1
|
More SV, Choi DK. Atractylenolide-I Protects Human SH-SY5Y Cells from 1-Methyl-4-Phenylpyridinium-Induced Apoptotic Cell Death. Int J Mol Sci 2017; 18:E1012. [PMID: 28481321 PMCID: PMC5454925 DOI: 10.3390/ijms18051012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress and apoptosis are the major mechanisms that induce dopaminergic cell death. Our study investigates the protective effects of atractylenolide-I (ATR-I) on 1-methyl-4-phenylpyridinium (MPP⁺)-induced cytotoxicity in human dopaminergic SH-SY5Y cells, as well as its underlying mechanism. Our experimental data indicates that ATR-I significantly inhibits the loss of cell viability induced by MPP⁺ in SH-SY5Y cells. To further unravel the mechanism, we examined the effect of ATR-I on MPP⁺-induced apoptotic cell death characterized by an increase in the Bax/Bcl-2 mRNA ratio, the release of cytochrome-c, and the activation of caspase-3 leading to elevated levels of cleaved poly(ADP-ribose) polymerase (PARP) resulting in SH-SY5Y cell death. Our results demonstrated that ATR-I decreases the level of pro-apoptotic proteins induced by MPP⁺ and also restored Bax/Bcl-2 mRNA levels, which are critical for inducing apoptosis. In addition, ATR-I demonstrated a significant increase in the protein expression of heme-oxygenase in MPP⁺-treated SH-SY5Y cells. These results suggest that the pharmacological effect of ATR-I may be, at least in part, caused by the reduction in pro-apoptotic signals and also by induction of anti-oxidant protein.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| |
Collapse
|
2
|
Sun X, Ren Z, Pan Y, Zhang C. Antihypoxic effect of miR-24 in SH-SY5Y cells under hypoxia via downregulating expression of neurocan. Biochem Biophys Res Commun 2016; 477:692-699. [PMID: 27349868 DOI: 10.1016/j.bbrc.2016.06.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Hypoxia-induced apoptosis-related mechanisms involved in the brain damage following cerebral ischemia injury. A subset of the small noncoding microRNA (miRNAs) is regulated by tissue oxygen levels, and miR-24 was found to be activated by hypoxic conditions. However, the roles of miR-24 and its target gene in neuron are not well understood. Here, we validated miRNA-24 is down-regulated in patients with cerebral infarction. Hypoxia suppressed the expression of miR-24, but increased the expression of neurocan in both mRNA and protein levels in SH-SY5Y cells. MiR-24 mimics reduced the expression of neurocan, suppressed cell apoptosis, induced cell cycle progression and cell proliferation in SH-SY5Y cells under hypoxia. By luciferase reporter assay, neurocan is validated a direct target gene of miR-24. Furthermore, knockdown of neurocan suppressed cell apoptosis, induced cell cycle progression and cell proliferation in SH-SY5Y cells under hypoxia. Taken together, miR-24 overexpression or silencing of neurocan shows an antihypoxic effect in SH-SY5Y cells. Therefore, miR-24 and neurocan play critical roles in neuron cell apoptosis and are potential therapeutic targets for ischemic brain disease.
Collapse
Affiliation(s)
- Xingyuan Sun
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China.
| | - Zhanjun Ren
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Yunzhi Pan
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Chenxin Zhang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| |
Collapse
|
3
|
Mustafa Rizvi SH, Parveen A, Verma AK, Ahmad I, Arshad M, Mahdi AA. Aluminium induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53. PLoS One 2014; 9:e98409. [PMID: 24878590 PMCID: PMC4039480 DOI: 10.1371/journal.pone.0098409] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
Aluminium (Al) is the third most abundant element in the earth’s crust and its compounds are used in the form of house hold utensils, medicines and in antiperspirant etc. Increasing number of evidences suggest the involvement of Al+3 ions in a variety of neurodegenerative disorders including Alzheimer’s disease. Here, we have attempted to investigate the role of Al in endoplasmic reticulum stress and the regulation of p53 during neuronal apoptosis using neuroblastoma cell line. We observed that Al caused oxidative stress by increasing ROS production and intracellular calcium levels together with depletion of intracellular GSH levels. We also studied modulation of key pro- and anti-apoptotic proteins and found significant alterations in the levels of Nrf2, NQO1, pAKT, p21, Bax, Bcl2, Aβ1-40 and Cyt c together with increase in endoplasmic reticulum (ER) stress related proteins like CHOP and caspase 12. However, with respect to the role of p53, we observed downregulation of its transcript as well as protein levels while analysis of its ubiquitination status revealed no significant changes. Not only did Al increase the activities of caspase 9, caspase 12 and caspase 3, but, by the use of peptide inhibitors of specific and pan-caspases, we observed significant protection against neuronal cell death upon inhibition of caspase 12, demonstrating the prominent role of endoplasmic reticulum stress generated responses in Al toxicity. Overall our findings suggest that Al induces ER stress and ROS generation which compromises the antioxidant defenses of neuronal cells thereby promoting neuronal apoptosis in p53 independent pathway.
Collapse
Affiliation(s)
| | - Arshiya Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anoop K Verma
- Forensic Medicine & Toxicology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Iqbal Ahmad
- Fibre Toxicology Division, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Md Arshad
- Department of Zoology, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Foudah D, Monfrini M, Donzelli E, Niada S, Brini AT, Orciani M, Tredici G, Miloso M. Expression of neural markers by undifferentiated mesenchymal-like stem cells from different sources. J Immunol Res 2014; 2014:987678. [PMID: 24741639 PMCID: PMC3987801 DOI: 10.1155/2014/987678] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023] Open
Abstract
The spontaneous expression of neural markers, already demonstrated in bone marrow (BM) mesenchymal stem cells (MSCs), has been considered as evidence of the MSCs' predisposition to differentiate toward neural lineages, supporting their use in stem cell-based therapy for neural repair. In this study we have evaluated, by immunocytochemistry, immunoblotting, and flow cytometry experiments, the expression of neural markers in undifferentiated MSCs from different sources: human adipose stem cells (hASCs), human skin-derived mesenchymal stem cells (hS-MSCs), human periodontal ligament stem cells (hPDLSCs,) and human dental pulp stem cells (hDPSCs). Our results demonstrate that the neuronal markers β III-tubulin and NeuN, unlike other evaluated markers, are spontaneously expressed by a very high percentage of undifferentiated hASCs, hS-MSCs, hPDLSCs, and hDPSCs. Conversely, the neural progenitor marker nestin is expressed only by a high percentage of undifferentiated hPDLSCs and hDPSCs. Our results suggest that the expression of β III-tubulin and NeuN could be a common feature of stem cells and not exclusive to neuronal cells. This could result in a reassessment of the use of β III-tubulin and NeuN as the only evidence proving neuronal differentiation. Further studies will be necessary to elucidate the relevance of the spontaneous expression of these markers in stem cells.
Collapse
Affiliation(s)
- Dana Foudah
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Marianna Monfrini
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elisabetta Donzelli
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Stefania Niada
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milano, Italy
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milano, Italy
| | - Anna T. Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milano, Italy
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milano, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences—Histology, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Giovanni Tredici
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mariarosaria Miloso
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
5
|
Miljus N, Heibeck S, Jarrar M, Micke M, Ostrowski D, Ehrenreich H, Heinrich R. Erythropoietin-mediated protection of insect brain neurons involves JAK and STAT but not PI3K transduction pathways. Neuroscience 2013; 258:218-27. [PMID: 24269933 DOI: 10.1016/j.neuroscience.2013.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 02/08/2023]
Abstract
The cytokine erythropoietin (Epo) initiates adaptive cellular responses to both moderate environmental challenges and tissue damaging insults in various non-hematopoietic mammalian tissues including the nervous system. Neuroprotective and neuroregenerative functions of Epo in mammals are mediated through receptor-associated Janus kinase 2 and intracellular signaling cascades that modify the transcription of Epo-regulated genes. Signal transducers and activators of transcription (STAT) and phosphoinositol-3-kinase (PI3K) represent key components of two important Epo-induced transduction pathways. Our previous study on insects revealed neuroprotective and regenerative functions of recombinant human Epo (rhEpo) similar to those in mammalian nervous tissues. Here we demonstrate that rhEpo effectively rescues primary cultured locust brain neurons from apoptotic cell death induced by hypoxia or the chemical compound H-7. The Janus kinase inhibitor AG-490 and the STAT inhibitor sc-355797 abolished protective effects of rhEpo on locust brain neurons. In contrast, inhibition of PI3K with LY294002 had no effect on rhEpo-mediated neuroprotection. The results indicate that rhEpo mediates the protection of locust brain neurons through interference with apoptotic pathways by the activation of a Janus kinase-associated receptor and STAT transcription factor(s). The involvement of similar transduction pathways in mammals and insects for the mediation of neuroprotection and support of neural regeneration by Epo indicates that an Epo/Epo receptor-like signaling system with high structural and functional similarity exists in both groups of animals. Epo-like signaling involved in tissue protection appears to be an ancient beneficial function shared by vertebrates and invertebrates.
Collapse
Affiliation(s)
- N Miljus
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany
| | - S Heibeck
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany
| | - M Jarrar
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany
| | - M Micke
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany
| | - D Ostrowski
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany; Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - H Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany; DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - R Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Foudah D, Redondo J, Caldara C, Carini F, Tredici G, Miloso M. Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation. Cell Mol Biol Lett 2013; 18:163-186. [PMID: 23430457 PMCID: PMC6275956 DOI: 10.2478/s11658-013-0083-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 02/14/2013] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.
Collapse
Affiliation(s)
- Dana Foudah
- Department of Neurosciences and Biomedical Technologies, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Juliana Redondo
- Department of Neurosciences and Biomedical Technologies, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Cristina Caldara
- Department of Neurosciences and Biomedical Technologies, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Fabrizio Carini
- Department of Neurosciences and Biomedical Technologies, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Giovanni Tredici
- Department of Neurosciences and Biomedical Technologies, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Mariarosaria Miloso
- Department of Neurosciences and Biomedical Technologies, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| |
Collapse
|
7
|
Ando K, Brion JP, Stygelbout V, Suain V, Authelet M, Dedecker R, Chanut A, Lacor P, Lavaur J, Sazdovitch V, Rogaeva E, Potier MC, Duyckaerts C. Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer's brains. Acta Neuropathol 2013; 125:861-78. [PMID: 23589030 DOI: 10.1007/s00401-013-1111-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/20/2013] [Accepted: 03/24/2013] [Indexed: 02/07/2023]
Abstract
PICALM, a clathrin adaptor protein, plays important roles in clathrin-mediated endocytosis in all cell types. Recently, genome-wide association studies identified single nucleotide polymorphisms in PICALM gene as genetic risk factors for late-onset Alzheimer disease (LOAD). We analysed by western blotting with several anti-PICALM antibodies the pattern of expression of PICALM in human brain extracts. We found that PICALM was abnormally cleaved in AD samples and that the level of the uncleaved 65-75 kDa full-length PICALM species was significantly decreased in AD brains. Cleavage of human PICALM after activation of endogenous calpain or caspase was demonstrated in vitro. Immunohistochemistry revealed that PICALM was associated in situ with neurofibrillary tangles, co-localising with conformationally abnormal and hyperphosphorylated tau in LOAD, familial AD and Down syndrome cases. PHF-tau proteins co-immunoprecipitated with PICALM. PICALM was highly expressed in microglia in LOAD. These observations suggest that PICALM is associated with the development of AD tau pathology. PICALM cleavage could contribute to endocytic dysfunction in AD.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Foudah D, Redondo J, Caldara C, Carini F, Tredici G, Miloso M. Expression of neural markers by undifferentiated rat mesenchymal stem cells. J Biomed Biotechnol 2012; 2012:820821. [PMID: 23093867 PMCID: PMC3474592 DOI: 10.1155/2012/820821] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 11/18/2022] Open
Abstract
The spontaneous expression of neural markers by mesenchymal stem cells (MSCs) has been considered to be a demonstration of MSCs' predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs) at different culture passages (from early to late). rMSCs spontaneously expressed neural markers depending on culture passage, and they were coexpressed or not with the neural progenitor marker nestin. In contrast, the number of rMSCs expressing mesengenic differentiation markers was very low or even completely absent. Moreover, rMSCs at late culture passages were not senescent cells and maintained the MSC immunophenotype. However, their differentiation capabilities were altered. In conclusion, our results support the concept of MSCs as multidifferentiated cells and suggest the existence of immature and mature neurally fated rMSC subpopulations. A possible correlation between specific MSC subpopulations and specific neural lineages could optimize the use of MSCs in cell transplantation therapy for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Dana Foudah
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| | - Juliana Redondo
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| | - Cristina Caldara
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| | - Fabrizio Carini
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| | - Giovanni Tredici
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| | - Mariarosaria Miloso
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| |
Collapse
|
9
|
DNA-damaging drug-induced apoptosis sensitized by N-myc in neuroblastoma cells. Cell Biol Int 2012; 36:331-7. [PMID: 21929510 DOI: 10.1042/cbi20110231] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroblastoma is one of the most common solid tumours in children (8-10% of all malignancies). Over 22% of cases have N-myc amplification associated with aggressively growing neuroblastomas. Oncogene-induced sensitization of cells to apoptosis is an important mechanism for suppression of tumorigenesis. Tumour suppressors often play a critical role in linking oncogenes to apoptotic machinery. For example, activated p53 then targets both intrinsic and extrinsic pathways to promote apoptosis through transcription-dependent and -independent mechanisms. Understanding of the involved mechanisms has important clinical implications. We have employed DNA-damaging drug-induced apoptosis sensitized by oncogene N-myc as a model. DNA damaging drugs trigger high levels of p53, leading to caspase-9 activation in neuroblastoma cells. Inactivation of p53 protects cells from drug-triggered apoptosis sensitized by N-myc. These findings thus define a molecular pathway for mediating DNA-damaging drug-induced apoptosis sensitized by oncogene, and suggest that inactivation of p53 or other components of this apoptotic pathway may confer drug resistance in neuroblastoma cells. The data also suggests that inactivation of apoptotic pathways through co-operating oncogenes may be necessary for the pathogenesis of neuroblastoma with N-myc amplification.
Collapse
|
10
|
Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells. Biomed Pharmacother 2009; 63:254-61. [DOI: 10.1016/j.biopha.2008.07.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/31/2008] [Indexed: 11/22/2022] Open
|
11
|
Lin X, Wang YJ, Li Q, Hou YY, Hong MH, Cao YL, Chi ZQ, Liu JG. Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. FEBS J 2009; 276:2022-36. [PMID: 19292871 DOI: 10.1111/j.1742-4658.2009.06938.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chronic high doses of morphine inhibit the growth of various human cancer cell lines. However, the mechanisms by which such high-dose morphine inhibits cell proliferation and induces cell death are not fully understood. Here we show that c-Jun N-terminal kinase (JNK) plays a pivotal role in high-dose morphine-induced apoptosis of SH-SY5Y cells in a mitochondria-dependent manner. Activation of JNK by morphine led to reactive oxygen species (ROS) generation via the mitochondrial permeability transition pore, because the mPTP inhibitor cyclosporin A significantly inhibited ROS generation. ROS in turn exerted feedback regulation on JNK activation, as shown by the observations that cyclosporin A and the antioxidant N-acetylcysteine significantly inhibited the phosphorylation of JNK induced by morphine. ROS-amplified JNK induced cytochrome c release and caspase-9/3 activation through enhancement of expression of the proapoptotic protein Bim and reduction of expression of the antiapoptotic protein Bcl-2. All of these effects of morphine could be suppressed by the JNK inhibitor SP600125 and N-acetylcysteine. The key role of the JNK pathway in morphine-induced apoptosis was further confirmed by the observation that decreased levels of JNK in cells transfected with specific small interfering RNA resulted in resistance to the proapoptotic effect of morphine. Thus, the present study clearly shows that morphine-induced apoptosis in SH-SY5Y cells involves JNK-dependent activation of the mitochondrial death pathway, and that ROS signaling exerts positive feedback regulation of JNK activity.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009; 23:862-876. [PMID: 19293287 PMCID: PMC2666337 DOI: 10.1101/gad.1767609] [Citation(s) in RCA: 527] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 02/20/2009] [Indexed: 01/07/2023]
Abstract
The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.
Collapse
Affiliation(s)
- Minh T.N. Le
- Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Genome, Singapore 138672
| | - Cathleen Teh
- Fish Developmental Biology, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Ng Shyh-Chang
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Genome, Singapore 138672
| | - Huangming Xie
- Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Genome, Singapore 138672
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Beiyan Zhou
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Vladimir Korzh
- Fish Developmental Biology, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Harvey F. Lodish
- Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bing Lim
- Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Genome, Singapore 138672
- CLS 442 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
13
|
Sanz E, Quintana A, Battaglia V, Toninello A, Hidalgo J, Ambrosio S, Valoti M, Marco JL, Tipton KF, Unzeta M. Anti-apoptotic effect of Mao-B inhibitor PF9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine] is mediated by p53 pathway inhibition in MPP+-treated SH-SY5Y human dopaminergic cells. J Neurochem 2008; 105:2404-17. [DOI: 10.1111/j.1471-4159.2008.05326.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
The role of JDP2 in the differentiation of neuroblastoma SH-SY5Y cells. CHINESE SCIENCE BULLETIN-CHINESE 2008. [DOI: 10.1007/s11434-008-0107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Fu NY, Sukumaran SK, Yu VC. Inhibition of ubiquitin-mediated degradation of MOAP-1 by apoptotic stimuli promotes Bax function in mitochondria. Proc Natl Acad Sci U S A 2007; 104:10051-6. [PMID: 17535899 PMCID: PMC1877986 DOI: 10.1073/pnas.0700007104] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The multidomain proapoptotic protein Bax of the Bcl-2 family is a central regulator for controlling the release of apoptogenic factors from mitochondria. Recent evidence suggests that the Bax-associating protein MOAP-1 may act as an effector for promoting Bax function in mitochondria. Here, we report that MOAP-1 protein is rapidly up-regulated by multiple apoptotic stimuli in mammalian cells. MOAP-1 is a short-lived protein (t(1/2) approximately 25 min) that is constitutively degraded by the ubiquitin-proteasome system. Induction of MOAP-1 by apoptotic stimuli ensues through inhibition of its polyubiquitination process. Elevation of MOAP-1 levels sensitizes cells to apoptotic stimuli and promotes recombinant Bax-mediated cytochrome c release from isolated mitochondria. Mitochondria depleted of short-lived proteins by cycloheximide (CHX) become resistant to Bax-mediated cytochrome c release. Remarkably, incubation of these mitochondria with in vitro-translated MOAP-1 effectively restores the cytochrome c releasing effect of recombinant Bax. We propose that apoptotic stimuli can facilitate the proapoptotic function of Bax in mitochondria through stabilization of MOAP-1.
Collapse
Affiliation(s)
- Nai Yang Fu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive (Proteos), Singapore 138673
| | - Sunil K. Sukumaran
- Institute of Molecular and Cell Biology, 61 Biopolis Drive (Proteos), Singapore 138673
| | - Victor C. Yu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive (Proteos), Singapore 138673
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Armstrong MB, Bian X, Liu Y, Subramanian C, Ratanaproeksa AB, Shao F, Yu VC, Kwok RPS, Opipari AW, Castle VP. Signaling from p53 to NF-kappaB determines the chemotherapy responsiveness of neuroblastoma. Neoplasia 2007; 8:967-77. [PMID: 17132229 DOI: 10.1593/neo.06574] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroblastic (N) type neuroblastoma (NB) is the predominant cell type in NB tumors. Previously, we determined that activated nuclear factor kappaB (NF-kappaB) is required for doxorubicin and etoposide to kill N-type NB cells. This study was undertaken to determine how NF-kappaB is activated by these agents. The results show that p53 protein levels increase within 15 to 30 minutes of treatment. This increase occurs before the degradation of inhibitor of NF-kappaB (I-kappaB) alpha and the NF-kappaB-dependent activation of gene transcription. Moreover, p53 is necessary for NF-kappaB activation because cells with inactive p53 were resistant to NF-kappaB-mediated cell death. This pathway was further defined to show that p53 leads to the activation of MAPK/ERK activity kinase (MEK) 1 through a process that depends on protein synthesis and H-Ras. MEK1, in turn, mediates I-kappaB kinase activation. Together, these results demonstrate for the first time how NF-kappaB is activated in NB cells in response to conventional drugs. Furthermore, these findings provide an explanation as to why H-Ras expression correlates with a favorable prognosis in NB and identify intermediary signaling molecules that are targets for discovering treatments for NB that is resistant to conventional agents.
Collapse
Affiliation(s)
- Michael B Armstrong
- Department of Pediatrics, University of Michigan Medical School and the University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109-0983, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Berkson RG, Hollick JJ, Westwood NJ, Woods JA, Lane DP, Lain S. Pilot screening programme for small molecule activators of p53. Int J Cancer 2005; 115:701-10. [PMID: 15729694 DOI: 10.1002/ijc.20968] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of the p53 tumour suppressor is predicted to have therapeutically beneficial effects. Many current anti-cancer therapies activate the p53 response via DNA damage. Non-genotoxic activation of the p53 pathway would open the way to long-term and possibly prophylactic treatments. We have established a simple protocol to screen small compound libraries for activators of p53-dependent transcription, and to select and characterise the most interesting hits, which include non-genotoxic activators. These compounds or their derivatives are of potential clinical interest. This approach may also lead to the identification of novel p53-activating compound families and possibly to the description of novel molecular pathways regulating p53 activity.
Collapse
Affiliation(s)
- Rachel G Berkson
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Cui H, Li T, Ding HF. Linking of N-Myc to death receptor machinery in neuroblastoma cells. J Biol Chem 2005; 280:9474-81. [PMID: 15632181 DOI: 10.1074/jbc.m410450200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogene MYCN is amplified in aggressive neuroblastomas in which caspase-8, an essential component of death receptor pathways, is frequently inactivated, suggesting a critical role of death receptor-mediated apoptosis in suppression of N-Myc oncogenic activity. Elevated levels of N-Myc sensitize neuroblastoma cells to apoptosis induced by various death ligands. Using tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as a model, we define the mechanism underlying the sensitization effect. In neuroblastoma cells with increased expression of N-Myc, TRAIL triggers high levels of caspase-8 activation and Bid cleavage, leading to release of cytochrome c and Smac/DIABLO from mitochondria. However, the apoptotic process requires Smac/DIABLO, but not cytochrome c-mediated caspase-9 activation. N-Myc sensitizes neuroblastoma cells to TRAIL by up-regulating TRAIL receptor-2/DR5/KILLER and Bid. Moreover, DR5 mRNA is increased after N-Myc overexpression, and the human DR5 promoter contains two noncanonical E-boxes critical for the transcriptional activation by N-Myc. These findings establish a mechanistic link between N-Myc and death receptor machinery, which may serve as a checkpoint to guard the cell from N-Myc-initiated tumorigenesis.
Collapse
Affiliation(s)
- Hongjuan Cui
- Department of Biochemistry and Cancer Biology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | |
Collapse
|
19
|
Rorie CJ, Weissman BE. The Ews/Fli-1 Fusion Gene Changes the Status of p53 in Neuroblastoma Tumor Cell Lines. Cancer Res 2004; 64:7288-95. [PMID: 15492248 DOI: 10.1158/0008-5472.can-04-1610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One hallmark of Ewing's sarcoma/peripheral neuroectodermal tumors is the presence of the Ews/Fli-1 chimeric oncogene. Interestingly, infection of neuroblastoma tumor cell lines with Ews/Fli-1 switches the differentiation program of neuroblastomas to Ewing's sarcoma/peripheral neuroectodermal tumors. Here we examined the status of cytoplasmically sequestered wt-p53 in neuroblastomas after stable expression of Ews/Fli-1. Immunofluorescence revealed that in the neuroblastoma-Ews/Fli-1 infectant cell lines, p53 went from a punctate-pattern of cytoplasmic sequestration to increased nuclear localization. Western blot analysis revealed that PARC was down-regulated in one neuroblastoma cell line but not expressed in the second. Therefore, decreased PARC expression could not fully account for relieving p53 sequestration in the neuroblastoma tumor cells. Neuroblastoma-Ews/Fli-1 infectant cell lines showed marked increases in p53 protein expression without transcriptional up-regulation. Interestingly, p53 was primarily phosphorylated, without activation of its downstream target p21(WAF1). Western blot analysis revealed that whereas MDM2 gene expression does not change, p14(ARF), a negative protein regulator of MDM2, increases. These observations suggest that the downstream p53 pathway may be inactivated as a result of abnormal p53. We also found that p53 has an extended half-life in the neuroblastoma-Ews/Fli-1 infectants despite the retention of a wild-type sequence in neuroblastoma-Ews/Fli-1 infectant cell lines. We then tested the p53 response pathway and observed that the neuroblastoma parent cells responded to genotoxic stress, whereas the neuroblastoma-Ews/Fli-1 infectants did not. These results suggest that Ews/Fli-1 can directly abrogate the p53 pathway to promote tumorigenesis. These studies also provide additional insight into the relationship among the p53 pathway proteins.
Collapse
Affiliation(s)
- Checo J Rorie
- Curriculum in Toxicology and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
20
|
Sengupta S, Wasylyk B. Physiological and pathological consequences of the interactions of the p53 tumor suppressor with the glucocorticoid, androgen, and estrogen receptors. Ann N Y Acad Sci 2004; 1024:54-71. [PMID: 15265773 DOI: 10.1196/annals.1321.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The p53 tumor suppressor plays a key role in protection from the effects of different physiological stresses (DNA damage, hypoxia, transcriptional defects, etc.), and loss of its activity has dire consequences, such as cancer. Its activity is finely tuned through interactions with other important regulatory circuits in the cell. Recently, striking evidence has emerged for crosstalk with another class of important regulators, the steroid hormone receptors, and in particular the glucocorticoid (GR), androgen (AR), and estrogen (ER) receptors. These receptors are important in maintaining homeostasis in response to internal and external stresses (GR) and in the development, growth, and maintenance of the male and female reproductive systems (AR and ER, respectively). We review how p53 interacts closely with these receptors, to the extent that they share the same E3 ubiquitin ligase, the MDM2 oncoprotein. We discuss the different physiological contexts in which such interactions occur, and also how these interactions have been undermined in various pathological situations. We will describe future areas for research, with special emphasis on GR, and how certain common features, such as cytoplasmic anchoring of p53 by the receptors, may become targets for the development of therapeutic interventions. Given the importance of GR in inflammation, erythropoiesis, and autoimmune diseases, and the importance of AR and ER in prostate and breast cancer (respectively), the studies on p53 interactions with the steroid receptors will be an important domain in the near future.
Collapse
Affiliation(s)
- Sagar Sengupta
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Chan SL, Lee MC, Tan KO, Yang LK, Lee ASY, Flotow H, Fu NY, Butler MS, Soejarto DD, Buss AD, Yu VC. Identification of chelerythrine as an inhibitor of BclXL function. J Biol Chem 2003; 278:20453-6. [PMID: 12702731 DOI: 10.1074/jbc.c300138200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of small molecule inhibitors of antiapoptotic Bcl-2 family members has opened up new therapeutic opportunities, while the vast diversity of chemical structures and biological activities of natural products are yet to be systematically exploited. Here we report the identification of chelerythrine as an inhibitor of BclXL-Bak Bcl-2 homology 3 (BH3) domain binding through a high throughput screening of 107,423 extracts derived from natural products. Chelerythrine inhibited the BclXL-Bak BH3 peptide binding with IC50 of 1.5 micro m and displaced Bax, a BH3-containing protein, from BclXL. Mammalian cells treated with chelerythrine underwent apoptosis with characteristic features that suggest involvement of the mitochondrial pathway. While staurosporine, H7, etoposide, and chelerythrine released cytochrome c from mitochondria in intact cells, only chelerythrine released cytochrome c from isolated mitochondria. Furthermore BclXL-overexpressing cells that were completely resistant to apoptotic stimuli used in this study remained sensitive to chelerythrine. Although chelerythrine is widely known as a protein kinase C inhibitor, the mechanism by which it mediates apoptosis remain controversial. Our data suggest that chelerythrine triggers apoptosis through a mechanism that involves direct targeting of Bcl-2 family proteins.
Collapse
Affiliation(s)
- Shing-Leng Chan
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Feng Z, Li L, Ng PY, Porter AG. Neuronal differentiation and protection from nitric oxide-induced apoptosis require c-Jun-dependent expression of NCAM140. Mol Cell Biol 2002; 22:5357-66. [PMID: 12101231 PMCID: PMC133958 DOI: 10.1128/mcb.22.15.5357-5366.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
c-Jun, a crucial component of the dimeric transcription factor activating protein 1 (AP-1), can regulate apoptosis induced by oxidative stress and has been implicated in neuronal differentiation, but the mechanisms are largely unknown. We found that specific inhibition of transcription or stable transfection with cDNA encoding dominant-negative c-Jun sensitized SH-SY5Y neuroblastoma cells (TAM-67 cells) to apoptosis induced by the nitric oxide (NO) donor sodium nitroprusside or SIN-1. TAM-67 cells also became refractory to nerve growth factor (NGF)-induced neuronal differentiation. Dominant-negative c-Jun abolished expression of a 140-kDa neural cell adhesion molecule (NCAM140) and dramatically enhanced the expression of NCAM180 in TAM-67 cells. Inhibition of c-Jun in TAM-67 cells also resulted in a corresponding decrease in the amount of NCAM140 mRNA and an increase in the amount of NCAM180 mRNA. Reexpression of NCAM140 in TAM-67 cells restored NGF-induced neuronal differentiation and resistance to NO-induced apoptosis. Our results show that c-Jun/AP-1, through up-regulation of NCAM140, plays an important role in both NGF-induced neuronal differentiation and resistance to apoptosis induced by NO in neuroblastoma cells. As NCAM140 and NCAM180 are translated from differentially spliced mRNAs transcribed from the same gene, alternative splicing of NCAM pre-mRNA (and consequently the synthesis of the smaller NCAM140 species) appears to be regulated by c-Jun/AP-1.
Collapse
Affiliation(s)
- Zhiwei Feng
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | |
Collapse
|
23
|
Park WC, Son JY, Chung SH, An WG. Apoptosis of MCF7 Cells Treated with PKC Inhibitors and Daunorubicin. Prev Nutr Food Sci 2002. [DOI: 10.3746/jfn.2002.7.2.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Yuen T, Wurmbach E, Ebersole BJ, Ruf F, Pfeffer RL, Sealfon SC. Coupling of GnRH concentration and the GnRH receptor-activated gene program. Mol Endocrinol 2002; 16:1145-53. [PMID: 12040003 DOI: 10.1210/mend.16.6.0853] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The initial waves of gene induction caused by GnRH in the LbetaT2 gonadotrope cell line have recently been identified using microarrays. We now investigate the relationship of the concentration of GnRH to the level of biosynthesis induced. Using an optimized custom cDNA microarray, we show that a large number of genes are induced in a concentration-dependent fashion. Detailed time course studies of the induction of six induced transcripts using quantitative real-time PCR suggest that the amplitude, but not the temporal pattern, depends on the concentration of GnRH. The early genes appear to show a delay in gene induction, followed by a linear phase of increase. The relationship of rate of synthesis and GnRH concentration was studied by mathematical modeling of the induction of two genes, gly96 and tis11. In both cases, only the rates of increase, but not the lag times, are influenced by the concentration of GnRH exposure. Western blot analyses for c-Jun and Egr1 show that the levels of nuclear protein for these transcription factors also depend on the concentration of GnRH. These studies indicate that, despite the complex signaling network connecting the receptor to the activated genes, the biosynthetic rate of RNA polymerase at induced genes is correlated with the concentration of GnRH at the GnRH receptor.
Collapse
Affiliation(s)
- Tony Yuen
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wang H, Yeo SL, Xu J, Xu X, He H, Ronca F, Ting AE, Wang Y, Yu VC, Sim MM. Isolation of streptonigrin and its novel derivative from Micromonospora as inducing agents of p53-dependent cell apoptosis. JOURNAL OF NATURAL PRODUCTS 2002; 65:721-724. [PMID: 12027749 DOI: 10.1021/np0104572] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Streptonigrin (1) and its novel natural derivative 7-(1-methyl-2-oxopropyl)streptonigrin (2) were isolated from an actinomycete strain, Micromonospora sp. IM 2670. The inductions for 1 and 2 are more potent in the human neuroblastoma SH-SY5Y cells that contain wild-type p53 than in SH-SY5Y-5.6 cells that overexpress a dominant negative mutant of p53, thus suggesting that they induce apoptosis through a p53-dependent pathway.
Collapse
Affiliation(s)
- Haishan Wang
- Medicinal and Combinatorial Chemistry Laboratory, Lead Discovery Group, Microbial Collection, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Goh PY, Tan YJ, Lim SP, Lim SG, Tan YH, Hong WJ. The hepatitis C virus core protein interacts with NS5A and activates its caspase-mediated proteolytic cleavage. Virology 2001; 290:224-36. [PMID: 11883187 DOI: 10.1006/viro.2001.1195] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Viral proteins interact with one another during viral replication, assembly, and maturation. Systematic interaction assays of the hepatitis C virus (HCV) proteins using the yeast two-hybrid method have uncovered a novel interaction between core and NS5A. This interaction was confirmed by in vitro binding assays, and coimmunoprecipitation in mammalian cells. Core and NS5A are also colocalized in COS-7 cells. Interestingly, NS5A is cleaved to give specific-size fragments, when core is coexpressed in mammalian cells. Overexpression of core produced many dying and rounded cells and effects such as DNA laddering and the truncation of poly(ADP-ribose) polymerase 1 (PARP1), both indicators of apoptosis. These observations led us to investigate the link between the induction of apoptosis by core and the cleavage of NS5A. The proteolysis of NS5A and these apoptotic events can be inhibited by caspase inhibitor, Z-VAD, indicating that core induces apoptosis and the cleavage of NS5A by caspases. In cells infected by the HCV, core may provide the intrinsic apoptotic signal, which produces truncated forms of NS5A. The biological function of core-NS5A interaction and the downstream effect of NS5A cleavage are discussed.
Collapse
Affiliation(s)
- P Y Goh
- Collaborative Anti-viral Research Group, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
| | | | | | | | | | | |
Collapse
|
27
|
Smith MD, Ensor EA, Kinloch RA, Latchman DS. The POU domain transcription factor Brn-3a protects cortical neurons from apoptosis. Neuroreport 2001; 12:3183-8. [PMID: 11711852 DOI: 10.1097/00001756-200110290-00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have demonstrated previously that exogenously expressed Brn-3a is capable of protecting neurons of the peripheral nervous system against apoptosis. In these previous studies Brn-3a showed a degree of neuronal sub-type specificity, in that while it could promote survival in NGF-dependent sensory neurons, no effect was observed in NGF-dependent neurons of the sympathetic nervous system. In this report, we show that Brn-3a delivered using a herpes simplex virus is capable of protecting cultures of rat cerebrocortical neurons of the central nervous system against two types of cell death stimuli, including glutamate neurotoxicity. Hence the protective effect of Brn-3a is not confined to neurons of the peripheral nervous system but can also occur in neurons of the CNS.
Collapse
Affiliation(s)
- M D Smith
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | |
Collapse
|
28
|
Florescu-Zorila S, Shabana AH, Oboeuf M, Martin N, Forest N. H-7 and fetal calf serum (FCS) act synergistically to increase apoptosis in the KB line of human oral carcinoma cells. Tissue Cell 2001; 33:368-75. [PMID: 11521953 DOI: 10.1054/tice.2001.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is a high incidence of oral squamous cell carcinoma (SCC) worldwide. The survival rate is among the lowest of the major cancers and has not improved significantly over the past two decades. The KB line of human oral carcinoma cells is a useful experimental system for studies of the biology of oral SCC. In a previous study, we reported inhibition of KB cell proliferation and stimulation of desmosome formation in confluent cultures treated with 20 microM H-7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine). In the present study, the effects of this protein kinase C (PKC) inhibitor on the survival of KB cells were investigated. Apoptotic cells were detected using a combination of Hoechst 33258 nuclear stain, TUNEL technique and ultrastructural analysis. Our results indicated that H-7 significantly increased apoptosis in KB cells in a dose-dependent manner. Maximal stimulation occurred at 100 microM, the highest dose of H-7 tested. Apoptotic cells exhibited nuclear fragmentation, chromatin condensation and apoptotic bodies. Interestingly, H-7 and fetal calf serum (FCS) acted synergistically to increase apoptosis in KB cells, suggesting that there is a serum activated subpopulation of H-7 target cells in the cultures. The underlying mechanism of activation remains to be elucidated. Our study suggests that the PKC inhibitor H-7 is a potentially useful cytostatic agent for oral carcinoma cells.
Collapse
Affiliation(s)
- S Florescu-Zorila
- Laboratoire de Biologie-Odontologie, Faculté de Chirurgie Dentaire, Université Paris 7, Institut Biomedical des Cordeliers, France.
| | | | | | | | | |
Collapse
|
29
|
Chung HY, Choi HR, Park HJ, Choi JS, Choi WC. Peroxynitrite scavenging and cytoprotective activity of 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether from the marine alga Symphyocladia latiuscula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:3614-21. [PMID: 11513637 DOI: 10.1021/jf0101206] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Peroxynitrite (ONOO(-)), formed from the reaction of superoxide (O(2)*(-)) and nitric oxide (*NO), is a cytotoxic species that can oxidize several cellular components such as proteins, lipids, and DNA. It has been implicated in diseases such as Alzheimer's disease, rheumatoid arthritis, cancer, and atherosclerosis. Due to the lack of endogenous enzymes responsible for ONOO(-) inactivation, developing a specific ONOO(-) scavenger is of considerable importance. The aim of this study was to evaluate the ability of marine natural products to scavenge ONOO(-) and to protect cells against ONOO(-). Methanolic extracts of 17 marine alga were tested for their ONOO(-) scavenging activity. Among them, Symphyocladia latiuscula showed the potent scavenging activity. CH(2)CH(2) fraction was partitioned with CH(2)CH(2) following n-hexanal extraction from the methanol extract of S. latiuscula. It was highly effective for ONOO(-) scavenging activity. Further analysis of the active fractionated extract identified 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) as a potent ONOO(-) scavenger. The data demonstrated that TDB led to decreased ONOO(-)-mediated nitration of tyrosine through electron donation. TDB showed significant inhibition on nitration of bovine serum albumin and low-density lipoprotein by ONOO(-) in a dose-dependent manner. It also provided cytoprotection from cell damage induced by ONOO(-). TDB can be developed as an effective peroxynitrite scavenger for the prevention of the involved diseases.
Collapse
Affiliation(s)
- H Y Chung
- Department of Pharmacy, Pusan National University, Pusan 609-735, Korea.
| | | | | | | | | |
Collapse
|
30
|
Gao J, Richardson DR. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression. Blood 2001; 98:842-50. [PMID: 11468187 DOI: 10.1182/blood.v98.3.842] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some chelators of the pyridoxal isonicotinoyl hydrazone class have antiproliferative activity that is far greater than desferrioxamine (DFO). In this study, DFO was compared with one of the most active chelators (311) on the expression of molecules that play key roles in cell-cycle control. This was vital for understanding the role of iron (Fe) in cell-cycle progression and for designing chelators to treat cancer. Incubating cells with DFO, and especially 311, resulted in a decrease in the hyperphosphorylated form of the retinoblastoma susceptibility gene product (pRb). Chelators also decreased cyclins D1, D2, and D3, which bind with cyclin-dependent kinase 4 (cdk4) to phosphorylate pRb. The levels of cdk2 also decreased after incubation with DFO, and especially 311, which may be important for explaining the decrease in hyperphosphorylated pRb. Cyclins A and B1 were also decreased after incubation with 311 and, to a lesser extent, DFO. In contrast, cyclin E levels increased. These effects were prevented by presaturating the chelators with Fe. In contrast to DFO and 311, the ribonucleotide reductase inhibitor hydroxyurea increased the expression of all cyclins. Hence, the effect of chelators on cyclin expression was not due to their ability to inhibit ribonucleotide reductase. Although chelators induced a marked increase in WAF1 and GADD45 mRNA transcripts, there was no appreciable increase in their protein levels. Failure to translate these cell-cycle inhibitors may contribute to dysregulation of the cell cycle after exposure to chelators. (Blood. 2001;98:842-850)
Collapse
Affiliation(s)
- J Gao
- Iron Metabolism and Chelation Group, The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, New South Wales, 2050 Australia
| | | |
Collapse
|
31
|
Tweddle DA, Malcolm AJ, Cole M, Pearson AD, Lunec J. p53 cellular localization and function in neuroblastoma: evidence for defective G(1) arrest despite WAF1 induction in MYCN-amplified cells. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:2067-77. [PMID: 11395384 PMCID: PMC1892004 DOI: 10.1016/s0002-9440(10)64678-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study investigated the hypothesis that p53 accumulation in neuroblastoma, in the absence of mutation, is associated with functional inactivation, which interferes with downstream mediators of p53 function. To test this hypothesis, p53 expression, location, and functional integrity was examined in neuroblastoma by irradiating 6 neuroblastoma cell lines and studying the effects on p53 transcriptional function, cell cycle arrest, and induction of apoptosis, together with the transcriptional function of p53 after irradiation in three ex vivo primary, untreated neuroblastoma tumors. p53 sequencing showed five neuroblastoma cell lines, two of which were MYCN-amplified, and that all of the tumors were wild-type for p53. p53 was found to be predominantly nuclear before and after irradiation and to up-regulate the p53 responsive genes WAF1 and MDM2 in wild-type p53 cell lines and a poorly-differentiated neuroblastoma, but not a differentiating neuroblastoma or the ganglioneuroblastoma part of a nodular ganglioneuroblastoma in short term culture. This suggests intact p53 transcriptional activity in proliferating neuroblastoma. Irradiation of wild-type p53 neuroblastoma cell lines led to G(1) cell cycle arrest in cell lines without MYCN amplification, but not in those with MYCN amplification, despite induction of WAF1. This suggests MYCN amplification may alter downstream mediators of p53 function in neuroblastoma.
Collapse
Affiliation(s)
- D A Tweddle
- Cancer Research Unit, The Medical School, University of Newcastle, Newcastle-upon-Tyne, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Tieu K, Ashe PC, Zuo DM, Yu PH. Inhibition of 6-hydroxydopamine-induced p53 expression and survival of neuroblastoma cells following interaction with astrocytes. Neuroscience 2001; 103:125-32. [PMID: 11311793 DOI: 10.1016/s0306-4522(00)00565-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The neurotoxin 6-hydroxydopamine has been used to induce selective dopaminergic cell death in animal models of Parkinson's disease. The response of neurons to this toxin has been shown to be greatly influenced by astrocytes. Our laboratory reported previously that human neuroblastoma SH-SY5Y cells became more resistant to the toxicity of 6-hydroxydopamine when co-cultured with mouse astrocytes. This enhanced tolerance required direct and specific adhesion between SH-SY5Y cells and astrocytes. We hypothesized that this interaction led to biochemical changes in SH-SY5Y cells, thereby protecting these cells from toxicity. To study these changes, we again co-cultured SH-SY5Y cells with astrocytes and treated them with 6-hydroxydopamine. An optimized condition of trypsin treatment was employed to separate SH-SY5Y cells from astrocytes quickly. Western blot analysis demonstrated that 6-hydroxydopamine significantly increased p53 protein in monolayer SH-SY5Y cells grown in either regular medium or conditioned medium from astrocytes. This change, however, was not observed in the group co-cultured with astrocytes. Data obtained from the ribonuclease protection assay indicated that similar changes also occurred at the transcriptional level. The enhanced resistance of the co-cultured SH-SY5Y cells to the toxicity of 6-hydroxydopamine is attributed to the ability of astrocytes to prevent the increase of p53 induced by this toxin. This study demonstrates the significance of the interaction between astrocytes and neurons when they are exposed to neurotoxins.
Collapse
Affiliation(s)
- K Tieu
- Neuropsychiatry Research Unit, Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E4
| | | | | | | |
Collapse
|
33
|
Tan KO, Tan KM, Chan SL, Yee KS, Bevort M, Ang KC, Yu VC. MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J Biol Chem 2001; 276:2802-7. [PMID: 11060313 DOI: 10.1074/jbc.m008955200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel Bax-associating protein, named MAP-1 (Modulator of Apoptosis), has been identified in a yeast two-hybrid screen. MAP-1 contains a BH3-like (BH: Bcl-2 homology) motif and mediates caspase-dependent apoptosis in mammalian cells when overexpressed. MAP-1 homodimerizes and associates with the proapoptotic Bax and the prosurvival Bcl-2 and Bcl-X(L) of the Bcl-2 family in vitro and in vivo in mammalian cells. Mutagenesis analyses revealed that the BH3-like domain in MAP-1 is not required for its association with Bcl-X(L) but is required for association with Bax and for mediating apoptosis. Interestingly, in contrast to other Bax-associating proteins such as Bcl-X(L) and Bid, which require the BH3 and BH1 domains of Bax, respectively, for binding, the binding of MAP-1 to Bax appears to require all three BH domains (BH1, BH2, and BH3) of Bax, because point mutation of the critical amino acid in any one of these domains is sufficient to abolish its binding to MAP-1. These data suggest that MAP-1 mediates apoptosis through a mechanism that involves binding to Bax.
Collapse
Affiliation(s)
- K O Tan
- Institute of Molecular and Cell Biology, 30 Medical Dr., Singapore 117609, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
34
|
López E, Ferrer I. Staurosporine- and H-7-induced cell death in SH-SY5Y neuroblastoma cells is associated with caspase-2 and caspase-3 activation, but not with activation of the FAS/FAS-L-caspase-8 signaling pathway. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:61-7. [PMID: 11146107 DOI: 10.1016/s0169-328x(00)00235-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Apoptotic cell death is induced in SH-SY5Y neuroblastoma cells following exposure to the protein kinase inhibitors staurosporine (100 nM) and 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine: H-7 (100 microM). This is associated with reduced levels of PARP 117 kDa and with the concomitant formation of PARP-cleaved products of 89 kDa that result from caspase-3 activation. The process is inhibited with DEVD-fmk, a potent caspase-3 (and caspase-8) inhibitor, thus indicating that staurosporine- and H-7-induced cell death in SH-SY5Y is mediated by caspase activation. Increased caspase-2- and caspase-3-like activities, but not caspase-9-like activity, were demonstrated by monitoring proteolysis of the corresponding colorimetric substrates. Caspase-2 activity peaked at 6 h, whereas caspase-3 peaked at 12 h in parallel with the maximal loss of cell viability. No modifications in the expression levels of Fas and Fas-L were observed by Western blotting. Furthermore, no activation of caspase-8 was elicited by colorimetric assays through the process of apoptosis of neuroblastoma cells. These findings indicate that the Fas/Fas-L-caspase-8 pathway of cell death signaling is not involved in staurosporine- and H-7-induced apoptosis in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- E López
- Unitat de Neuropatologia, Department de Biologia Cel.lular i Anatomia Patològica, Universitat de Barcelona, Campus de Bellvitge, 08907 Hospitalet de Llobregat, Llobregat, Spain
| | | |
Collapse
|
35
|
Deguin-Chambon V, Vacher M, Jullien M, May E, Bourdon JC. Direct transactivation of c-Ha-Ras gene by p53: evidence for its involvement in p53 transactivation activity and p53-mediated apoptosis. Oncogene 2000; 19:5831-41. [PMID: 11127813 DOI: 10.1038/sj.onc.1203960] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p53 protein is a sequence-specific transcriptional activator which induces the expression of a number of cellular genes involved in different metabolic pathways. We report that the computer-selected sequence in human and mouse C-Ha-Ras gene confers to a reporter gene the ability to be directly transactivated by wild-type p53 either overexpressed or activated in response to a cellular stress. By analysing human transformed cell lines, we showed, at both mRNA and protein level, that the endogenous c-Ha-Ras gene expression is positively regulated by wt p53 protein. The stimulation of c-Ha-Ras gene expression in Saos-2Ts cells by a temperature shift down to the permissive temperature for the p53-wt conformation is associated with a significant increase in the activated form of p21c-Ha-Ras protein. Furthermore, in human transformed cell lines, the transient expression of a dominant interfering mutant of c-Ha-Ras greatly reduced the ability of p53 to induce apoptosis and inhibited the p53-dependent transactivation. This is due, at least in part, to a decrease in the protein (but not mRNA) level of the transiently expressed p53, indicating that inactivation of p21c-Ha-Ras signalling pathways led to a specific degradation of p53 protein. We therefore suggest that, by inducing c-Ha-Ras, p53 activates a positive feedback loop that counteracts the negative feedback loop mediated by Mdm2.
Collapse
Affiliation(s)
- V Deguin-Chambon
- Commissariat a l'Energie Atomique, Laboratoire de Cancérogenèse Moléculaire, UMR217 CEA-CNRS, Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
36
|
Sengupta S, Vonesch JL, Waltzinger C, Zheng H, Wasylyk B. Negative cross-talk between p53 and the glucocorticoid receptor and its role in neuroblastoma cells. EMBO J 2000; 19:6051-64. [PMID: 11080152 PMCID: PMC305812 DOI: 10.1093/emboj/19.22.6051] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tumour suppressor p53 and the glucocorticoid receptor (GR) respond to different types of stress. We found that dexamethasone-activated endogenous and exogenous GR inhibit p53-dependent functions, including transactivation, up- (Bax and p21(WAF1/CIP1)) and down- (Bcl2) regulation of endogenous genes, cell cycle arrest and apoptosis. GR forms a complex with p53 in vivo, resulting in cytoplasmic sequestration of both p53 and GR. In neuroblastoma (NB) cells, cytoplasmic retention and inactivation of wild-type p53 involves GR. p53 and GR form a complex that is dissociated by GR antagonists, resulting in accumulation of p53 in the nucleus, activation of p53-responsive genes, growth arrest and apoptosis. These results suggest that molecules that efficiently disrupt GR-p53 interactions would have a therapeutic potential for the treatment of neuroblastoma and perhaps other diseases in which p53 is sequestered by GR.
Collapse
Affiliation(s)
- S Sengupta
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 163, 67404 Illkirch cedex, France
| | | | | | | | | |
Collapse
|
37
|
de la Monte SM, Ganju N, Banerjee K, Brown NV, Luong T, Wands JR. Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase. Alcohol Clin Exp Res 2000. [PMID: 10832914 DOI: 10.1111/j.1530-0277.2000.tb02044.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ethanol inhibition of insulin signaling pathways may contribute to impaired central nervous system (CNS) development in the fetal alcohol syndrome and brain atrophy associated with alcoholic neurodegeneration. Previous studies demonstrated ethanol inhibition of insulin-stimulated growth in PNET2 CNS-derived proliferative (immature) neuronal cells. We now provide evidence that the growth-inhibitory effect of ethanol in insulin-stimulated PNET2 cells is partly due to apoptosis. METHODS Control and ethanol-treated PNET2 cells were stimulated with insulin and analyzed for viability, apoptosis, activation of pro-apoptosis and survival gene expression and signaling pathways, and evidence of caspase activation. RESULTS Ethanol-treated PNET2 neuronal cells exhibited increased apoptosis mediated by increased levels of p53 and phospho-amino-terminal c-jun kinase (phospho-JNK), and reduced levels of Bcl-2, phosphoinositol 3-kinase (PI3 K), and intact (approximately 116 kD) poly (ADP ribose) polymerase (PARP), a deoxyribonucleic acid repair enzyme and important substrate for caspase 3. Partial rescue from ethanol-induced neuronal cell death was effected by culturing the cells in medium that contained 2% fetal calf serum instead of insulin, or insulin plus either insulin-like growth factor type 1 or nerve growth factor. The resulting enhanced viability was associated with reduced levels of p53 and phospho-JNK and increased levels of PI3 K and intact PARP. CONCLUSIONS The findings suggest that ethanol-induced apoptosis of insulin-stimulated neuronal cells can be reduced by activating PI3 K and inhibiting pro-apoptosis gene expression and intracellular signaling through non-insulin-dependent pathways.
Collapse
Affiliation(s)
- S M de la Monte
- MGH East Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Chan SL, Yee KS, Tan KM, Yu VC. The Caenorhabditis elegans sex determination protein FEM-1 is a CED-3 substrate that associates with CED-4 and mediates apoptosis in mammalian cells. J Biol Chem 2000; 275:17925-8. [PMID: 10764728 DOI: 10.1074/jbc.c000146200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sex-specific elimination of cells by apoptosis plays a role in sex determination in Caenorhabditis elegans. Recently, a mammalian pro-apoptotic protein named F1Aalpha has been identified. F1Aalpha shares extensive homology throughout the entire protein with the C. elegans protein, FEM-1, which is essential for achieving all aspects of the male phenotype in the nematode. In this report, the role of FEM-1 in apoptosis was investigated. Overexpression of FEM-1 induces caspase-dependent apoptosis in mammalian cells. FEM-1 is cleaved in vitro by the C. elegans caspase, CED-3, generating an N-terminal cleavage product that corresponds to the minimal effector domain for apoptosis. Furthermore, CED-4 associates with FEM-1 in vitro and in vivo in mammalian cells and potentiates FEM-1-mediated apoptosis. Similarly, Apaf-1, the mammalian homologue of CED-4 was found to associate with F1Aalpha. These data suggest that FEM-1 and F1Aalpha may mediate apoptosis by communicating directly with the core machinery of apoptosis.
Collapse
Affiliation(s)
- S L Chan
- Institute of Molecular and Cell Biology, 30 Medical Dr., Singapore 117609, Republic of Singapore
| | | | | | | |
Collapse
|
39
|
Smart P, Lane EB, Lane DP, Midgley C, Vojtesek B, Laín S. Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene 1999; 18:7378-86. [PMID: 10602494 DOI: 10.1038/sj.onc.1203260] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p53 tumour suppressor protein levels and p53-dependent transcriptional activity have been recently shown to increase in cells treated with leptomycin B (LMB), an inhibitor of nuclear export. Experiments presented here show that LMB treatment leads to growth arrest and a senescence-like phenotype in human normal fibroblast cultures. This effect is reversible after removal of the drug and further passage by trypsinization. Instead, LMB has a strong cytotoxic effect on human neuroblastoma cell lines even at nanomolar concentrations. In both these cell types the effects of LMB are attenuated when the activity of the endogenous wild type p53 protein is abrogated by overexpression of a dominant negative p53 mutant. We conclude that the induction of the p53 response by LMB plays an important role in the effects of this drug on cultured cells.
Collapse
Affiliation(s)
- P Smart
- CRC Cell Structure Research Group, Department of Anatomy and Physiology, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
40
|
Chan SL, Tan KO, Zhang L, Yee KS, Ronca F, Chan MY, Yu VC. F1Aalpha, a death receptor-binding protein homologous to the Caenorhabditis elegans sex-determining protein, FEM-1, is a caspase substrate that mediates apoptosis. J Biol Chem 1999; 274:32461-32468. [PMID: 10542291 DOI: 10.1074/jbc.274.45.32461] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is an evolutionarily conserved process that is critical for tissue homeostasis and development including sex determination in essentially all multicellular organisms. Here, we report the cloning of an ankyrin repeat-containing protein, termed F1Aalpha, in a yeast two-hybrid screen using the cytoplasmic domain of Fas (CD95/APO-1) as bait. Amino acid sequence analysis indicates that F1Aalpha has extensive homology to the sex-determining protein FEM-1 of the Caenorhabditis elegans, which is required for the development of all aspects of the male phenotype. F1Aalpha associates with the cytoplasmic domains of Fas and tumor necrosis factor receptor 1, two prototype members of the "death receptor" family. The F1Aalpha protein also oligomerizes. Overexpression of F1Aalpha induces apoptosis in mammalian cells, and co-expression of Bcl-XL or the dominant negative mutants of either FADD or caspase-9 blocks this effect. Deletion analysis revealed the center region of F1Aalpha, including a cluster of five ankyrin repeats to be necessary and sufficient for maximum apoptotic activity, and the N-terminal region appears to regulate negatively this activity. Furthermore, F1Aalpha is cleaved by a caspase-3-like protease at Asp(342), and the cleavage-resistant mutant is unable to induce apoptosis upon overexpression. F1Aalpha is therefore a member of a growing family of death receptor-associated proteins that mediates apoptosis.
Collapse
Affiliation(s)
- S L Chan
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
41
|
Tieu K, Zuo D, Yu P. Differential effects of staurosporine and retinoic acid on the vulnerability of the SH-SY5Y neuroblastoma cells: Involvement of Bcl-2 and p53 proteins. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991101)58:3<426::aid-jnr8>3.0.co;2-f] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Tan KO, Tan KM, Yu VC. A novel BH3-like domain in BID is required for intramolecular interaction and autoinhibition of pro-apoptotic activity. J Biol Chem 1999; 274:23687-90. [PMID: 10446124 DOI: 10.1074/jbc.274.34.23687] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon activation of the Fas apoptotic signaling pathway, Bid, a "BH3 domain-only" pro-apoptotic molecule, is cleaved by caspase-8 into a 6.5-kDa N-terminal and a 15-kDa BH3 domain-containing C-terminal fragment, referred to as t(n)-Bid and t(c)-Bid, respectively. t(c)-Bid is a more potent inducer of apoptosis than full-length Bid, suggesting that the N-terminal region of Bid has an inhibitory effect on its pro-apoptotic activity. Here, we report the identification of a novel BH3-like motif (amino acid residues 35-43) in t(n)-Bid. Although Bid does not homodimerize, t(n)-Bid is able to associate avidly with t(c)-Bid. Site-directed mutagenesis revealed that both the novel BH3-like and BH3 domains are necessary for direct binding between t(n)-Bid and t(c)-Bid. While full-length Bid does not associate with t(n)-Bid, substitution of Leu(35), a critical residue in mediating t(n)-Bid/t(c)-Bid interaction, with Ala in full-length Bid is sufficient to establish Bid/t(n)-Bid interaction. Interestingly, the L35A Bid mutant is as effective as t(c)-Bid in inducing apoptosis and binding Bcl-X(L). We propose that the intramolecular interaction involving the BH3-like and BH3 domains serves to regulate the pro-apoptotic potential of Bid.
Collapse
Affiliation(s)
- K O Tan
- Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | |
Collapse
|
43
|
Ronca F, Yee KS, Yu VC. Retinoic acid confers resistance to p53-dependent apoptosis in SH-SY5Y neuroblastoma cells by modulating nuclear import of p53. J Biol Chem 1999; 274:18128-34. [PMID: 10364268 DOI: 10.1074/jbc.274.25.18128] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many cell lines derived from neuroblastoma (NB) carry the wild-type p53 gene with a p53-dependent apoptotic pathway that is responsive to DNA damaging agents. A recent study has demonstrated that retinoic acid (RA) pretreatment of NB cells promotes chemoresistance to apoptosis induced by chemotherapeutic agents. We examine here the possible contribution of the p53 pathway to the chemoresistance response associated with the RA treatment in NB cells. Upon treatment with RA (1-10 microM) for 4 days, the human NB cells, SH-SY5Y, developed resistance selectively to p53-dependent apoptotic stimuli including gamma-irradiation, etoposide, and 1-(5-isoquinolinyl sulfonyl)-2-methylpiperazine (H-7). Interestingly, RA affected the ability of H-7 to induce nuclear accumulation of the p53 protein without altering its effect on elevating the steady-state level of p53, suggesting that drug-induced up-regulation and nuclear accumulation of the wild-type p53 protein are separable processes. The modulation of nuclear import of p53 protein by RA may thus represent a potential mechanism by which certain tumor cells with the wild-type p53 gene develop resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- F Ronca
- Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | |
Collapse
|
44
|
Abstract
BACKGROUND The importance of free radical homeostasis and apoptosis in normal and diseased hearts and their interrelationships are poorly defined. We tested whether reactive oxygen species can trigger apoptosis in cardiomyocytes, and we explored the underlying pathways. METHODS AND RESULTS A cell culture model of isolated cardiac cells and different reactive oxygen species (ROS)-generating systems were used. Apoptosis became evident when cardiomyocytes were exposed to either H2O2 or superoxide anion (O2-). Both H2O2- and O2--induced apoptosis of cardiomyocytes were associated with an increase in p53 protein content, whereas protein levels of Bax and Bcl-2 were unaltered. H2O2, but not O2-, induced an increase in the protein content of Bad. Furthermore, H2O2 elicited translocation of Bax and Bad from cytosol to mitochondria, where these factors formed heterodimers with Bcl-2, which was followed by the release of cytochrome c, activation of CPP32, and cleavage of poly(ADP-ribose) polymerase. Interestingly, this pathway was not activated by O2-. Instead, O2- used Mch2alpha to promote the apoptotic pathway, as revealed by the activation of Mch2alpha and the cleavage of its substrate, lamin A. CONCLUSIONS Taken together, these results indicate that ROS may play an important pathophysiological role in cardiac diseases characterized by apoptotic cell death and suggest that different ROS-induced activations of the apoptotic cell death program in cardiomyocytes involve distinct signaling pathways.
Collapse
Affiliation(s)
- R von Harsdorf
- Department of Cardiology, Franz Volhard Clinic, Humboldt-University, Berlin, Germany.
| | | | | |
Collapse
|
45
|
Blattner C, Sparks A, Lane D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol 1999; 19:3704-13. [PMID: 10207094 PMCID: PMC84185 DOI: 10.1128/mcb.19.5.3704] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factor E2F-1 directs the expression of genes that induce or regulate cell division, and a role for E2F-1 in driving cells into apoptosis is the subject of intense discussion. Recently it has been shown that E2F-1 binds and coprecipitates with the mouse double-minute chromosome 2 protein (Mdm2). A domain of E2F-1 (amino acids 390 to 406) shows striking similarity to the Mdm2 binding domain of the tumor suppressor protein p53. It is known that interaction of Mdm2 with p53 through this domain is required for Mdm2-dependent degradation of p53. We show here that E2F-1 protein is upregulated in response to DNA damage. The kinetics of induction are dependent upon the source of DNA damage, i.e., fast and transient after irradiation with X rays and delayed and stable after irradiation with UVC, and thus match the kinetics of p53 induction in response to DNA damage. We show further that E2F-1 is also upregulated by treatment with the transcription inhibitor actinomycin D and with the kinase inhibitor DRB, as well as by high concentrations of the kinase inhibitor H7, all conditions which also upregulate p53. In our experiments we were not able to see an increase in E2F-1 RNA production but did find an increase in protein stability in UVC-irradiated cells. Upregulation of E2F-1 in response to DNA damage seems to require the presence of wild-type p53, since we did not observe an increase in the level of E2F-1 protein in several cell lines which possess mutated p53. Previous experiments showed that p53 is upregulated after microinjection of an antibody which binds to a domain of Mdm2 that is required for the interaction of Mdm2 with p53. Microinjection of the same antibody also increases the expression of E2F-1 protein, while microinjection of a control antibody does not. Furthermore, microinjection of Mdm2 antisense oligonucleotides upregulates E2F-1 protein, while microinjection of an unrelated oligonucleotide does not. These data suggest that E2F-1 is upregulated in a similar way to p53 in response to DNA damage and that Mdm2 appears to play a major role in this pathway.
Collapse
Affiliation(s)
- C Blattner
- Cancer Research Campaign Cell Transformation Group, Department of Biochemistry, Medical Sciences Institute, University of Dundee, Dundee DD1 4HN, United Kingdom
| | | | | |
Collapse
|
46
|
McGinnis KM, Gnegy ME, Wang KK. Endogenous bax translocation in SH-SY5Y human neuroblastoma cells and cerebellar granule neurons undergoing apoptosis. J Neurochem 1999; 72:1899-906. [PMID: 10217266 DOI: 10.1046/j.1471-4159.1999.0721899.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes at the mitochondria are an early, required step in apoptosis in various cell types. We used western blot analysis to demonstrate that the proapoptotic protein Bax translocated from the cytosolic to the mitochondrial fraction in SH-SY5Y human neuroblastoma cells undergoing staurosporine- or EGTA-mediated apoptosis. Levels of mitochondrial Bax increased 15 min after staurosporine treatment. In EGTA-treated cells, increased levels of mitochondrial Bax were seen at 4 h, consistent with a slower onset of apoptosis in EGTA versus staurosporine treatments. We also demonstrate the concomitant translocation of cytochrome c from the mitochondrial to the cytosolic fractions. We correlated these translocations with changes in caspase-3-like activity. An increase in caspase-3-like activity was evident 2 h after staurosporine treatment. Inhibition of the mitochondrial permeability transition had no effect on Bax translocation or caspase-3-like activity in staurosporine-treated SH-SY5Y cells. In primary cultures of cerebellar granule neurons undergoing low K(+)-mediated apoptosis, Bax translocation to the mitochondrial fraction was evident at 3 h. Cytochrome c release into the cytosol was not significant until 8 h after treatment. These data support a model of apoptosis in which Bax acts directly at the mitochondria to allow the release of cytochrome c.
Collapse
Affiliation(s)
- K M McGinnis
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | |
Collapse
|
47
|
Abstract
Lithium has neuroprotective effects in a number of model systems which may contribute to the therapeutic effects of lithium in mood disorders. Because the tumor suppressor p53 is linked to cell death, we tested whether lithium administration to human neuroblastoma SH-SY5Y cells modulated the activation of p53. After treatment of cells with H7 (25, 50, and 75 microM), nuclear p53 levels were increased to 464, 816 and 1079% of basal levels, respectively. A 24 h pretreatment with 5 mM lithium reduced these increases by 69, 61 and 28%, respectively. Pretreatment with 2 mM lithium for 1 or 14 days reduced the 25 microM H7-induced elevations of nuclear p53 by 40 and 70%, respectively, and even a 14-day pretreatment with 1 mM lithium caused a significant 16% reduction. Since increased nuclear p53 is a critical intermediate step in many signaling processes that culminate in cell death, attenuation of p53 activation by lithium reveals a mechanism by which lithium may support neuronal survival.
Collapse
Affiliation(s)
- R Lu
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 35294-0017, USA
| | | | | |
Collapse
|
48
|
Chakravarthy BR, Walker T, Rasquinha I, Hill IE, MacManus JP. Activation of DNA-dependent protein kinase may play a role in apoptosis of human neuroblastoma cells. J Neurochem 1999; 72:933-42. [PMID: 10037464 DOI: 10.1046/j.1471-4159.1999.0720933.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Treating SH-SY5Y human neuroblastoma cells with 1 microM staurosporine resulted in a three- to fourfold higher DNA-dependent protein kinase (DNA-PK) activity compared with untreated cells. Time course studies revealed a biphasic effect of staurosporine on DNA-PK activity: an initial increase that peaked by 4 h and a rapid decline that reached approximately 5-10% that of untreated cells by 24 h of treatment. Staurosporine induced apoptosis in these cells as determined by the appearance of internucleosomal DNA fragmentation and punctate nuclear morphology. The maximal stimulation of DNA-PK activity preceded significant morphological changes that occurred between 4 and 8 h (40% of total number of cells) and increased with time, reaching 70% by 48 h. Staurosporine had no effect on caspase-1 activity but stimulated caspase-3 activity by 10-15-fold in a time-dependent manner, similar to morphological changes. Similar time-dependent changes in DNA-PK activity, morphology, and DNA fragmentation occurred when the cells were exposed to either 100 microM ceramide or UV radiation. In all these cases the increase in DNA-PK activity preceded the appearance of apoptotic markers, whereas the loss in activity was coincident with cell death. A cell-permeable inhibitor of DNA-PK, OK-1035, significantly reduced staurosporine-induced punctate nuclear morphology and DNA fragmentation. Collectively, these results suggest an intriguing possibility that activation of DNA-PK may be involved with the induction of apoptotic cell death.
Collapse
Affiliation(s)
- B R Chakravarthy
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | | | | | |
Collapse
|
49
|
Adamson L, Axelsson K, Blomberg I, James S, Walum E. Apoptosis in neuronal cell lines. Toxicol In Vitro 1998; 12:567-8. [PMID: 20654442 DOI: 10.1016/s0887-2333(98)00037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L Adamson
- Cell & Molecular Biology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
50
|
Nagano M, Suzuki H, Ui-Tei K, Sato S, Miyake T, Miyata Y. H-7-induced apoptosis in the cells of a Drosophila neuronal cell line through affecting unidentified H-7-sensitive substance(s). Neurosci Res 1998; 31:113-21. [PMID: 9700717 DOI: 10.1016/s0168-0102(98)00030-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to reveal underlying mechanisms of apoptosis in neurons using clonal neuronal cells, ML-DmBG2-c2, derived from Drosophila larval central nervous system 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7), a protein kinase inhibitor, induced cell death with typical features of apoptosis such as internucleosomal DNA fragmentation, nuclear condensation and apoptotic bodies in the cells. Though H-7 is known to inhibit cAMP-dependent protein kinase (PKA), protein kinase C (PKC), cGMP-dependent protein kinase (PKG), myosin light chain kinase (MLCK), and casein kinase I (CKI), specific inhibitors for these kinases such as H-89, calphostin C, ML-9, or CKI-7 did not induce apoptosis in the cells. Other kinases such as tyrosine kinase. PI3-kinase and Ca2+/CaM kinase II so far examined in the present study were interpreted not to be involved in the apoptotic cascade. Therefore, it is concluded that an H-7-sensitive substance(s) other than these kinases is responsible for the apoptosis in the neuronal cells. Caspase inhibitors prevented apoptosis in the cells treated with H-7. These results suggest that caspase(s) is involved downstream of the H-7-sensitive point in the cascade of the apoptosis.
Collapse
Affiliation(s)
- M Nagano
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|