1
|
Analysis of Antioxidant and Antiviral Effects of Olive ( Olea europaea L.) Leaf Extracts and Pure Compound Using Cancer Cell Model. Biomolecules 2023; 13:biom13020238. [PMID: 36830607 PMCID: PMC9953111 DOI: 10.3390/biom13020238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The present study aims to assess the antioxidant and antiviral effectiveness of leaf extracts obtained from Olea europaea L. var. sativa and Olea europaea L. var. sylvestris. The total antioxidant activity was determined via both an ammonium phosphomolybdate assay and a nitric oxide radical inhibition assay. Both extracts showed reducing abilities in an in vitro system and in human HeLa cells. Indeed, after oxidative stress induction, we found that exposition to olive leaf extracts protects human HeLa cells from lipid peroxidation and increases the concentration of enzyme antioxidants such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase. Additionally, OESA treatment affects viral DNA accumulation more than OESY, probably due to the exclusive oleuropein content. In fact, subtoxic concentrations of oleuropein inhibit HSV-1 replication, stimulating the phosphorylation of PKR, c-FOS, and c-JUN proteins. These results provide new knowledge about the potential health benefits and mechanisms of action of oleuropein and oleuropein-rich extracts.
Collapse
|
2
|
Crosse KM, Monson EA, Beard MR, Helbig KJ. Interferon-Stimulated Genes as Enhancers of Antiviral Innate Immune Signaling. J Innate Immun 2017; 10:85-93. [PMID: 29186718 DOI: 10.1159/000484258] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/14/2017] [Indexed: 12/15/2022] Open
Abstract
The ability of a host to curb a viral infection is heavily reliant on the effectiveness of an initial antiviral innate immune response, resulting in the upregulation of interferon (IFN) and, subsequently, IFN-stimulated genes (ISGs). ISGs serve to mount an antiviral state within a host cell, and although the specific antiviral function of a number of ISGs has been characterized, the function of many of these ISGs remains to be determined. Recent research has uncovered a novel role for a handful of ISGs, some of them directly induced by IFN regulatory factor 3 in the absence of IFN itself. These ISGs, most with potent antiviral activity, are also able to augment varying arms of the innate immune response to viral infection, thereby strengthening this response. This new understanding of the role of ISGs may, in turn, help the recent advancement of novel therapeutics aiming to augment innate signaling pathways in an attempt to control viral infection and pathogenesis.
Collapse
Affiliation(s)
- Keaton M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
3
|
The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen. PLoS Pathog 2013; 9:e1003557. [PMID: 23990781 PMCID: PMC3749959 DOI: 10.1371/journal.ppat.1003557] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/01/2013] [Indexed: 01/08/2023] Open
Abstract
PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR(-/-) mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.
Collapse
|
4
|
Pindel A, Sadler A. The Role of Protein Kinase R in the Interferon Response. J Interferon Cytokine Res 2011; 31:59-70. [DOI: 10.1089/jir.2010.0099] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Agnieszka Pindel
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Anthony Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Abstract
Pore-forming toxins (PFT) comprise a large, structurally heterogeneous group of bacterial protein toxins. Nucleated target cells mount complex responses which allow them to survive moderate membrane damage by PFT. Autophagy has recently been implicated in responses to various PFT, but how this process is triggered is not known, and the significance of the phenomenon is not understood. Here, we show that S. aureus α-toxin, Vibrio cholerae cytolysin, streptolysin O and E. coli haemolysin activate two pathways leading to autophagy. The first pathway is triggered via AMP-activated protein kinase (AMPK). AMPK is a major energy sensor which induces autophagy by inhibiting the target of rapamycin complex 1 (TORC1) in response to a drop of the cellular ATP/AMP-ratio, as is also observed in response to membrane perforation. The second pathway is activated by the conserved eIF2α-kinase GCN2, which causes global translational arrest and promotes autophagy in response to starvation. The latter could be accounted for by impaired amino acid transport into target cells. Notably, PKR, an eIF2α-kinase which has been implicated in autophagy induction during viral infection, was also activated upon membrane perforation, and evidence was obtained that phosphorylation of eIF2α is required for the accumulation of autophagosomes in α-toxin-treated cells. Treatment with 3-methyl-adenine inhibited autophagy and disrupted the ability of cells to recover from sublethal attack by S. aureus α-toxin. We propose that PFT induce pro-autophagic signals through membrane perforation–dependent nutrient and energy depletion, and that an important function of autophagy in this context is to maintain metabolic homoeostasis.
Collapse
|
6
|
Faller DV, Barnett H, Weisbrod R, Cohen RA. Regulation of Nitric Oxide Synthase Induction in Cultured Vascular Smooth Muscle Cells by Lipopolysaccharide and Interferon. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329609024686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Barry G, Breakwell L, Fragkoudis R, Attarzadeh-Yazdi G, Rodriguez-Andres J, Kohl A, Fazakerley JK. PKR acts early in infection to suppress Semliki Forest virus production and strongly enhances the type I interferon response. J Gen Virol 2009; 90:1382-1391. [PMID: 19264662 PMCID: PMC2885058 DOI: 10.1099/vir.0.007336-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 02/03/2009] [Indexed: 12/20/2022] Open
Abstract
The double-stranded RNA-activated protein kinase (PKR) is a key regulator of protein translation, interferon (IFN) expression and cell survival. Upon infection of vertebrate cells in continuous culture, the alphavirus Semliki Forest virus (SFV) initiates apoptosis and IFN synthesis. To determine the effect of PKR on SFV infection, we studied the course of infection in wild-type (wt) mice, mice with a genetic deletion of PKR (PKR-/-) and mouse embryo fibroblasts (MEFs) derived from these mice. In MEFs, PKR delayed virus protein synthesis, production of infectious virus and caspase-3-activated cell death and reduced the yield of infectious virus by 90%. Small interfering RNA suppression of PKR levels in NIH-3T3 cells also reduced virus production and apoptosis. In MEFs, PKR was not required for initiation of IFN-beta gene transcription, but contributed strongly to the magnitude of this response. Levels of IFN-beta transcripts in PKR-/- MEFs at 8 h were 80% lower than those in wt MEFs and levels of functional IFN at 24 h were 95% lower. Following infection of wt and PKR-/- mice, SFV4 and SFV A7(74) were avirulent. PKR increased levels of serum IFN and the rate of clearance of infectious virus from the brain. In summary, in response to SFV, PKR exerts an early antiviral effect that delays virus protein production and release of infectious virus and, whilst PKR is not required for induction of apoptosis or activation of the type I IFN response, it strongly augments the type I IFN response and contributes to clearance of infectious virus from the mouse brain.
Collapse
Affiliation(s)
- Gerald Barry
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Lucy Breakwell
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Rennos Fragkoudis
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Ghassem Attarzadeh-Yazdi
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Julio Rodriguez-Andres
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Alain Kohl
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - John K Fazakerley
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| |
Collapse
|
8
|
Su J, Zhu Z, Wang Y. Molecular cloning, characterization and expression analysis of the PKZ gene in rare minnow Gobiocypris rarus. FISH & SHELLFISH IMMUNOLOGY 2008; 25:106-113. [PMID: 18448359 DOI: 10.1016/j.fsi.2008.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 03/07/2008] [Accepted: 03/12/2008] [Indexed: 05/26/2023]
Abstract
Double-stranded RNA-activated protein kinase (PKR) plays an important role in interferon-induced antiviral responses, and is also involved in intracellular signaling pathways, including the apoptosis, proliferation, and transcription pathways. In the present study, a PKR-like gene was cloned and characterized from rare minnow Gobiocypris rarus. The full length of the rare minnow PKR-like (GrPKZ) cDNA is 1946 bp in length and encodes a polypeptide of 503 amino acids with an estimated molecular mass of 57,355 Da and a predicted isoelectric point of 5.83. Analysis of the deduced amino acid sequence indicated that the mature peptide contains two Zalpha domains and one S_TKc domain, and is most similar to the crucian carp (Carassius auratus) PKR-like amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed that GrPKZ mRNA expression is at low levels in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus, GrPKZ expression was up-regulated from 24h post-injection and lasted until the fish became moribund (P<0.05). Following infection with Aeromonas hydrophila, GrPKZ transcripts were induced at 24h post-injection (P<0.05) and returned to control levels at 120 h post-injection. These data imply that GrPKZ is involved in antiviral defense and Toll-like receptor 4 signaling pathway in bacterial infection.
Collapse
Affiliation(s)
- Jianguo Su
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | |
Collapse
|
9
|
Goplen N, Gorska MM, Stafford SJ, Rozario S, Guo L, Liang Q, Alam R. A phosphosite screen identifies autocrine TGF-beta-driven activation of protein kinase R as a survival-limiting factor for eosinophils. THE JOURNAL OF IMMUNOLOGY 2008; 180:4256-64. [PMID: 18322238 DOI: 10.4049/jimmunol.180.6.4256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The differential usage of signaling pathways by chemokines and cytokines in eosinophils is largely unresolved. In this study, we investigate signaling similarities and differences between CCL11 (eotaxin) and IL-5 in a phosphosite screen of human eosinophils. We confirm many previously known pathways of cytokine and chemokine signaling and elucidate novel phosphoregulation in eosinophils. The signaling molecules that were stimulated by both agents were members of the ERK1/2 and p38 MAPK pathways and their downstream effectors such as RSK and MSK1/2. Both agents inhibited S6 kinase, protein kinase Cepsilon, and glycogen synthase kinase 3 alpha and beta. The molecules that were differentially regulated include STATs and protein kinase R (PKR). One of the chief findings in this investigation was that PKR and eukaryotic initiation factor 2alpha are phosphorylated under basal conditions in eosinophils and neutrophils. This basal phosphorylation was linked to autocrine secretion of TGF-beta in eosinophils. TGF-beta directly activates PKR in eosinophils. Basal phosphorylation of PKR was inhibited by incubation of eosinophils with a neutralizing anti-TGF-beta Ab suggesting its physiological importance. We show that inhibition of PKR activity prolongs eosinophil survival. The eosinophil survival factor IL-5 strongly suppresses phosphorylation of PKR. The biological relevance of IL-5 inhibition of phospho-PKR was established by the observation that ex vivo bone marrow-derived eosinophils from OVA-immunized mice had no PKR phosphorylation in contrast to the high level of phosphorylation in sham-immunized mice. Together, our findings suggest that survival of eosinophils is in part controlled by basal activation of PKR through autocrine TGF-beta and that this could be modulated by a Th2 microenvironment in vivo.
Collapse
Affiliation(s)
- Nicholas Goplen
- National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2007; 70:1032-60. [PMID: 17158706 PMCID: PMC1698511 DOI: 10.1128/mmbr.00027-06] [Citation(s) in RCA: 614] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase PKR is a critical mediator of the antiproliferative and antiviral effects exerted by interferons. Not only is PKR an effector molecule on the cellular response to double-stranded RNA, but it also integrates signals in response to Toll-like receptor activation, growth factors, and diverse cellular stresses. In this review, we provide a detailed picture on how signaling downstream of PKR unfolds and what are the ultimate consequences for the cell fate. PKR activation affects both transcription and translation. PKR phosphorylation of the alpha subunit of eukaryotic initiation factor 2 results in a blockade on translation initiation. However, PKR cannot avoid the translation of some cellular and viral mRNAs bearing special features in their 5' untranslated regions. In addition, PKR affects diverse transcriptional factors such as interferon regulatory factor 1, STATs, p53, activating transcription factor 3, and NF-kappaB. In particular, how PKR triggers a cascade of events involving IKK phosphorylation of IkappaB and NF-kappaB nuclear translocation has been intensively studied. At the cellular and organism levels PKR exerts antiproliferative effects, and it is a key antiviral agent. A point of convergence in both effects is that PKR activation results in apoptosis induction. The extent and strength of the antiviral action of PKR are clearly understood by the findings that unrelated viral proteins of animal viruses have evolved to inhibit PKR action by using diverse strategies. The case for the pathological consequences of the antiproliferative action of PKR is less understood, but therapeutic strategies aimed at targeting PKR are beginning to offer promising results.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The mammalian innate immune system provides a first line of defense against microbial pathogens and also serves to activate an antigen specific acquired immune program. Key components of innate immunity are the interferons (IFNs), a family of related cytokines with potent antimicrobial and immuno-modulatory activities. The IFNs exert their effects through the induction of numerous genes, one of which is the double-stranded RNA-dependent protein kinase (PKR), a pivotal antiviral protein found in most human cells. Following activation by double stranded (ds) RNAs produced during viral replication, PKR phosphorylates the alpha-subunit of eukaryotic translation initiation factor (eIF) 2, causing a severe inhibititon of cellular and viral protein synthesis. Phosphorylation of eIF2alpha and consequent inhibition of protein synthesis is a major cell growth checkpoint utilized by at least three other kinases, in addition to PKR, following exposure to such cellular stresses as amino acid deprivation and the presence of misfolded proteins in the endoplasmic reticulum. Indeed, it has been demonstrated that disruption of the eIF2alpha checkpoint can lead to the transformation of immortalized rodent and human cells, plausibly by increasing the protein synthesis rates of proto-oncogenes. Further, it has been shown that disregulation of the eIF2alpha checkpoint and consequent permissiveness to virus infection may be a common occurrence in tumorigenic mammalian cell lines. These findings have been exploited to develop potent oncolytic RNA viruses that can selectively replicate in and destroy a variety of neoplasias in vitro and in vivo. In this chapter, we describe some of the techniques commonly used in our laboratory to examine PKR activity and eIF2 regulation. Protocols for the generation and use of recombinant vesicular stomatitis virus variants are also described.
Collapse
|
12
|
Yoshida K. The Role of Double-stranded RNA-dependent Protein Kinase in Osteoblasts. J Oral Biosci 2007. [DOI: 10.1016/s1349-0079(07)80027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Bennett RL, Blalock WL, Abtahi DM, Pan Y, Moyer SA, May WS. RAX, the PKR activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy, and viral infection. Blood 2006; 108:821-9. [PMID: 16861340 PMCID: PMC1617065 DOI: 10.1182/blood-2005-11-006817] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
While the interferon (IFN)-inducible double-stranded RNA (dsRNA)-dependent protein kinase PKR is reported to initiate apoptosis in some instances, the mechanism by which diverse stress stimuli activate PKR remains unknown. Now we report that RAX, the only known cellular activator for PKR, initiates PKR activation in response to a broad range of stresses including serum deprivation, cytotoxic cytokine or chemotherapy treatment, or viral infection. Thus, knock-down of RAX expression by 80% using small interfering RNA (siRNA) prevents IFNgamma/tumor necrosis factor alpha (TNFalpha)-induced PKR activation and eIF2alpha phosphorylation, IkappaB degradation, IRF-1 expression, and STAT1 phosphorylation, resulting in enhanced murine embryonic fibroblast (MEF) cell survival. In contrast, expression of exogenous RAX, but not of the nonphosphorylatable, dominant-negative RAX(S18A) mutant, sensitizes cells to IFNgamma/TNFalpha, mitomycin C (MMC), or serum deprivation in association with increased PKR activity and apoptosis. Furthermore, RAX(S18A) expression in Fanconi anemia complementation group C-null MEF cells not only prevents PKR activation but also blocks hypersensitivity to IFNgamma/TNFalpha or mitomycin C that results in enhanced apoptosis. In addition, reduced RAX expression facilitates productive viral infection with vesicular stomatitis virus (VSV) and promotes anchorage-independent colony growth of MEF cells. Collectively, these data indicate that RAX may function as a negative regulator of growth that is required to activate PKR in response to a broad range of apoptosis-inducing stress.
Collapse
Affiliation(s)
- Richard L Bennett
- Department of Immunology and Molecular Genetics, Shands Cancer Center, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
14
|
Takada Y, Ichikawa H, Pataer A, Swisher S, Aggarwal BB. Genetic deletion of PKR abrogates TNF-induced activation of IkappaBalpha kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activation. Oncogene 2006; 26:1201-12. [PMID: 16924232 DOI: 10.1038/sj.onc.1209906] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Double-stranded RNA-dependent protein kinase (PKR), a ubiquitously expressed serine/threonine kinase, has been implicated in the regulation or modulation of cell growth through multiple signaling pathways, but how PKR regulates tumor necrosis factor (TNF)-induced signaling pathways is poorly understood. In the present study, we used fibroblasts derived from PKR gene-deleted mice to investigate the role of PKR in TNF-induced activation of nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinases (MAPKs) and growth modulation. We found that in wild-type mouse embryonic fibroblast (MEF), TNF induced NF-kappaB activation as measured by DNA binding but deletion of PKR abolished this activation. This inhibition was associated with suppression of inhibitory subunit of NF-kappaB (IkappaB)alpha kinase (IKK) activation, IkappaBalpha phosphorylation and degradation, p65 phosphorylation and nuclear translocation, and NF-kappaB-dependent reporter gene transcription. TNF-induced Akt activation needed for IKK activation was also abolished by deletion of PKR. NF-kappaB activation was diminished in PKR-deleted cells transfected with TNF receptor (TNFR) 1, TNFR-associated death domain and TRAF2 plasmids; NF-kappaB activated by NF-kappaB-inducing kinase, IKK or p65, however, was minimally affected. Among the MAPKs, it was interesting that whereas TNF-induced c-Jun N-terminal kinase (JNK) activation was abolished, activation of p44/p42 MAPK and p38 MAPK was potentiated in PKR-deleted cells. TNF induced the expression of NF-kappaB-regulated gene products cyclin D1, c-Myc, matrix metalloproteinase-9, survivin, X-linked inhibitor-of-apoptosis protein (IAP), IAP1, Bcl-x(L), A1/Bfl-1 and Fas-associated death domain protein-like IL-1beta-converting enzyme-inhibitory protein in wild-type MEF but not in PKR-/- cells. Similarly, TNF induced the proliferation of wild-type cells, but this proliferation was completely suppressed in PKR-deleted cells. Overall, our results indicate that PKR differentially regulates TNF signaling; IKK, Akt and JNK were positively regulated, whereas p44/p42 MAPK and p38 MAPK were negatively regulated.
Collapse
Affiliation(s)
- Y Takada
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
15
|
McKenna SA, Kim I, Liu CW, Puglisi JD. Uncoupling of RNA binding and PKR kinase activation by viral inhibitor RNAs. J Mol Biol 2006; 358:1270-85. [PMID: 16580685 DOI: 10.1016/j.jmb.2006.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 03/01/2006] [Accepted: 03/01/2006] [Indexed: 11/23/2022]
Abstract
Protein kinase RNA-activated (PKR) is a serine/threonine kinase that contains an N-terminal RNA-binding domain and a C-terminal kinase domain. Upon binding double-stranded RNA (dsRNA), PKR can become activated and phosphorylate cellular targets, such as eukaryotic translation initiation factor 2alpha (eIF-2alpha). Phosphorylation of eIF-2alpha results in attenuation of protein translation by the ribosome in either a general or an mRNA-specific manner. Therefore, the interaction between PKR and dsRNAs represents a crucial host cell defense mechanism against viral infection. Viruses can circumvent PKR function by transcription of virus-encoded dsRNA inhibitors that bind to and inactivate PKR. We present here a biophysical characterization of the interactions between human PKR and two viral inhibitor RNAs, EBER(I) (from Epstein-Barr virus) and VA(I) (from human adenovirus). Autophosphorylation assays confirmed that both EBER(I) and VA(I) are inhibitors of PKR activation, and profiled the kinetics of the inhibition. Binding affinities of dsRNAs to PKR double-stranded RNA-binding domains (dsRBDs) were determined by isothermal titration calorimetry and gel electrophoresis. A single stem-loop domain from each inhibitory RNA mediates the interaction with both dsRBDs of PKR. The binding sites on inhibitor RNAs and the dsRBDs of PKR have been mapped by NMR chemical shift perturbation experiments, which indicate that inhibitors of PKR employ similar surfaces of interaction as activators. Finally, we show that dsRNA binding and inactivation are non-equivalent; regions other than the dsRBD stem-loops of inhibitory RNA are required for inhibition.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Base Sequence
- Binding Sites
- Biophysical Phenomena
- Biophysics
- Enzyme Activation
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Humans
- In Vitro Techniques
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- eIF-2 Kinase/antagonists & inhibitors
- eIF-2 Kinase/chemistry
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Sean A McKenna
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | | | |
Collapse
|
16
|
Haller O, Kochs G, Weber F. The interferon response circuit: induction and suppression by pathogenic viruses. Virology 2006; 344:119-30. [PMID: 16364743 PMCID: PMC7125643 DOI: 10.1016/j.virol.2005.09.024] [Citation(s) in RCA: 527] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 09/10/2005] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFN-α/β) are potent antiviral cytokines and modulators of the adaptive immune system. They are induced by viral infection or by double-stranded RNA (dsRNA), a by-product of viral replication, and lead to the production of a broad range of antiviral proteins and immunoactive cytokines. Viruses, in turn, have evolved multiple strategies to counter the IFN system which would otherwise stop virus growth early in infection. Here we discuss the current view on the balancing act between virus-induced IFN responses and the viral counterplayers.
Collapse
Affiliation(s)
- Otto Haller
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | | | |
Collapse
|
17
|
Chang RCC, Yu MS, Lai CSW. Significance of Molecular Signaling for Protein Translation Control in Neurodegenerative Diseases. Neurosignals 2006; 15:249-58. [PMID: 17496426 DOI: 10.1159/000102599] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/21/2007] [Indexed: 11/19/2022] Open
Abstract
It has long been known that protein synthesis is inhibited in neurological disorders. Protein synthesis includes protein transcription and translation. While many studies about protein transcription have been done in the last decade, we are just starting to understand more about the impact of protein translation. Protein translation control can be accomplished at the initiation or elongation steps. In this review, we will focus on translation control at initiation. Neurons have long neurites in which proteins have to be transported from the cell body to the end of the neurite. Since supply of proteins cannot meet the need of neuronal activity at the spine, protein locally translated at the spine will be a good solution to replace the turnover of proteins. Therefore, local protein translation is an important mechanism to maintain normal neuronal functions. In this notion, we have to separate the concept of global and local protein translation control. Both global and local protein translation control modulate normal neuronal functions from development to cognitive functions. Increasing lines of evidence show that they also play significant roles in neurodegenerative diseases, e.g. neuronal apoptosis, synaptic degeneration and autophagy. We summarize all the evidence in this review and focus on the control at initiation. The new live-cell imaging technology together with photoconvertible fluorescent probes allows us to investigate newly translated proteins in situ. Protein translation control is another line to modulate neuronal function in neuron-neuron communication as well as in response to stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
| | | | | |
Collapse
|
18
|
Yoshida K, Okamura H, Amorim BR, Ozaki A, Tanaka H, Morimoto H, Haneji T. Double-stranded RNA-dependent protein kinase is required for bone calcification in MC3T3-E1 cells in vitro. Exp Cell Res 2005; 311:117-25. [PMID: 16216244 DOI: 10.1016/j.yexcr.2005.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 09/13/2005] [Accepted: 09/14/2005] [Indexed: 12/15/2022]
Abstract
In this study, we demonstrated that double-stranded RNA-dependent protein kinase (PKR) is required for the calcification of osteoblasts via the signal transducers and activators of transcription 1alpha (STAT1alpha) signaling in vitro. A dominant-negative mutant PKR cDNA, in which the amino acid lysine at 296 was replaced with arginine and which does not have catalytic activity, was transfected into mouse osteoblastic MC3T3-E1 cells; thereby, we established cells that stably expressed the PKR mutant gene (PKR-K/R). Phosphorylation of PKR was not stimulated by polyinosic-polycytidylic acid in the mutant cells. The PKR-K/R mutant cells exhibited up-regulated cell growth and had low alkaline phosphatase (ALP) activity. The PKR-K/R mutant cells were not able to form bone nodules in vitro. In the PKR-K/R mutant cells, runt-related gene 2 (Runx2)-mediated transcription decreased compared with the levels in the control cells. The expression of STAT1alpha protein increased and the protein was translocated to the nucleus in the PKR-K/R mutant cells. When the expression of STAT1alpha protein in PKR mutant cells was suppressed using RNAi, the activity of Runx2-mediated transcription recovered to the control level. Our results indicate that PKR is a stimulator of Runx2 transcription and is a negative modulator of STAT1alpha expression. Our findings also suggest that PKR plays important roles in the differentiation and calcification of osteoblasts by modulating STAT1alpha and/or Runx2 expression.
Collapse
Affiliation(s)
- Kaya Yoshida
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Nie Y, Ding L, Kao PN, Braun R, Yang JH. ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol Cell Biol 2005; 25:6956-63. [PMID: 16055709 PMCID: PMC1190226 DOI: 10.1128/mcb.25.16.6956-6963.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA-editing enzyme ADAR1 modifies adenosines by deamination and produces A-to-I mutations in mRNA. ADAR1 was recently demonstrated to function in host defense and in embryonic erythropoiesis during fetal liver development. The mechanisms for these phenotypic effects are not yet known. Here we report a novel function of ADAR1 in the regulation of gene expression by interacting with the nuclear factor 90 (NF90) proteins, known regulators that bind the antigen response recognition element (ARRE-2) and have been demonstrated to stimulate transcription and translation. ADAR1 upregulates NF90-mediated gene expression by interacting with the NF90 proteins, including NF110, NF90, and NF45. A knockdown of NF90 with small interfering RNA suppresses this function of ADAR1. Coimmunoprecipitation and double-stranded RNA (dsRNA) digestion demonstrate that ADAR1 is associated with NF110, NF90, and NF45 through the bridge of cellular dsRNA. Studies with ADAR1 deletions demonstrate that the dsRNA binding domain and a region covering the Z-DNA binding domain and the nuclear export signal comprise the complete function of ADAR1 in upregulating NF90-mediated gene expression. These data suggest that ADAR1 has the potential both to change information content through editing of mRNA and to regulate gene expression through interacting with the NF90 family proteins.
Collapse
Affiliation(s)
- Yongzhan Nie
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
20
|
Weber F, Kochs G, Haller O. Inverse interference: how viruses fight the interferon system. Viral Immunol 2005; 17:498-515. [PMID: 15671747 DOI: 10.1089/vim.2004.17.498] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viruses need to multiply extensively in the infected host in order to ensure transmission to new hosts and survival as a population. This is a formidable task, given the powerful innate and adaptive immune responses of the host. In particular, the interferon (IFN) system plays an important role in limiting virus spread at an early stage of infection. It has become increasingly clear that viruses have evolved multiple strategies to escape the IFN system. They either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. The molecular mechanisms involved range from a broad shut-off of the host cell metabolism to fine-tuned elimination of key components of the IFN system. Type I (alpha/beta) IFNs are produced in direct response to virus infection and double-stranded RNA (dsRNA) molecules that are sensed as a danger signal by infected cells. IFNs induce the expression of a number of antiviral proteins, some of which are again activated by dsRNA. Therefore, many viruses produce dsRNA-binding proteins to sequester the danger signal or express virulence genes that target specific components of the IFN system, such as members of the IFN regulatory factor (IRF) family or components of the JAK-STAT signaling pathway. Finally, some viruses have adopted means to directly suppress the very antiviral effector proteins of the IFN-induced antiviral state directed against them. Evidently, viruses and their host's innate immune responses have coevolved, leading to a subtle balance between virus-promoting and virus-inhibiting factors. A better understanding of virus-host interactions is now emerging with great implications for vaccine development and drug design.
Collapse
Affiliation(s)
- Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
21
|
Schröder K, Jaster R. Interferon-alpha inhibits interleukin-3-induced proliferation of Ba/F3 cells in a protein kinase R-dependent manner. Cell Signal 2004; 16:167-74. [PMID: 14636887 DOI: 10.1016/s0898-6568(03)00127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously shown that interferon-alpha (IFN-alpha) inhibits proliferation of Ba/F3 cells by interfering with the action of the mitogen interleukin-3 (IL-3) [Cell Signal 11 (1999) 769]. Here, we have characterised the role of protein kinase R (PKR), an IFN-alpha-inducible enzyme, in the mediation of IL-3-antagonistic IFN-alpha effects. Downregulation of PKR expression by antisense oligonucleotide treatment blocked IFN-alpha-induced growth inhibition. Reduction of PKR levels and overexpression of a dominant-negative PKR mutant correlated with diminished inhibitory IFN-alpha effects on the IL-3-dependent expression of a luciferase reporter construct, GAS-luc. Furthermore, increased nuclear levels of STAT1 (bound in ISGF3 complexes) were observed in PKR-depleted cells cultured with or without IFN-alpha. Together, our data indicate an essential role of PKR in the mediation of IL-3-antagonistic IFN-alpha effects on Ba/F3 cells. They also suggests that activation of STAT1, an essential mediator of IFN effects, is insufficient for growth inhibition if PKR is not expressed.
Collapse
Affiliation(s)
- Katrin Schröder
- Division of Gastroenterology, Department of Medicine, Medical Faculty, University of Rostock, E.-Heydemann-Str. 6, 18057 Rostock, Germany
| | | |
Collapse
|
22
|
Donzé O, Deng J, Curran J, Sladek R, Picard D, Sonenberg N. The protein kinase PKR: a molecular clock that sequentially activates survival and death programs. EMBO J 2004; 23:564-71. [PMID: 14749731 PMCID: PMC1271809 DOI: 10.1038/sj.emboj.7600078] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 12/16/2003] [Indexed: 02/08/2023] Open
Abstract
Cell death and survival play a key role in the immune system as well as during development. The control mechanisms that balance cell survival against cell death are not well understood. Here we report a novel strategy used by a single protein to regulate chronologically cell survival and death. The interferon-induced protein kinase PKR acts as a molecular clock by using catalysis-dependent and -independent activities to temporally induce cell survival prior to cell death. We show that the proapoptotic protein PKR surprisingly activates a survival pathway, which is mediated by NF-kappaB to delay apoptosis. Cell death is then induced by PKR through the phosphorylation of eIF-2alpha. This unique temporal control might serve as a paradigm for other kinases whose catalytic activity is not required for all of their functions.
Collapse
Affiliation(s)
- Olivier Donzé
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland.
| | | | | | | | | | | |
Collapse
|
23
|
Gilbert SJ, Duance VC, Mason DJ. Does protein kinase R mediate TNF-alpha- and ceramide-induced increases in expression and activation of matrix metalloproteinases in articular cartilage by a novel mechanism? Arthritis Res Ther 2003; 6:R46-R55. [PMID: 14979937 PMCID: PMC400415 DOI: 10.1186/ar1024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 10/14/2003] [Accepted: 10/21/2003] [Indexed: 02/08/2023] Open
Abstract
We investigated the role of the proinflammatory cytokine TNF-alpha, the second messenger C2-ceramide, and protein kinase R (PKR) in bovine articular cartilage degradation. Bovine articular cartilage explants were stimulated with C2-ceramide or TNF-alpha for 24 hours. To inhibit the activation of PKR, 2-aminopurine was added to duplicate cultures. Matrix metalloproteinase (MMP) expression and activation in the medium were analysed by gelatin zymography, proteoglycan release by the dimethylmethylene blue assay, and cell viability by the Cytotox 96(R) assay. C2-ceramide treatment of cartilage explants resulted in a significant release of both pro- and active MMP-2 into the medium. Small increases were also seen with TNF-alpha treatment. Incubation of explants with 2-aminopurine before TNF-alpha or C2-ceramide treatment resulted in a marked reduction in expression and activation of both MMP-2 and MMP-9. TNF-alpha and C2-ceramide significantly increased proteoglycan release into the medium, which was also inhibited by cotreatment with 2-aminopurine. A loss of cell viability was observed when explants were treated with TNF-alpha and C2-ceramide, which was found to be regulated by PKR. We have shown that C2-ceramide and TNF-alpha treatment of articular cartilage result in the increased synthesis and activation of MMPs, increased release of proteoglycan, and increased cell death. These effects are abrogated by treatment with the PKR inhibitor 2-aminopurine. Collectively, these results suggest a novel role for PKR in the synthesis and activation of MMPs and support our hypothesis that PKR and its activator, PACT, are implicated in the cartilage degradation that occurs in arthritic disease.
Collapse
Affiliation(s)
- Sophie J Gilbert
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | | | |
Collapse
|
24
|
Nussbaum JM, Major M, Gunnery S. Transcriptional upregulation of interferon-induced protein kinase, PKR, in breast cancer. Cancer Lett 2003; 196:207-16. [PMID: 12860279 DOI: 10.1016/s0304-3835(03)00276-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PKR (double-stranded RNA activated protein kinase) is overexpressed and overactive in human breast carcinoma (BC) cells. Here, we report that BC cells also have higher PKR mRNA levels and exhibit increased transcription from the PKR promoter. Mutational analysis of the PKR promoter indicated that the interferon stimulation response element (ISRE) is responsible for the increased transcription in BC cells. By gel retardation assay, ISRE-protein complexes formed by BC and non-transformed nuclear extracts were compared. A BC-specific ISRE-protein complex resembles the multimeric factor, ISGF3.
Collapse
Affiliation(s)
- Jean M Nussbaum
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, MSB, E609, 185 South Orange Avenue, Newark NJ 07103-2714, USA
| | | | | |
Collapse
|
25
|
Abstract
Although the cytotoxic effects of viruses are usually viewed in terms of pathogenicity, it is possible to harness this activity for therapeutic purposes. Viral genomes are highly versatile, and can be modified to direct their cytotoxicity towards cancer cells. These viruses are known as oncolytic viruses. How are viruses engineered to become tumour specific, and can they be used to safely treat cancer in humans?
Collapse
Affiliation(s)
- E Antonio Chiocca
- Molecular Neuro-Oncology Laboratories, Neurosurgery Service, Massachusetts General Hospital, East Building, 13th Street, Bldg 149, Charlestown, Massachusetts 02129, USA. chioccahelix.mgh.harvard.edu
| |
Collapse
|
26
|
Vorburger SA, Pataer A, Yoshida K, Barber GN, Xia W, Chiao P, Ellis LM, Hung MC, Swisher SG, Hunt KK. Role for the double-stranded RNA activated protein kinase PKR in E2F-1-induced apoptosis. Oncogene 2002; 21:6278-88. [PMID: 12214268 DOI: 10.1038/sj.onc.1205761] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2002] [Revised: 06/06/2002] [Accepted: 06/14/2002] [Indexed: 02/04/2023]
Abstract
The transcription factor E2F-1 induces cell cycle progression at the G1/S checkpoint, and deregulation of E2F-1 provokes apoptosis in a wide variety of malignant cells. To date only p14(ARF) and p73, a p53 homologue, have been identified as E2F-1-inducible genes capable of mediating an apoptotic response. Here we show that adenovirus-mediated E2F-1 overexpression in cancer cells induces expression and autophosphorylation of the double-stranded RNA-dependent protein kinase PKR leading to phosphorylation of its downstream target, the alpha-subunit of the eukaryotic translation initiation factor 2 (eIF-2alpha) and to apoptotic cell death. This PKR-dependent apoptosis occurs in cell lines with mutated p53 and in cell lines with mutated p53 and p73, and is significantly reduced by the chemical inhibition of PKR activation. Further, PKR(-/-) mouse embryo fibroblasts, but not PKR(+/+) mouse embryo fibroblasts, demonstrate significant resistance to E2F-1-induced apoptosis. We conclude that an important pathway of E2F-1-mediated apoptosis is dependent on PKR activation and does not require p53 or p73.
Collapse
Affiliation(s)
- Stephan A Vorburger
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Patel RC, Handy I, Patel CV. Contribution of double-stranded RNA-activated protein kinase toward antiproliferative actions of heparin on vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2002; 22:1439-44. [PMID: 12231563 DOI: 10.1161/01.atv.0000028817.20351.fe] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The proliferation of vascular smooth muscle cells (VSMCs) in blood vessels after endothelial injury contributes to the onset of atherosclerosis. Heparin is a potent antiproliferative agent for VSMCs in vivo and in vitro. Although heparin has shown promise in suppressing VSMC proliferation after invasive procedures in laboratory animals, the mechanism of its antiproliferative actions is largely unknown. Here, we present evidence for the first time that the antiproliferative action of heparin is in part mediated by its ability to activate double-stranded RNA-activated protein kinase (PKR), an interferon-induced protein kinase. METHODS AND RESULTS We have analyzed the VSMC proliferation by cell-cycle analysis and correlated it to the kinase activity of PKR in the presence of heparin. Heparin treatment of VSMCs results in activation of PKR by direct binding and results in a block in G1- to S-phase transition. PKR-null cells are largely insensitive to the antiproliferative actions of heparin, and inhibition of PKR in VSMCs results in a partial abrogation of the antiproliferative effects of heparin. CONCLUSIONS These results invoke the involvement of novel PKR-dependent regulatory pathways in mediating the antiproliferative actions of heparin.
Collapse
Affiliation(s)
- Rekha C Patel
- Department of Biological Sciences, School of Medicine, University of South Carolina, Columbia 29208, USA.
| | | | | |
Collapse
|
28
|
Nussbaum JM, Gunnery S, Mathews MB. The 3'-untranslated regions of cytoskeletal muscle mRNAs inhibit translation by activating the double-stranded RNA-dependent protein kinase PKR. Nucleic Acids Res 2002; 30:1205-12. [PMID: 11861913 PMCID: PMC101232 DOI: 10.1093/nar/30.5.1205] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cytoskeletal proteins are associated with actin in the microfilaments and have a major role in microfilament assembly and function. The expression of some of these proteins has been implicated in cell growth and transformation. Specifically, the 3'-untranslated regions (3'-UTRs) of tropomyosin, troponin and cardiac actin can induce muscle cell differentiation and appear to function as tumor suppressors. These RNA sequences are predicted to fold to form secondary structures with extended stretches of duplex. We show that the 3'-UTRs of the cytoskeletal mRNAs interact with the RNA-binding domain of the RNA-activated protein kinase PKR. Correspondingly, these RNAs activate PKR in vitro and inhibit globin translation in the rabbit reticulocyte lysate translation system. These data are consistent with a mechanism whereby PKR mediates the differentiation- and tumor-related actions of the cytoskeletal 3'-UTR sequences.
Collapse
Affiliation(s)
- Jean M Nussbaum
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, 185 South Orange Avenue, Newark, NJ 07103-2714, USA
| | | | | |
Collapse
|
29
|
Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:57-89. [PMID: 11575161 DOI: 10.1007/978-3-662-09889-9_3] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha subunit of polypeptide chain initiation factor eIF2 can be phosphorylated by a number of related protein kinases which are activated in response to cellular stresses. Physiological conditions which result in eIF2 alpha phosphorylation include virus infection, heat shock, iron deficiency, nutrient deprivation, changes in intracellular calcium, accumulation of unfolded or denatured proteins and the induction of apoptosis. Phosphorylated eIF2 acts as a dominant inhibitor of the guanine nucleotide exchange factor eIF2B and prevents the recycling of eIF2 between successive rounds of protein synthesis. Extensive phosphorylation of eIF2 alpha and strong inhibition of eIF2B activity can result in the downregulation of the overall rate of protein synthesis; less marked changes may lead to alterations in the selective translation of alternative open reading frames in polycistronic mRNAs, as demonstrated in yeast. These mechanisms can provide a signal transduction pathway linking eukaryotic cellular stress responses to alterations in the control of gene expression at the translational level.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
30
|
Deb A, Zamanian-Daryoush M, Xu Z, Kadereit S, Williams BR. Protein kinase PKR is required for platelet-derived growth factor signaling of c-fos gene expression via Erks and Stat3. EMBO J 2001; 20:2487-96. [PMID: 11350938 PMCID: PMC125453 DOI: 10.1093/emboj/20.10.2487] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The double-stranded RNA (dsRNA)-activated protein kinase PKR is an interferon (IFN)-induced enzyme that controls protein synthesis through phosphorylation of eukaryotic initiation factor 2alpha (eIF-2alpha). PKR also regulates signals initiated by diverse stimuli, including dsRNA, IFN-gamma, tumor necrosis factor-alpha, interleukin-1 and lipopolysaccharide, to different transcription factors, resulting in pro-inflammatory gene expression. Stat3 plays an essential role in promoting cell survival and proliferation by different growth factors, including platelet-derived growth factor (PDGF). Here we show that PKR physically interacts with Stat3 and is required for PDGF-induced phosphorylation of Stat3 at Tyr705 and Ser727, resulting in DNA binding and transcriptional activation. PKR-mediated phosphorylation of Stat3 on Ser727 is indirect and channeled through ERKS: Although PKR is pre-associated with the PDGF beta-receptor, treatment with PDGF only modestly activates PKR. However, the induction of c-fos by PDGF is defective in PKR-null cells. Taken together, these results establish PKR as an upstream regulator of activation of Stat3 and as a common mediator of both growth-promoting and growth-inhibitory signals.
Collapse
Affiliation(s)
| | | | | | | | - Bryan R.G. Williams
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
Corresponding author e-mail:
| |
Collapse
|
31
|
Donzé O, Abbas-Terki T, Picard D. The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J 2001; 20:3771-80. [PMID: 11447118 PMCID: PMC125551 DOI: 10.1093/emboj/20.14.3771] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PKR, a member of the eukaryotic initiation-factor 2alpha (eIF-2alpha) kinase family, mediates the host antiviral response and is implicated in tumor suppression and apoptosis. Here we show that PKR is regulated by the heat shock protein 90 (Hsp90) molecular chaperone complex. Mammalian PKR expressed in budding yeast depends on several components of the Hsp90 complex for accumulation and activity. In mammalian cells, inhibition of Hsp90 function with geldanamycin (GA) during de novo synthesis of PKR also interferes with its accumulation and activity. Hsp90 and its co-chaperone p23 bind to PKR through its N-terminal double-stranded (ds) RNA binding region as well as through its kinase domain. Both dsRNA and GA induce the rapid dissociation of Hsp90 and p23 from mature PKR, activate PKR both in vivo and in vitro and within minutes trigger the phosphorylation of the PKR substrate eIF-2alpha. A short-term exposure of cells to the Hsp90 inhibitors GA or radicicol not only derepresses PKR, but also activates the Raf-MAPK pathway. This suggests that the Hsp90 complex may more generally assist the regulatory domains of kinases and other Hsp90 substrates.
Collapse
Affiliation(s)
- O Donzé
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland.
| | | | | |
Collapse
|
32
|
Ezelle HJ, Balachandran S, Sicheri F, Polyak SJ, Barber GN. Analyzing the mechanisms of interferon-induced apoptosis using CrmA and hepatitis C virus NS5A. Virology 2001; 281:124-37. [PMID: 11222103 DOI: 10.1006/viro.2001.0815] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dsRNA-dependent protein kinase, PKR, is a key component of interferon (IFN)-mediated anti-viral action and is frequently inhibited by many viruses following infection of the cell. Recently, we have demonstrated that IFN and PKR can sensitize cells to apoptosis predominantly through the FADD/caspase-8 pathway (S. Balachandran, P. C. Roberts, T. Kipperman, K. N. Bhalla, R. W. Compans, D. R. Archer, and G. N. Barber. (2000b) J. Virol. 74, 1513-1523). Given these findings, it is thus plausible that rather than specifically target IFN-inducible genes such as PKR, viruses could also subvert the mechanisms of IFN action, in part, at locations that could block the apoptotic cascade. To explore this possibility, we analyzed whether the poxvirus caspase-8 inhibitor, CrmA, was able to inhibit IFN or PKR/dsRNA-mediated apoptosis. Our findings indicated that CrmA could indeed inhibit apoptosis induced by both viral infection and dsRNA without blocking PKR activity or inhibiting IFN signaling. In contrast HCV-encoded NS5A, a putative inhibitor of PKR, did not appear to inhibit cell death mediated by a number of apoptotic stimuli, including IFN, TRAIL, and etoposide. Our data imply that viral-encoded inhibitors of apoptosis, such as CrmA, can block the innate arms of the immune response, including IFN-mediated apoptosis, and therefore potentially constitute an alternative family of inhibitors of IFN action in the cell.
Collapse
Affiliation(s)
- H J Ezelle
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
33
|
Barber GN. Host defense, viruses and apoptosis. Cell Death Differ 2001; 8:113-26. [PMID: 11313713 DOI: 10.1038/sj.cdd.4400823] [Citation(s) in RCA: 449] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Accepted: 12/04/2000] [Indexed: 02/08/2023] Open
Abstract
To thwart viral infection, the host has developed a formidable and integrated defense network that comprises our innate and adaptive immune response. In recent years, it has become clear that in an attempt to prevent viral replication, viral dissemination or persistent viral infection of the cell, many of these protective measures actually involve the induction of programmed cell death, or apoptosis. An initial response to viral infection primarily involves the innate arm of immunity and the killing of infected cells with cytotoxic lymphocytes such as natural killer (NK) cells through mechanisms that include the employment of perforin and granzymes. Once the virus has invaded the cell, however, a second host defense-mediated response is also triggered which involves the induction of a family of cytokines known as the interferons (IFNs). The IFNs, which are essential for initiating and coordinating a successful antiviral response, function by stimulating the adaptive arm of immunity involving cytotoxic T cells (CTLs), and by inducing a number of intracellular genes that directly prevent virus replication/cytolysis or that facilitate apoptosis. The IFN-induced gene family is now known to comprise the death ligand TRAIL, the dsRNA-dependent protein kinase (PKR), interferon regulatory factors (IRFs) and the promyelocytic leukemia gene (PML), all of which have been reported to be mediators of cell death. That DNA array analyses indicate that numerous cellular genes, many as yet uncharacterized, may similarly be induced by IFN, further emphasizes the likely importance that these cytokines have in the modulation of apoptosis. This likelihood is additionally underlined by the elaborate strategies developed by viruses to inhibit IFN-antiviral function and the mechanisms of cell death.
Collapse
Affiliation(s)
- G N Barber
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, FL 33136, USA.
| |
Collapse
|
34
|
Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, Archer DR, Barber GN. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 2000; 13:129-41. [PMID: 10933401 DOI: 10.1016/s1074-7613(00)00014-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The double-stranded (ds) RNA-dependent protein kinase PKR is considered to play an important role in interferon's (IFN's) response to viral infection. Here, we demonstrate that mice lacking PKR are predisposed to lethal intranasal infection by the usually innocuous vesicular stomatitis virus, and also display increased susceptibility to influenza virus infection. Our data indicate that in normal cells, PKR primarily prevents virus replication by inhibiting the translation of viral mRNAs through phosphorylation of eIF2alpha, while concomitantly assisting in the production of autocrine IFN and the establishment of an antiviral state. These results show that PKR is an essential component of innate immunity that acts early in host defense prior to the onset of IFN counteraction and the acquired immune response.
Collapse
Affiliation(s)
- S Balachandran
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Xu Z, Williams BR. The B56alpha regulatory subunit of protein phosphatase 2A is a target for regulation by double-stranded RNA-dependent protein kinase PKR. Mol Cell Biol 2000; 20:5285-99. [PMID: 10866685 PMCID: PMC85978 DOI: 10.1128/mcb.20.14.5285-5299.2000] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PKR is a cellular serine/threonine kinase that phosphorylates eukaryotic translation initiation factor 2alpha (eIF2alpha) to regulate protein synthesis. PKR also plays a role in the regulation of transcription, programmed cell death and the cell cycle, processes which likely involve other substrates. In a yeast two-hybrid screen, we isolated human protein phosphatase 2A (PP2A) regulatory subunit B56alpha as a PKR-interacting protein. The interaction between B56alpha and PKR was confirmed by in vitro binding assays as well as by in vivo coimmunoprecipitation, and this interaction is dependent on the catalytic activity of PKR. Moreover, recombinant B56alpha was efficiently phosphorylated by PKR in vitro and an isoelectric point shift in B56alpha was detected in extracts from cells induced with the PKR activator pIC. An in vitro dephosphorylation assay showed that when B56alpha was phosphorylated by PKR, the activity of PP2A trimeric holoenzyme was increased. A functional interaction between B56alpha and PKR was observed in cotransfection assays, where a B56alpha-mediated increase in luciferase expression was inhibited by cotransfection with wild-type PKR. This is likely due to a decreased level of eIF4E phosphorylation caused by an increase in PP2A activity following PKR phosphorylation of B56alpha. Taken together, our data indicate that PKR can modulate PP2A activity by phosphorylating B56alpha to regulate cellular activities.
Collapse
Affiliation(s)
- Z Xu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
36
|
Kim SH, Forman AP, Mathews MB, Gunnery S. Human breast cancer cells contain elevated levels and activity of the protein kinase, PKR. Oncogene 2000; 19:3086-94. [PMID: 10871861 DOI: 10.1038/sj.onc.1203632] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1999] [Revised: 03/31/2000] [Accepted: 04/18/2000] [Indexed: 11/09/2022]
Abstract
PKR is a double-stranded (ds) RNA activated protein kinase whose expression is induced by interferon. Activated PKR phosphorylates its cellular substrate, eIF2, an essential initiation factor of translation. Prior evidence from a murine model system suggested that PKR may act as a tumor suppressor, but the evidence from human tumors is equivocal. To study PKR function in human breast cancer, PKR activity was measured in mammary carcinoma cell lines and nontransformed mammary epithelial cell lines. If PKR functioned as a tumor suppressor in this system, its activity would be higher in nontransformed cells than in carcinoma cells. On the contrary, PKR autophosphorylation and the phosphorylation of its substrate, the alpha-subunit of eIF2, is 7 - 40-fold higher in lysates prepared from breast carcinoma cell lines than in those from nontransformed epithelial cell lines. Correspondingly, a larger proportion of eIF2alpha is present in a phosphorylated state in carcinoma cell lines than in nontransformed cell lines. Protein synthesis is not inhibited by the high eIF2alpha phosphorylation in carcinoma cells, probably because they contain higher levels of eIF2B, the initiation factor that is inhibited by eIF2alpha phosphorylation. The dramatically lower PKR activity in nontransformed cell lines is partially due to lower PKR protein levels (2 - 4-fold) as well as to the presence of a PKR inhibitor. The nontransformed cells contain P58, a known cellular inhibitor of PKR that physically interacts with PKR and may be responsible for the low PKR activity in these cells. Taken together, these observations call into question the role of PKR as a tumor suppressor and suggest a positive regulatory role of PKR in growth control of breast cancer cells.
Collapse
Affiliation(s)
- S H Kim
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, 185, South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
37
|
Abstract
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell.
Collapse
Affiliation(s)
- M Gale
- University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
38
|
Zamanian-Daryoush M, Mogensen TH, DiDonato JA, Williams BR. NF-kappaB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-kappaB-inducing kinase and IkappaB kinase. Mol Cell Biol 2000; 20:1278-90. [PMID: 10648614 PMCID: PMC85265 DOI: 10.1128/mcb.20.4.1278-1290.2000] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1999] [Accepted: 11/18/1999] [Indexed: 11/20/2022] Open
Abstract
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.
Collapse
Affiliation(s)
- M Zamanian-Daryoush
- Department of Cancer Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
39
|
Yang GH, Li S, Pestka JJ. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol). Toxicol Appl Pharmacol 2000; 162:207-17. [PMID: 10652249 DOI: 10.1006/taap.1999.8842] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms by which trichothecene mycotoxins cause immunological effects in leukocytes such as cytokine up-regulation, aberrant IgA production, or apoptotic cell death are not fully understood. In the present study, mRNA differential display analysis was used to evaluate changes in gene expression induced by the trichothecene vomitoxin (VT or deoxynivalenol) in a T-cell model, the murine EL-4 thymoma, that was stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (ION). Ten differentially expressed fragments of cDNA were isolated and sequenced and three of these were identified as the known genes GRP78/BiP, P58(IPK), and RAD17. Most notably, expression of GRP78/BiP (a 78-kDa glucose-regulated protein), a stress-response gene induced by agents or conditions that adversely affect endoplasmic reticulum (ER) function, was found to decrease in VT-exposed cells. Competitive RT-PCR analysis revealed that 250 ng/ml VT decreased GRP78/BiP mRNA expression in both unstimulated and PMA/ION-stimulated EL-4 cells at 6 and 24 h after VT treatment. Western blotting confirmed that VT (50 to 1000 ng/ml) also significantly diminished GRP/BiP protein levels in a dose-response manner in PMA/ION-stimulated cells. GRP78/BiP has been shown to play a role in regulation of protein folding and secretion, and to protect cells from apoptosis. When PMA/ION-stimulated cells were incubated with 50 to 1000 ng/ml VT for 24 h, 200-bp DNA laddering, a hallmark of apoptosis, increased in a dose-dependent manner. In addition to GRP78, mRNA expression of the cochaperone P58(IPK), which is the 58-kDa cellular inhibitor of the double-stranded RNA-regulated protein kinase (PKR), was also shown to be suppressed by VT-treatment. GRP78 and P58(IPK) are critical for maintenance of cell homeostasis and prevention of apoptosis. The down-regulation of these molecular chaperones by VT represent a novel observation and has the potential to impact immune function at multiple levels.
Collapse
Affiliation(s)
- G H Yang
- National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | | |
Collapse
|
40
|
Balachandran S, Roberts PC, Kipperman T, Bhalla KN, Compans RW, Archer DR, Barber GN. Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway. J Virol 2000; 74:1513-23. [PMID: 10627563 PMCID: PMC111487 DOI: 10.1128/jvi.74.3.1513-1523.2000] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interferon (IFN) mediates its antiviral effects by inducing a number of responsive genes, including the double-stranded RNA (dsRNA)-dependent protein kinase, PKR. Here we report that inducible overexpression of functional PKR in murine fibroblasts sensitized cells to apoptosis induced by influenza virus, while in contrast, cells expressing a dominant-negative variant of PKR were completely resistant. We determined that the mechanism of influenza virus-induced apoptosis involved death signaling through FADD/caspase-8 activation, while other viruses such as vesicular stomatitis virus (VSV) and Sindbis virus (SNV) did not significantly provoke PKR-mediated apoptosis but did induce cytolysis of fibroblasts via activation of caspase-9. Significantly, treatment with IFN-alpha/beta greatly sensitized the fibroblasts to FADD-dependent apoptosis in response to dsRNA treatment or influenza virus infection but completely protected the cells against VSV and SNV replication in the absence of any cellular destruction. The mechanism by which IFN increases the cells' susceptibility to lysis by dsRNA or certain virus infection is by priming cells to FADD-dependent apoptosis, possibly by regulating the activity of the death-induced signaling complex (DISC). Conversely, IFN is also able to prevent the replication of viruses such as VSV that avoid triggering FADD-mediated DISC activity, by noncytopathic mechanisms, thus preventing destruction of the cell.
Collapse
Affiliation(s)
- S Balachandran
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Osman F, Jarrous N, Ben-Asouli Y, Kaempfer R. A cis-acting element in the 3'-untranslated region of human TNF-alpha mRNA renders splicing dependent on the activation of protein kinase PKR. Genes Dev 1999; 13:3280-93. [PMID: 10617576 PMCID: PMC317206 DOI: 10.1101/gad.13.24.3280] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a role for the 3'-untranslated region in control of mRNA splicing and show that human TNF-alpha 3' UTR harbors a cis-acting element that renders splicing of precursor transcripts dependent on activation of PKR, the RNA-activated protein kinase that phosphorylates eukaryotic initiation factor 2 (eIF2). When this element, designated 2-APRE, is present, splicing becomes sensitive to inhibition by the PKR inhibitor, 2-aminopurine, or by coexpression of transdominant-negative mutant PKR. Our results reveal that activation of PKR is required for splicing of mRNA when precursor transcripts contain the 2-APRE and that increased expression of wild-type PKR enhances their splicing efficiency. Thus, PKR responds as trans-acting factor to the 2-APRE. 2-APRE RNA forms a stable, 17-bp stem-loop structure and strongly activates PKR in vitro, inducing eIF2alpha phosphorylation. Despite its ability to activate PKR during splicing, the 2-APRE within the 3' UTR does not affect translation efficiency of the resulting TNF-alpha mRNA in transfected cells. PKR and the 3' UTR thus interact during mRNA splicing to confer a novel type of regulation on expression of the TNF-alpha gene.
Collapse
Affiliation(s)
- F Osman
- Department of Molecular Virology, The Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel
| | | | | | | |
Collapse
|
42
|
Korth MJ, Katze MG. Evading the interferon response: hepatitis C virus and the interferon-induced protein kinase, PKR. Curr Top Microbiol Immunol 1999; 242:197-224. [PMID: 10592662 DOI: 10.1007/978-3-642-59605-6_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M J Korth
- Regional Primate Research Center, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
43
|
Rivas C, Gil J, Esteban M. Identification of functional domains of the interferon-induced enzyme PKR in cells lacking endogenous PKR. J Interferon Cytokine Res 1999; 19:1229-36. [PMID: 10574614 DOI: 10.1089/107999099312885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interferon (IFN)-induced, double-stranded RNA (dsRNA)-activated human protein kinase (PKR) has been shown to exert antiviral and antiproliferative effects. Activation of the enzyme in mammalian cells results in protein synthesis inhibition and cell death by apoptosis. Previous studies on the structure-function relationship of PKR have been based on vectors expressing the enzyme in mammalian cells containing endogenous PKR. As exogenously expressed PKR can form heterodimers with endogenous PKR, the results obtained on the functional characterization of mutant forms of PKR have been taken with caution. To address the natural consequences of heterodimer formation between endogenous and exogenous PKR, we have analyzed the structure-function relationship of PKR ectopically expressed from vaccinia virus (VV) recombinants in cells lacking the endogenous enzyme. We demonstrate that PKR-mediated inhibition of protein synthesis and induction of apoptosis is not dependent on the presence of endogenous PKR. Further, PKR activity is independent of the presence of dsRNA binding motifs (dsRBM). Moreover, single-point mutations of the third basic domain decreased PKR activation. Our findings demonstrate that PKR can be activated in the absence of its N-terminal domain (amino acids 1-232) and that the third basic domain is important for its biologic function.
Collapse
Affiliation(s)
- C Rivas
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
44
|
Abstract
The double stranded RNA (dsRNA)-activated protein kinase PKR is a ubiquitously expressed serine/threonine protein kinase that is induced by interferon and activated by dsRNA, cytokine, growth factor and stress signals. It is essential for cells to respond adequately to different stresses including growth factor deprivation, products of the inflammatory response (TNF) and bacterial (lipopolysaccharide) and viral (dsRNA) products. As a vital component of the cellular antiviral response pathway, PKR is autophosphorylated and activated on binding to dsRNA. This results in inhibition of protein synthesis via the phosphorylation of eIF2alpha and also induces transcription of inflammatory genes by PKR-dependent signaling of the activation of different transcription factors. Along with RNaseL, PKR constitutes the antiviral arm of a group of mammalian stress response proteins that have counterparts in yeast. What began as adaptation to amino acid deprivation and sensing unfolded proteins in the endoplasmic reticulum has evolved into a family of sophisticated mammalian stress response proteins able to mediate cellular responses to both physical and biological stress.
Collapse
Affiliation(s)
- B R Williams
- Department of Cancer Biology NB40, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, OH 44195, USA
| |
Collapse
|
45
|
Sa G, Das T. Basic fibroblast growth factor stimulates cytosolic phospholipase A2, phospholipase C-gamma1 and phospholipase D through distinguishable signaling mechanisms. Mol Cell Biochem 1999; 198:19-30. [PMID: 10497874 DOI: 10.1023/a:1006970710298] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fibroblast growth factors (FGFs) stimulate proliferation, differentiation and motility of different cell types. The cellular effects of FGF are transduced by its interaction with any one of four members of a family of high affinity, cell surface FGF receptors (FGFRs) that have autophosphorylating tyrosine kinase activity. Activation of FGFR causes release of various low molecular weight signaling molecules which are required for the pleotropic effects of FGFs. We report here that basic FGF plays critical role in membrane phospholipid hydrolysis in NIH 3T3 cells that are stably transfected with FGFR1. Upon binding to FGFR1, basic FGF stimulates cytosolic form of phospholipase A2 (cPLA2), phospholipase C-gamma1 (PLC-gamma1) and phospholipase D (PLD), the key enzymes for the production of various lipid second messengers, in a tyrosine kinase-dependent manner. In addition to tyrosine phosphorylation, cPLA2 catalytic activation requires serine phosphorylation by p42 mitogen-activated protein (MAP) kinase and possibly pertussis toxin-sensitive G-protein coupling. On the other hand, phosphatidyl inositol 4,5 bisphosphate (PIP2) hydrolysis requires direct phosphorylation at tyrosine residue of the PLC-gamma1 isozyme. The activation of PLD needs direct or indirect receptor tyrosine kinase and protein kinase C (PKC) activities. Additionally, it also requires botulinum toxin C-sensitive Rho-like G-protein activation. All these results suggest that the pleotropic effects of FGF are exerted through its tyrosine kinase receptors and individual effectors are activated via distinguishable signaling mechanisms according to the cell's need.
Collapse
Affiliation(s)
- G Sa
- Animal Physiology Section, Bose Institute, P-1/12 CIT Scheme VII M, Calcutta, India
| | | |
Collapse
|
46
|
Tan SL, Katze MG. The emerging role of the interferon-induced PKR protein kinase as an apoptotic effector: a new face of death? J Interferon Cytokine Res 1999; 19:543-54. [PMID: 10433354 DOI: 10.1089/107999099313677] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent research has thrown a spotlight on the interferon (IFN)-induced PKR protein kinase, implicating it as an important effector of apoptosis induced by several cellular stress conditions, including viral infection, cytokine treatment, and growth factor deprivation. In this review, we summarize the evidence for the role of PKR as a death accomplice and discuss how PKR might promote cell demise in light of current knowledge of the molecular mechanisms of apoptosis. Given its new found role and its established antiviral function, it is no wonder that PKR is a popular target for viral evasion of the host defense. PKR-dependent apoptosis may offer a novel cell-death pathway for specific manipulation in therapeutic strategies against apoptosis-related diseases.
Collapse
Affiliation(s)
- S L Tan
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
47
|
Melville MW, Tan SL, Wambach M, Song J, Morimoto RI, Katze MG. The cellular inhibitor of the PKR protein kinase, P58(IPK), is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity. J Biol Chem 1999; 274:3797-803. [PMID: 9920933 DOI: 10.1074/jbc.274.6.3797] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P58(IPK), a member of the tetratricopeptide repeat and J-domain protein families, was first recognized for its ability to inhibit the double-stranded RNA-activated protein kinase, PKR. PKR is part of the interferon-induced host defense against viral infection, and down-regulates translation initiation via phosphorylation of eukaryotic initiation factor 2 on the alpha-subunit. P58(IPK) is activated in response to infection by influenza virus, and inhibits PKR through direct protein-protein interaction. Previously, we demonstrated that the molecular chaperone heat shock protein 40 (hsp40) was a negative regulator of P58(IPK). We could now report that influenza virus activates the P58(IPK) pathway by promoting the dissociation of hsp40 from P58(IPK) during infection. We also found that the P58(IPK)-hsp40 association was disrupted during recovery from heat shock, which suggested a regulatory role for P58(IPK) in the absence of virus infection. The PKR pathway is even more complex as we show in this report that the molecular chaperone, hsp/Hsc70, was a component of a trimeric complex with hsp40 and P58(IPK). Moreover, like other J-domain proteins, P58(IPK) stimulated the ATPase activity of Hsc70. Taken together, our data suggest that P58(IPK) is a co-chaperone, possibly directing hsp/Hsc70 to refold, and thus inhibit kinase function.
Collapse
Affiliation(s)
- M W Melville
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The double-stranded (ds) RNA-regulated serine/threonine protein kinase, PKR, is an interferon-inducible enzyme of widespread occurrence in mammalian cells. PKR is activated by dsRNA via a mechanism involving autophosphorylation. Once activated, the enzyme phosphorylates the alpha-subunit of protein synthesis initiation factor eIF2, thereby inhibiting translation. Accumulating data suggest that PKR has additional substrates, and that the kinase may also regulate gene transcription and signal transduction pathways. Although PKR plays an important role in mediating the antiviral effects of interferons, PKR is also implicated in regulating cell proliferation in uninfected cells and may have a tumor suppressor function under normal conditions. Studies of human malignancies and tumor cell lines suggest that, in general, patients bearing tumors with a higher PKR content have a more favorable prognosis. However, in human breast carcinoma cells, dysregulation of PKR may be associated with the establishment or maintenance of the transformed state.
Collapse
Affiliation(s)
- R Jagus
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, USA.
| | | | | |
Collapse
|
49
|
Balachandran S, Kim CN, Yeh WC, Mak TW, Bhalla K, Barber GN. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J 1998; 17:6888-902. [PMID: 9843495 PMCID: PMC1171037 DOI: 10.1093/emboj/17.23.6888] [Citation(s) in RCA: 285] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dsRNA-dependent protein kinase (PKR) is considered to play a key role in interferon-mediated host defense against viral infection and conceivably malignant transformation. To investigate further the mechanisms of PKR-induced growth inhibition, we have developed tetracycline-inducible murine cell lines that express wild-type PKR or a catalytically inactive PKR variant, PKRdelta6. Following induction, the growth of the wild-type PKR-expressing cells was similar to that of cells transfected with vector alone, while cells expressing PKRdelta6 became malignantly transformed. Significantly, treatment with dsRNA caused the wild-type PKR-overexpressing cells to undergo programed cell death while, conversely, cells expressing PKRdelta6 were completely resistant. Our studies demonstrated that activation of PKR induces the expression of members of the tumor necrosis factor receptor (TNFR) family, including Fas (CD95/Apo-1) and pro-apopotic Bax. In contrast, transcripts representing Fas, TNFR-1, FADD (Fas-associated death domain), FLICE, Bad and Bax were ablated in cells expressing PKRdelta6. The involvement of the death receptors in PKR-induced apoptosis was underscored by demonstrating that murine fibroblasts lacking FADD were almost completely resistant to dsRNA-mediated cell death. Thus, PKR, a key cellular target for viral repression, is a receptor/inducer for the induction of pro-apoptotic genes by dsRNA and probably functions in interferon-mediated host defense to trigger cell death in response to virus infection and perhaps tumorigenesis.
Collapse
Affiliation(s)
- S Balachandran
- Department of Microbiology and Immunology and Winship Cancer Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Interferons play key roles in mediating antiviral and antigrowth responses and in modulating immune response. The main signaling pathways are rapid and direct. They involve tyrosine phosphorylation and activation of signal transducers and activators of transcription factors by Janus tyrosine kinases at the cell membrane, followed by release of signal transducers and activators of transcription and their migration to the nucleus, where they induce the expression of the many gene products that determine the responses. Ancillary pathways are also activated by the interferons, but their effects on cell physiology are less clear. The Janus kinases and signal transducers and activators of transcription, and many of the interferon-induced proteins, play important alternative roles in cells, raising interesting questions as to how the responses to the interferons intersect with more general aspects of cellular physiology and how the specificity of cytokine responses is maintained.
Collapse
Affiliation(s)
- G R Stark
- Lerner Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|