1
|
Deng X, Ye K, Tang J, Huang Y. Association of rs1800795 and rs1800796 polymorphisms in interleukin-6 gene and osteoarthritis risk: evidence from a meta-analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:328-342. [PMID: 36395270 DOI: 10.1080/15257770.2022.2147541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple studies have investigated the association of interleukin-6 (IL-6) gene polymorphisms and osteoarthritis (OA) risk, but failed to reach a consistent conclusion. Therefore, this study was designed to elucidate the association of IL-6 polymorphisms and OA by a meta-analysis approach. Literature retrieval was carried out on PubMed, EMBASE, Web of Science, CNKI, and Wanfang databases. The strength of association was appraised by odds ratios (ORs) and 95% confidence intervals (95%CIs) in five genetic models. The data were merged by using RevMan 5.3 software. Ten studies with 4944 cases and 4651 controls were analyzed. Overall, no significant association was identified between rs1800795 polymorphism and OA. Subgroup analysis by ethnicity and OA site also suggested rs1800795 polymorphism was not associated with OA. For rs1800796 polymorphism, G-allele and GG-genotype carriers appeared to have an increased risk to OA (G vs. C, OR = 1.66, 95%CI 1.30-1.96, P < 0.01; GG vs. CC, OR = 1.75, 95%CI 1.07-2.84, P = 0.03; GG vs. GC + CC, OR = 1.82, 95%CI 1.42-2.34, P < 0.01). Findings of this study indicate that the rs1800795 polymorphism is not correlated to OA susceptibility, regardless of ethnicity or OA site. However, rs1800796 polymorphism trends to be associated with susceptibility to OA.
Collapse
Affiliation(s)
- Xiaonan Deng
- Department of Orthopedic, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, People's Republic of China
| | - Ke Ye
- Department of Orthopedic, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, People's Republic of China
| | - Jidong Tang
- Department of Orthopedic, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, People's Republic of China
| | - Yonghong Huang
- Department of Orthopedic, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Gaudet P, Logie C, Lovering RC, Kuiper M, Lægreid A, Thomas PD. Gene Ontology representation for transcription factor functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194752. [PMID: 34461313 DOI: 10.1016/j.bbagrm.2021.194752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022]
Abstract
Transcription plays a central role in defining the identity and functionalities of cells, as well as in their responses to changes in the cellular environment. The Gene Ontology (GO) provides a rigorously defined set of concepts that describe the functions of gene products. A GO annotation is a statement about the function of a particular gene product, represented as an association between a gene product and the biological concept a GO term defines. Critically, each GO annotation is based on traceable scientific evidence. Here, we describe the different GO terms that are associated with proteins involved in transcription and its regulation, focusing on the standard of evidence required to support these associations. This article is intended to help users of GO annotations understand how to interpret the annotations and can contribute to the consistency of GO annotations. We distinguish between three classes of activities involved in transcription or directly regulating it - general transcription factors, DNA-binding transcription factors, and transcription co-regulators.
Collapse
Affiliation(s)
- Pascale Gaudet
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1211 Genève, Switzerland.
| | - Colin Logie
- Molecular Biology Department, Faculty of Science, Radboud University, PO box 9101, 6500HB Nijmegen, the Netherlands
| | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Nanda JS, Awadallah WN, Kohrt SE, Popovics P, Cates JMM, Mirosevich J, Clark PE, Giannico GA, Grabowska MM. Increased nuclear factor I/B expression in prostate cancer correlates with AR expression. Prostate 2020; 80:1058-1070. [PMID: 32692871 PMCID: PMC7434711 DOI: 10.1002/pros.24019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Most prostate cancers express androgen receptor (AR), and our previous studies have focused on identifying transcription factors that modify AR function. We have shown that nuclear factor I/B (NFIB) regulates AR activity in androgen-dependent prostate cancer cells in vitro. However, the status of NFIB in prostate cancer was unknown. METHODS We immunostained a tissue microarray including normal, hyperplastic, prostatic intraepithelial neoplasia, primary prostatic adenocarcinoma, and castration-resistant prostate cancer tissue samples for NFIB, AR, and synaptophysin, a marker of neuroendocrine differentiation. We interrogated publically available data sets in cBioPortal to correlate NFIB expression and AR and neuroendocrine prostate cancer (NEPCa) activity scores. We analyzed prostate cancer cell lines for NFIB expression via Western blot analysis and used nuclear and cytoplasmic fractionation to assess where NFIB is localized. We performed co-immunoprecipitation studies to determine if NFIB and AR interact. RESULTS NFIB increased in the nucleus and cytoplasm of prostate cancer samples versus matched normal controls, independent of Gleason score. Similarly, cytoplasmic AR and synaptophysin increased in primary prostate cancer. We observed strong NFIB staining in primary small cell prostate cancer. The ratio of cytoplasmic-to-nuclear NFIB staining was predictive of earlier biochemical recurrence in prostate cancer, once adjusted for tumor margin status. Cytoplasmic AR was an independent predictor of biochemical recurrence. There was no statistically significant difference between NFIB and synaptophysin expression in primary and castration-resistant prostate cancer, but cytoplasmic AR expression was increased in castration-resistant samples. In primary prostate cancer, nuclear NFIB expression correlated with cytoplasmic NFIB and nuclear AR, while cytoplasmic NFIB correlated with synaptophysin, and nuclear and cytoplasmic AR. In castration-resistant prostate cancer samples, NFIB expression correlated positively with an AR activity score, and negatively with the NEPCa score. In prostate cancer cell lines, NFIB exists in several isoforms. We observed NFIB predominantly in the nuclear fraction of prostate cancer cells with increased cytoplasmic expression seen in castration-resistant cell lines. We observed an interaction between AR and NFIB through co-immunoprecipitation experiments. CONCLUSION We have described the expression pattern of NFIB in primary and castration-resistant prostate cancer and its positive correlation with AR. We have also demonstrated AR interacts with NFIB.
Collapse
Affiliation(s)
- Jagpreet S. Nanda
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Sarah E. Kohrt
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Petra Popovics
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Justin M. M. Cates
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Janni Mirosevich
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Peter E. Clark
- Department of Urology, Levine Cancer Center/Atrium Health, Charlotte, NC
| | - Giovanna A. Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Magdalena M. Grabowska
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Address correspondence to: Magdalena M. Grabowska, 2123 Adelbert Road, Wood Research Tower; RTG00, Cleveland, OH 44106, Phone: 216-368-5736,
| |
Collapse
|
4
|
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J, Wessels MW, Hennekam RC. Variants in nuclear factor I genes influence growth and development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:611-626. [DOI: 10.1002/ajmg.c.31747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Zenker
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Jens Bunt
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
| | - Ina Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Michael Piper
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Manuela Priolo
- Operative Unit of Medical GeneticsGreat Metropolitan Hospital Bianchi‐Melacrino‐Morelli Reggio Calabria Italy
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center Groningen Groningen the Netherlands
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life SciencesState University of New York Buffalo NY
| | - Linda J. Richards
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersWomen's and Children's Hospitals NHS Foundation Trust Birmingham UK
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Raoul C. Hennekam
- Department of PediatricsUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
5
|
Schanze I, Bunt J, Lim JWC, Schanze D, Dean RJ, Alders M, Blanchet P, Attié-Bitach T, Berland S, Boogert S, Boppudi S, Bridges CJ, Cho MT, Dobyns WB, Donnai D, Douglas J, Earl DL, Edwards TJ, Faivre L, Fregeau B, Genevieve D, Gérard M, Gatinois V, Holder-Espinasse M, Huth SF, Izumi K, Kerr B, Lacaze E, Lakeman P, Mahida S, Mirzaa GM, Morgan SM, Nowak C, Peeters H, Petit F, Pilz DT, Puechberty J, Reinstein E, Rivière JB, Santani AB, Schneider A, Sherr EH, Smith-Hicks C, Wieland I, Zackai E, Zhao X, Gronostajski RM, Zenker M, Richards LJ. NFIB Haploinsufficiency Is Associated with Intellectual Disability and Macrocephaly. Am J Hum Genet 2018; 103:752-768. [PMID: 30388402 PMCID: PMC6218805 DOI: 10.1016/j.ajhg.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.
Collapse
Affiliation(s)
- Ina Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jonathan W C Lim
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Ryan J Dean
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Patricia Blanchet
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Tania Attié-Bitach
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, Paris 75015, France
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Steven Boogert
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Sangamitra Boppudi
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Caitlin J Bridges
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | | | - William B Dobyns
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Jessica Douglas
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Dawn L Earl
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laurence Faivre
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Genevieve
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Marion Gérard
- Service de Génétique, CHU de Caen - Hôpital Clémenceau, Caen Cedex 14000, France
| | - Vincent Gatinois
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Muriel Holder-Espinasse
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France; Department of Clinical Genetics, Guy's Hospital, London SE1 9RT, UK
| | - Samuel F Huth
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kosuke Izumi
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Elodie Lacaze
- Department of genetics, Le Havre Hospital, 76600 Le Havre, France
| | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sian M Morgan
- All Wales Genetics Laboratory, Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Catherine Nowak
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Hilde Peeters
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven 3000, Belgium
| | - Florence Petit
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France
| | - Daniela T Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Jacques Puechberty
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Eyal Reinstein
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba 4428164, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jean-Baptiste Rivière
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Avni B Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anouck Schneider
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Elaine Zackai
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaonan Zhao
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany.
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Brun M, Jain S, Monckton EA, Godbout R. Nuclear Factor I Represses the Notch Effector HEY1 in Glioblastoma. Neoplasia 2018; 20:1023-1037. [PMID: 30195713 PMCID: PMC6138789 DOI: 10.1016/j.neo.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023] Open
Abstract
Glioblastomas (GBMs) are highly aggressive brain tumors with a dismal prognosis. Nuclear factor I (NFI) is a family of transcription factors that controls glial cell differentiation in the developing central nervous system. NFIs have previously been shown to regulate the expression of astrocyte markers such as glial fibrillary acidic protein (GFAP) in both normal brain and GBM cells. We used chromatin immunoprecipitation (ChIP)–on-chip to identify additional NFI targets in GBM cells. Analysis of our ChIP data revealed ~400 putative NFI target genes including an effector of the Notch signaling pathway, HEY1, implicated in the maintenance of neural stem cells. All four NFIs (NFIA, NFIB, NFIC, and NFIX) bind to NFI recognition sites located within 1 kb upstream of the HEY1 transcription site. We further showed that NFI negatively regulates HEY1 expression, with knockdown of all four NFIs in GBM cells resulting in increased HEY1 RNA levels. HEY1 knockdown in GBM cells decreased cell proliferation, increased cell migration, and decreased neurosphere formation. Finally, we found a general correlation between elevated levels of HEY1 and expression of the brain neural stem/progenitor cell marker B-FABP in GBM cell lines. Knockdown of HEY1 resulted in an increase in the RNA levels of the GFAP astrocyte differentiation marker. Overall, our data indicate that HEY1 is negatively regulated by NFI family members and is associated with increased proliferation, decreased migration, and increased stem cell properties in GBM cells.
Collapse
Affiliation(s)
- Miranda Brun
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2
| | - Saket Jain
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2
| | - Elizabeth A Monckton
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2.
| |
Collapse
|
7
|
Abstract
We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtypes. Attractors are also recovered for cell states from an independent data set confirming our models accurate description of global genetic regulations across differing cell types of the neocortex (not included in the training data). Our model recovers experimentally confirmed genetic regulations and community analysis reveals genetic associations in common pathways. Via a comprehensive scan of all theoretical three-gene perturbations of gene knockout and overexpression, we discover novel neuronal trans-differrentiation recipes (including perturbations of SATB2, GAD1, POU6F2 and ADARB2) for excitatory projection neuron and inhibitory interneuron subtypes.
Collapse
|
8
|
From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4968321. [PMID: 29849898 PMCID: PMC5932428 DOI: 10.1155/2018/4968321] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/04/2018] [Indexed: 11/24/2022]
Abstract
Oxidative stress can alter the expression level of many microRNAs (miRNAs), but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.
Collapse
|
9
|
The convergent roles of the nuclear factor I transcription factors in development and cancer. Cancer Lett 2017; 410:124-138. [PMID: 28962832 DOI: 10.1016/j.canlet.2017.09.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 02/07/2023]
Abstract
The nuclear factor I (NFI) transcription factors play important roles during normal development and have been associated with developmental abnormalities in humans. All four family members, NFIA, NFIB, NFIC and NFIX, have a homologous DNA binding domain and function by regulating cell proliferation and differentiation via the transcriptional control of their target genes. More recently, NFI genes have also been implicated in cancer based on genomic analyses and studies of animal models in a variety of tumours across multiple organ systems. However, the association between their functions in development and in cancer is not well described. In this review, we summarise the evidence suggesting a converging role for the NFI genes in development and cancer. Our review includes all cancer types in which the NFI genes are implicated, focusing predominantly on studies demonstrating their oncogenic or tumour-suppressive potential. We conclude by presenting the challenges impeding our understanding of NFI function in cancer biology, and demonstrate how a developmental perspective may contribute towards overcoming such hurdles.
Collapse
|
10
|
Romanovskaya EV, Vikhnina MV, Grishina TV, Ivanov MP, Leonova LE, Tsvetkova EV. Transcription factors of the NF1 family: Possible mechanisms of inducible gene expression in the evolutionary lineage of multicellular animals. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s123456781702001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Semenova EA, Kwon MC, Monkhorst K, Song JY, Bhaskaran R, Krijgsman O, Kuilman T, Peters D, Buikhuisen WA, Smit EF, Pritchard C, Cozijnsen M, van der Vliet J, Zevenhoven J, Lambooij JP, Proost N, van Montfort E, Velds A, Huijbers IJ, Berns A. Transcription Factor NFIB Is a Driver of Small Cell Lung Cancer Progression in Mice and Marks Metastatic Disease in Patients. Cell Rep 2016; 16:631-43. [PMID: 27373156 PMCID: PMC4956617 DOI: 10.1016/j.celrep.2016.06.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/01/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor, and no effective treatment is available to date. Mouse models of SCLC based on the inactivation of Rb1 and Trp53 show frequent amplifications of the Nfib and Mycl genes. Here, we report that, although overexpression of either transcription factor accelerates tumor growth, NFIB specifically promotes metastatic spread. High NFIB levels are associated with expansive growth of a poorly differentiated and almost exclusively E-cadherin (CDH1)-negative invasive tumor cell population. Consistent with the mouse data, we find that NFIB is overexpressed in almost all tested human metastatic high-grade neuroendocrine lung tumors, warranting further assessment of NFIB as a tumor progression marker in a clinical setting. NFIB drives tumor initiation and progression in mouse models of SCLC NFIB enhances metastasis and changes the metastatic profile NFIB promotes dedifferentiation and invasion in SCLC NFIB marks stage III/IV high-grade neuroendocrine carcinomas in patients
Collapse
Affiliation(s)
- Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Min-Chul Kwon
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Kim Monkhorst
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Rajith Bhaskaran
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Dennis Peters
- Core Facility for Molecular Pathology and Biobanking, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Wieneke A Buikhuisen
- Division of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Egbert F Smit
- Division of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Colin Pritchard
- Mouse Clinic for Cancer and Aging research Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Miranda Cozijnsen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jan van der Vliet
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - John Zevenhoven
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jan-Paul Lambooij
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Natalie Proost
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Erwin van Montfort
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Arno Velds
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ivo J Huijbers
- Mouse Clinic for Cancer and Aging research Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Skolkovo Institute of Science and Technology, Moscow 143026, Russia.
| |
Collapse
|
12
|
Identification and characterization of transcriptional control region of the human beta 1,4-mannosyltransferase gene. Cytotechnology 2015; 69:417-434. [PMID: 26608959 DOI: 10.1007/s10616-015-9929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
All asparagine-linked glycans (N-glycans) on the eukaryotic glycoproteins are primarily derived from dolichol-linked oligosaccharides (DLO), synthesized on the rough endoplasmic reticulum membrane. We have previously reported cloning and identification of the human gene, HMT-1, which encodes chitobiosyldiphosphodolichol beta-mannosyltransferase (β1,4-MT) involved in the early assembly of DLO. Considering that N-glycosylation is one of the most ubiquitous post-translational modifications for many eukaryotic proteins, the HMT-1 could be postulated as one of the housekeeping genes, but its transcriptional regulation remains to be investigated. Here we screened a 1 kb region upstream from HMT-1 open reading frame (ORF) for transcriptionally regulatory sequences by using chloramphenicol acetyl transferase (CAT) assay, and found that the region from -33 to -1 positions might act in HMT-1 transcription at basal level and that the region from -200 to -42 should regulate its transcription either positively or negatively. In addition, results with CAT assays suggested the possibility that two GATA-1 motifs and an Sp1 motif within a 200 bp region upstream from HMT-1 ORF might significantly upregulate HMT-1 transcription. On the contrary, the observations obtained from site-directed mutational analyses revealed that an NF-1/AP-2 overlapping motif located at -148 to -134 positions should serve as a strong silencer. The control of the HMT-1 transcription by these motifs resided within the 200 bp region could partially explain the variation of expression level among various human tissues, suggesting availability and importance of this region for regulatory role in HMT-1 expression.
Collapse
|
13
|
Zhou B, Osinski JM, Mateo JL, Martynoga B, Sim FJ, Campbell CE, Guillemot F, Piper M, Gronostajski RM. Loss of NFIX Transcription Factor Biases Postnatal Neural Stem/Progenitor Cells Toward Oligodendrogenesis. Stem Cells Dev 2015; 24:2114-26. [DOI: 10.1089/scd.2015.0136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Bo Zhou
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jason M. Osinski
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Juan L. Mateo
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ben Martynoga
- Division of Molecular Neurobiology, MRC, London, United Kingdom
| | - Fraser J. Sim
- Department of Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Christine E. Campbell
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | | | - Michael Piper
- School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Richard M. Gronostajski
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
14
|
Zhu G, Jiang Y. Polymorphism, genetic effect and association with egg production traits of chicken matrix metalloproteinases 9 promoter. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1526-31. [PMID: 25358310 PMCID: PMC4213695 DOI: 10.5713/ajas.2014.14209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/05/2014] [Accepted: 07/17/2014] [Indexed: 11/27/2022]
Abstract
Matrix metalloproteinases (MMP) are key enzymes involved in cell and tissue remodeling during ovarian follicle development and ovulation. The control of MMP9 transcription in ovarian follicles occurs through a core promoter region (−2,400 to −1,700 bp). The aim of this study was to screen genetic variations in the core promoter region and examine MMP9 transcription regulation and reproduction performance. A single cytosine deletion/insertion polymorphism was found at −1954 C+/C−. Genetic association analysis indicated significant correlation between the deletion genotype (C−) with total egg numbers at 28 weeks (p = 0.031). Furthermore, luciferase-reporter assay showed the deletion genotype (C−) had significantly lower promoter activity than the insertion genotype (C+) in primary granulosa cells (p<0.01). Therefore, the identified polymorphism could be used for marker-assisted selection to improve chicken laying performance.
Collapse
Affiliation(s)
- Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China ; Department of Biology Science and Technology, Taishan University, Taian 271021, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
15
|
Phulukdaree A, Khan S, Ramkaran P, Govender R, Moodley D, Chuturgoon AA. The interleukin-6 -147 g/c polymorphism is associated with increased risk of coronary artery disease in young South African Indian men. Metab Syndr Relat Disord 2013; 11:205-9. [PMID: 23461479 DOI: 10.1089/met.2012.0130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases such as coronary artery disease (CAD). The -174 IL-6 G/C promoter polymorphism influences mRNA levels and protein expression and is implicated in CAD. The Indian population in South Africa, unlike the black community, has a high prevalence of premature CAD. This polymorphism has not been fully explored in this population. The present study assessed the -174 IL-6 G/C polymorphism in young Indian patients with angiographically documented CAD and compared them with age- and gender-matched Indian and black control subjects. METHODS Polymorphic variants were assessed by polymerase chain reaction-restriction fragment length polymorphism, and IL-6 levels were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS The -174 IL-6 C allele was found with a higher frequency (23%) in the total Indian group compared to 2% in the black participants [P<0.0001, odds ratio (OR)=0.05, 95% confidence interval (CI) 0.018-0.14). The difference in frequency was more pronounced when Indian controls were compared to black controls (29% vs. 2%, respectively) (P<0.0001, OR=0.05, 95% CI 0.02-0.17). A significant association between the -174 IL-6 G allele and CAD was found in Indian patients compared to Indian controls (84% in cases vs. 71% in Indian controls; P=0.043, OR=0.47 95% CI 0.23-0.95). Levels of IL-6 in circulation were higher in black controls (6.62±0.63 pg/mL) compared to Indian controls (2.51±0.57 pg/mL) and CAD patients (1.46±0.36 pg/mL) (P<0.0001). Levels of IL-6 were higher in all groups with homozygous -174 IL-6 C alleles, but only significant in the healthy Indian control group (GG 3.73±0.94 pg/mL vs. GC/CC 0.89±0.5 pg/mL, P=0.0001). CONCLUSION The presence of the IL-6 -174 G allele influences levels of IL-6 and increases the risk of CAD in South African Indians.
Collapse
Affiliation(s)
- Alisa Phulukdaree
- Department of Medical Biochemistry and Chemical Pathology, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
| | | | | | | | | | | |
Collapse
|
16
|
Zakharyan R, Petrek M, Arakelyan A, Mrazek F, Atshemyan S, Boyajyan A. Interleukin-6 promoter polymorphism and plasma levels in patients with schizophrenia. ACTA ACUST UNITED AC 2012; 80:136-42. [DOI: 10.1111/j.1399-0039.2012.01886.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Nilsson J, Helou K, Kovács A, Bendahl PO, Bjursell G, Fernö M, Carlsson P, Kannius-Janson M. Nuclear Janus-activated kinase 2/nuclear factor 1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing Forkhead box F1. Cancer Res 2010; 70:2020-9. [PMID: 20145151 DOI: 10.1158/0008-5472.can-09-1677] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progression to metastasis is the proximal cause of most cancer-related mortality. Yet much remains to be understood about what determines the spread of tumor cells. This paper describes a novel pathway in breast cancer that regulates epithelial-to-mesenchymal transition (EMT), motility, and invasiveness. We identify two transcription factors, nuclear factor 1-C2 (NF1-C2) and Forkhead box F1 (FoxF1), downstream of prolactin/nuclear Janus-activated kinase 2, with opposite effects on these processes. We show that NF1-C2 is lost during mammary tumor progression and is almost invariably absent from lymph node metastases. NF1-C2 levels in primary tumors correlate with better patient survival. Manipulation of NF1-C2 levels by expression of a stabilized version or using small interfering RNA showed that NF1-C2 counteracts EMT, motility, invasiveness, and tumor growth. FoxF1 was found to be a direct repressed target of NF1-C2. We provide the first evidence for a role of FoxF1 in cancer and in the regulation of EMT in cells of epithelial origin. Overexpression of FoxF1 was associated with a mesenchymal phenotype, increased invasiveness in vitro, and enhanced growth of breast carcinoma xenografts in nude mice. The relevance of these findings is strengthened by the correlation between FoxF1 expression and a mesenchymal phenoype in breast cancer cell isolates, consistent with the interpretation that FoxF1 promotes invasion and metastasis.
Collapse
Affiliation(s)
- Jeanette Nilsson
- Department of Cell and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Uchihashi T, Kimata M, Tachikawa K, Koshimizu T, Okada T, Ihara-Watanabe M, Sakai N, Kogo M, Ozono K, Michigami T. Involvement of nuclear factor I transcription/replication factor in the early stage of chondrocytic differentiation. Bone 2007; 41:1025-35. [PMID: 17904922 DOI: 10.1016/j.bone.2007.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/10/2007] [Accepted: 08/11/2007] [Indexed: 10/22/2022]
Abstract
Gene-trap mutagenesis is based on the notion that the random insertion of a trapping vector may disturb the function of inserted genes. To identify the genes involved in chondrocytic differentiation, we applied this method to a murine mesenchymal cell line, ATDC5, which differentiate into mature chondrocytes in the presence of insulin, and isolated a clone in which the gene encoding a transcription/replication factor, nuclear factor I-B (NFIB), was trapped. In this particular clone, named #7-57, the trap vector pPT1-geo was inserted into intron 6 of the NFIB gene in one of the alleles. As a result, both wild-type NFIB and a mutant protein lacking the carboxyl-terminal transactivation/repression domain were expressed in the clone. Immunoprecipitation/Western blotting confirmed the interaction between wild-type NFIB and the truncated protein derived from the trapped allele, suggesting that the mutant protein formed a heterodimer with wild-type NFI proteins. When cultured in the differentiation medium, #7-57 exhibited impaired nodule formation and less accumulation of cartilageous matrices compared with the parental ATDC5 cells. In addition, the expression of marker genes for proliferating chondrocytes, including type II collagen (Col2a1), matrillin-1, and PTHrP, was reduced in the clone. The expression of SOX9 was also slightly decreased in the clone #7-57 compared with the parental cells. The overexpression of wild-type NFIB in parental ATDC5 cells resulted in the increased expression of Col2a1, and a series of reporter assays using a Col2a1 promoter/enhancer-luciferase construct demonstrated the transcriptional regulation of the gene by NFIB and the dominant-negative effect of the truncated mutant derived from the trapped allele. Interestingly, mutation in the SOX9-binding site in the 48-bp cis-element located in intron 1 failed to abolish the transactivation of Col2a1 gene by NFIB, suggesting that NFI regulates the transactivation of Col2a1, at least in part, independently of SOX9. These results indicate the critical roles of NFI family transcription/replication factors in the early stage of chondrocytic differentiation.
Collapse
Affiliation(s)
- Takayuki Uchihashi
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cebolla B, Vallejo M. Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J Neurochem 2006; 97:1057-70. [PMID: 16606365 DOI: 10.1111/j.1471-4159.2006.03804.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The elucidation of the transcriptional mechanisms that regulate glial fibrillary acidic protein (GFAP) gene expression is important for the understanding of the molecular mechanisms that control astrocyte differentiation during brain development. We investigated regulatory elements located in a proximal region of the GFAP promoter, important for expression in cortical precursor cells differentiating into astrocytes. One of these elements recognizes transcription factors of the nuclear factor-I family (NFI). We found that, in primary cultures of cortical cells, NFI occupies the GFAP promoter prior to the induction of astrocyte differentiation. In the developing cerebral cortex, the onset of expression of NFI coincides chronologically with the beginning of astrocytogenesis. Mutational analysis of the GFAP gene and transfections in primary cortical precursors show that inhibition of binding of NFI to the GFAP promoter results in decreased levels of transcriptional activity and is required for the synergistic stimulation of the GFAP promoter by the astrogenic agents, pituitary adenylate cyclase-activating polypeptide and ciliary neurotrophic factor, which in combination enhance astrocyte differentiation to generate astrocytes with longer processes. Thus, NFI appears to be an important factor for the integration of astrogenic stimuli in the developing central nervous system.
Collapse
Affiliation(s)
- Beatriz Cebolla
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
20
|
Ulvila J, Arpiainen S, Pelkonen O, Aida K, Sueyoshi T, Negishi M, Hakkola J. Regulation of Cyp2a5 transcription in mouse primary hepatocytes: roles of hepatocyte nuclear factor 4 and nuclear factor I. Biochem J 2004; 381:887-94. [PMID: 15115437 PMCID: PMC1133900 DOI: 10.1042/bj20040387] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 04/28/2004] [Accepted: 04/29/2004] [Indexed: 01/15/2023]
Abstract
The cytochrome P4502a5 (Cyp2a5) gene is expressed principally in liver and olfactory mucosa. In the present study, the transcriptional mechanisms of hepatocyte-specific expression of Cyp2a5 were studied in mouse primary hepatocytes. The Cyp2a5 5'-flanking region -3033 to +10 was cloned in front of a luciferase reporter gene and transfected into hepatocytes. Deletion analysis revealed two major activating promoter regions localized at proximal 271 bp and at a more distal area from -3033 to -2014 bp. The proximal activation region was characterized further by DNase I footprinting, and a single clear footprint was detected in the studied area centred over a sequence similar to the NF-I (nuclear factor I)-binding site. The binding of NF-I was confirmed using an EMSA (electrophoretic mobility-shift assay). A putative HNF-4 (hepatocyte nuclear factor 4)-binding site was localized at the proximal promoter by computer analysis of the sequence, and HNF-4alpha was shown to interact with the site using an EMSA. The functional significance of HNF-4 and NF-I binding to the Cyp2a5 promoter was evaluated by site-directed mutagenesis of the binding motifs in reporter constructs. Both mutations strongly decreased transcriptional activation by the Cyp2a5 promoter in primary hepatocytes, and double mutation almost completely abolished transcriptional activity. Also, the functionality of the distal activation region was found to be dependent on the intact HNF-4 and NF-I sites at the proximal promoter. In conclusion, these results indicate that HNF-4 and NF-I play major roles in the constitutive regulation of hepatic expression of Cyp2a5.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Base Sequence/genetics
- Binding Sites
- COS Cells/enzymology
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line
- Cell Line, Tumor
- Chlorocebus aethiops
- Chromosome Mapping/methods
- Cloning, Molecular/methods
- Cytochrome P-450 CYP2A6
- Cytochrome P450 Family 2
- DNA Footprinting/methods
- DNA, Neoplasm/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Deoxyribonuclease I/metabolism
- Gene Expression Regulation, Enzymologic/physiology
- Hepatocyte Nuclear Factor 1
- Hepatocyte Nuclear Factor 1-alpha
- Hepatocyte Nuclear Factor 4
- Hepatocytes/enzymology
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred DBA
- Mixed Function Oxygenases/genetics
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Promoter Regions, Genetic/genetics
- Protein Binding
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Johanna Ulvila
- *Department of Pharmacology and Toxicology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Satu Arpiainen
- *Department of Pharmacology and Toxicology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Olavi Pelkonen
- *Department of Pharmacology and Toxicology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Kaoru Aida
- †Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
| | - Tatsuya Sueyoshi
- †Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
| | - Masahiko Negishi
- †Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
| | - Jukka Hakkola
- *Department of Pharmacology and Toxicology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
21
|
Mora J, Alaminos M, de Torres C, Illei P, Qin J, Cheung NKV, Gerald WL. Comprehensive analysis of the 9p21 region in neuroblastoma suggests a role for genes mapping to 9p21-23 in the biology of favourable stage 4 tumours. Br J Cancer 2004; 91:1112-8. [PMID: 15305192 PMCID: PMC2747697 DOI: 10.1038/sj.bjc.6602094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chromosome 9p21 is frequently deleted in many cancers. Previous reports have indicated that 9p21 LOH is an uncommon finding in neuroblastoma (NB), a tumour of childhood. We have performed an extensive analysis of 9p21 and genes located in this region (cyclin-dependent kinase inhibitor 2A – CDKN2A/p16INK4a, CDKN2A/p14ARF, CDKN2B/p15INK4b, MTAP, interferon α and β cluster). LOH was detected in 16.4% of 177 NB. The SRO was identified between markers D9S1751 and D9S254, at 9p21–23, a region telomeric to the CDKN2A and MTAP genes. A significantly better overall and progression-free survival was detected in stage 4 patients displaying 9p21–23 LOH. Hemizygous deletion of the region harbouring the CDKN2A and CDKN2B loci was identified in two tumours by means of fluorescent in situ hybridisation and MTAP was present by immunostaining in all but one tumour analysed. The transcriptional profile of tumours with 9p21–23 LOH was compared to that of NB displaying normal 9p21–23 status by means of oligonucleotide microarrays. Four of the 363 probe sets downregulated in tumours with 9p21–23 LOH were encoded by genes mapping to 9p22–24. The only well-characterised transcript among them was nuclear factor I-B3. Our results suggest a role for genes located telomeric of 9p21 in good risk NB.
Collapse
Affiliation(s)
- J Mora
- Department of Molecular Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Barath P, Poliakova D, Luciakova K, Nelson BD. Identification of NF1 as a silencer protein of the human adenine nucleotide translocase-2 gene. ACTA ACUST UNITED AC 2004; 271:1781-8. [PMID: 15096217 DOI: 10.1111/j.1432-1033.2004.04090.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human adenine nucleotide translocase-2 (ANT2) promoter contains a silencer region that confers partial repression on the heterologous herpes simplex virus thymidine kinase (HSVtk) promoter [Barath, P., Albert-Fournier, B., Luciakova, K., Nelson, B.D. (1999) J. Biol. Chem.274, 3378-3384]. Two sequences in the silencer (Site-2 and Site-3) are protected in the DNase I assay in vitro, and one of these is a repeated GTCCTG element previously shown to act as the active repressor element. We have now purified the DNA binding protein, and identified it using MALDI-TOF MS as a 33-kDa member of the nuclear factor 1 (NF1) family of transcription factors. NF1 purified from rat liver and HeLa cell nuclei bind to both silencer Site-2 and Site-3, resulting in a DNase I footprint identical to that obtained with purified recombinant NF1. Furthermore, transient transfection experiments with reporter constructs containing mutated silencer Site-2 and/or Site-3 show that both sites contribute to repression of the HSVtk promoter. Finally, chromatin immunoprecipitation analysis reveals that NF1 is bound to both elements on the endogenous HeLa cell ANT2 promoter. Our data support the belief that NF1 acts as a repressor when bound to silencing Site-2 and Site-3 of the ANT2 gene.
Collapse
Affiliation(s)
- Peter Barath
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
| | | | | | | |
Collapse
|
23
|
Ling G, Hauer CR, Gronostajski RM, Pentecost BT, Ding X. Transcriptional regulation of rat CYP2A3 by nuclear factor 1: identification of a novel NFI-A isoform, and evidence for tissue-selective interaction of NFI with the CYP2A3 promoter in vivo. J Biol Chem 2004; 279:27888-95. [PMID: 15123731 DOI: 10.1074/jbc.m403705200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat CYP2A3 and its mouse and human orthologs are expressed preferentially in the olfactory mucosa. We found previously that an element in the proximal promoter region of CYP2A3 (the nasal predominant transcriptional activating (NPTA) element), which is similar to a nuclear factor 1 (NFI)-binding site, is critical for transcriptional activation of CYP2A3 in vitro. We proposed that this element might be important for tissue-selective CYP2A3 expression. The goals of the present study were to characterize NPTA-binding proteins and to obtain more definitive evidence for the role of NFI in the transcriptional activation of CYP2A3. The NPTA-binding proteins were isolated by DNA-affinity purification from rat olfactory mucosa. Mass spectral analysis indicated that isoforms corresponding to all four NFI genes were present in the purified NPTA-binding fraction. Further analysis of NPTA-binding proteins led to the identification of a novel NFI-A isoform, NFI-A-short, which was derived from alternative splicing of the NFI-A transcript. Transient transfection assay showed that NFI-A2, an NFI isoform previously identified in the olfactory mucosa, transactivated the CYP2A3 promoter, whereas NFI-A-short, which lacks the transactivation domain, counteracted the activation. Chromatin immunoprecipitation assays indicated that NFI proteins are associated with the CYP2A3 promoter in vivo, in rat olfactory mucosa, but essentially not in the liver where the CYP2A3 promoter is hypermethylated and CYP2A3 is not expressed. These data strongly support a role for NFI transcription factors in the transcriptional activation of CYP2A3.
Collapse
Affiliation(s)
- Guoyu Ling
- New York State Department of Health, and School of Public Health, Wadsworth Center, State University of New York, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | |
Collapse
|
24
|
Garrick D, Samara V, McDowell TL, Smith AJH, Dobbie L, Higgs DR, Gibbons RJ. A conserved truncated isoform of the ATR-X syndrome protein lacking the SWI/SNF-homology domain. Gene 2004; 326:23-34. [PMID: 14729260 DOI: 10.1016/j.gene.2003.10.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the ATRX gene cause a severe X-linked mental retardation syndrome that is frequently associated with alpha thalassemia (ATR-X syndrome). The previously characterized ATRX protein (approximately 280 kDa) contains both a Plant homeodomain (PHD)-like zinc finger motif as well as an ATPase domain of the SNF2 family. These motifs suggest that ATRX may function as a regulator of gene expression, probably by exerting an effect on chromatin structure, although the exact cellular role of ATRX has not yet been fully elucidated. Here we characterize a truncated (approximately 200 kDa) isoform of ATRX (called here ATRXt) that has been highly conserved between mouse and human. In both species, ATRXt arises due to the failure to splice intron 11 from the primary transcript, and the use of a proximal intronic poly(A) signal. We show that the relative expression of the full length and ATRXt isoforms is subject to tissue-specific regulation. The ATRXt isoform contains the PHD-like domain but not the SWI/SNF-like motifs and is therefore unlikely to be functionally equivalent to the full length protein. We used indirect immunofluorescence to demonstrate that the full length and ATRXt isoforms are colocalized at blocks of pericentromeric heterochromatin but unlike full length ATRX, the truncated isoform does not associate with promyelocytic leukemia (PML) nuclear bodies. The high degree of conservation of ATRXt and the tight regulation of its expression relative to the full length protein suggest that this truncated isoform fulfills an important biological function.
Collapse
Affiliation(s)
- David Garrick
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Luciakova K, Barath P, Poliakova D, Persson A, Nelson BD. Repression of the human adenine nucleotide translocase-2 gene in growth-arrested human diploid cells: the role of nuclear factor-1. J Biol Chem 2003; 278:30624-33. [PMID: 12777383 DOI: 10.1074/jbc.m303530200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenine nucleotide translocase-2 (ANT2) catalyzes the exchange of ATP for ADP across the mitochondrial membrane, thus playing an important role in maintaining the cytosolic phosphorylation potential required for cell growth. Expression of ANT2 is activated by growth stimulation of quiescent cells and is down-regulated when cells become growth-arrested. In this study, we address the mechanism of growth arrest repression. Using a combination of transfection, in vivo dimethyl sulfate mapping, and in vitro DNase I mapping experiments, we identified two protein-binding elements (Go-1 and Go-2) that are responsible for growth arrest of ANT2 expression in human diploid fibroblasts. Proteins that bound the Go elements were purified and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry as members of the NF1 family of transcription factors. Chromatin immunoprecipitation analysis showed that NF1 was bound to both Go-1 and Go-2 in quiescent human diploid cells in vivo, but not in the same cells stimulated to growth by serum. NF1 binding correlated with the disappearance of ANT2 transcripts in quiescent cells. Furthermore, overexpression of NF1-A, -C, and -X in NIH3T3 cells repressed expression of an ANT2-driven reporter gene construct. Two additional putative repressor elements in the ANT2 promoter, an Sp1 element juxtaposed to the transcription start site and a silencer centered at nucleotide -332, did not appear to contribute to growth arrest repression. Thus, enhanced binding of NF1 is a key step in the growth arrest repression of ANT2 transcription. To our knowledge, this is the first report showing a role for NF1 in growth arrest.
Collapse
Affiliation(s)
- Katarina Luciakova
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Messam CA, Hou J, Gronostajski RM, Major EO. Lineage pathway of human brain progenitor cells identified by JC virus susceptibility. Ann Neurol 2003; 53:636-46. [PMID: 12730998 DOI: 10.1002/ana.10523] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multipotential human central nervous system progenitor cells, isolated from human fetal brain tissue by selective growth conditions, were cultured as undifferentiated, attached cell layers. Selective differentiation yielded highly purified populations of neurons or astrocytes. This report describes the novel use of this cell culture model to study cell type-specific recognition of a human neurotropic virus, JC virus. Infection by either JC virions or a plasmid encoding the JC genome demonstrated susceptibility in astrocytes and, to a lesser degree, progenitor cells, whereas neurons remained nonpermissive. JC virus susceptibility correlated with significantly higher expression of the NFI-X transcription factor in astrocytes than in neurons. Furthermore, transfection of an NFI-X expression vector into progenitor-derived neuronal cells before infection resulted in viral protein production. These results indicate that susceptibility to JC virus infection occurs at the molecular level and also suggest that differential recognition of the viral promoter sequences can predict lineage pathways of multipotential progenitor cells in the human central nervous system.
Collapse
Affiliation(s)
- Conrad A Messam
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
27
|
Yeung LHY, Read JT, Sorenson P, Nelson CC, Jia W, Rennie PS. Identification and characterization of a prostate-specific androgen-independent protein-binding site in the probasin promoter. Biochem J 2003; 371:843-55. [PMID: 12540291 PMCID: PMC1223328 DOI: 10.1042/bj20021816] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Revised: 01/22/2003] [Accepted: 01/23/2003] [Indexed: 01/03/2023]
Abstract
In this study we investigated the combination of transcription factors and proteins binding to the proximal part of the prostate-specific probasin (PB) promoter. Using DNaseI in vitro footprinting, several protected regions were identified on the proximal PB promoter (nucleotides -286 to +28 relative to the transcription start site) when nuclear extracts from LNCaP, a human prostate cancer cell line, were used. Four of the protected areas were observed only when LNCaP nuclear extracts treated with synthetic androgen (10 nM R1881) were used. Two other regions, referred to as FPI and FPII, showed protection regardless of the presence or absence of androgen. When DNaseI footprinting was done using other prostate and non-prostate nuclear extracts, protection of the FPII region was only seen in prostate cell lines. These androgen-independent regions were further tested for tissue and binding specificity using the electrophoretic mobility-shift assay. Eight complexes formed with the FPI probe while four complexes were observed with the FPII probe on incubation with the tested nuclear extracts. Methylation protection assays reveal that prostate cancer cell lines yield slightly different protection patterns for some of the protein complexes formed with non-prostate-derived cell lines, suggesting the presence of prostate-enriched or -exclusive proteins. Site-directed mutagenesis of the protected nucleotides within FPII resulted in a significant reduction in expression from the PB promoter. Identification of proteins binding to the FPII region revealed the participation of nuclear factor I (NF-I) or a closely related protein, although other unknown proteins are also involved. Defining the DNA and protein components that dictate prostate-specific expression of the PB promoter in an androgen-independent manner would provide a strong basis for the design and development of a gene therapy for systemic treatment of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Lillian H Y Yeung
- Department of Pathology and Laboratory Medicine, University of British Columbia, and The Prostate Centre, Vancouver General Hospital, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
Kane R, Murtagh J, Finlay D, Marti A, Jaggi R, Blatchford D, Wilde C, Martin F. Transcription factor NFIC undergoes N-glycosylation during early mammary gland involution. J Biol Chem 2002; 277:25893-903. [PMID: 11991954 DOI: 10.1074/jbc.m202469200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of a 74-kDa nuclear factor I (NFI) protein is triggered in early involution in the mouse mammary gland, and its expression correlates with enhanced occupation of a twin (NFI) binding element in the clusterin promoter, a gene whose transcription is induced at this time (Furlong, E. E., Keon, N. K., Thornton, F. D., Rein, T., and Martin, F. (1996) J. Biol. Chem. 271, 29688-29697). We now identify this 74-kDa NFI as an NFIC isoform based on its interaction in Western analysis with two NFIC-specific antibodies. A transition from the expression of a 49-kDa NFIC in lactation to the expression of the 74-kDa NFIC in early involution is demonstrated. We show that the 74-kDa NFIC binds specifically to concanavalin A (ConA) and that this binding can be reversed by the specific ConA ligands, methyl alpha-D-mannopyranoside and methyl alpha-D-glucopyranoside. In addition, its apparent molecular size was reduced to approximately 63 kDa by treatment with the peptide N-glycosidase. The 49-kDa lactation-associated NFIC did not bind ConA nor was it affected by peptide N-glycosidase. Tunicamycin, a specific inhibitor of N-glycosylation, blocked formation of the 74-kDa NFI in involuting mouse mammary gland in vivo when delivered from implanted Elvax depot pellets. Finally, the production of the ConA binding activity could be reiterated in "mammospheres" formed from primary mouse mammary epithelial cells associated with a laminin-rich extracellular matrix. Synthesis of the 74-kDa NFIC was also inhibited in this setting by tunicamycin. Thus, involution triggers the production of an NFIC isoform that is post-translationally modified by N-glycosylation. We further show, by using quantitative competitive reverse transcriptase-PCR, that there is increased expression of the major mouse mammary NFIC mRNA transcript, mNFIC2, in early involution, suggesting that the involution-associated change in NFIC expression also has a transcriptional contribution.
Collapse
Affiliation(s)
- Rosemary Kane
- Conway Institute of Biomolecular and Biomedical Research and Department of Pharmacology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kannius-Janson M, Johansson EM, Bjursell G, Nilsson J. Nuclear factor 1-C2 contributes to the tissue-specific activation of a milk protein gene in the differentiating mammary gland. J Biol Chem 2002; 277:17589-96. [PMID: 11877413 DOI: 10.1074/jbc.m105979200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the nuclear factor 1 (NF1) transcription factor family have been postulated to be involved in the regulation of milk genes. In this work we have been able to identify the splice variant NF1-C2 as an important member of a tissue-specific activating complex that regulates the milk gene encoding carboxyl ester lipase (CEL). Mutation of the NF1-binding site in the CEL gene promoter results in a drastic reduction of the gene expression to about 15% in mammary epithelial cells. Furthermore, we demonstrate that the NF1-C2 protein interacts with a higher affinity to the NF1-binding site in the CEL gene promoter than other NF1 family members do and that NF1-C2 in the mouse mammary gland is a phosphorylated protein. During development of the mouse mammary gland, binding of NF1-C2 to the CEL gene promoter is induced at midpregnancy, in correlation with the induction of CEL gene expression. The fact that the NF1-C2 involving complex remains throughout the lactation period and decreases during the weaning period, when the CEL gene is down-regulated, supports its importance in the regulation of CEL gene expression. To our knowledge, this is the first report identifying a specific, endogenously expressed NF1 isoform to be involved in the tissue-specific activation of a gene.
Collapse
|
30
|
Heesen M, Bloemeke B, Heussen N, Kunz D. Can the interleukin-6 response to endotoxin be predicted? Studies of the influence of a promoter polymorphism of the interleukin-6 gene, gender, the density of the endotoxin receptor CD14, and inflammatory cytokines. Crit Care Med 2002; 30:664-9. [PMID: 11990931 DOI: 10.1097/00003246-200203000-00028] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate whether the -174 G/C promoter polymorphism of the interleukin-6 gene, gender, the monocyte density of the endotoxin receptor CD14, or the inflammatory cytokines tumor necrosis factor-alpha or interleukin-1beta influence the interleukin-6 response of whole blood to endotoxin. DESIGN Analysis of interleukin-6 release from endotoxin-stimulated human whole blood. SETTING Medical research laboratory. PATIENTS Healthy human blood donors. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The interleukin-6 -174 G/C and the tumor necrosis factor -308 G/A promoter polymorphisms were determined by real-time polymerase chain reaction assay by using specific fluorescence labeled hybridization probes. Monocyte CD14 expression was assessed by flow cytometry. After incubation of whole blood with endotoxin, plasma concentrations of interleukin-6, tumor necrosis factor-alpha, and interleukin-1beta were measured by means of chemiluminescence. The interleukin-6 concentrations were lower (p = .005) in individuals who were CG heterozygotes compared with individuals homozygous for the C or the G. The difference between C and G homozygotes was not significant (p = .67). The interleukin-6 response was enhanced in men compared with women (p = .015). There was no correlation between interleukin-6 concentrations and monocyte CD14 density. Interleukin-6 concentrations correlated with the concentrations of tumor necrosis factor-alpha (r = .59, p = .01) and interleukin-1beta (r = .47, p = .01). There was no linkage between the tumor necrosis factor -308 and the interleukin-6 -174 polymorphisms. CONCLUSIONS The interleukin-6 response to endotoxin was influenced by gender and correlated with the concentrations of more proximal cytokine tumor necrosis factor-alpha and interleukin-1beta. The interleukin-6 -174 G/C promoter polymorphism can only partly predict the interleukin-6 response of human whole blood to endotoxin stimulation, and the results were different from previous reporter gene assays that reported higher interleukin-6 concentrations for the G allele. Tumor necrosis factor -308 G homozygotes produce the lowest tumor necrosis factor concentrations. The number of tumor necrosis factor -308 G homozygotes was not higher among interleukin-6 -174 heterozygotes, and thus this cannot account for their significantly smaller interleukin-6 production.
Collapse
Affiliation(s)
- Michael Heesen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Aachen, Germany
| | | | | | | |
Collapse
|
31
|
Jethanandani P, Goldberg E. ldhc expression in non-germ cell nuclei is repressed by NF-I binding. J Biol Chem 2001; 276:35414-21. [PMID: 11447215 DOI: 10.1074/jbc.m101269200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developmental and testis-specific expression of the mouse lactate dehydrogenase C (mldhc) gene requires mechanisms for activation in germ cells and repression in somatic cells. Promoter activity restricted to the testis has been demonstrated using in vitro transcription assays with a 60-base pair promoter sequence upstream of the transcription initiation site. This promoter fragment has a TATA box and an overlapping 31-base pair palindromic sequence. Here we have explored the role of the palindrome as a silencer of the ldhc gene in somatic tissues. A gel retardation assay detected two sites within the palindrome that were important for protein binding. A member of the NF-I/CTF family was identified as the protein binding to one of the sites. In transiently transfected mouse L cells, a promoter fragment in which the NF-I site was mutated showed a 4-fold greater activity as compared with the wild-type sequence. Overexpression of the four NF-I proteins, NF-IA, -B, -C, or -X, in mouse L cells transiently transfected with an ldhc promoter-reporter construct resulted in a 20-50% decrease in activity of the wild-type promoter but had no effect when the NF-I binding element in the palindrome was mutated. These results indicate a role for the NF-I proteins in regulation of the mldhc gene.
Collapse
Affiliation(s)
- P Jethanandani
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
32
|
Norquay LD, Jin Y, Surabhi RM, Gietz RD, Tanese N, Cattini PA. A member of the nuclear factor-1 family is involved in the pituitary repression of the human placental growth hormone genes. Biochem J 2001; 354:387-95. [PMID: 11171118 PMCID: PMC1221667 DOI: 10.1042/0264-6021:3540387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human growth hormone (GH) gene family consists of five tandemly arranged and highly related genes, including the chorionic somatomammotropins (CSs), at a single locus on chromosome 17. Despite striking homologies in promoter and flanking DNA sequences, the genes within this locus have different tissue-specific patterns of expression: GH-N is expressed almost exclusively in the somatotrophs of the anterior pituitary; the remaining genes, including CS-A, are expressed in placental syncytiotrophoblast. Previously we proposed that active repression of the placental gene promoters in pituitary GC cells is mediated by upstream 'P' sequences and, specifically, a 263 bp region containing two 'P' sequence elements (PSE-A and PSE-B) and corresponding factors (PSF-A and PSF-B). We have now examined the possibility that PSF-A and PSF-B are members of the nuclear factor (NF)-1 family. Transcripts of NF-1A, NF-1C and NF-1X, but not of NF-1B, were readily detected in GC cells. High-affinity binding of NF-1 to PSE-B, but not to PSE-A, was confirmed by competition of DNA-protein interactions by using NF-1 DNA elements and antibodies. Functionally, a NF-1 element was able to substitute for PSE-B as a promoter-specific repressor in GC cells after gene transfer. However, there was a difference in the magnitude of repression exerted by the NF-1 and PSF-B elements on the CS-A promoter and, with the use of mutations, this difference was shown to be consistent with variations in NF-1-binding sequences. These results indicate that PSF-B, but not PSF-A, is a member of the NF-1 family, which participates in the PSF complex and in the repression of the CS-A promoter in pituitary GC cells.
Collapse
Affiliation(s)
- L D Norquay
- Gene Technology Group and Department of Physiology, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | | | | | |
Collapse
|
33
|
Bisgrove DA, Monckton EA, Packer M, Godbout R. Regulation of brain fatty acid-binding protein expression by differential phosphorylation of nuclear factor I in malignant glioma cell lines. J Biol Chem 2000; 275:30668-76. [PMID: 10896661 DOI: 10.1074/jbc.m003828200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain fatty acid-binding protein (B-FABP) is expressed in the radial glial cells of the developing central nervous system as well as in a subset of human malignant glioma cell lines. Most of the malignant glioma lines that express B-FABP also express GFAP, an intermediate filament protein found in mature astrocytes. We are studying the regulation of the B-FABP gene to determine the basis for its differential expression in malignant glioma lines. By DNase I footprinting, we have identified five DNA-binding sites located within 400 base pairs (bp) of the B-FABP transcription start site, including two nuclear factor I (NFI)-binding sites at -35 to -58 bp (footprint 1, fp1) and -237 to -260 bp (fp3), respectively. Competition experiments, supershift experiments with anti-NFI antibody, and methylation interference experiments all indicate that the factor binding to fp1 and fp3 is NFI. By site-directed mutagenesis of both NFI-binding sites, we show that the most proximal NFI site is essential for B-FABP promoter activity in transiently transfected malignant glioma cells. Different band shift patterns are observed with nuclear extracts from B-FABP(+) and B-FABP(-) malignant glioma lines, with the latter generating complexes that migrate more slowly than those obtained with B-FABP(+) extracts. All bands are converted to a faster migrating form with potato acid phosphatase treatment, indicating that NFI is differentially phosphorylated in B-FABP(+) and B-FABP(-) lines. Our results suggest that B-FABP expression in malignant glioma lines is determined by the extent of NFI phosphorylation which, in turn, is controlled by a phosphatase activity specific to B-FABP(+) lines.
Collapse
Affiliation(s)
- D A Bisgrove
- Department of Oncology, Cross Cancer Institute and University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | | | | | | |
Collapse
|
34
|
Abstract
The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are differentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes differ in their abilities to either activate or repress transcription, likely through fundamentally different mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development.
Collapse
Affiliation(s)
- R M Gronostajski
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University, OH 44195, USA.
| |
Collapse
|
35
|
Behrens M, Venkatraman G, Gronostajski RM, Reed RR, Margolis FL. NFI in the development of the olfactory neuroepithelium and the regulation of olfactory marker protein gene expression. Eur J Neurosci 2000; 12:1372-84. [PMID: 10762365 DOI: 10.1046/j.1460-9568.2000.00032.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear factor I (NFI) proteins are DNA-binding transcription factors that participate in the tissue specific expression of various genes. They are encoded by four different genes (NFI-A, B, C, and X) each of which generates multiple isoforms by alternative RNA splicing. NFI-like binding sites have been identified in several genes preferentially expressed in olfactory receptor neurons. Our prior demonstration that NFI binds to these elements led to the hypothesis that NFI is involved in the regulation of these genes. To analyse the role of NFI in the regulation of olfactory neuron gene expression we have performed transient transfection experiments in HEK 293 cells using constructs that place luciferase expression under the control of an olfactory marker protein (OMP)-promoter fragment containing the NFI binding site. In vitro mutagenesis of this site revealed a negative modulation of luciferase expression by endogenous NFI proteins in HEK 293 cells. In addition, we have used in situ hybridization to analyse the tissue and cellular distribution of the four NFI gene transcripts during pre- and postnatal mouse development. We have simultaneously characterized the expression of Pax-6, and O/E-1, transcription factors known to regulate the phenotype of olfactory receptor neurons. We demonstrate that all of these transcription factors vary in specific spatio-temporal patterns during the development of the olfactory system. These data on NFI activity, and on transcription factor expression, provide a basis to understand the role of NFI in regulating gene expression in olfactory receptor neurons.
Collapse
Affiliation(s)
- M Behrens
- Department of Anatomy and Neurobiology, University of Maryland at Baltimore, School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
36
|
Ethelberg S, Tzschaschel BD, Luz A, Diaz-Cano SJ, Pedersen FS, Schmidt J. Increased induction of osteopetrosis, but unaltered lymphomagenicity, by murine leukemia virus SL3-3 after mutation of a nuclear factor 1 site in the enhancer. J Virol 1999; 73:10406-15. [PMID: 10559359 PMCID: PMC113096 DOI: 10.1128/jvi.73.12.10406-10415.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SL3-3 is a murine leukemia virus which is only weakly bone pathogenic but highly T-cell lymphomagenic. A major pathogenic determinant is the transcriptional enhancer comprising several transcription factor binding sites, among which are three identical sites for nuclear factor 1 (NF1). We have investigated the pathogenic properties of NF1 site enhancer mutants of SL3-3. Two different mutants carrying a 3-bp mutation either in all three NF1 sites or in the central site alone were constructed and assayed in inbred NMRI mice. The wild type and both mutants induced lymphomas in all mice, with a mean latency period of 9 weeks. However, there was a considerable difference in osteopetrosis induction. Wild-type SL3-3 induced osteopetrosis in 11% of the mice (2 of 19), and the triple NF1 site mutant induced osteopetrosis in none of the mice (0 of 19), whereas the single NF1 site mutant induced osteopetrosis in 56% (10 of 18) of the mice, as determined by X-ray analysis. A detailed histological examination of the femurs of the mice was carried out and found to support this diagnosis. Thus, the NF1 sites of SL3-3 are major determinants of osteopetrosis induction, without determining lymphomagenesis. This conclusion was further supported by evaluation of the bone pathogenicity of other SL3-3 enhancer variants, the lymphomagenicity of which had been examined previously. This evaluation furthermore strongly indicated that the core sites, a second group of transcription factor binding sites in the viral enhancer, are necessary for the osteopetrosis induction potential of SL3-3.
Collapse
Affiliation(s)
- S Ethelberg
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The -195- to -500-bp region of the human elastin promoter has been shown to convey high activity in neonatal rat aortic smooth muscle cell and pulmonary fibroblast cell cultures. In addition, this region has been implicated in controlling the differential basal level of elastin transcription in these two cell types. The overall goal of this study was to define the positive element(s) within the -195- to - 500-bp region and to identify the trans-acting factors binding to this sequence. A combination of deletion and linker scan mutational analyses localizes the positive element between -401 and -415 bp. Gel shift analyses demonstrate that the positive element binds NF-1 family members. Co-transfection of a CTF1 expression vector in Drosophila Schneider cells shows the ability of an NF-1 family member to activate elastin promoter activity through this site. Comparative Western and Southwestern blot analyses of nuclear extracts isolated from SMC and lung fibroblasts lay the foundation for possible differential regulation of elastin transcriptional levels via cell specific expression of different NF-1 family members.
Collapse
Affiliation(s)
- A Degterev
- Department of Biochemistry, Boston University School of Medicine, MA 02118, USA
| | | |
Collapse
|
38
|
Ortiz L, Aza-Blanc P, Zannini M, Cato AC, Santisteban P. The interaction between the forkhead thyroid transcription factor TTF-2 and the constitutive factor CTF/NF-1 is required for efficient hormonal regulation of the thyroperoxidase gene transcription. J Biol Chem 1999; 274:15213-21. [PMID: 10329730 DOI: 10.1074/jbc.274.21.15213] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The forkhead thyroid-specific transcription factor TTF-2 is the main mediator of thyrotropin and insulin regulation of thyroperoxidase (TPO) gene expression. This function depends on multimerization and specific orientation of its DNA-binding site, suggesting that TTF-2 is part of a complex interaction network within the TPO promoter. This was confirmed by transfection experiments and by protein-DNA interaction studies, which demonstrated that CTF/NF1 proteins bind 10 base pairs upstream of the TTF-2-binding site to enhance its action in hormone-induced expression of the TPO gene. GST pull-down assays showed that TTF-2 physically interacts with CTF/NF1 proteins. In addition, we demonstrate that increasing the distance between both transcription factors binding sites by base pair insertion results in loss of promoter activity and in a drastic decrease on the ability of the promoter to respond to the hormones. CTF/NF1 is a family of transcription factors that contributes to constitutive and cell-type specific gene expression. Originally identified as factors implicated in the replication of adenovirus, this group of proteins (CTF/NF1-A, -B, -C, and -X) is now known to be involved in the regulation of several genes. In contrast to other reports regarding the involvement of these proteins in inducible gene expression, we show here that members of this family of transcription factors are regulated by hormones. With the use of specific CTF/NF1 DNA probes and antibodies we demonstrate that CTF/NF1-C is a thyrotropin-, cAMP-, and insulin-inducible protein. Thus CTF/NF1 proteins do not only mediate hormone-induced gene expression cooperating with TTF-2, but are themselves hormonally regulated. All these findings are clearly of important value in understanding the mechanisms governing the transcription regulation of RNA polymerase II promoters, which often contain binding sites for multiple transcription factors.
Collapse
Affiliation(s)
- L Ortiz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Chaudhry AZ, Vitullo AD, Gronostajski RM. Nuclear factor I-mediated repression of the mouse mammary tumor virus promoter is abrogated by the coactivators p300/CBP and SRC-1. J Biol Chem 1999; 274:7072-81. [PMID: 10066764 DOI: 10.1074/jbc.274.11.7072] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the function of nuclear factor I (NFI) proteins in transcription, we have used transient transfection assays to assess transcriptional modulation by NFI proteins on the NFI-dependent mouse mammary tumor virus (MMTV) promoter. Expression of NFI-C or NFI-X, but not NFI-A or NFI-B proteins, represses glucocorticoid induction of the MMTV promoter in HeLa cells. Repression is DNA binding-independent as a deletion construct expressing the NH2-terminal 160 residues of NFI-C represses but does not bind DNA. Repression by NFI-C is cell type-dependent and occurs in HeLa and COS-1 cells but not 293 or JEG-3 cells. NFI-C does not repress progesterone induction of the MMTV promoter in HeLa cells, suggesting that progesterone induction of the promoter differs mechanistically from glucocorticoid induction. NFI-C-mediated repression is alleviated by overexpression of glucocorticoid receptor (GR), suggesting that NFI-C represses the MMTV promoter by preventing GR function. However, repression by NFI-C occurs with only a subset of glucocorticoid-responsive promoters, as the chimeric NFIGREbeta-gal promoter that is activated by GR is not repressed by NFI-C. Since the coactivator proteins p300/CBP, SRC-1A, and RAC3 had previously been shown to function at steroid hormone-responsive promoters, we asked whether they could influence NFI-C-mediated repression of MMTV expression. Expression of p300/CBP or SRC-1A alleviates repression by NFI-C, whereas RAC3 has no effect. This abrogation of NFI-C-mediated repression by p300/CBP and SRC-1A suggests that repression by NFI-C may occur by interference with coactivator function at the MMTV promoter.
Collapse
Affiliation(s)
- A Z Chaudhry
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
40
|
Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S, Woo P. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998; 102:1369-76. [PMID: 9769329 PMCID: PMC508984 DOI: 10.1172/jci2629] [Citation(s) in RCA: 1659] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During active disease, patients with systemic-onset juvenile chronic arthritis (S-JCA) demonstrate a rise and fall in serum interleukin-6 (IL-6) that parallels the classic quotidian fever. To investigate the possibility that this cytokine profile results from a difference in the control of IL-6 expression, we examined the 5' flanking region of the IL-6 gene for polymorphisms. A G/C polymorphism was detected at position -174. In a group of 383 healthy men and women from a general practice in North London, the frequency of the C allele was 0.403 (95% confidence interval 0.37-0.44). In comparison, 92 patients with S-JCA had a different overall genotype frequency, especially those with onset of disease at < 5 yr of age. This was mainly due to the statistically significant lower frequency of the CC genotype in this subgroup. When comparing constructs of the 5' flanking region (-550-+61 bp) in a luciferase reporter vector transiently transfected into HeLa cells, the -174C construct showed 0.624+/-0.15-fold lower expression than the -174G construct. After stimulation with LPS or IL-1, expression from the -174C construct did not significantly change after 24 h, whereas expression from the -174G construct increased by 2.35+/-0.10- and 3.60+/-0.26-fold, respectively, compared with the unstimulated level. Plasma levels of IL-6 were also measured in 102 of the healthy subjects, and the C allele was found to be associated with significantly lower levels of plasma IL-6. These results suggest that there is a genetically determined difference in the degree of the IL-6 response to stressful stimuli between individuals. The reduced frequency of the potentially protective CC genotype in young S-JCA patients may contribute to its pathogenesis. Similarly the individual's IL-6 genotype may be highly relevant in other conditions where IL-6 has been implicated, such as atherosclerosis.
Collapse
Affiliation(s)
- D Fishman
- Paediatric Rheumatology Unit, Windeyer Institute of Medical Sciences, University College London Medical School, London W1P 6DB
| | | | | | | | | | | | | |
Collapse
|
41
|
Chaudhry AZ, Vitullo AD, Gronostajski RM. Nuclear factor I (NFI) isoforms differentially activate simple versus complex NFI-responsive promoters. J Biol Chem 1998; 273:18538-46. [PMID: 9660824 DOI: 10.1074/jbc.273.29.18538] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promoter-specific differences in the function of transcription factors play a central role in the regulation of gene expression. We have measured the maximal transcriptional activation potentials of nuclear factor I (NFI) proteins encoded by each of the four identified NFI genes (NFI-A, -B, -C, and -X) by transient transfection in JEG-3 cells using two model NFI-dependent promoters: 1) a simple chimeric promoter containing a single NFI-binding site upstream of the adenovirus major late promoter (NFI-Ad), and 2) the more complex mouse mammary tumor virus long terminal repeat promoter. The relative activation potentials for the NFI isoforms differed between the two promoters, with NFI-X being the strongest activator of NFI-Ad and NFI-B being the strongest activator of the MMTV promoter. To determine if these promoter-specific differences in activation potential were due to the presence of glucocorticoid response elements (GREs), we added GREs upstream of the NFI-binding site in NFI-Ad. NFI-X remains the strongest activator of the GRE containing simple promoter, indicating that differences in relative activation potential are not due solely to the presence of GREs. Since NFI proteins bind to DNA as dimers, we assessed the activation potentials of NFI heterodimers. Here, we show that NFI heterodimers have intermediate activation potentials compared with homodimers, demonstrating one potential mechanism by which different NFI proteins can regulate gene expression.
Collapse
Affiliation(s)
- A Z Chaudhry
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
42
|
Bachurski CJ, Kelly SE, Glasser SW, Currier TA. Nuclear factor I family members regulate the transcription of surfactant protein-C. J Biol Chem 1997; 272:32759-66. [PMID: 9407049 DOI: 10.1074/jbc.272.52.32759] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription of the surfactant protein-C (SP-C) gene is restricted to Type II epithelial cells in the adult lung. We have shown previously that the 0.32-kilobase pair (kb) mouse SP-C promoter is functional in transient transfection assays of the lung epithelial cell-derived cell line, MLE-15, and that thyroid transcription factor 1 (TTF-1) transactivates promoter activity. The 0.32-kb SP-C promoter can be separated into a proximal promoter region (-230 to +18) and an enhancer region (-318 to -230). Three DNase I footprints were mapped in the promoter region (C1 through C3) and two in the enhancer region (C4 and C5). We now show that nuclear factor I (NFI) family members bind to both individual NFI half-sites in footprints C1, C3, and C5, and to a composite site in footprint C4 by competition gel retardation and antibody supershift analyses. Mutational analysis of the 0.32-kb mouse SP-C promoter and transient transfection of MLE-15 cells demonstrated that the NFI binding sites are required for promoter activity in this cell type. Site-specific mutation of the proximal or distal NFI sites drastically reduced transactivation by a co-transfected NFI-A expression vector in HeLa cells. These data indicate that NFI family member(s), binding to sites in both the promoter and enhancer regions, regulate SP-C gene expression in a process independent of TTF-1.
Collapse
Affiliation(s)
- C J Bachurski
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | |
Collapse
|
43
|
Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res 1997; 25:2547-61. [PMID: 9185563 PMCID: PMC146782 DOI: 10.1093/nar/25.13.2547] [Citation(s) in RCA: 408] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors.
Collapse
Affiliation(s)
- G Edwalds-Gilbert
- Department of Molecular Genetics and Biochemistry and the Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261-2072, USA
| | | | | |
Collapse
|