1
|
Henze H, Hüttner SS, Koch P, Schüler SC, Groth M, von Eyss B, von Maltzahn J. Denervation alters the secretome of myofibers and thereby affects muscle stem cell lineage progression and functionality. NPJ Regen Med 2024; 9:10. [PMID: 38424446 PMCID: PMC10904387 DOI: 10.1038/s41536-024-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.
Collapse
Affiliation(s)
- Henriette Henze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Sören S Hüttner
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Svenja C Schüler
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus - Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany.
| |
Collapse
|
2
|
Li Q, Wang Y, Hu X, Zhang Y, Li H, Zhang Q, Cai W, Wang Z, Zhu B, Xu L, Gao X, Chen Y, Gao H, Li J, Zhang L. Transcriptional states and chromatin accessibility during bovine myoblasts proliferation and myogenic differentiation. Cell Prolif 2022; 55:e13219. [PMID: 35362202 PMCID: PMC9136495 DOI: 10.1111/cpr.13219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives Although major advances have been made in bovine epigenome study, the epigenetic basis for fetal skeletal muscle development still remains poorly understood. The aim is to recapitulated the time course of fetal skeletal muscle development in vitro, and explore the dynamic changes of chromatin accessibility and gene expression during bovine myoblasts proliferation and differentiation. Methods PDGFR‐ cells were isolated from bovine fetal skeletal muscle, then cultured and induced myogenic differentiation in vitro in a time‐course study (P, D0, D2,and D4). The assay for transposase‐accessible chromatin sequencing (ATAC‐seq) and RNA sequencing (RNA‐seq) were performed. Results Among the enriched transcriptional factors with high variability, we determined the effects of MAFF, ZNF384, and KLF6 in myogenesis using RNA interference (RNAi). In addition, we identified both stage‐specific genes and chromatin accessibility regions to reveal the sequential order of gene expression, transcriptional regulatory, and signal pathways involved in bovine skeletal muscle development. Further investigation integrating chromatin accessibility and transcriptome data was conducted to explore cis‐regulatory regions in line with gene expression. Moreover, we combined bovine GWAS results of growth traits with regulatory regions defined by chromatin accessibility, providing a suggestive means for a more precise annotation of genetic variants of bovine growth traits. Conclusion Overall, these findings provide valuable information for understanding the stepwise regulatory mechanisms in skeletal muscle development and conducting beef cattle genetic improvement programs.
Collapse
Affiliation(s)
- Qian Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yahui Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yapeng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongwei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wentao Cai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zezhao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xue Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Huijiang Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lupei Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
3
|
The Hematopoietic TALE-Code Shows Normal Activity of IRX1 in Myeloid Progenitors and Reveals Ectopic Expression of IRX3 and IRX5 in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23063192. [PMID: 35328612 PMCID: PMC8952210 DOI: 10.3390/ijms23063192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022] Open
Abstract
Homeobox genes encode transcription factors that control basic developmental decisions. Knowledge of their hematopoietic activities casts light on normal and malignant immune cell development. Recently, we constructed the so-called lymphoid TALE-code that codifies expression patterns of all active TALE class homeobox genes in early hematopoiesis and lymphopoiesis. Here, we present the corresponding myeloid TALE-code to extend this gene signature, covering the entire hematopoietic system. The collective data showed expression patterns for eleven TALE homeobox genes and highlighted the exclusive expression of IRX1 in megakaryocyte-erythroid progenitors (MEPs), implicating this TALE class member in a specific myeloid differentiation process. Analysis of public profiling data from acute myeloid leukemia (AML) patients revealed aberrant activity of IRX1 in addition to IRX3 and IRX5, indicating an oncogenic role for these TALE homeobox genes when deregulated. Screening of RNA-seq data from 100 leukemia/lymphoma cell lines showed overexpression of IRX1, IRX3, and IRX5 in megakaryoblastic and myelomonocytic AML cell lines, chosen as suitable models for studying the regulation and function of these homeo-oncogenes. Genomic copy number analysis of IRX-positive cell lines demonstrated chromosomal amplification of the neighboring IRX3 and IRX5 genes at position 16q12 in MEGAL, underlying their overexpression in this cell line model. Comparative gene expression analysis of these cell lines revealed candidate upstream factors and target genes, namely the co-expression of GATA1 and GATA2 together with IRX1, and of BMP2 and HOXA10 with IRX3/IRX5. Subsequent knockdown and stimulation experiments in AML cell lines confirmed their activating impact in the corresponding IRX gene expression. Furthermore, we demonstrated that IRX1 activated KLF1 and TAL1, while IRX3 inhibited GATA1, GATA2, and FST. Accordingly, we propose that these regulatory relationships may represent major physiological and oncogenic activities of IRX factors in normal and malignant myeloid differentiation, respectively. Finally, the established myeloid TALE-code is a useful tool for evaluating TALE homeobox gene activities in AML.
Collapse
|
4
|
Giordano R, Petersen KK, Andersen HH, Lichota J, Valeriani M, Simonsen O, Arendt-Nielsen L. Preoperative serum circulating microRNAs as potential biomarkers for chronic postoperative pain after total knee replacement. Mol Pain 2021; 16:1744806920962925. [PMID: 33021154 PMCID: PMC7543153 DOI: 10.1177/1744806920962925] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Chronic postoperative pain affects approximately 20% of patients with knee
osteoarthritis after total knee replacement. Circulating microRNAs can be
found in serum and might act as biomarkers in a variety of diseases. The
current study aimed to investigate the preoperative expression of
circulating microRNAs as potential predictive biomarkers for the development
of chronic postoperative pain in the year following total knee
replacement. Methods Serum samples, collected preoperatively from 136 knee osteoarthritis
patients, were analyzed for 21 circulatory microRNAs. Pain intensity was
assessed using a visual analog scale before and one year after total knee
replacement. Patients were divided into a low-pain relief group (pain relief
percentage <30%) and a high-pain relief group (pain relief percentage
>30%) based on their pain relief one year after total knee replacement,
and differences in microRNAs expression were analyzed between the two
groups. Results We found that three microRNAs were preoperatively dysregulated in serum in
the low-pain relief group compared with the high-pain relief group.
MicroRNAs hsa-miR-146a-5p, -145-5p, and -130 b-3p exhibited fold changes of
1.50, 1.55, and 1.61, respectively, between the groups (all P
values < 0.05). Hsa-miR-146a-5p and preoperative pain intensity
correlated positively with postoperative pain relief (respectively,
R = 0.300, P = 0.006; R = 0.500, P < 0.001). Discussion This study showed that patients with a low postoperative pain relief present
a dysregulation of circulating microRNAs. Altered circulatory microRNAs
expression correlated with postoperative pain relief, indicating that
microRNAs can serve as predictive biomarkers of pain outcome after surgery
and hence may foster new strategies for preventing chronic postoperative
pain after total knee replacement (TKR).
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær Petersen
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Hjalte Holm Andersen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Jacek Lichota
- Laboratory of Metabolism Modifying Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Massimiliano Valeriani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Child Neurology Unit, Department of Neuroscience and Neurorehabilitation, Headache Center, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Ole Simonsen
- Orthopedic Surgery Research Unit, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Dang TTH, Yun JW. BMP10 positively regulates myogenic differentiation in C2C12 myoblasts via the Smad 1/5/8 signaling pathway. Mol Cell Biochem 2021; 476:2085-2097. [PMID: 33517521 DOI: 10.1007/s11010-021-04064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
BMP10 plays an essential role in regulating cardiac growth, chamber maturation, and maintaining normal expressions of several key cardiogenic factors; however, other functional roles of BMP10 in muscle remain unexplored. This study therefore undertook to investigate the roles of BMP10 in muscle physiology, using mouse-derived C2C12 myoblasts. Bmp10 silencing prevented a number of biological processes such as myogenic differentiation, glucose uptake, and lipid catabolism, whereas exogenous induction of BMP10 in C2C12 cells significantly stimulated the expression of proteins and genes involved in these processes, as well as mitochondrial biogenesis and thermogenesis, resulting in reduced lipid accumulation. A mechanistic study revealed that BMP10 stimulates myogenesis mainly via the Smad 1/5/8 signaling pathway. In conclusion, our data unveiled a previously unknown mechanism in the regulation of lipid metabolisms by BMP10 in muscle cells and identified its significant roles in systemic metabolic homeostasis, shedding light on BMP10 as a pharmacotherapeutic target to treat metabolic disorders.
Collapse
Affiliation(s)
- Trang Thi Huyen Dang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
6
|
Regulatory expression of bone morphogenetic protein 6 by 2,2'-dipyridyl. Biochim Biophys Acta Gen Subj 2020; 1864:129610. [PMID: 32251709 DOI: 10.1016/j.bbagen.2020.129610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Expression of hepcidin, a hormone produced by hepatocytes which negatively regulates the circulating iron levels, is known to be positively regulated by BMP6, a member of transforming growth factor (TGF)-β family. Previous studies have shown that iron status is sensed by sinusoidal endothelial cells of hepatic lamina, leading to the modulation of BMP6 expression. METHODS ISOS-1, HUVEC, F-2, and SK-HEP1 endothelial cells were treated with either iron or 2,2'-dipyridyl (2DP), a cell-permeable iron-chelator, and expression level of Bmp6 was examined. To identify factors affecting Bmp6 transcription, stimulus screening for regulator of transcription (SSRT) was developed. RESULTS Treatment with iron slightly increased the expression levels of Bmp6, while 2DP unexpectedly increased Bmp6 expression in a dose-dependent manner. 2DP-induced Bmp6 expression was resistant to co-treatment with iron. 2DP-induced Bmp6 expression was also detected in HUVEC, F-2 cells, and SK-HEP1 cells. Luciferase-based reporter assays indicated that forced expression of JunB increased the transcription of Bmp6. 2DP induced phosphorylation of JunB; co-treatment with SP600125 blocked the 2DP-induced Bmp6 expression partially. JunB-induced Bmp6 transcription was not affected by mutations of putative JunB-responsive elements. Some endoplasmic reticulum stress inducers increased the expression of Bmp6. SSRT revealed pathways regulating Bmp6 transcription positively and negatively. Hepa1-6 liver cells and C2C12 myogenic cells were prone to 2DP induced Bmp6 expression. CONCLUSIONS The present study reveals non‑iron-regulated Bmp6 expression in endothelial cells. GENERAL SIGNIFICANCE Regulatory expression of Bmp6 may be important as a key step for fine tuning of BMP activity.
Collapse
|
7
|
NCAPG Dynamically Coordinates the Myogenesis of Fetal Bovine Tissue by Adjusting Chromatin Accessibility. Int J Mol Sci 2020; 21:ijms21041248. [PMID: 32070024 PMCID: PMC7072915 DOI: 10.3390/ijms21041248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
NCAPG is a subunit of condensin I that plays a crucial role in chromatin condensation during mitosis. NCAPG has been demonstrated to be associated with farm animal growth traits. However, its role in regulating myoblast differentiation is still unclear. We used myoblasts derived from fetal bovine tissue as an in vitro model and found that NCAPG was expressed during myogenic differentiation in the cytoplasm and nucleus. Silencing NCAPG prolonged the mitosis and impaired the differentiation due to increased myoblast apoptosis. After 1.5 days of differentiation, silencing NCAPG enhanced muscle-specific gene expression. An assay for transposase-accessible chromatin- high throughput sequencing (ATAC-seq) revealed that silencing NCAPG altered chromatin accessibility to activating protein 1 (AP-1) and its subunits. Knocking down the expression of the AP-1 subunits fos-related antigen 2 (FOSL2) or junB proto-oncogene (JUNB) enhanced part of the muscle-specific gene expression. In conclusion, our data provide valuable evidence about NCAPG’s function in myogenesis, as well as its potential role in gene expression.
Collapse
|
8
|
Borok MJ, Mademtzoglou D, Relaix F. Bu-M-P-ing Iron: How BMP Signaling Regulates Muscle Growth and Regeneration. J Dev Biol 2020; 8:jdb8010004. [PMID: 32053985 PMCID: PMC7151139 DOI: 10.3390/jdb8010004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The bone morphogenetic protein (BMP) pathway is best known for its role in promoting bone formation, however it has been shown to play important roles in both development and regeneration of many different tissues. Recent work has shown that the BMP proteins have a number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore, complementary studies have recently demonstrated that specific components of the pathway are required for efficient muscle regeneration.
Collapse
Affiliation(s)
- Matthew J Borok
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Despoina Mademtzoglou
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Frederic Relaix
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
- Ecole Nationale Veterinaire d’Alfort, 94700 Maison Alfort, France
- Etablissement Français du Sang, 94017 Créteil, France
- APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, 94000 Créteil, France
- Correspondence: ; Tel.: +33-149-813-940
| |
Collapse
|
9
|
Lin DPL, Carnagarin R, Dharmarajan A, Dass CR. Transdifferentiation of myoblasts into osteoblasts – possible use for bone therapy. J Pharm Pharmacol 2017; 69:1661-1671. [DOI: 10.1111/jphp.12790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/18/2017] [Indexed: 02/06/2023]
Abstract
Abstract
Objectives
Transdifferentiation is defined as the conversion of one cell type to another and is an ever-expanding field with a growing number of cells found to be capable of such a process. To date, the fact remains that there are limited treatment options for fracture healing, osteoporosis and bone repair post-destruction by bone tumours. Hence, this review focuses on the transdifferentiation of myoblast to osteoblast as a means to further understand the transdifferentiation process and to investigate a potential therapeutic option if successful.
Key findings
The potent osteoinductive effects of the bone morphogenetic protein-2 are largely implicated in the transdifferentiation of myoblast to osteoblast. Bone morphogenetic protein-2-induced activation of the Smad1 protein ultimately results in JunB synthesis, the first transcriptional step in myoblast dedifferentiation. The upregulation of the activating protein-1 binding activity triggers the transcription of the runt-related transcription factor 2 gene, a transcription factor that plays a major role in osteoblast differentiation.
Summary
This potential transdifferentiation treatment may be utilised for dental implants, fracture healing, osteoporosis and bone repair post-destruction by bone tumours.
Collapse
Affiliation(s)
- Daphne P L Lin
- School of Pharmacy, Curtin University, Bentley, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA, Australia
| | - Revathy Carnagarin
- School of Pharmacy, Curtin University, Bentley, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA, Australia
| | - Arun Dharmarajan
- School of Pharmacy, Curtin University, Bentley, Perth, WA, Australia
- School of Biomedical Science, Curtin University, Bentley, Perth, WA, Australia
| | - Crispin R Dass
- School of Pharmacy, Curtin University, Bentley, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA, Australia
| |
Collapse
|
10
|
Yoshida H, Okada M, Takebayashi-Suzuki K, Ueno N, Suzuki A. Involvement of JunB Proto-Oncogene in Tail Formation During Early Xenopus Embryogenesis. Zoolog Sci 2016; 33:282-9. [PMID: 27268982 DOI: 10.2108/zs150136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Integration of signaling pathways is important for the establishment of the body plan during embryogenesis. However, little is known about how the multiple signals interact to regulate morphogenesis. Here, we show that junb is expressed in the posterior neural plate and the caudal fin during Xenopus embryogenesis and that overexpression of wild-type JunB induces small head phenotypes and ectopic tail-like structures. A mutant form of JunB that lacked GSK3 and MAPK phosphorylation sites showed stronger tail-like structure-inducing activity than wild-type JunB. Moreover, the mutant JunB induced expression of tailbud and neural marker genes, but not somite and chordoneural hinge (CNH) marker genes in ectopic tail-like structures. In ectodermal explants of Xenopus embryos, overexpression of JunB increased the expression of tailbud and posterior marker genes including fgf3, xbra (t) and wnt8. These results indicate that JunB is capable of inducing the ectopic formation of tissues similar to the tailbud, and that the tailbud-inducing activity of JunB is likely to be regulated by FGF and Wnt pathways. Overall, our results suggest that JunB is a regulator of tail organization possibly through integration of several morphogen signaling pathways.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- 1 Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Maya Okada
- 1 Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Kimiko Takebayashi-Suzuki
- 1 Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Naoto Ueno
- 2 Division of Morphogenesis, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.,3 Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Atsushi Suzuki
- 1 Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
11
|
Wallace MA, Della Gatta PA, Ahmad Mir B, Kowalski GM, Kloehn J, McConville MJ, Russell AP, Lamon S. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation. Front Physiol 2016; 7:7. [PMID: 26903873 PMCID: PMC4745265 DOI: 10.3389/fphys.2016.00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 01/10/2023] Open
Abstract
Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration.
Collapse
Affiliation(s)
- Marita A Wallace
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Paul A Della Gatta
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Bilal Ahmad Mir
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Joachim Kloehn
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne Parkville, VIC, Australia
| | - Malcom J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne Parkville, VIC, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| |
Collapse
|
12
|
Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 2015; 6:7264. [PMID: 26081042 PMCID: PMC4557308 DOI: 10.1038/ncomms8264] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/14/2015] [Indexed: 02/07/2023] Open
Abstract
Sprouting angiogenesis drives blood vessel growth in healthy and diseased tissues. Vegf and Dll4/Notch signalling cooperate in a negative feedback loop that specifies endothelial tip and stalk cells to ensure adequate vessel branching and function. Current concepts posit that endothelial cells default to the tip-cell phenotype when Notch is inactive. Here we identify instead that the stalk-cell phenotype needs to be actively repressed to allow tip-cell formation. We show this is a key endothelial function of neuropilin-1 (Nrp1), which suppresses the stalk-cell phenotype by limiting Smad2/3 activation through Alk1 and Alk5. Notch downregulates Nrp1, thus relieving the inhibition of Alk1 and Alk5, thereby driving stalk-cell behaviour. Conceptually, our work shows that the heterogeneity between neighbouring endothelial cells established by the lateral feedback loop of Dll4/Notch utilizes Nrp1 levels as the pivot, which in turn establishes differential responsiveness to TGF-β/BMP signalling. Notch signals are crucial for organization of angiogenic sprouting cells into the leading ‘tip' and trailing ‘stalk' cells. Here the authors show that endothelial neuropilin-1 quantitatively inhibits TGF-β/BMP signalling, explaining how Notch-mediated regulation of neuropilin-1 specifies endothelial tip and stalk cells.
Collapse
|
13
|
IRE1a constitutes a negative feedback loop with BMP2 and acts as a novel mediator in modulating osteogenic differentiation. Cell Death Dis 2014; 5:e1239. [PMID: 24853417 PMCID: PMC4047903 DOI: 10.1038/cddis.2014.194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/27/2022]
Abstract
Bone morphogenetic protein 2 (BMP2) is known to activate unfolded protein response (UPR) signaling molecules, such as BiP (IgH chain-binding protein), PERK (PKR-like ER-resistant kinase), and IRE1α. Inositol-requiring enzyme-1a (IRE1a), as one of three unfolded protein sensors in UPR signaling pathways, can be activated during ER stress. Granulin-epithelin precursor (GEP) is an autocrine growth factor that has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation. However, the influence on IRE1a in BMP2-induced osteoblast differentiation has not yet been elucidated. Herein we demonstrate that overexpression of IRE1a inhibits osteoblast differentiation, as revealed by reduced activity of alkaline phosphatase (ALP) and osteocalcin; however, knockdown of IRE1a via the RNAi approach stimulates osteoblastogenesis. Mechanistic studies revealed that the expression of IRE1a during osteoblast was a consequence of JunB transcription factor binding to several AP1 sequence (TGAG/CTCA) in the 5'-flanking regulatory region of the IRE1a gene, followed by transcription. In addition, GEP induces IRE1a expressions and this induction of IRE1a by GEP depends on JunB. Furthermore, IRE1a inhibition of GEP-induced osteoblastogenesis relies on JunB. Besides, GEP is required for IRE1a inhibition of BMP2-induced bone formation. Collectively, these findings demonstrate that IRE1a negatively regulates BMP2-induced osteoblast differentiation and this IRE1a inhibition effect depends on GEP growth factor. Thus, IRE1a, BMP2, GEP growth factor, and JunB transcription factor form a regulatory loop and act in concert in the course of osteoblastogenesis.
Collapse
|
14
|
Geng S, Sun B, Lu R, Wang J. Coleusin factor, a novel anticancer diterpenoid, inhibits osteosarcoma growth by inducing bone morphogenetic protein-2-dependent differentiation. Mol Cancer Ther 2014; 13:1431-41. [PMID: 24723453 DOI: 10.1158/1535-7163.mct-13-0934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coleusin factor is a diterpenoid compound isolated from the root of a tropical plant, Coleus forskohlii. Although Coleusin factor has been reported to suppress proliferation of and induce apoptosis in several types of cancer cells, the effects of Coleusin factor on osteosarcoma and the underlying mechanism are still not fully understood. In this study, we show that Coleusin factor treatment potently inhibits the growth of osteosarcoma cells associated with G(1) cell-cycle arrest. Interestingly, apoptosis and cell death are not induced. Instead, Coleusin factor causes osteosarcoma cells to exhibit typical properties of differentiated osteoblasts, including a morphologic alteration resembling osteoblasts, the expression of osteoblast differentiation markers, elevated alkaline phosphatase activity, and increased cellular mineralization. Coleusin factor treatment significantly increases the expression of bone morphogenetic protein-2 (BMP-2), a crucial osteogenic regulator, and runt-related transcription factor 2 (RUNX2), one of the key transcription factors of the BMP pathway. When BMP-2 signaling is blocked, Coleusin factor fails to inhibit cell proliferation and to induce osteoblast differentiation. Thus, upregulation of BMP-2 autocrine is critical for Coleusin factor to induce osteoblast differentiation and exert its anticancer effects on osteosarcoma. Importantly, administration of Coleusin factor inhibits the growth of osteosarcoma xenografted in nude mice without systemic or immunologic toxicity. Osteosarcoma is a highly aggressive cancer marked by the loss of normal differentiation. Coleusin factor represents a new type of BMP-2 inducer that restores differentiation in osteosarcoma cells. It may provide a promising therapeutic strategy against osteosarcoma with minimal side effects.
Collapse
Affiliation(s)
- Shuo Geng
- Authors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, VirginiaAuthors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, VirginiaAuthors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - Bo Sun
- Authors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, VirginiaAuthors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - Ran Lu
- Authors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - Jingze Wang
- Authors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
15
|
Futami I, Ishijima M, Kaneko H, Tsuji K, Ichikawa-Tomikawa N, Sadatsuki R, Muneta T, Arikawa-Hirasawa E, Sekiya I, Kaneko K. Isolation and characterization of multipotential mesenchymal cells from the mouse synovium. PLoS One 2012; 7:e45517. [PMID: 23029067 PMCID: PMC3445493 DOI: 10.1371/journal.pone.0045517] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/20/2012] [Indexed: 02/03/2023] Open
Abstract
The human synovium contains mesenchymal stem cells (MSCs), which are multipotential non-hematopoietic progenitor cells that can differentiate into a variety of mesenchymal lineages and they may therefore be a candidate cell source for tissue repair. However, the molecular mechanisms by which this can occur are still largely unknown. Mouse primary cell culture enables us to investigate the molecular mechanisms underlying various phenomena because it allows for relatively easy gene manipulation, which is indispensable for the molecular analysis. However, mouse synovial mesenchymal cells (SMCs) have not been established, although rabbit, cow, and rat SMCs are available, in addition to human MSCs. The aim of this study was to establish methods to harvest the synovium and to isolate and culture primary SMCs from mice. As the mouse SMCs were not able to be harvested and isolated using the same protocol for human, rat and rabbit SMCs, the protocol for humans was modified for SMCs from the Balb/c mouse knee joint. The mouse SMCs obtained showed superior proliferative potential, growth kinetics and colony formation compared to cells derived from muscle and bone marrow. They expressed PDGFRá and Sca-1 detected by flow cytometry, and showed an osteogenic, adipogenic and chondrogenic potential similar or superior to the cells derived from muscle and bone marrow by demonstrating in vitro osteogenesis, adipogenesis and chondrogenesis. In conclusion, we established a primary mouse synovial cell culture method. The cells derived from the mouse synovium demonstrated both the ability to proliferate and multipotentiality similar or superior to the cells derived from muscle and bone marrow.
Collapse
Affiliation(s)
- Ippei Futami
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Haruka Kaneko
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
| | - Kunikazu Tsuji
- International Research Center for Molecular Science in Tooth and Bone Diseases, Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoki Ichikawa-Tomikawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Sadatsuki
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
| | - Takeshi Muneta
- International Research Center for Molecular Science in Tooth and Bone Diseases, Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan
- Section of Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Sekiya
- Section of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Broholm C, Brandt C, Schultz NS, Nielsen AR, Pedersen BK, Scheele C. Deficient leukemia inhibitory factor signaling in muscle precursor cells from patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2012; 303:E283-92. [PMID: 22649064 DOI: 10.1152/ajpendo.00586.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response to LIF. The mRNA and protein expressions of LIF and its receptor (LIFR) were measured in skeletal muscle biopsies from healthy individuals and patients with type 2 diabetes by use of qPCR and Western blot. LIF signaling and response were studied following administration of recombinant LIF and siRNA knockdown of suppressor of cytokine signaling (SOCS)3 in myoblast cultures established from healthy individuals and patients with type 2 diabetes. Myoblast proliferation rate was assessed by bromodeoxyuridine incorporation. LIF and LIFR proteins were increased in both muscle tissue and cultured myoblasts from diabetic patients. Nonetheless, in the diabetic myoblasts, LIF-induced phosphorylation of signal transducer and activator of transcription (STAT)1 and STAT3 was impaired. The deficient response to LIF administration in the diabetic myoblasts was further emphasized by a lack of increase in LIF-stimulated cell proliferation and a decreased LIF-stimulated induction of the proliferation-promoting factors cyclin D1, JunB, and c-myc. SOCS3 protein was upregulated in diabetic myoblasts, and knockdown of SOCS3 rescued LIF-induced gene expression in diabetic myoblasts, whereas neither STAT1 or STAT3 signaling nor proliferation rate was affected. In conclusion, although LIF and LIFR proteins were increased in muscle tissue and myoblasts from diabetic patients, LIF signaling and LIF-stimulated cell proliferation were impaired in diabetic myoblasts, suggesting a novel mechanism by which muscle function is compromised in diabetes.
Collapse
Affiliation(s)
- Christa Broholm
- Centre of Inflammation and Metabolism, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
17
|
Wang D, Bai X, Tian Q, Lai Y, Lin EA, Shi Y, Mu X, Feng JQ, Carlson CS, Liu CJ. GEP constitutes a negative feedback loop with MyoD and acts as a novel mediator in controlling skeletal muscle differentiation. Cell Mol Life Sci 2012; 69:1855-73. [PMID: 22179841 PMCID: PMC3319484 DOI: 10.1007/s00018-011-0901-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 01/16/2023]
Abstract
Granulin-epithelin precursor (GEP) is an autocrine growth factor that has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation. Here we report that GEP was expressed in skeletal muscle tissue and its level was differentially altered in the course of C2C12 myoblast fusion. The GEP expression during myoblast fusion was a consequence of MyoD transcription factor binding to several E-box (CANNTG) sequences in the 5'-flanking regulatory region of GEP gene, followed by transcription. Recombinant GEP potently inhibited myotube formation from C2C12 myoblasts whereas the knockdown of endogenous of GEP via a siRNA approach accelerated the fusion of myoblasts to myotubes. Interestingly, the muscle fibers of GEP knockdown mice were larger in number but noticeably smaller in size when compared to the wild-type. Mechanistic studies revealed that during myoblast fusion, the addition of GEP led to remarkable reductions in the expressions of muscle-specific transcription factors, including MyoD. In addition, the regulation of myotube formation by GEP is mediated by the anti-myogenic factor JunB, which is upregulated following GEP stimulation. Thus, GEP growth factor, JunB, and MyoD transcription factor form a regulatory loop and act in concert in the course of myogenesis.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Orthopedics, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaohui Bai
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, China
| | - Qingyun Tian
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Yongjie Lai
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Edward A. Lin
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Yongxiang Shi
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Xiaodong Mu
- Stem Cell Research Center, Children’s Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219
| | - Jian Q. Feng
- Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246
| | - Cathy S. Carlson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Chuan-ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
18
|
Utesch T, Daminelli G, Mroginski MA. Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13144-13153. [PMID: 21958113 DOI: 10.1021/la202489w] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) plays a crucial role in osteoblast differentiation and proliferation. Its effective therapeutic use for ectopic bone and cartilage regeneration depends, among other factors, on the interaction with the carrier at the implant site. In this study, we used classical molecular dynamics (MD) and a hybrid approach of steered molecular dynamics (SMD) combined with MD simulations to investigate the initial stages of the adsorption of BMP-2 when approaching two implant surfaces, hydrophobic graphite and hydrophilic titanium dioxide rutile. Surface adsorption was evaluated for six different orientations of the protein, two end-on and four side-on, in explicit water environment. On graphite, we observed a weak but stable adsorption. Depending on the initial orientation, hydrophobic patches as well as flexible loops of the protein were involved in the interaction with graphite. On the contrary, BMP-2 adsorbed only loosely to hydrophilic titanium dioxide. Despite a favorable interaction energy between protein and the TiO(2) surface, the rapid formation of a two-layer water structure prevented the direct interaction between protein and titanium dioxide. The first water adlayer had a strong repulsive effect on the protein, while the second attracted the protein toward the surface. For both surfaces, hydrophobic graphite and hydrophilic titanium dioxide, denaturation of BMP-2 induced by adsorption was not observed on the nanosecond time scale.
Collapse
Affiliation(s)
- Tillmann Utesch
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, 10623 Berlin, Germany
| | | | | |
Collapse
|
19
|
Umemoto T, Furutani Y, Murakami M, Matsui T, Funaba M. Endogenous Bmp4 in myoblasts is required for myotube formation in C2C12 cells. Biochim Biophys Acta Gen Subj 2011; 1810:1127-35. [PMID: 21964441 DOI: 10.1016/j.bbagen.2011.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/09/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Our previous study revealed the indispensable activity of endogenous bone morphogenetic protein (Bmp) prior to differentiation induction of C2C12 myoblasts for myogenesis. Here we investigated the Bmp isoform responsible for endogenous Bmp activity during differentiation and its role in myogenesis. METHODS Gene expression of Bmp4 during myogenesis was evaluated in C2C12 cells. Effects of inhibition of the Bmp pathway on myogenesis were examined. Cells expressing Bmp4 and regulation of Bmp4 expression in myoblasts were explored. RESULTS The expression of Bmp4 increased with the progression of myogenesis, although the extent of the increase after differentiation induction was smaller than that before the induction. Down-regulation of Bmp signal components including Bmp4, Bmpr2, and Alk2/3 inhibited the emergence of positive cells for myosin heavy chain II. The treatments also decreased the Myogenin expression. Treatment with cytosine arabinoside decreased the expression of Bmp4. Also, Bmp4 expression was also lower in isolated myotubes than in residual cells. Expression of Rgm c was higher in the myotube fraction. Transcription of Bmp4 was repressed by the conditioned medium of mixed cells consisting of myoblasts and myotubes. CONCLUSION Bmp4 expressed in myoblasts has a positive role in myotube formation/maturation through myogenin expression. The presence of myotubes inhibits Bmp4 expression in proliferating myoblasts through transcriptional regulation, although the expression is intrinsically increased with time of culture. GENERAL SIGNIFICANCE Taken previous results on involvement of Bmp in the commitment of osteoblasts and adipocytes with the present results together, Bmp may act as a general promoter of mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Takenao Umemoto
- Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
20
|
Aoyama K, Yamane A, Suga T, Suzuki E, Fukui T, Nakamura Y. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue. BMC DEVELOPMENTAL BIOLOGY 2011; 11:44. [PMID: 21736745 PMCID: PMC3160908 DOI: 10.1186/1471-213x-11-44] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/07/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2) converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. RESULTS Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK), and fast myosin heavy chain (fMyHC), whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP), collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1). The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene) were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. CONCLUSIONS BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.
Collapse
Affiliation(s)
- Kayoko Aoyama
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Broholm C, Laye MJ, Brandt C, Vadalasetty R, Pilegaard H, Pedersen BK, Scheele C. LIF is a contraction-induced myokine stimulating human myocyte proliferation. J Appl Physiol (1985) 2011; 111:251-9. [DOI: 10.1152/japplphysiol.01399.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cytokine leukemia inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of myoblasts. We hypothesized that LIF is a contraction-induced myokine functioning in an autocrine fashion to activate gene regulation of human muscle satellite cell proliferation. Skeletal muscle LIF expression, regulation, and action were examined in two models: 1) young men performing a bout of heavy resistance exercise of the quadriceps muscle and 2) cultured primary human satellite cells. Resistance exercise induced a ninefold increase in LIF mRNA content in skeletal muscle, but LIF was not detectable in plasma of the subjects. However, electrically stimulated cultured human myotubes produced and secreted LIF, suggesting that LIF is a myokine with local effects. The well established exercise-induced signaling molecules PI3K, Akt, and mTor contributed to the regulation of LIF in cultured human myotubes as chemical inhibition of PI3K and mTor and siRNA knockdown of Akt1 were independently sufficient to downregulate LIF. Human myoblast proliferation was increased by recombinant exogenous LIF and decreased by siRNA knockdown of the endogenous LIF receptor. Finally, the transcription factors JunB and c-Myc, which promote myoblast proliferation, were induced by LIF in cultured human myotubes. Indeed, both JunB and c-Myc were also increased in skeletal muscle following resistance exercise. Our data suggest that LIF is a contraction-induced myokine, potentially acting in an autocrine or paracrine fashion to promote satellite cell proliferation.
Collapse
Affiliation(s)
- Christa Broholm
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Matthew J. Laye
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Claus Brandt
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Radhika Vadalasetty
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Henriette Pilegaard
- The Centre of Inflammation and Metabolism at the Department of Biology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, and
| |
Collapse
|
22
|
Crouzier T, Fourel L, Boudou T, Albigès-Rizo C, Picart C. Presentation of BMP-2 from a soft biopolymeric film unveils its activity on cell adhesion and migration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:H111-H118. [PMID: 21433098 DOI: 10.1002/adma.201004637] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/20/2011] [Indexed: 05/30/2023]
|
23
|
Susperregui ARG, Gamell C, Rodríguez-Carballo E, Ortuño MJ, Bartrons R, Rosa JL, Ventura F. Noncanonical BMP signaling regulates cyclooxygenase-2 transcription. Mol Endocrinol 2011; 25:1006-17. [PMID: 21436263 DOI: 10.1210/me.2010-0515] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activation of p38 MAPK has been shown to be relevant for a number of bone morphogenetic protein (BMP) physiological effects. We report here the involvement of noncanonical phosphorylated mothers against decapentaplegic (Smad) signaling in the transcriptional induction of Cox2 (Ptgs2) by BMP-2 in mesenchymal cells and organotypic calvarial cultures. We demonstrate that different regulatory elements are required for regulation of Cox2 expression by BMP-2: Runt-related transcription factor-2 and cAMP response element sites are essential, whereas a GC-rich Smad binding element is important for full responsiveness. Efficient transcriptional activation requires cooperation between transcription factors because mutation of any element results in a strong decrease of BMP-2 responsiveness. BMP-2 activation of p38 leads to increased recruitment of activating transcription factor-2, Runx2, Smad, and coactivators such as p300 at the responsive sites in the Cox2 proximal promoter. We demonstrate, by either pharmacological or genetic analysis, that maximal BMP-2 effects on Cox2 and JunB expression require the function of p38 and its downstream effector mitogen/stress-activated kinase 1. Altogether our results strongly suggest that cooperative effects between canonical and noncanonical BMP signaling allow the fine-tuning of BMP transcriptional responses on specific target genes.
Collapse
Affiliation(s)
- Antonio R G Susperregui
- Departament de Ciències Fisiològiques II, Bellvitge Biomedical Research Institute, C/ Feixa Llarga s/n., L'Hospitalet de Llobregat, Universitat de Barcelona, E-08907 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Raffaello A, Milan G, Masiero E, Carnio S, Lee D, Lanfranchi G, Goldberg AL, Sandri M. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. ACTA ACUST UNITED AC 2010; 191:101-13. [PMID: 20921137 PMCID: PMC2953439 DOI: 10.1083/jcb.201001136] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Decreasing JunB expression causes muscle atrophy, whereas overexpression induces hypertrophy and blocks atrophy via myostatin inhibition and regulation of atrogin-1 and MuRF expression via FoxO3. The size of skeletal muscle cells is precisely regulated by intracellular signaling networks that determine the balance between overall rates of protein synthesis and degradation. Myofiber growth and protein synthesis are stimulated by the IGF-1/Akt/mammalian target of rapamycin (mTOR) pathway. In this study, we show that the transcription factor JunB is also a major determinant of whether adult muscles grow or atrophy. We found that in atrophying myotubes, JunB is excluded from the nucleus and that decreasing JunB expression by RNA interference in adult muscles causes atrophy. Furthermore, JunB overexpression induces hypertrophy without affecting satellite cell proliferation and stimulated protein synthesis independently of the Akt/mTOR pathway. When JunB is transfected into denervated muscles, fiber atrophy is prevented. JunB blocks FoxO3 binding to atrogin-1 and MuRF-1 promoters and thus reduces protein breakdown. Therefore, JunB is important not only in dividing populations but also in adult muscle, where it is required for the maintenance of muscle size and can induce rapid hypertrophy and block atrophy.
Collapse
Affiliation(s)
- Anna Raffaello
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, 35122 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao L, Huang J, Guo R, Wang Y, Chen D, Xing L. Smurf1 inhibits mesenchymal stem cell proliferation and differentiation into osteoblasts through JunB degradation. J Bone Miner Res 2010; 25:1246-56. [PMID: 20200942 PMCID: PMC3153132 DOI: 10.1002/jbmr.28] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ubiquitin ligase Smurf1-deficient mice develop an increased-bone-mass phenotype in an age-dependent manner. It was reported that such a bone-mass increase is related to enhanced activities of differentiated osteoblasts. Although osteoblasts are of mesenchymal stem cell (MSC) origin and MSC proliferation and differentiation can have significant impacts on bone formation, it remains largely unknown whether regulation of MSCs plays a role in the bone-mass increase of Smurf1-deficient mice. In this study we found that bone marrow mesenchymal progenitor cells from Smurf1(-/-) mice form significantly increased alkaline phosphatase-positive colonies, indicating roles of MSC proliferation and differentiation in bone-mass accrual of Smurf1(-/-) mice. Interestingly, Smurf1(-/-) cells have an elevated protein level of AP-1 transcription factor JunB. Biochemical experiments demonstrate that Smurf1 interacts with JunB through the PY motif and targets JunB protein for ubiquitination and proteasomal degradation. Indeed, Smurf1-deficient MSCs have higher proliferation rates, consistent with the facts that cyclin D1 mRNA and protein both are increased in Smurf1(-/-) cells and JunB can induce cyclinD1 promoter. Moreover, JunB overexpression induces osteoblast differentiation, shown by higher expression of osteoblast markers, and JunB knock-down not only decreases osteoblast differentiation but also restores the osteogenic potential to wild-type level in Smurf1(-/-) cells. In conclusion, our results suggest that Smurf1 negatively regulates MSC proliferation and differentiation by controlling JunB turnover through an ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
26
|
Feng JQ, Guo FJ, Jiang BC, Zhang Y, Frenkel S, Wang DW, Tang W, Xie Y, Liu CJ. Granulin epithelin precursor: a bone morphogenic protein 2-inducible growth factor that activates Erk1/2 signaling and JunB transcription factor in chondrogenesis. FASEB J 2010; 24:1879-92. [PMID: 20124436 DOI: 10.1096/fj.09-144659] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Granulin epithelin precursor (GEP) has been implicated in development, tissue regeneration, tumorigenesis, and inflammation. Herein we report that GEP stimulates chondrocyte differentiation from mesenchymal stem cells in vitro and endochondral ossification ex vivo, and GEP-knockdown mice display skeleton defects. Similar to bone morphogenic protein (BMP) 2, application of the recombinant GEP accelerates rabbit cartilage repair in vivo. GEP is a key downstream molecule of BMP2, and it is required for BMP2-mediated chondrocyte differentiation. We also show that GEP activates chondrocyte differentiation through Erk1/2 signaling and that JunB transcription factor is one of key downstream molecules of GEP in chondrocyte differentiation. Collectively, these findings reveal a novel critical role of GEP growth factor in chondrocyte differentiation and the molecular events both in vivo and in vitro.
Collapse
Affiliation(s)
- Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Heinecke K, Seher A, Schmitz W, Mueller TD, Sebald W, Nickel J. Receptor oligomerization and beyond: a case study in bone morphogenetic proteins. BMC Biol 2009; 7:59. [PMID: 19735544 PMCID: PMC2749821 DOI: 10.1186/1741-7007-7-59] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 09/07/2009] [Indexed: 11/13/2022] Open
Abstract
Background Transforming growth factor (TGF)β superfamily members transduce signals by oligomerizing two classes of serine/threonine kinase receptors, termed type I and type II. In contrast to the large number of ligands only seven type I and five type II receptors have been identified in mammals, implicating a prominent promiscuity in ligand-receptor interaction. Since a given ligand can usually interact with more than one receptor of either subtype, differences in binding affinities and specificities are likely important for the generation of distinct ligand-receptor complexes with different signaling properties. Results In vitro interaction analyses showed two different prototypes of binding kinetics, 'slow on/slow off' and 'fast on/fast off'. Surprisingly, the binding specificity of ligands to the receptors of one subtype is only moderate. As suggested from the dimeric nature of the ligands, binding to immobilized receptors shows avidity due to cooperative binding caused by bivalent ligand-receptor interactions. To compare these in vitro observations to the situation in vivo, binding studies on whole cells employing homodimeric as well as heterodimeric bone morphogenetic protein 2 (BMP2) mutants were performed. Interestingly, low and high affinity binding sites were identified, as defined by the presence of either one or two BMP receptor (BMPR)-IA receptor chains, respectively. Both sites contribute to different cellular responses in that the high affinity sites allow a rapid transient response at low ligand concentrations whereas the low affinity sites facilitate sustained signaling but higher ligand concentrations are required. Conclusion Binding of a ligand to a single high affinity receptor chain functioning as anchoring molecule and providing sufficient complex stability allows the subsequent formation of signaling competent complexes. Another receptor of the same subtype, and up to two receptors of the other subtype, can then be recruited. Thus, the resulting receptor arrangement can principally consist of four different receptors, which is consistent with our interaction analysis showing low ligand-receptor specificity within one subtype class. For BMP2, further complexity is added by the fact that heterooligomeric signaling complexes containing only one type I receptor chain can also be found. This indicates that despite prominent ligand receptor promiscuity a manifold of diverse signals might be generated in this receptor limited system.
Collapse
Affiliation(s)
- Kai Heinecke
- Physiologische Chemie II, Biozentrum, Universität Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Kim BG, Lee JH, Ahn JM, Park SK, Cho JH, Hwang D, Yoo JS, Yates JR, Ryoo HM, Cho JY. ‘Two-Stage Double-Technique Hybrid (TSDTH)’ Identification Strategy for the Analysis of BMP2-Induced Transdifferentiation of Premyoblast C2C12 Cells to Osteoblast. J Proteome Res 2009; 8:4441-54. [DOI: 10.1021/pr900231a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Byung-Gyu Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| | - Ji-Hyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| | - Jung-Mo Ahn
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| | - Sung Kyu Park
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| | - Ji-Hoon Cho
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| | - Daehee Hwang
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| | - Jong-Shin Yoo
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| | - John R. Yates
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| | - Hyun-Mo Ryoo
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| | - Je-Yoel Cho
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and 2nd BK21 program 700-422, Korea, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92014, School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, 790-784, Korea, Mass Spectrometer Development team, Korea Basic Science Institute, Daejeon, Korea, and Department of Cell and Developmental Biology, School of Dentistry, Seoul National
| |
Collapse
|
29
|
Mukherjee A, Rotwein P. Akt promotes BMP2-mediated osteoblast differentiation and bone development. J Cell Sci 2009; 122:716-26. [PMID: 19208758 DOI: 10.1242/jcs.042770] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is crucial for normal skeletal development and for bone remodeling. Osteogenesis is primarily regulated by bone morphogenetic proteins (BMPs), which activate gene expression programs driven by bone-specific transcription factors. In a mesenchymal stem cell model of osteoblast commitment and differentiation controlled by BMP2, we show that an inhibitor of PI3-kinase or a dominant-negative Akt were as potent in preventing osteoblast differentiation as the IGF binding protein IGFBP5, whereas a Mek inhibitor was ineffective. Conversely, an adenovirus encoding an inducible-active Akt was able to overcome the blockade of differentiation caused by IGFBP5 or the PI3-kinase inhibitor, and could restore normal osteogenesis. Inhibition of PI3-kinase or Akt did not block BMP2-mediated signaling, because the Smad-responsive genes Sox9 and JunB were induced normally under all experimental conditions. When activated during different stages of osteoblast maturation, dominant-negative Akt prevented accumulation of bone-specific alkaline phosphatase and reduced mineralization, and more significantly inhibited the longitudinal growth of metatarsal bones in primary culture by interfering with both chondrocyte and osteoblast development and function. We conclude that an intact IGF-induced PI3-kinase-Akt signaling cascade is essential for BMP2-activated osteoblast differentiation and maturation, bone development and growth, and suggest that manipulation of this pathway could facilitate bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Aditi Mukherjee
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
30
|
Rylski M, Amborska R, Zybura K, Michaluk P, Bielinska B, Konopacki FA, Wilczynski GM, Kaczmarek L. JunB is a repressor of MMP-9 transcription in depolarized rat brain neurons. Mol Cell Neurosci 2008; 40:98-110. [PMID: 18976709 DOI: 10.1016/j.mcn.2008.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 08/14/2008] [Accepted: 09/17/2008] [Indexed: 11/15/2022] Open
Abstract
Matrix Metalloproteinase-9 (MMP-9) is an extracellularly operating enzyme involved in the synaptic plasticity, hippocampal-dependent long term memory and neurodegeneration. Previous studies have shown its upregulation following seizure-evoking stimuli. Herein, we show that in the rat brain, MMP-9 mRNA expression in response to pentylenetetrazole-evoked neuronal depolarization is transient. Furthermore, we demonstrate that in the rat hippocampus neuronal activation strongly induces JunB expression, simultaneously leading to an accumulation of JunB/FosB complexes onto the -88/-80 bp site of the rat MMP-9 gene promoter in vivo. Surprisingly, manipulations with JunB expression levels in activated neurons revealed its moderate repressive action onto MMP-9 gene expression. Therefore, our study documents the active repressive influence of AP-1 onto MMP-9 transcriptional regulation by the engagement of JunB.
Collapse
Affiliation(s)
- Marcin Rylski
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Xu J, Deng X, Demetriou AA, Farkas DL, Hui T, Wang C. Factors released from cholestatic rat livers possibly involved in inducing bone marrow hepatic stem cell priming. Stem Cells Dev 2008; 17:143-55. [PMID: 18225978 DOI: 10.1089/scd.2007.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown that bone marrow beta 2m(-)/Thy-1+ hepatic stem cells (BMHSCs) were able to engraft in vivo and differentiate into functioning hepatocytes in vitro. Our transcriptomic profiling on BMHSCs derived from rats subjected to common bile duct ligation (CBDL) demonstrated CBDL-derived beta 2m(-)/Thy-1+ BMHSCs expressed hepatocyte-like genes and shared more commonly expressed genes with hepatocytes, suggesting that an "on-site" priming of BMHSCs into hepatocyte lineage was initiated under the condition of CBDL. In this paper, transcriptomic profiling was carried out on livers from rats with CBDL to identify candidate factors released from cholestatic livers possibly involved in the priming of BMHSCs using Affymetrix Rat Genome U34A arrays. In CBDL rat livers, 1,091 probe sets were differentially expressed, of which 188 up-regulated probe sets were annotated as "extracellular" components. Gene ontology analysis showed many up-regulated genes belonged to cytokines, chemokines and growth factors, including Il1b, Il18, Ptn, Spp1, Grn, Ccl2, Cxcl1, Pf4, Tgfb, and Tgfb3. Cell differentiation and proliferation regulation factors such as Dmbt1, Efna1, Lgals1, Lep, Pmp2, and Gas6 were also induced in CBDL livers. Furthermore, many proteolysis and peptidolysis genes such as Mmp2, Mmp12, Mmp14, and Mmp23 were up-regulated in CBDL livers. Gene expression profiling showed that many cytokine-, chemokine-, growth factor- as well as certain extracellular protein-related genes were induced in CBDL livers, suggesting that these genes may be involved in hepatic BMHSCs priming.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine and Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
32
|
Jin X, Song X, Li L, Wang Z, Tao Y, Deng L, Tang M, Yi W, Cao Y. Blockade of AP-1 activity by dominant-negative TAM67 can abrogate the oncogenic phenotype in latent membrane protein 1-positive human nasopharyngeal carcinoma. Mol Carcinog 2007; 46:901-11. [PMID: 17477349 DOI: 10.1002/mc.20319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although activating protein-1 (AP-1) transcription factors play an important role in mediating metastasis for nasopharyngeal carcinoma (NPC), the biological and physiological functions of AP-1, in relation to the oncogenic phenotype of NPC, are not fully understood. Our previous study showed that the latent membrane protein 1 (LMP1) mediated a primary dimer form of c-jun and jun B. In this study, we used a NPC cell line that express a specific inhibitor of AP-1, a dominant-negative c-jun mutant (TAM67), to investigate the role of AP-1 in regulating the NPC oncogenic phenotype. First, we observed that TAM67 inhibited cell growth in vitro and in vivo. Next, with Western blotting, we discovered that TAM67 impaired the cyclin D1/cdk4 complex but had little effect on the cyclin E/cdk2 complex, concomitantly with inhibiting Rb phosphorylation. RT-PCR and luciferase assay results demonstrated that the levels of cyclin D1 mRNA and the promoter activity in TAM67 transfectants were reduced as compared with control cells. Thereby, we show that blockade of AP-1 transcriptional activity has a negative impact on cyclin D1 transcription. We obtained the first evidence that TAM67 prevented NPC growth both in vitro and in vivo. AP-1 appears to be a novel target for treating or preventing LMP1-positive NPC effectively.
Collapse
Affiliation(s)
- Xin Jin
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhu W, Boachie-Adjei O, Rawlins BA, Frenkel B, Boskey AL, Ivashkiv LB, Blobel CP. A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells. J Biol Chem 2007; 282:18676-85. [PMID: 17439946 DOI: 10.1074/jbc.m610232200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stromal-derived factor 1 (SDF-1) is a chemokine with important functions in development and postnatal tissue homeostasis. SDF-1 signaling via the G-protein-coupled receptor CXCR4 regulates the recruitment of stem and precursor cells to support tissue-specific repair or regeneration. In this study we examined the contribution of SDF-1 signaling to osteogenic differentiation of mesenchymal C2C12 cells induced by bone morphogenic protein 2 (BMP2). Blocking SDF-1 signaling before BMP2 stimulation by treatment with siRNA, antibodies against SDF-1 or CXCR4, or the G-protein-coupled receptor inhibitor pertussis toxin strongly suppressed BMP2 induction of osteogenic differentiation in C2C12 cells, as evidenced by an early decrease in the expression of the myogenesis inhibitor Id1, the osteogenic master regulators Runx2 and Osx, the osteoblast-associated transcription factors JunB, Plzf, Msx2, and Dlx5, and later of the bone marker proteins osteocalcin and alkaline phosphatase. Similarly, blocking SDF-1/CXCR4 signaling strongly inhibited BMP2-induced osteogenic differentiation of ST2 bone marrow stromal cells. Moreover, we found that the interaction between SDF-1 and BMP2 signaling was mediated via intracellular Smads and MAPK activation. Our data provide the first evidence for a co-requirement of the SDF-1/CXCR4 signaling axis in BMP2-induced osteogenic differentiation of C2C12 and ST2 cells and, thus, uncover a new potential target for modulation of osteogenesis.
Collapse
Affiliation(s)
- Wei Zhu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Suga T, Fukui T, Shinohara A, Luan X, Diekwisch TGH, Morito M, Yamane A. BMP2, BMP4, and their receptors are expressed in the differentiating muscle tissues of mouse embryonic tongue. Cell Tissue Res 2007; 329:103-17. [PMID: 17429696 DOI: 10.1007/s00441-007-0416-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 02/22/2007] [Indexed: 11/27/2022]
Abstract
To investigate the role of bone morphogenetic proteins (BMPs) in the differentiation process of skeletal muscle, we analyzed the in vivo expression of BMP2 and BMP4, of BMP receptors (BMPR) IA, IB, and II, and of activin receptors (ActR) IA, II, and IIB in mouse tongue muscle between embryonic day 11 (E11) and E17. The mRNA expression levels for BMP2 were 5-fold to 11-fold greater than those for BMP4 between E13 and E17 (P < 0.05-0.01). Expression of the BMP2, BMPRIB, ActRIA, ActRII, and ActRIIB proteins was first observed at E13. Expression of BMP2 and BMPRIB was detected in the whole area of the differentiating muscle tissues identified by immunostaining for fast myosin heavy chain (fMHC), but that of ActRIA, ActRII, and ActRIIB was detected only in the peripheral area of the differentiating muscle tissues. In the E15 tongue, all of the BMPs, BMPRs, and ActRs studied herein were expressed in the whole area of the differentiating muscle tissues identified by immunostaining for fMHC. These results suggest that BMPs play a role in the differentiation of tongue muscle tissues at E15 but have little or no effect at E13.
Collapse
Affiliation(s)
- Takeo Suga
- Department of Geriatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. BMC STRUCTURAL BIOLOGY 2007; 7:6. [PMID: 17295905 PMCID: PMC1802081 DOI: 10.1186/1472-6807-7-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 02/12/2007] [Indexed: 02/07/2023]
Abstract
Background Bone morphogenetic proteins (BMPs) are key regulators in the embryonic development and postnatal tissue homeostasis in all animals. Loss of function or dysregulation of BMPs results in severe diseases or even lethality. Like transforming growth factors β (TGF-βs), activins, growth and differentiation factors (GDFs) and other members of the TGF-β superfamily, BMPs signal by assembling two types of serine/threonine-kinase receptor chains to form a hetero-oligomeric ligand-receptor complex. BMP ligand receptor interaction is highly promiscuous, i.e. BMPs bind more than one receptor of each subtype, and a receptor bind various ligands. The activin type II receptors are of particular interest, since they bind a large number of diverse ligands. In addition they act as high-affinity receptors for activins but are also low-affinity receptors for BMPs. ActR-II and ActR-IIB therefore represent an interesting example how affinity and specificity might be generated in a promiscuous background. Results Here we present the high-resolution structures of the ternary complexes of wildtype and a variant BMP-2 bound to its high-affinity type I receptor BMPR-IA and its low-affinity type II receptor ActR-IIB and compare them with the known structures of binary and ternary ligand-receptor complexes of BMP-2. In contrast to activin or TGF-β3 no changes in the dimer architecture of the BMP-2 ligand occur upon complex formation. Functional analysis of the ActR-IIB binding epitope shows that hydrophobic interactions dominate in low-affinity binding of BMPs; polar interactions contribute only little to binding affinity. However, a conserved H-bond in the center of the type II ligand-receptor interface, which does not contribute to binding in the BMP-2 – ActR-IIB interaction can be mutationally activated resulting in a BMP-2 variant with high-affinity for ActR-IIB. Further mutagenesis studies were performed to elucidate the binding mechanism allowing us to construct BMP-2 variants with defined type II receptor binding properties. Conclusion Binding specificity of BMP-2 for its three type II receptors BMPR-II, Act-RII and ActR-IIB is encoded on single amino acid level. Exchange of only one or two residues results in BMP-2 variants with a dramatically altered type II receptor specificity profile, possibly allowing construction of BMP-2 variants that address a single type II receptor. The structure-/function studies presented here revealed a new mechanism, in which the energy contribution of a conserved H-bond is modulated by surrounding intramolecular interactions to achieve a switch between low- and high-affinity binding.
Collapse
|
36
|
Nakajima N, Takahashi T, Kitamura R, Isodono K, Asada S, Ueyama T, Matsubara H, Oh H. MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem Biophys Res Commun 2006; 350:1006-12. [PMID: 17045567 DOI: 10.1016/j.bbrc.2006.09.153] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs emerging as important post-transcriptional gene regulators. In this study, we examined the role of miR-1, an miRNA specifically expressed in cardiac and skeletal muscle tissue, on the myogenic, osteoblastic, and adipogenic differentiation of C2C12 cells. Upon induction of myogenic differentiation, miR-1 was robustly expressed. Retrovirus-mediated overexpression of miR-1 markedly enhanced expression of muscle creatine kinase, sarcomeric myosin, and alpha-actinin, while the effects on myogenin and MyoD expression were modest. Formation of myotubes was significantly augmented in miR-1-overexpressing cells, indicating miR-1 expression enhanced not only myogenic differentiation but also maturation into myotubes. In contrast, osteoblastic and adipogenic differentiation was not affected by forced expression of miR-1. Thus, the muscle-specific miRNA, miR-1, plays important roles in controlling myogenic differentiation and maturation in lineage-committed cells, rather than functioning in fate determination.
Collapse
Affiliation(s)
- Norio Nakajima
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bangi E, Wharton K. Dual function of the Drosophila Alk1/Alk2 ortholog Saxophone shapes the Bmp activity gradient in the wing imaginal disc. Development 2006; 133:3295-303. [PMID: 16887821 DOI: 10.1242/dev.02513] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wing patterning in Drosophila requires a Bmp activity gradient created by two Bmp ligands, Gbb and Dpp, and two Bmp type I receptors, Sax and Tkv. Gbb provides long-range signaling, while Dpp signals preferentially to cells near its source along the anteroposterior (AP) boundary of the wing disc. How each receptor contributes to the signaling activity of each ligand is not well understood. Here, we show that while Tkv mediates signals from both Dpp and Gbb, Sax exhibits a novel function for a Bmp type I receptor: the ability to both promote and antagonize signaling. Given its high affinity for Gbb, this dual function of Sax impacts the function of Gbb in the Bmp activity gradient more profoundly than does Dpp. We propose that this dual function of Sax is dependent on its receptor partner. When complexed with Tkv, Sax facilitates Bmp signaling, but when alone, Sax fails to signal effectively and sequesters Gbb. Overall, our model proposes that the balance between antagonizing and promoting Bmp signaling varies across the wing pouch, modulating the level and effective range, and, thus, shaping the Bmp activity gradient. This previously unknown mechanism for modulating ligand availability and range raises important questions regarding the function of vertebrate Sax orthologs.
Collapse
Affiliation(s)
- Erdem Bangi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
38
|
Hartung A, Sieber C, Knaus P. Yin and Yang in BMP signaling: Impact on the pathology of diseases and potential for tissue regeneration. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Ouyang X, Fujimoto M, Nakagawa R, Serada S, Tanaka T, Nomura S, Kawase I, Kishimoto T, Naka T. SOCS-2 interferes with myotube formation and potentiates osteoblast differentiation through upregulation of JunB in C2C12 cells. J Cell Physiol 2006; 207:428-36. [PMID: 16419040 DOI: 10.1002/jcp.20579] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Suppressor of cytokine signaling (SOCS)-2 regulates normal postnatal growth and its deficiency in mice causes gigantism with increased bone length and proportional enlargement in skeletal muscles. Using C2C12 mesenchymal precursor cell line as a model, we investigated a possible role of SOCS-2 in the differentiation process of mesenchymal precursors. Stable transfection of SOCS-2 into C2C12 cells resulted in the acceleration of proliferation and survival, and inhibition of spontaneous myotube formation. In addition, SOCS-2 potentiated bone morphogenic protein (BMP)-induced transdifferentiation of C2C12 cells into osteoblast phenotypes. These effects of SOCS-2 on C2C12 cells differed strikingly from that of SOCS-1, another member of SOCS family, and its mechanisms were evaluated. SOCS-2 did not alter BMP-induced phosphorylation and nuclear accumulation of Smad1, nor the expression of inhibitory-Smads mRNA. However, SOCS-2 enhanced BMP-induced transcriptional activation of the Smad-responsive reporter gene, suggesting that the action of SOCS-2 is exerted at the transcriptional level. Interestingly, SOCS-2 overexpression in C2C12 cells increased the endogenous JunB protein, one of the key transcriptional factors in the control of BMP/Smad signaling responsiveness. In addition, the proteasome inhibitor enhanced JunB protein expression in C2C12 cells. Moreover, we found that SOCS-2 reduced JunB ubiquitination in COS-7 cells. Although SOCS-2 is a modulator of growth hormone (GH) signaling, the upregulation of JunB by SOCS-2 did not require GH signaling. Taken together, these results suggest that SOCS-2 positively regulates endogenous JunB protein expression in C2C12 cells through inhibition of JunB destabilization by the ubiquitin-proteasome pathway, and thereby regulates the cell fate of mesenchymal precursors.
Collapse
Affiliation(s)
- Xinshou Ouyang
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Osses N, Gutierrez J, Lopez-Rovira T, Ventura F, Brandan E. Sulfation is required for bone morphogenetic protein 2-dependent Id1 induction. Biochem Biophys Res Commun 2006; 344:1207-15. [PMID: 16647687 DOI: 10.1016/j.bbrc.2006.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
Different reports have suggested the dependence of bone morphogenetic protein (BMP) activity on the sulfated glycosaminoglycan (GAG) chains found in proteoglycans. However, the requirement of sulfated molecules in early BMP-2-signaling responses has not been established. We have used sodium chlorate to inhibit sulfation in C2C12 cells and have analyzed BMP-2 induction of Id1. We show here that sulfation inhibition strongly decreases the specific and early induction of Id1 at the transcriptional level. This effect is not reverted by the addition of extracellular components, such as GAGs or extracellular matrix (ECM). The inhibition of GAG incorporation into proteoglycans, or their removal by GAG lyases, does not mimic the negative effect on Id1 expression, while sulfation inhibition also represses the Id1-induction exerted by a constitutively active form of the BMP receptor, suggesting that BMP-2-mediated Id1 induction has an intracellular requirement for sulfated molecules.
Collapse
Affiliation(s)
- Nelson Osses
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | |
Collapse
|
41
|
Smith E, Yang J, McGann L, Sebald W, Uludag H. RGD-grafted thermoreversible polymers to facilitate attachment of BMP-2 responsive C2C12 cells. Biomaterials 2005; 26:7329-38. [PMID: 16019067 DOI: 10.1016/j.biomaterials.2005.05.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to design thermoreversible biomaterials for enhanced adhesion of bone morphogenetic protein-2 (BMP-2)-responsive cells. Peptides containing the arginine-glycine-aspartic acid (RGD) sequence were conjugated to N-isopropylacrylamide (NiPAM) polymers via amine-reactive N-acryloxysuccinimide (NASI) groups. In monolayer cultures, the adhesion of BMP-2-responsive C2C12 cells to RGD-grafted NiPAM/NASI surfaces was significantly higher than adhesion on ungrafted NiPAM/NASI surfaces. Although the morphology of cells adhered to RGD-grafted NiPAM/NASI surfaces was comparable to cells adhered on tissue culture polystyrene (TCPS), long-term cell growth was limited on the NiPAM/NASI surfaces, even for RGD-grafted surfaces. Treatment of C2C12 cells with recombinant BMP-2 induced dose-dependent osteoblastic differentiation as assessed by alkaline phosphatase (ALP) activity. In the absence of BMP-2, cells cultured on NiPAM/NASI polymers (either grafted with RGD peptide or not) expressed significantly higher levels of ALP activity than the cells cultured on TCPS, indicating that the polymer surfaces induced some osteoblastic activity in C2C12 cells without the need for BMP-2. We conclude that NiPAM-based thermoreversible biomaterials, despite their limited ability to support cell growth, allowed an enhanced expression of the chosen osteogenic marker (ALP) by C2C12 cells in vitro.
Collapse
Affiliation(s)
- Erin Smith
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G6
| | | | | | | | | |
Collapse
|
42
|
Song X, Tao YG, Zeng L, Deng XY, Lee LM, Gong JP, Wu Q, Cao Y. Latent membrane protein 1 encoded by Epstein-Barr virus modulates directly and synchronously cyclin D1 and p16 by newly forming a c-Jun/Jun B heterodimer in nasopharyngeal carcinoma cell line. Virus Res 2005; 113:89-99. [PMID: 15936839 DOI: 10.1016/j.virusres.2005.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 04/20/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Recently we confirmed that latent membrane protein 1 (LMP1) encoded by Epstein-Barr virus (EBV) accelerates a newly forming active c-Jun/Jun B heterodimer, a transcription factor, but little is known about the target gene regulated by it. In this paper, results indicated that a c-Jun/Jun B heterodimer induced by LMP1 upregulated cyclin D1 promoters activity and expression, on the contrary, downregulated p16, and maladjustment of cyclin D1 and p16 expression accelerated progression of cell cycle. Firstly, we found a c-Jun/Jun B heterodimer regulated synchronously and directly cyclin D1 and p16 in the Tet-on-LMP1-HNE2 cell line, in which LMP1 expression is regulated by Tet-on system. This paper investigated in depth function of the newly forming active c-Jun/Jun B heterodimer, and built new connection between environmental pathogenic factor, signal transduction and cell cycle.
Collapse
Affiliation(s)
- X Song
- Cancer Research Institute, Xiangya School of Medicine, Central South of University, No. 88 Road Xiangya, Changsha 410078, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kappler R, Bauer R, Calzada-Wack J, Rosemann M, Hemmerlein B, Hahn H. Profiling the molecular difference between Patched- and p53-dependent rhabdomyosarcoma. Oncogene 2005; 23:8785-95. [PMID: 15480423 DOI: 10.1038/sj.onc.1208133] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant tumor that is histologically related to skeletal muscle, yet genetic and molecular lesions underlying its genesis and progression remain largely unknown. In this study we have compared the molecular profiles of two different mouse models of RMS, each associated with a defined primary genetic defect known to play a role in rhabdomyosarcomagenesis in man. We report that RMS of heterozygous Patched1 (Ptch1) mice show less aggressive growth and a greater degree of differentiation than RMS of heterozygous p53 mice. By means of cDNA microarray analysis we demonstrate that RMS in Ptch1 mutants predominantly express a number of myogenic markers, including myogenic differentiation 1, myosin heavy chain, actin, troponin and tropomyosin, as well as genes associated with Hedgehog/Patched signaling like insulin-like growth factor 2, forkhead box gene Foxf1 and the growth arrest and DNA-damage-inducible gene Gadd45a. In sharp contrast, RMS in p53 mutants display higher expression levels of cell cycle-associated genes like cyclin B1, cyclin-dependent kinase 4 and the proliferation marker Ki-67. These results demonstrate that different causative mutations lead to distinct gene expression profiles in RMS, which appear to reflect their different biological characteristics. Our results provide a first step towards a molecular classification of different forms of RMS. If the described differences can be confirmed in human RMS our results will contribute to a new molecular taxonomy of this cancer, which will be critical for gene mutation- and expression-specific therapy.
Collapse
Affiliation(s)
- Roland Kappler
- Institute of Human Genetics, University of Göttingen, Heinrich-Düker-Weg 12, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, Kingsley DM. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2004; 2:e355. [PMID: 15492776 PMCID: PMC523229 DOI: 10.1371/journal.pbio.0020355] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Accepted: 08/19/2004] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member) to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be investigated as a possible therapeutic strategy for maintaining the health of joint linings.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis
- Bone Morphogenetic Protein Receptors/metabolism
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Proteins/genetics
- Cartilage/metabolism
- Cartilage/pathology
- Cartilage, Articular/embryology
- Cartilage, Articular/growth & development
- Cartilage, Articular/metabolism
- Cell Proliferation
- Chromosomes, Artificial, Bacterial/metabolism
- Gene Expression Regulation, Developmental
- Genetic Variation
- Growth Differentiation Factor 5
- Inflammation
- Integrases/metabolism
- Joints/embryology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Mutation
- Osteoarthritis/metabolism
- Phenotype
- Recombination, Genetic
- Risk Factors
- Signal Transduction
- Synovial Membrane/embryology
- Time Factors
Collapse
Affiliation(s)
- Ryan B Rountree
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Michael Schoor
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Hao Chen
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Melissa E Marks
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Vincent Harley
- 2Prince Henry's Institute of Medical Research, Monash Medical CentreClayton, VictoriaAustralia
| | - Yuji Mishina
- 3National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle Park, North CarolinaUnited States of America
| | - David M Kingsley
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| |
Collapse
|
45
|
Gersbach CA, Byers BA, Pavlath GK, García AJ. Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype. Exp Cell Res 2004; 300:406-17. [PMID: 15475005 DOI: 10.1016/j.yexcr.2004.07.031] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/30/2004] [Indexed: 11/20/2022]
Abstract
Runx2, a transcriptional activator downstream of bone morphogenetic protein (BMP) signaling, is essential to osteoblastic differentiation and bone formation and maintenance. BMPs activate complex signaling networks, utilizing numerous signaling molecules and transcription factors to induce expression of osteoblastic markers in mesenchymal cell types. However, the role of Runx2 in this process, particularly in an environment independent of the other regulatory elements modulated by BMPs, remains poorly understood. In the present study, we used retroviral gene delivery to examine the effects of sustained Runx2 expression in primary myoblasts. Runx2 inhibited myogenesis, as demonstrated by suppression of MyoD and myogenin mRNA levels and reduced myotube formation. Additionally, Runx2-stimulated osteogenesis including osteoblastic gene expression, alkaline phosphatase activity, and biological mineral deposition. Notably, these osteogenic markers were induced to significantly greater levels than those observed in BMP-2-treated controls. These results demonstrate that direct exogenous expression of the Runx2 transcription factor, only one of numerous downstream targets of BMP signaling, is sufficient to induce transdifferentiation of myogenic cells into a mineralizing osteogenic lineage. This work underscores the potency of Runx2 as a regulator of osteogenesis and cell differentiation and provides new insights into the plasticity of committed mesenchymal cells.
Collapse
Affiliation(s)
- Charles A Gersbach
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
46
|
Song X, Tao YG, Deng XY, Jin X, Tan YN, Tang M, Wu Q, Lee LM, Cao Y. Heterodimer formation between c-Jun and Jun B proteins mediated by Epstein–Barr virus encoded latent membrane protein 1. Cell Signal 2004; 16:1153-62. [PMID: 15240010 DOI: 10.1016/j.cellsig.2004.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 03/15/2004] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is essential for the immortalization of human B cells and is linked etiologically to several human tumors. LMP1 is an integral membrane protein which acts like a constitutively active receptor. It binds tumor necrosis factor (TNF)-receptor-associated factors (TRAFs), activates NFkappaB and triggers the transcription factor activating protein-1 (AP-1) via the c-Jun N-terminal kinase (JNK) cascade, but its specific contribution to AP-1 has not been elucidated fully. Members of AP-1 family, the Jun and fos related protein, have been shown to directly interact and form heterodimeric complexes. In this report, using a Tet-on LMP1 HNE2 cell line which is a dual-stable LMP1 integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 in which could be regulated by Tet-on system, we show that Jun B can efficiently form a new heterodimeric complex with the c-Jun protein under the regulation of LMP1, phosphorylation of c-Jun (ser63, ser73) and Jun B involved in the process of the new heterodimeric form. We also find that this heterodimeric form can bind to the AP-1 consensus sequence. Transfection studies suggest that JNK interaction protein (JIP) could inhibit the heterodimer form of c-Jun and Jun B through blocking the AP-1 signaling pathway triggered by LMP1. The interaction and function between c-Jun protein and Jun B protein increase the repertoire of possible regulatory complexes by LMP1 that could play an important role in the regulation of transcription of specific cellular genes in the process of genesis of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xin Song
- Cancer Research Institute, Xiangya School of Medicine, Central South of University, 88 Xiangya Road, Changsha 410078, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Viñals F, Ventura F. Myogenin Protein Stability Is Decreased by BMP-2 through a Mechanism Implicating Id1. J Biol Chem 2004; 279:45766-72. [PMID: 15322112 DOI: 10.1074/jbc.m408059200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) induces a switch in differentiation of mesenchymal cells from the myogenic to the osteogenic lineage. Here we describe that in C2C12 cells, BMP-2 decreases myogenin expression induced by des-(1,3) insulin-like growth factor-1 (des-(1,3)IGF-1) or ectopically expressed from a constitutive promoter, even in conditions where myogenin mRNA levels were unaffected. Addition of BMP-2 decreases myogenin protein half-life to 50%, whereas proteasome inhibitors abolish these effects. Forced expression of Id1, either by transient transfection or under the control of an inducible system, causes degradation of myogenin in the absence of BMP-2. In contrast, E47 overexpression blocks the inhibitory effect of BMP-2 on myogenin levels. Finally, expression of E47 in 293 cells stabilizes myogenin, an effect that is dependent on the heterodimerization mediated by their helix-loop-helix. Our findings indicate that induction of Id1 not only blocks transcriptional activity but also induces myogenin degradation by blocking formation of myogenin-E47 protein complexes.
Collapse
Affiliation(s)
- Francesc Viñals
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, E-08907 L'Hospitalet de Llobregat, Spain
| | | |
Collapse
|
48
|
Viñals F, Reiriz J, Ambrosio S, Bartrons R, Rosa JL, Ventura F. BMP-2 decreases Mash1 stability by increasing Id1 expression. EMBO J 2004; 23:3527-37. [PMID: 15318167 PMCID: PMC516632 DOI: 10.1038/sj.emboj.7600360] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 07/15/2004] [Indexed: 01/17/2023] Open
Abstract
In neural development, bone morphogenetic proteins (BMPs) restrict neuronal differentiation, thereby promoting the maintenance of progenitor cells or even inducing astrocytogenesis. We report that exposure of neuroendocrine lung carcinoma cells to BMP-2 leads to a rapid decline in steady-state levels of Mash1 protein and some neuron-specific markers. BMP-2 induces a post-transcriptional decrease in Mash1 levels through enhanced degradation. We demonstrate that Mash1 protein stability is tightly regulated by the E47/Id1 expression ratio. Transient induction of Id1 by BMP-2 negatively correlates with Mash1 levels. Furthermore, an ectopic increase in Id1 levels is sufficient to induce degradation of either ectopic or endogenous Mash1, whereas expression of Mash1 in Id1-deficient cells or overexpression of E47 makes Mash1 levels refractory to the addition of BMP-2. Furthermore, we show that the E47/Id1 expression ratio also regulates CK2-mediated phosphorylation of Mash1 on Ser152, which increases interaction of Mash1-E47 heterodimers. We propose a novel mechanism in which the balance between Id and E protein levels regulates not only the transcriptional function but also protein stability of the neurogenic bHLH transcription factor Mash1.
Collapse
Affiliation(s)
- Francesc Viñals
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, Spain
| | - Julia Reiriz
- Departament d'Infermeria Fonamental i Medicoquirúrgica, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, Spain
| | - Santiago Ambrosio
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, Spain
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
49
|
Cui W, Bryant MR, Sweet PM, McDonnell PJ. Changes in gene expression in response to mechanical strain in human scleral fibroblasts. Exp Eye Res 2004; 78:275-84. [PMID: 14729359 DOI: 10.1016/j.exer.2003.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Scleral fibroblasts are involved in scleral remodeling during axial elongation in myopia. Mechanical load is a potent stimulator of gene expression. This study seeks to identify changes in gene expression of scleral fibroblasts in response to mechanical load and speculate on possible mechanisms of scleral remodeling in the development of myopia. Human scleral fibroblasts (HSFs) were mechanically stretched for 30 min and 24 hr. A gene microarray analysis was used to measure changes in gene expression. A total of 237 genes revealed differential and significant changes in expression (P<0.01) after 30 min of stretching. Of these, 28 unexpressed genes began to be expressed (turned on), while 31 expressed genes were no longer expressed (turned off). After 24 hr, 308 genes showed reproducible changes in expression (P<0.01), while 29 genes were turned on and 17 genes were turned off. After 30 min, 25 genes showed at least a threefold change in expression. These included genes for cell receptors, protein kinases, cell growth/differentiation factors, extracellular matrix (ECM) proteins, lipid metabolism, protein metabolism, transcription factors, binding proteins and water channels. After 24 hr, 21 genes showed at least a threefold change in expression. These included genes for cell receptors, protein kinases, cell growth/differentiation factors, lipid metabolism, ECM proteins, transcription factors, and carbohydrate metabolism. RT-PCR and Southern blotting confirmed the changes in expression of selected genes. In this study we identified a large number of early and late mechanical response genes in HSFs. These changes in gene expression will provide potential candidate genes that might be involved in scleral remodeling during axial elongation in myopia.
Collapse
Affiliation(s)
- Wei Cui
- Doheny Eye Institute and the Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
50
|
Manna PR, Eubank DW, Stocco DM. Assessment of the role of activator protein-1 on transcription of the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol 2003; 18:558-73. [PMID: 14673133 DOI: 10.1210/me.2003-0223] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
cAMP-dependent mechanisms regulate the steroidogenic acute regulatory (StAR) protein even though its promoter lacks a consensus cAMP response-element (CRE, TGACGTCA). Transcriptional regulation of the StAR gene has been demonstrated to involve combinations of DNA sequences that provide recognition motifs for sequence-specific transcription factors. We recently identified and characterized three canonical 5'-CRE half-sites within the cAMP-responsive region (-151/-1 bp) of the mouse StAR gene. Among these CRE elements, the CRE2 half-site is analogous (TGACTGA) to an activator protein-1 (AP-1) sequence [TGA(C/G)TCA]; therefore, the role of the AP-1 transcription factor was explored in StAR gene transcription. Mutation in the AP-1 element demonstrated an approximately 50% decrease in StAR reporter activity. Using EMSA, oligonucleotide probes containing an AP-1 binding site were found to specifically bind to nuclear proteins obtained from mouse MA-10 Leydig and Y-1 adrenocortical tumor cells. The integrity of the sequence-specific AP-1 element in StAR gene transcription was assessed using the AP-1 family members, Fos (c-Fos, Fra-1, Fra-2, and Fos B) and Jun (c-Jun, Jun B, and Jun D), which demonstrated the involvement of Fos and Jun in StAR gene transcription to varying degrees. Disruption of the AP-1 binding site reversed the transcriptional responses seen with Fos and Jun. EMSA studies utilizing antibodies specific to Fos and Jun demonstrated the involvement of several AP-1 family proteins. Functional assessment of Fos and Jun was further demonstrated by transfecting antisense c-Fos, Fra-1, and dominant negative forms of Fos (A-Fos) and c-Jun (TAM-67) into MA-10 cells, which significantly (P < 0.01) repressed transcription of the StAR gene. Mutation of the AP-1 site in combination with mutations in other cis-elements resulted in a further decrease of StAR promoter activity, demonstrating a functional cooperation between these factors. Mammalian two-hybrid assays revealed high-affinity protein-protein interactions between c-Fos and c-Jun with steroidogenic factor 1, GATA-4, and CCAAT/enhancer binding protein-beta. These findings demonstrate that Fos and Jun can bind to the TGACTGA element in the StAR promoter and provide novel insights into the mechanisms regulating StAR gene transcription.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|