by farnesyltransferase (FTase) is obligatory for anchoring p21Ras to the plasma membrane, where it can be activated by growth factors. Insulin significantly stimulates the phosphorylation of the alpha-subunit of FTase (4-fold) and the enzymatic activity of FTase in 3T3-L1 fibroblasts and adipocytes. FTase activity was assessed by the amount of [3H] mevalonate (a precursor of farnesyl) incorporated into p21Ras in vivo and by quantitating the amount of farnesylated p21Ras before and after insulin administration. Insulin-stimulated phosphorylation of the alpha-subunit of FTase in 3T3-L1 fibroblasts and adipocytes was blocked by the mitogen-activated protein/extracellular-signal regulated kinase-kinase inhibitor, PD98059, but not by wortmannin or bisindolylmaleimide. Additionally, PD98059 blocked insulin-stimulated [3H]mevalonic incorporation and farnesylation of unprocessed p21Ras in both cell lines. Furthermore, expression of the dominant negative mutant of p21Ras precluded insulin-stimulated phosphorylation of the FTase alpha-subunit and activation of its enzymatic activity. In contrast, 3T3-L1 fibroblasts, expressing the constitutively active Raf-1, exhibited enhanced phosphorylation of the FTase alpha-subunit. It seems that insulin's effect on the phosphorylation and activation of FTase in both fibroblasts and adipocytes is mediated via the Ras pathway, resulting in a positive feedback augmentation of the cellular pool of farnesylated p21Ras.
Collapse
Affiliation(s)
- M Goalstone
- Department of Medicine, Veterans Affairs Medical Center and the University of Colorado Health Sciences Center, Denver 80220, USA
| | | | | | | |
Collapse
|
17
|
Taha C, Tsakiridis T, McCall A, Klip A. Glucose transporter expression in L6 muscle cells: regulation through insulin- and stress-activated pathways. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:E68-76. [PMID: 9252481 DOI: 10.1152/ajpendo.1997.273.1.e68] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We addressed the effect of long-term treatment with insulin, 2,4-dinitrophenol (DNP; an uncoupler of oxidative phosphorylation that increases energy demand) and 300 mM mannitol (hyperosmolarity) on glucose transporter (GLUT) expression in L6 muscle cells and the signaling pathways involved. We found the following. 1) The insulin-mediated increase in GLUT-1 is 70-kDa ribosomal protein S6 kinase (p70 S6 kinase) and p38 mitogen-activated protein kinase (MAPK) dependent but extracellular signal-regulated protein kinase (ERK) and MAPK/ERK kinase (MEK) independent. The hypertonicity-stimulated elevation in GLUT-1 is p70 S6 kinase, p38 MAPK, and MEK dependent yet ERK independent. DNP also increased GLUT-1 protein but did not depend on any of the above pathways, 2) Insulin increased GLUT-3 protein in a p70 S6 kinase-independent but MEK/ERK-dependent fashion. Inhibition of p38 MAPK potentiated the effect of insulin on GLUT-3. Hypertonicity increased GLUT-3 via p70 S6 kinase- and p38 MAPK-dependent pathways. In conclusion, we have dissected the molecular mechanisms used by insulin and hypertonicity that culminate in the induction of GLUT-1 and GLUT-3. The mechanism(s) used by DNP remains unknown.
Collapse
Affiliation(s)
- C Taha
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Barritt GJ, Gregory RB. An evaluation of strategies available for the identification of GTP-binding proteins required in intracellular signalling pathways. Cell Signal 1997; 9:207-18. [PMID: 9218120 DOI: 10.1016/s0898-6568(96)00131-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Strategies which can be used to elucidate the nature of a GTP-binding regulatory protein (G-protein) involved in an intracellular pathway of interest in the complex environment of the cell are described and evaluated. A desirable strategy is considered to be one in which the first stage indicates a requirement for one or more G-proteins, provides information on whether a monomeric, trimeric or other type of G-protein is involved, and gives some idea of the G-protein sub-class. In the second stage the specific G-protein involved is identified. Approaches available for investigations in the first stage include the use of analogues of GTP and GDP, AlF4-, inhibitors of G-protein isoprenylation, bacterial toxins which covalently modify G-proteins, and the introduction of a purified GDP dissociation inhibitor, GDP exchange and/or GTP-ase activating protein. Identification of the specific G-protein in the second stage can be achieved using anti G-protein antibodies, G-protein-or receptor-derived peptides, antisense G-protein RNA and over-expressed, constitutively-active or dominant-negative G-protein mutants. The correct interpretation of results obtained with GTP and GDP analogues and AlF4- in the first stage is complex and often difficult, and requires a thorough understanding of the functions and mechanisms of activation of G-proteins. Nevertheless, it is important to reach the correct conclusion at this stage since considerable time and expense are usually required for investigations in the second stage.
Collapse
Affiliation(s)
- G J Barritt
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | |
Collapse
|
19
|
Carel K, Kummer JL, Schubert C, Leitner W, Heidenreich KA, Draznin B. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes. J Biol Chem 1996; 271:30625-30. [PMID: 8940037 DOI: 10.1074/jbc.271.48.30625] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To characterize tissue-specific differences in insulin signaling, we compared the mechanisms of mitogen-activated protein (MAP) kinase activation by insulin in the mitogenically active 3T3-L1 fibroblasts with the metabolically active 3T3-L1 adipocytes. In both cell lines, insulin significantly increased p21(ras).GTP loading (1.5-2-fold) and MAP kinase activity (5-8-fold). Inhibition of Ras farnesylation with lovastatin blocked activation of p21(ras) and Raf-1 kinase in both 3T3-L1 fibroblasts and 3T3-L1 adipocytes. In 3T3-L1 fibroblasts, this was accompanied by an inhibition of the stimulatory effect of insulin on MAP kinase. In contrast, in 3T3-L1 adipocytes, despite an inhibition of activation of p21(ras) and Raf-1 by lovastatin, insulin continued to stimulate MAP kinase activity. Fractionation of the cell lysates on the FPLC Mono-Q column revealed that lovastatin inhibited insulin stimulation of ERK2 (and, to a lesser extent, ERK1) in 3T3-L1 fibroblasts and had no effect on the insulin-stimulated ERK2 in 3T3-L1 adipocytes. These results demonstrate an important distinction between the mechanism of insulin signaling in the metabolically and mitogenically active cells. Insulin activates MAP kinase by the Ras-dependent pathway in the 3T3-L1 fibroblasts and by the Ras-independent pathway in the 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- K Carel
- Medical Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | |
Collapse
|
20
|
Goalstone ML, Draznin B. Effect of insulin on farnesyltransferase activity in 3T3-L1 adipocytes. J Biol Chem 1996; 271:27585-9. [PMID: 8910345 DOI: 10.1074/jbc.271.44.27585] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Activation of p21(ras) by GTP loading is a critical step in a cascade of intracellular insulin signaling. Farnesylation of p21(ras) protein is an obligatory event that facilitates Ras migration to the plasma membrane and subsequent activation. Farnesyltransferase (FTase) is a ubiquitous enzyme that catalyzes the lipid modification of p21(ras) by the addition of farnesyl to the C-terminal "CAAX" motif. In vitro and in vivo FTase activities were studied in 3T3-L1 adipocytes in response to insulin challenge. Insulin exerted a biphasic stimulatory effect on FTase activity measured in vitro with a 31% increase at 5 min and a 130% increase at 60 min. Insulin-stimulated farnesylation of p21(ras) pools in vivo correlated with FTase activity seen in vitro by displaying an increase in farnesylated p21(ras) from 40% of total cellular Ras in control cells to 63% by 5 min and 80% by 60 min (p < 0.05) in insulin-treated cells. Insulin challenge of 3T3-L1 adipocytes increased incorporation of tritiated mevalonic acid in p21(ras) in a dose-dependent manner and stimulated a 2-fold increase in phosphorylation of the alpha-subunit of FTase at 5 min and a 4-fold increase at 60 min.
Collapse
Affiliation(s)
- M L Goalstone
- Medical Research Service and the Department of Medicine, Veterans Affairs Medical Center and the University of Colorado Health Sciences Center, Denver, Colorado 80220, USA.
| | | |
Collapse
|
21
|
Aklilu F, Park M, Goltzman D, Rabbani SA. Increased PTHRP production by a tyrosine kinase oncogene, Tpr-Met: role of the Ras signaling pathway. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E277-83. [PMID: 8770021 DOI: 10.1152/ajpendo.1996.271.2.e277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have used the Tpr-Met oncogene as a model to examine signaling pathways of growth factors and tyrosine kinase oncogenes that can increase parathyroid hormone-related peptide (PTHRP) production. PTHRP production in Tpr-Met transfected cells, when assessed by Northern blot analysis and radioimmunoassay, was increased four- to eightfold. Treatment of these cells with the transcriptional inhibitor actinomycin D and nuclear run-off assays showed that the major cause of increased PTHRP mRNA was enhanced gene transcription. To analyze the intracellular signaling molecules involved in PTHRP production, stable cell lines expressing a Tyr489 Phe mutant of the Tpr-Met oncoprotein were examined. The mutant fails to activate phosphatidylinositol (PI)-3 kinase or associate with the Grb-2 adaptor protein and caused a significant reduction in PTHRP production. Treatment of wild-type Tpr-Met transfected cells with wortmannin, a PI-3 kinase inhibitor, had no effect on PTHRP production; however, treatment of these cells with lovastatin, an inhibitor of p21ran isoprenylation, significantly reduced PTHRP expression. These results show that PTHRP is a downsteam target of the Tpr-Met oncogene and indicate that the PTHRP stimulating activity is mediated via the Ras signaling pathway.
Collapse
Affiliation(s)
- F Aklilu
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
22
|
Seaman MN, Burd CG, Emr SD. Receptor signalling and the regulation of endocytic membrane transport. Curr Opin Cell Biol 1996; 8:549-56. [PMID: 8791448 DOI: 10.1016/s0955-0674(96)80034-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vesicle-mediated membrane traffic has long been considered to be a constitutive process that is not burdened by layers of regulation. This contrasts with transmembrane signalling systems at the plasma membrane which relay information (i.e. extracellular stimuli) from the cell surface to the cytoplasm via a myriad of different protein-protein interactions and second messenger cascades. An accumulation of recent evidence, however, now suggests that signal-transduction pathways also play a critical role in the regulation of protein and membrane trafficking. In particular, the analysis of the signalling pathways initiated by receptor tyrosine kinases at the plasma membrane has yielded new insights into the molecular mechanisms of endocytosis. In addition, recent evidence has suggested potential new roles for two previously characterized vesicle coat proteins in a membrane traffic route that is regulated via cell surface receptor signalling.
Collapse
Affiliation(s)
- M N Seaman
- Division of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego, School of Medicine, LaJolla, CA 92075-0668, USA
| | | | | |
Collapse
|
23
|
Abstract
The activation of p21ras proteins is required in signal transduction pathways that lead to cell proliferation. More recently, a role for p21ras proteins has also been suggested in pathways to apoptosis and in the regulation of the cell cycle. Pointmutated p21ras oncogenes code for constitutively activated p21ras proteins, which disturb the balance between cell growth and cell death in favour of cell growth. In this way, p21ras oncoproteins may contribute to carcinogenesis. The binding of growth factors to their receptors triggers a cascade of protein interactions, including activation of the p21ras proteins. In turn, p21ras proteins set the machinery for cell division in motion by stimulating different effector proteins which regulate the morphological alterations, the nutritional requirements, and the changes in gene expression necessary for cell division. The presence of p21ras oncoproteins constitutively stimulate proliferation, whilst the apoptotic pathway is suppressed along with the loss of cell cycle regulation. This review describes the function of the p21ras proteins in signal transduction pathways that control proliferation and apoptosis, and regulate the cell cycle. The dysregulation of these signal transduction pathways due to the presence of p21ras oncoproteins is discussed in the context of early carcinogenesis.
Collapse
Affiliation(s)
- J E de Vries
- Department of Physiology, University of Limburg, Maastricht, The Netherlands
| | | | | |
Collapse
|
24
|
Houseknecht KL, Zhu AX, Gnudi L, Hamann A, Zierath JR, Tozzo E, Flier JS, Kahn BB. Overexpression of Ha-ras selectively in adipose tissue of transgenic mice. Evidence for enhanced sensitivity to insulin. J Biol Chem 1996; 271:11347-55. [PMID: 8626688 DOI: 10.1074/jbc.271.19.11347] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To determine the role of Ras-dependent signaling pathways in adipocyte function, we created transgenic mice that overexpress Ha-ras in adipocytes using the aP2 fatty acid-binding protein promoter/enhancer ligated to the human genomic ras sequence. ras mRNA was increased 8-17-fold and Ras protein 4-5-fold in white and brown fat, with no overexpression in other tissues. The subcellular distribution of overexpressed Ras paralleled that of endogenous Ras. [U-14C]Glucose uptake into isolated adipocytes was increased approximately 2-fold in the absence of insulin, and the ED50 for insulin was reduced 70%, with minimal effect on maximally stimulated glucose transport. Expression of Glut4 protein was unaltered in transgenic adipocytes, but photoaffinity labeling of transporters in intact cells with [3H]2-N-[4-(1-azi-Z,Z,Z-trifluoroethyl)benzoyl]-1,3-bis-(D-mann os-4- yloxy)-2-propylamine revealed 1.7-2.6-fold more cell-surface Glut 4 in the absence of insulin and at half-maximal insulin concentration (0.3 nM) compared with nontransgenic adipocytes. With maximal insulin concentration (80 nM), cell-surface Glut4 in nontransgenic and transgenic adipocytes was similar. Glut1 expression and basal cell-surface Glut1 were increased 2-2.9-fold in adipocytes of transgenic mice. However, Glut1 was much less abundant than Glut4, making its contribution to transport negligible. These in vitro changes were accompanied by in vivo alterations including increased glucose tolerance, decreased plasma insulin levels, and decreased adipose mass. We conclude that ras overexpression in adipocytes leads to a partial translocation of Glut4 in the absence of insulin and enhanced Glut4 translocation at physiological insulin concentration, but no effect with maximally stimulating insulin concentrations.
Collapse
Affiliation(s)
- K L Houseknecht
- Harvard Thorndike Research Laboratory, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
DePaolo D, Reusch JE, Carel K, Bhuripanyo P, Leitner JW, Draznin B. Functional interactions of phosphatidylinositol 3-kinase with GTPase-activating protein in 3T3-L1 adipocytes. Mol Cell Biol 1996; 16:1450-7. [PMID: 8657118 PMCID: PMC231129 DOI: 10.1128/mcb.16.4.1450] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of phosphatidylinositol (PI) 3-kinase in specific aspects of insulin signaling was explored in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity by LY294002 or wortmannin significantly enhanced basal and insulin-stimulated GTPase-activating protein (GAP) activity in 3T3-L1 adipocytes. Furthermore, removal of the inhibitory influence of PI 3-kinase on GAP resulted in dose-dependent decreases in the ability of insulin to stimulate p21ras. This effect was specific to adipocytes, as inhibition of PI 3-kinase did not influence GAP in either 3T3-L1 fibroblasts, Rat-1 fibroblasts, or CHO cells. Immunodepletion of either of the two subunits of the PI 3-kinase (p85 or p110) yielded similar activation of GAP, suggesting that catalytic activity of p110 plays an important role in controlling GAP activity in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity in 3T3-L1 adipocytes resulted in abrogation of insulin-stimulated glucose uptake and thymidine incorporation. In contrast, effects of insulin on glycogen synthase and mitogen-activated protein kinase activity were inhibited only at higher concentrations of LY294002. It appears that in adipocytes, P1 3-kinase prevents activation of GAP. Inhibition of PI 3-kinase activity or immunodepletion of either one of its subunits results in activation of GAP and decreases in GTP loading of p21ras.
Collapse
Affiliation(s)
- D DePaolo
- Medical Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gabbay RA, Sutherland C, Gnudi L, Kahn BB, O'Brien RM, Granner DK, Flier JS. Insulin regulation of phosphoenolpyruvate carboxykinase gene expression does not require activation of the Ras/mitogen-activated protein kinase signaling pathway. J Biol Chem 1996; 271:1890-7. [PMID: 8567635 DOI: 10.1074/jbc.271.4.1890] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting step in hepatic gluconeogenesis, is primarily regulated at the level of gene transcription. Insulin and phorbol esters inhibit basal PEPCK transcription and antagonize the induction of PEPCK gene expression by glucocorticoids and glucagon (or its second messenger cAMP). Insulin activates a signaling cascade involving Ras --> Raf --> p42/p44 mitogen-activated protein (MAP) kinase kinase (MEK) --> p42/p44 MAP kinase (ERK 1 and 2). Recent reports suggest that activation of this Ras/MAP kinase pathway is critical for the effects of insulin on mitogenesis and c-fos transcription but is not required for insulin action on metabolic processes such as glycogen synthesis, lipogenesis, and Glut-4-mediated glucose transport. We have used three distinct approaches to examine the role of the Ras/MAP kinase pathway in the regulation of PEPCK transcription by insulin in H4IIE-derived liver cells: (i) chemical inhibition of Ras farnesylation, (ii) infection of cells with an adenovirus vector encoding a dominant-negative mutant of Ras, and (iii) use of a chemical inhibitor of MEK. Although each of these methods blocks insulin activation of MAP kinase, none alters insulin antagonism of cAMP- and glucocorticoid-stimulated PEPCK transcription. Although phorbol esters activate MAP kinase and mimic the effects of insulin on PEPCK gene transcription, inhibition of MEK has no effect on phorbol ester inhibition of PEPCK gene transcription. Using the structurally and mechanistically distinct phosphatidylinositol 3-kinase (PI 3-kinase) inhibitors, wortmannin and LY 294002, we provide further evidence supporting a role for PI 3-kinase activation in the regulation of PEPCK gene transcription by insulin. We conclude that neither insulin nor phorbol ester regulation of PEPCK gene transcription requires activation of the Ras/MAP kinase pathway and that insulin signaling to the PEPCK promoter is dependent on PI 3-kinase activation.
Collapse
Affiliation(s)
- R A Gabbay
- Charles A. Dana Laboratories, Harvard-Thorndike Department of Medicine, Beth Israel Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Knoepp SM, Wisehart-Johnson AE, Buse MG, Bradshaw CD, Ella KM, Meier KE. Synergistic effects of insulin and phorbol ester on mitogen-activated protein kinase in Rat-1 HIR cells. J Biol Chem 1996; 271:1678-86. [PMID: 8576169 DOI: 10.1074/jbc.271.3.1678] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Regulation of the activity of the extracellular signal regulated kinase (ERK) mitogen-activated protein kinases was examined in Rat-1 HIR, a fibroblast cell line overexpressing the human insulin receptor. Insulin or phorbol ester induced partial activations of ERKs, while a combination of insulin and phorbol ester resulted in a synergistic activation. Preincubation with phorbol ester increased the subsequent response to insulin. Phorbol ester did not enhance tyrosine phosphorylation of the insulin receptor. Insulin did not enhance activation of phospholipase D in response to phorbol ester. Lysophosphatidic acid also acted synergistically with insulin to induce ERK activation. Lysophosphatidic acid alone had little effect on ERK, and did not activate phospholipase D. The combination of phorbol ester and insulin maintained tyrosine phosphorylation of focal adhesion kinase, while insulin alone decreased its tyrosine phosphorylation. Phorbol ester induced phosphorylation of She on serine/threonine, while insulin induced tyrosine phosphorylation of She and She-Grb2 binding. These results suggest that full activation of ERKs in fibroblasts can require the cooperation of at least two signaling pathways, one of which may result from a protein kinase C-dependent phosphorylation of effectors regulating ERK activation. In this manner, phorbol esters may enhance mitogenic signals initiated by growth factor receptors.
Collapse
Affiliation(s)
- S M Knoepp
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | |
Collapse
|
28
|
Haruta T, Morris AJ, Rose DW, Nelson JG, Mueckler M, Olefsky JM. Insulin-stimulated GLUT4 translocation is mediated by a divergent intracellular signaling pathway. J Biol Chem 1995; 270:27991-4. [PMID: 7499278 DOI: 10.1074/jbc.270.47.27991] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Insulin stimulates glucose transport largely by mediating translocation of the insulin-sensitive glucose transporter (GLUT4) from an intracellular compartment to the plasma membrane. Using single cell microinjection of 3T3-L1 adipocytes, coupled with immunofluorescence detection of GLUT4 proteins, we have determined that inhibition of endogenous p21ras or injection of oncogenic p21ras has no effect on insulin-stimulated GLUT4 translocation. On the other hand, microinjection of anti-phosphotyrosine antibodies or inhibition of endogenous phosphatidylinositol 3-kinase by microinjection of a GST-p85 SH2 fusion protein markedly inhibits this biologic effect of insulin. These data suggest that the p21ras/mitogen-activated protein kinase pathway is not involved in this metabolic effect of insulin, whereas tyrosine phosphorylation and stimulation of phosphatidylinositol 3-kinase activity are critical components of this signaling pathway.
Collapse
Affiliation(s)
- T Haruta
- Department of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
29
|
Herbst JJ, Andrews GC, Contillo LG, Singleton DH, Genereux PE, Gibbs EM, Lienhard GE. Effect of the activation of phosphatidylinositol 3-kinase by a thiophosphotyrosine peptide on glucose transport in 3T3-L1 adipocytes. J Biol Chem 1995; 270:26000-5. [PMID: 7592791 DOI: 10.1074/jbc.270.43.26000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin causes the activation of phosphatidylinositol 3-kinase (PI 3-kinase) through complexation of tyrosine-phosphorylated YMXM motifs on insulin receptor substrate 1 with the Src homology 2 domains of PI 3-kinase. Previous studies with inhibitors have indicated that activation of PI 3-kinase is necessary for the stimulation of glucose transport in adipocytes. Here, we investigate whether this activation is sufficient for this effect. Short peptides containing two tyrosine-phosphorylated or thiophosphorylated YMXM motifs potently activated PI 3-kinase in the cytosol from 3T3-L1 adipocytes. Introduction of the phosphatase-resistant thiophosphorylated peptide into 3T3-L1 adipocytes through permeabilization with Staphylococcus aureus alpha-toxin stimulated PI 3-kinase as strongly as insulin. However, under the same conditions the peptide increased glucose transport into the permeabilized cells only 20% as well as insulin. Determination of the distribution of the glucose transporter isotype GLUT4 by confocal immunofluorescence showed that GLUT4 translocation to the plasma membrane can account for the effect of the peptide. These results suggest that one or more other insulin-triggered signaling pathways, besides the PI 3-kinase one, participate in the stimulation of glucose transport.
Collapse
Affiliation(s)
- J J Herbst
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|