1
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
2
|
Fernández-Torras A, Duran-Frigola M, Aloy P. Encircling the regions of the pharmacogenomic landscape that determine drug response. Genome Med 2019; 11:17. [PMID: 30914058 PMCID: PMC6436215 DOI: 10.1186/s13073-019-0626-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The integration of large-scale drug sensitivity screens and genome-wide experiments is changing the field of pharmacogenomics, revealing molecular determinants of drug response without the need for previous knowledge about drug action. In particular, transcriptional signatures of drug sensitivity may guide drug repositioning, prioritize drug combinations, and point to new therapeutic biomarkers. However, the inherent complexity of transcriptional signatures, with thousands of differentially expressed genes, makes them hard to interpret, thus giving poor mechanistic insights and hampering translation to clinics. METHODS To simplify drug signatures, we have developed a network-based methodology to identify functionally coherent gene modules. Our strategy starts with the calculation of drug-gene correlations and is followed by a pathway-oriented filtering and a network-diffusion analysis across the interactome. RESULTS We apply our approach to 189 drugs tested in 671 cancer cell lines and observe a connection between gene expression levels of the modules and mechanisms of action of the drugs. Further, we characterize multiple aspects of the modules, including their functional categories, tissue-specificity, and prevalence in clinics. Finally, we prove the predictive capability of the modules and demonstrate how they can be used as gene sets in conventional enrichment analyses. CONCLUSIONS Network biology strategies like module detection are able to digest the outcome of large-scale pharmacogenomic initiatives, thereby contributing to their interpretability and improving the characterization of the drugs screened.
Collapse
Affiliation(s)
- Adrià Fernández-Torras
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Kostallari E, Hirsova P, Prasnicka A, Verma VK, Yaqoob U, Wongjarupong N, Roberts LR, Shah VH. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 2018; 68:333-348. [PMID: 29360139 PMCID: PMC6033667 DOI: 10.1002/hep.29803] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
UNLABELLED Liver fibrosis is characterized by the activation and migration of hepatic stellate cells (HSCs), followed by matrix deposition. Recently, several studies have shown the importance of extracellular vesicles (EVs) derived from liver cells, such as hepatocytes and endothelial cells, in liver pathobiology. While most of the studies describe how liver cells modulate HSC behavior, an important gap exists in the understanding of HSC-derived signals and more specifically HSC-derived EVs in liver fibrosis. Here, we investigated the molecules released through HSC-derived EVs, the mechanism of their release, and the role of these EVs in fibrosis. Mass spectrometric analysis showed that platelet-derived growth factor (PDGF) receptor-alpha (PDGFRα) was enriched in EVs derived from PDGF-BB-treated HSCs. Moreover, patients with liver fibrosis had increased PDGFRα levels in serum EVs compared to healthy individuals. Mechanistically, in vitro tyrosine720-to-phenylalanine mutation on the PDGFRα sequence abolished enrichment of PDGFRα in EVs and redirected the receptor toward degradation. Congruently, the inhibition of Src homology 2 domain tyrosine phosphatase 2, the regulatory binding partner of phosphorylated tyrosine720, also inhibited PDGFRα enrichment in EVs. EVs derived from PDGFRα-overexpressing cells promoted in vitro HSC migration and in vivo liver fibrosis. Finally, administration of Src homology 2 domain tyrosine phosphatase 2inhibitor, SHP099, to carbon tetrachloride-administered mice inhibited PDGFRα enrichment in serum EVs and reduced liver fibrosis. CONCLUSION PDGFRα is enriched in EVs derived from PDGF-BB-treated HSCs in an Src homology 2 domain tyrosine phosphatase 2-dependent manner and these PDGFRα-enriched EVs participate in development of liver fibrosis. (Hepatology 2018;68:333-348).
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Alena Prasnicka
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN,Department of Pharmacology, Charles University, Hradec Kralove, Czech Republic
| | - Vikas K. Verma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Haan S, Bahlawane C, Wang J, Nazarov PV, Muller A, Eulenfeld R, Haan C, Rolvering C, Vallar L, Satagopam VP, Sauter T, Wiesinger MY. The oncogenic FIP1L1-PDGFRα fusion protein displays skewed signaling properties compared to its wild-type PDGFRα counterpart. JAKSTAT 2015; 4:e1062596. [PMID: 26413425 PMCID: PMC4583054 DOI: 10.1080/21623996.2015.1062596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of oncogenic kinases is frequently observed in human cancers, but the underlying mechanism and resulting effects on global signaling are incompletely understood. Here, we demonstrate that the oncogenic FIP1L1-PDGFRα kinase exhibits a significantly different signaling pattern compared to its PDGFRα wild type counterpart. Interestingly, the activation of primarily membrane-based signal transduction processes (such as PI3-kinase- and MAP-kinase- pathways) is remarkably shifted toward a prominent activation of STAT factors. This diverging signaling pattern compared to classical PDGF-receptor signaling is partially coupled to the aberrant cytoplasmic localization of the oncogene, since membrane targeting of FIP1L1-PDGFRα restores activation of MAPK- and PI3K-pathways. In stark contrast to the classical cytokine-induced STAT activation process, STAT activation by FIP1L1-PDGFRα does neither require Janus kinase activity nor Src kinase activity. Furthermore, we investigated the mechanism of STAT5 activation via FIP1L1-PDGFRα in more detail and found that STAT5 activation does not involve an SH2-domain-mediated binding mechanism. We thus demonstrate that STAT5 activation occurs via a non-canonical activation mechanism in which STAT5 may be subject to a direct phosphorylation by FIP1L1-PDGFRα.
Collapse
Affiliation(s)
- Serge Haan
- Molecular Disease Mechanisms Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Christelle Bahlawane
- Molecular Disease Mechanisms Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Jiali Wang
- Molecular Disease Mechanisms Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Petr V Nazarov
- Genomics Research Unit; Luxembourg Institute of Health; Luxembourg , Luxembourg
| | - Arnaud Muller
- Genomics Research Unit; Luxembourg Institute of Health; Luxembourg , Luxembourg
| | - René Eulenfeld
- Signal Transduction Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Claude Haan
- Signal Transduction Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Catherine Rolvering
- Signal Transduction Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Laurent Vallar
- Genomics Research Unit; Luxembourg Institute of Health; Luxembourg , Luxembourg
| | - Venkata P Satagopam
- Luxembourg Center for Systems Biomedicine; University of Luxembourg ; Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Systems Biology Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Monique Yvonne Wiesinger
- Systems Biology Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| |
Collapse
|
5
|
SHC1 sensitizes cancer cells to the 8-Cl-cAMP treatment. Biochem Biophys Res Commun 2015; 463:673-8. [PMID: 26043699 DOI: 10.1016/j.bbrc.2015.05.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/30/2015] [Indexed: 02/01/2023]
Abstract
8-Chloro-cyclic AMP (8-Cl-cAMP) is a cyclic AMP analog that induces growth inhibition and apoptosis in a broad spectrum of cancer cells. Previously, we found that 8-Cl-cAMP-induced growth inhibition is mediated by AMP-activated protein kinase (AMPK) as well as p38 mitogen-activated protein kinase (p38 MAPK). To identify downstream mediators of the 8-Cl-cAMP signaling, we performed co-immunoprecipitation combined with mass spectrometry using the anti-AMPK or p38 MAPK antibodies. Through this approach, SHC1 was identified as one of the binding partners of p38 MAPK. SHC1 phosphorylation was suppressed by 8-Cl-cAMP in HeLa and MCF7 cancer cells, which was mediated by its metabolites, 8-Cl-adenosine and 8-Cl-ATP; however, 8-Cl-cAMP showed no effect on SHC1 phosphorylation in normal human fibroblasts. SHC1 siRNA induced AMPK and p38 MAPK phosphorylation and growth inhibition in cancer cells, and SHC1 overexpression re-sensitized human foreskin fibroblasts to the 8-Cl-cAMP treatment. SHC1 phosphorylation was unaffected by Compound C (an AMPK inhibitor) and SB203580 (a p38 MAPK inhibitor), which suggests that SHC1 is upstream of AMPK and p38 MAPK in the 8-Cl-cAMP-stimulated signaling cascade. On the basis of these findings, we conclude that SHC1 functions as a sensor during the 8-Cl-cAMP-induced growth inhibition in SHC1-overexpressing cancer cells.
Collapse
|
6
|
RasGAP Promotes Autophagy and Thereby Suppresses Platelet-Derived Growth Factor Receptor-Mediated Signaling Events, Cellular Responses, and Pathology. Mol Cell Biol 2015; 35:1673-85. [PMID: 25733681 DOI: 10.1128/mcb.01248-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) make profound contributions to both physiology and pathology. While it is widely believed that direct (PDGF-mediated) activation is the primary mode of activating PDGFRs, the discovery that they can also be activated indirectly begs the question of the relevance of the indirect mode of activating PDGFRs. In the context of a blinding eye disease, indirect activation of PDGFRα results in persistent signaling, which suppresses the level of p53 and thereby promotes viability of cells that drive pathogenesis. Under the same conditions, PDGFRβ fails to undergo indirect activation. In this paper, we report that RasGAP (GTPase-activating protein of Ras) prevented indirect activation of PDGFRβ. RasGAP, which associates with PDGFRβ but not PDGFRα, reduced the level of mitochondrion-derived reactive oxygen species, which are required for enduring activation of PDGFRs. Furthermore, preventing PDGFRβ from associating with RasGAP allowed it to signal enduringly and drive pathogenesis of a blinding eye disease. These results indicate a previously unappreciated role of RasGAP in antagonizing indirect activation of PDGFRβ, define the underlying mechanism, and raise the possibility that PDGFRβ-mediated diseases involve indirect activation of PDGFRβ.
Collapse
|
7
|
A reactive oxygen species-mediated, self-perpetuating loop persistently activates platelet-derived growth factor receptor α. Mol Cell Biol 2013; 34:110-22. [PMID: 24190966 DOI: 10.1128/mcb.00839-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet-derived growth factor (PDGF) receptors (PDGFRs) are central to a spectrum of human diseases. When PDGFRs are activated by PDGF, reactive oxygen species (ROS) and Src family kinases (SFKs) act downstream of PDGFRs to enhance PDGF-mediated tyrosine phosphorylation of various signaling intermediates. In contrast to these firmly established principles of signal transduction, much less is known regarding the recently appreciated ability of ROS and SFKs to indirectly and chronically activate monomeric PDGF receptor α (PDGFRα) in the setting of a blinding condition called proliferative vitreoretinopathy (PVR). In this context, we made a series of discoveries that substantially expands our appreciation of epigenetic-based mechanisms to chronically activate PDGFRα. Vitreous, which contains growth factors outside the PDGF family but little or no PDGFs, promoted formation of a unique SFK-PDGFRα complex that was dependent on SFK-mediated phosphorylation of PDGFRα and activated the receptor's kinase activity. While vitreous engaged a total of five receptor tyrosine kinases, PDGFRα was the only one that was activated persistently (at least 16 h). Prolonged activation of PDGFRα involved mTOR-mediated inhibition of autophagy and accumulation of mitochondrial ROS. These findings reveal that growth factor-containing biological fluids, such as vitreous, are able to tirelessly activate PDGFRα by engaging a ROS-mediated, self-perpetuating loop.
Collapse
|
8
|
Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model. Neoplasia 2013; 14:1132-43. [PMID: 23308046 DOI: 10.1593/neo.121750] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 01/15/2023] Open
Abstract
Dasatinib, a new-generation Src and platelet-derived growth factor receptor (PDGFR) inhibitor, is currently under evaluation in high-grade glioma clinical trials. To achieve optimum physicochemical and/or biologic properties, alternative drug delivery vehicles may be needed. We used a novel fluorinated dasatinib derivative (F-SKI249380), in combination with nanocarrier vehicles and metabolic imaging tools (microPET) to evaluate drug delivery and uptake in a platelet-derived growth factor B (PDGFB)-driven genetically engineered mouse model (GEMM) of high-grade glioma. We assessed dasatinib survival benefit on the basis of measured tumor volumes. Using brain tumor cells derived from PDGFB-driven gliomas, dose-dependent uptake and time-dependent inhibitory effects of F-SKI249380 on biologic activity were investigated and compared with the parent drug. PDGFR receptor status and tumor-specific targeting were non-invasively evaluated in vivo using (18)F-SKI249380 and (18)F-SKI249380-containing micellar and liposomal nanoformulations. A statistically significant survival benefit was found using dasatinib (95 mg/kg) versus saline vehicle (P < .001) in tumor volume-matched GEMM pairs. Competitive binding and treatment assays revealed comparable biologic properties for F-SKI249380 and the parent drug. In vivo, Significantly higher tumor uptake was observed for (18)F-SKI249380-containing micelle formulations [4.9 percentage of the injected dose per gram tissue (%ID/g); P = .002] compared to control values (1.6%ID/g). Saturation studies using excess cold dasatinib showed marked reduction of tumor uptake values to levels in normal brain (1.5%ID/g), consistent with in vivo binding specificity. Using (18)F-SKI249380-containing micelles as radiotracers to estimate therapeutic dosing requirements, we calculated intratumoral drug concentrations (24-60 nM) that were comparable to in vitro 50% inhibitory concentration values. (18)F-SKI249380 is a PDGFR-selective tracer, which demonstrates improved delivery to PDGFB-driven high-grade gliomas and facilitates treatment planning when coupled with nanoformulations and quantitative PET imaging approaches.
Collapse
|
9
|
Metazoan-like signaling in a unicellular receptor tyrosine kinase. BMC BIOCHEMISTRY 2013; 14:4. [PMID: 23398683 PMCID: PMC3584944 DOI: 10.1186/1471-2091-14-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/04/2013] [Indexed: 12/27/2022]
Abstract
Background Receptor tyrosine kinases (RTKs) are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. Results We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2) in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence) served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. Conclusions Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins) and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.
Collapse
|
10
|
Hagopian K, Tomilov AA, Tomilova N, Kim K, Taylor SL, Lam AK, Cortopassi GA, McDonald RB, Ramsey JJ. Shc proteins influence the activities of enzymes involved in fatty acid oxidation and ketogenesis. Metabolism 2012; 61:1703-13. [PMID: 22683097 PMCID: PMC3442136 DOI: 10.1016/j.metabol.2012.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES ShcKO mice have low body fat and resist weight gain on a high fat diet, indicating that Shc proteins may influence enzymes involved in β-oxidation. To investigate this idea, the activities of β-oxidation and ketone body metabolism enzymes were measured. METHODS The activities of β-oxidation enzymes (acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase and ketoacyl-CoA thiolase) in liver and hindlimb skeletal muscle, ketolytic enzymes (acetoacetyl-CoA thiolase, β-hydroxybutyrate dehydrogenase and 3-oxoacid-CoA transferase) in skeletal muscle, and ketogenic enzymes (acetoacetyl-CoA thiolase and β-hydroxybutyrate dehydrogenase) in liver were measured from wild-type and ShcKO mice. RESULTS The activities of β-oxidation enzymes were increased (P<.05) in the ShcKO compared to wild-type mice in the fasted but not the fed state. In contrast, no uniform increases in the ketolytic enzyme activities were observed between ShcKO and wild-type mice. In liver, the activities of ketogenic enzymes were increased (P<.05) in ShcKO compared to wild-type mice in both the fed and fasted states. Levels of phosphorylated hormone sensitive lipase from adipocytes were also increased (P<.05) in fasted ShcKO mice. CONCLUSION These studies indicate that the low Shc levels in ShcKO mice result in increased liver and muscle β-oxidation enzyme activities in response to fasting and induce chronic increases in the activity of liver ketogenic enzymes. Decreases in the level of Shc proteins should be considered as possible contributors to the increase in activity of fatty acid oxidation enzymes in response to physiological conditions which increase reliance on fatty acids as a source of energy.
Collapse
Affiliation(s)
- Kevork Hagopian
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - Alexey A. Tomilov
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - Natalia Tomilova
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - Sandra L. Taylor
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - Adam K. Lam
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - Gino A. Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - Roger B. McDonald
- Department of Nutrition, University of California, Davis, California 95616, USA
| | - Jon J. Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA
- Corresponding author s. Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. Tel: +1 530 754 8122; FAX: +1 530 752 4698;
| |
Collapse
|
11
|
Kazi JU, Sun J, Phung B, Zadjali F, Flores-Morales A, Rönnstrand L. Suppressor of cytokine signaling 6 (SOCS6) negatively regulates Flt3 signal transduction through direct binding to phosphorylated tyrosines 591 and 919 of Flt3. J Biol Chem 2012; 287:36509-17. [PMID: 22952242 DOI: 10.1074/jbc.m112.376111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The receptor tyrosine kinase Flt3 is an important growth factor receptor in hematopoiesis, and gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia. SOCS6 (suppressor of cytokine signaling 6) is a member of the SOCS family of E3 ubiquitin ligases that can regulate receptor tyrosine kinase signal transduction. In this study, we analyzed the role of SOCS6 in Flt3 signal transduction. The results show that ligand stimulation of Flt3 can induce association of SOCS6 and Flt3 and tyrosine phosphorylation of SOCS6. Phosphopeptide fishing indicated that SOCS6 binds directly to phosphotyrosines 591 and 919 of Flt3. By using stably transfected Ba/F3 cells with Flt3 and/or SOCS6, we show that the presence of SOCS6 can enhance ubiquitination of Flt3, as well as internalization and degradation of the receptor. The presence of SOCS6 also induces weaker activation of Erk1/2, but not Akt, in transfected Ba/F3 and UT-7 cells and in OCI-AML-5 cells. The absence of SOCS6 promotes Ba/F3 and UT-7 cell proliferation induced by oncogenic internal tandem duplications of Flt3. Taken together, these results suggest that SOCS6 negatively regulates Flt3 activation, the downstream Erk signaling pathway, and cell proliferation.
Collapse
Affiliation(s)
- Julhash U Kazi
- Experimental Clinical Chemistry, Department of Laboratory Medicine, Lund University, Wallenberg Laboratory, Skåne University Hospital, 20502 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Huang CW, Chen HY, Yen MH, Chen JJW, Young TH, Cheng JY. Gene expression of human lung cancer cell line CL1-5 in response to a direct current electric field. PLoS One 2011; 6:e25928. [PMID: 21998723 PMCID: PMC3187831 DOI: 10.1371/journal.pone.0025928] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 09/13/2011] [Indexed: 12/21/2022] Open
Abstract
Background Electrotaxis is the movement of adherent living cells in response to a direct current (dc) electric field (EF) of physiological strength. Highly metastatic human lung cancer cells, CL1–5, exhibit directional migration and orientation under dcEFs. To understand the transcriptional response of CL1–5 cells to a dcEF, microarray analysis was performed in this study. Methodology/Principal Findings A large electric-field chip (LEFC) was designed, fabricated, and used in this study. CL1–5 cells were treated with the EF strength of 0mV/mm (the control group) and 300mV/mm (the EF-treated group) for two hours. Signaling pathways involving the genes that expressed differently between the two groups were revealed. It was shown that the EF-regulated genes highly correlated to adherens junction, telomerase RNA component gene regulation, and tight junction. Some up-regulated genes such as ACVR1B and CTTN, and some down-regulated genes such as PTEN, are known to be positively and negatively correlated to cell migration, respectively. The protein-protein interactions of adherens junction-associated EF-regulated genes suggested that platelet-derived growth factor (PDGF) receptors and ephrin receptors may participate in sensing extracellular electrical stimuli. We further observed a high percentage of significantly regulated genes which encode cell membrane proteins, suggesting that dcEF may directly influence the activity of cell membrane proteins in signal transduction. Conclusions/Significance In this study, some of the EF-regulated genes have been reported to be essential whereas others are novel for electrotaxis. Our result confirms that the regulation of gene expression is involved in the mechanism of electrotactic response.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Huai-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
| | - Meng-Hua Yen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeremy J. W. Chen
- Institutes of Biomedical Sciences and Molecular Biology, National Chung-Hsing University, Taichung, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Mechanical and Mechantronic Engineering, National Taiwan Ocean University, Keelung, Taiwan
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Yokomine T, Hirakawa H, Ozawa E, Shibata K, Nakayama T. Pulmonary thrombotic microangiopathy caused by gastric carcinoma. J Clin Pathol 2010; 63:367-9. [PMID: 20354211 PMCID: PMC2921276 DOI: 10.1136/jcp.2010.075739] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulmonary tumour thrombotic microangiopathy (PTTM) is characterised by wide spread tumour emboli along with fibrocellular intimal proliferation and thrombus formation in small pulmonary arteries and arterioles. PTTM is a rare but fatal complication of carcinoma, but the pathogenesis remains to be clarified. An autopsy case of PTTM caused by gastric adenocarcinoma is described, in which tumour cells in the PTTM lesion had positive immunoreactivity for platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR), and proliferating fibromuscular intimal cells also showed expression of PDGFR. In addition, the overexpression of PGDF was detected in the alveolar macrophages. These findings suggest that PDGF derived from alveolar macrophages and from tumour cells may act together in promoting fibrocellular intimal proliferation. To the best of the authors' knowledge, the possible involvement of activated alveolar macrophages in PTTM has not been previously reported.
Collapse
Affiliation(s)
- Tatsuo Yokomine
- Department of Tumour and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | | | | | | | | |
Collapse
|
14
|
Lei H, Velez G, Cui J, Samad A, Maberley D, Matsubara J, Kazlauskas A. N-acetylcysteine suppresses retinal detachment in an experimental model of proliferative vitreoretinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:132-40. [PMID: 20489144 DOI: 10.2353/ajpath.2010.090604] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a complication that develops in 5% to 10% of patients who undergo surgery to correct a detached retina. The only treatment option for PVR is surgical intervention, which has a limited success rate that diminishes in patients with recurring PVR. Our recent studies revealed that antioxidants prevented intracellular signaling events that were essential for experimental PVR. The purpose of this study was to test whether N-acetyl-cysteine (NAC), an antioxidant used in a variety of clinical settings, was capable of protecting rabbits from PVR. Vitreous-driven activation of PDGFRalpha and cellular responses intrinsic to PVR (contraction of collagen gels and cell proliferation) were blocked by concentrations of NAC that were well below the maximum tolerated dose. Furthermore, intravitreal injection of NAC effectively protected rabbits from developing retinal detachment, which is the sight-robbing phase of PVR. Finally, these observations with an animal model appear relevant to clinical PVR because NAC prevented human PVR vitreous-induced contraction of primary RPE cells derived from a human PVR membrane. Our observations demonstrate that antioxidants significantly inhibited experimental PVR, and suggest that antioxidants have the potential to function as a PVR prophylactic in patients undergoing retinal surgery to repair a detached retina.
Collapse
Affiliation(s)
- Hetian Lei
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Verstraelen S, Nelissen I, Hooyberghs J, Witters H, Schoeters G, Van Cauwenberge P, Van Den Heuvel R. Gene profiles of THP-1 macrophages after in vitro exposure to respiratory (non-)sensitizing chemicals: Identification of discriminating genetic markers and pathway analysis. Toxicol In Vitro 2009; 23:1151-62. [DOI: 10.1016/j.tiv.2009.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/04/2009] [Accepted: 06/09/2009] [Indexed: 11/30/2022]
|
16
|
Lei H, Velez G, Hovland P, Hirose T, Gilbertson D, Kazlauskas A. Growth factors outside the PDGF family drive experimental PVR. Invest Ophthalmol Vis Sci 2009; 50:3394-403. [PMID: 19324843 PMCID: PMC2798136 DOI: 10.1167/iovs.08-3042] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Proliferative vitreoretinopathy (PVR) is a recurring and problematic disease for which there is no pharmacologic treatment. Platelet-derived growth factor (PDGF) in the vitreous is associated with experimental and clinical PVR. Furthermore, PDGF receptors (PDGFRs) are present and activated in epiretinal membranes of patient donors, and they are essential for experimental PVR. These observations suggest that PVR arises at least in part from PDGF/PDGFR-driven events. The goal of this study was to determine whether PDGFs were a potential therapeutic target for PVR. METHODS Experimental PVR was induced in rabbits by injecting fibroblasts. Vitreous specimens were collected from experimental rabbits or from patients undergoing vitrectomy to repair retinal detachment. A neutralizing PDGF antibody and a PDGF Trap were tested for their ability to prevent experimental PVR. Activation of PDGFR was monitored by antiphosphotyrosine Western blot analysis of immunoprecipitated PDGFRs. Contraction of collagen gels was monitored in vitro. RESULTS Neutralizing vitreal PDGFs did not effectively attenuate PVR, even though the reagents used potently blocked PDGF-dependent activation of the PDGF alpha receptor (PDGFRalpha). Vitreal growth factors outside the PDGF family modestly activated PDGFRalpha and appeared to do so without engaging the ligand-binding domain of PDGFRalpha. This indirect route to activate PDGFRalpha had profound functional consequences. It promoted the contraction of collagen gels and appeared sufficient to drive experimental PVR. CONCLUSIONS Although PDGF appears to be a poor therapeutic target, PDGFRalpha is particularly attractive because it can be activated by a much larger spectrum of vitreal growth factors than previously appreciated.
Collapse
Affiliation(s)
- Hetian Lei
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Gisela Velez
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Peter Hovland
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Schepens Retina Associates Foundation, Boston, Massachusetts
| | - Tatsuo Hirose
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Schepens Retina Associates Foundation, Boston, Massachusetts
| | | | - Andrius Kazlauskas
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Lei H, Kazlauskas A. Growth factors outside of the platelet-derived growth factor (PDGF) family employ reactive oxygen species/Src family kinases to activate PDGF receptor alpha and thereby promote proliferation and survival of cells. J Biol Chem 2009; 284:6329-36. [PMID: 19126548 PMCID: PMC2649107 DOI: 10.1074/jbc.m808426200] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/06/2009] [Indexed: 11/06/2022] Open
Abstract
The vitreous contains a plethora of growth factors that are strongly implicated in the formation of fibroproliferative diseases such as proliferative vitreoretinopathy. Although platelet-derived growth factors (PDGFs) are present in the vitreous, vitreal growth factors outside of the PDGF family activated the PDGF alpha receptor (PDGFRalpha) and promoted disease progression in a rabbit model of proliferative vitreoretinopathy (H. Lei, G. Velez, P. Hovland, T. Hirose, D. Gilbertson, and A. Kazlauskas (2008) submitted for publication.) In this report we investigated the mechanism by which non-PDGFs activated PDGFRalpha. We found that non-PDGFs increased the cellular level of reactive oxygen species (ROS) and that this event was necessary and sufficient for phosphorylation of PDGFRalpha. We speculated that the underlying mechanism was ROS-mediated inhibition of phosphotyrosine phosphatases, which antagonize receptor auto-phosphorylation. However, this did not appear to be the case. Non-PDGFs promoted tyrosine phosphorylation of catalytically inactive PDGFRalpha, and thereby indicated that at least one additional tyrosine kinase was involved. Indeed, preventing expression or blocking the kinase activity of Src family kinases suppressed non-PDGF-dependent tyrosine phosphorylation of PDGFRalpha. Thus non-PDGFs increased the level of ROS, which activated Src family kinases and resulted in phosphorylation of PDGFRalpha. Finally, although non-PDGFs induced only modest phosphorylation of PDGFRalpha, proliferation and survival of cells in response to non-PDGFs was significantly enhanced by expression of PDGFRalpha. These studies reveal a novel mechanism for activation of PDGFRalpha that appears capable of enhancing the responsiveness of cells to growth factors outside of the PDGF family.
Collapse
Affiliation(s)
- Hetian Lei
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
18
|
Lee HM, Jeon BH, Won KJ, Lee CK, Park TK, Choi WS, Bae YM, Kim HS, Lee SK, Park SH, Irani K, Kim B. Gene Transfer of Redox Factor-1 Inhibits Neointimal Formation. Circ Res 2009; 104:219-27, 5p following 227. [DOI: 10.1161/circresaha.108.178699] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of apurinic/apyrimidinic endonuclease-1/redox factor-1 (Ref-1) in vascular smooth muscle cells has yet to be clearly elucidated. Therefore, we attempted to determine the roles of Ref-1 in the migration induced by platelet-derived growth factor (PDGF)-BB and in its signaling in rat aortic smooth muscle cells (RASMCs). Cellular migration, superoxide (O
2
−·
) production, Rac-1 activity, and neointima formation were determined in cells transfected with adenoviruses encoding for Ref-1 (AdRef-1) and small interference RNA of Ref-1. Overexpression of Ref-1 induced by treatment with RASMCs coupled with AdRef-1 inhibited the migration induced by PDGF-BB. PDGF-BB also increased the phosphorylation of the PDGFβ receptor, spleen tyrosine kinase (Syk), mitogen-activated protein kinase, and heat shock protein 27, but these increases were significantly inhibited by AdRef-1 treatment. PDGF-BB increased O
2
−·
production and Rac-1 activity, and these were diminished in cells transfected with AdRef-1. In contrast, RASMC migration, phosphorylation of Syk and O
2
−·
production in response to PDGF-BB were increased by the knock down of Ref-1 with small interference RNA. The phosphorylation of PDGFβ receptor in response to PDGF-BB was inhibited completely by the Syk inhibitor and was partly attenuated by a NADPH oxidase inhibitor. PDGF-BB increased the sprout outgrowth of the aortic ring ex vivo, which was inhibited in the AdRef-1–infected RASMCs as compared with the controls. Balloon injury–induced neointimal formation was significantly attenuated by the gene transfer of AdRef-1. These results indicate that Ref-1 inhibits the PDGF-mediated migration signal via the inhibition of reactive oxygen species–mediated Syk activity in RASMCs.
Collapse
Affiliation(s)
- Hwan Myung Lee
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Byeong Hwa Jeon
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Kyung-Jong Won
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Chang-Kwon Lee
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Tae-Kyu Park
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Wahn Soo Choi
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Young Min Bae
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Hyo Shin Kim
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Sang Ki Lee
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Seung Hwa Park
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Kaikobad Irani
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| | - Bokyung Kim
- From the Institute of Medical Sciences (H.M.L., K.-J.W., C.-K.L., T.-K.P., W.S.C., Y.M.B., S.H.P., B.K.), School of Medicine, Konkuk University, Danwol-dong, Chungju, South Korea; Infection Signaling Network Research Center (B.H.J., H.S.K., S.K.L.), Department of Physiology, Chungnam National University, South Korea; and Cardiovascular Institute (K.I.), University of Pittsburgh Medical Center, Pa
| |
Collapse
|
19
|
Abstract
Endothelial cells, which are located at the interface between the blood and the vessel wall, respond dynamically to a variety of stimuli initiating signaling cascades that regulate cardiovascular development, physiology and pathology. These inputs include soluble factors that bind to their receptors, integrin-matrix interactions, cell-cell contacts and mechanical forces due to the flowing blood. While these stimuli can mediate unique downstream signals, it is well-accepted that signaling pathways are highly interwoven into complex signaling networks with several levels of cross-talk, integration and coordination. Recent studies suggest that several signaling networks coalesce at the adaptor protein Shc.
Collapse
Affiliation(s)
- Daniel Timothy Sweet
- Department of Cell and Molecular Physiology and Program in Genetics and Molecular Biology, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
20
|
Vempati S, Reindl C, Wolf U, Kern R, Petropoulos K, Naidu VM, Buske C, Hiddemann W, Kohl TM, Spiekermann K. Transformation by oncogenic mutants and ligand-dependent activation of FLT3 wild-type requires the tyrosine residues 589 and 591. Clin Cancer Res 2008; 14:4437-45. [PMID: 18628457 DOI: 10.1158/1078-0432.ccr-07-1873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mutations in the receptor tyrosine kinase FLT3 are found in up to 30% of acute myelogenous leukemia patients and are associated with an inferior prognosis. In this study, we characterized critical tyrosine residues responsible for the transforming potential of active FLT3-receptor mutants and ligand-dependent activation of FLT3-WT. EXPERIMENTAL DESIGN We performed a detailed structure-function analysis of putative autophosphorylation tyrosine residues in the FLT3-D835Y tyrosine kinase domain (TKD) mutant. All tyrosine residues in the juxtamembrane domain (Y566, Y572, Y589, Y591, Y597, and Y599), interkinase domain (Y726 and Y768), and COOH-terminal domain (Y955 and Y969) of the FLT3-D835Y construct were successively mutated to phenylalanine and the transforming activity of these mutants was analyzed in interleukin-3-dependent Ba/F3 cells. Tyrosine residues critical for the transforming potential of FLT3-D835Y were also analyzed in FLT3 internal tandem duplication mutants (FLT3-ITD)and the FLT3 wild-type (FLT3-WT) receptor. RESULT The substitution of the tyrosine residues by phenylalanine in the juxtamembrane, interkinase, and COOH-terminal domains resulted in a complete loss of the transforming potential of FLT3-D835Y-expressing cells which can be attributed to a significant reduction of signal tranducer and activator of transcription 5 (STAT5) phosphorylation at the molecular level. Reintroduction of single tyrosine residues revealed the critical role of Y589 and Y591 in reconstituting interleukin-3-independent growth of FLT3-TKD-expressing cells. Combined mutation of Y589 and Y591 to phenylalanine also abrogated ligand-dependent proliferation of FLT3-WT and the transforming potential of FLT3-ITD-with a subsequent abrogation of STAT5 phosphorylation. CONCLUSION We identified two tyrosine residues, Y589 and Y591, in the juxtamembrane domain that are critical for the ligand-dependent activation of FLT3-WT and the transforming potential of oncogenic FLT3 mutants.
Collapse
Affiliation(s)
- Sridhar Vempati
- GSF-National Research Center for Environment, University of Munich-Grosshadern, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bäumer AT, ten Freyhaus H, Sauer H, Wartenberg M, Kappert K, Schnabel P, Konkol C, Hescheler J, Vantler M, Rosenkranz S. Phosphatidylinositol 3-Kinase-dependent Membrane Recruitment of Rac-1 and p47phox Is Critical for α-Platelet-derived Growth Factor Receptor-induced Production of Reactive Oxygen Species. J Biol Chem 2008; 283:7864-76. [DOI: 10.1074/jbc.m704997200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
22
|
Lei H, Velez G, Hovland P, Hirose T, Kazlauskas A. Plasmin is the major protease responsible for processing PDGF-C in the vitreous of patients with proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 2008; 49:42-8. [PMID: 18172073 PMCID: PMC3419256 DOI: 10.1167/iovs.07-0776] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Proliferative vitreoretinopathy (PVR) is the primary cause of failure of retinal reattachment surgery. Growth factors such as platelet-derived growth factor (PDGF) are strongly associated with PVR. Of the five PDGF family members, PDGF-C predominates in the vitreous of experimental and clinical PVR. PDGF-C is secreted as a latent protein that requires proteolytic processing for activation. Although tissue plasminogen activator (tPA) is primarily responsible for processing PDGF-C in cultured cells, it constitutes a minority of the processing activity in the vitreous of experimental animals and in patients with PVR. Identifying the major PDGF-C processing protease was the purpose of this study. METHODS The presence of serum proteins in the vitreous was detected by Coomassie blue staining and Western blotting. PDGF-C processing activity was detected in an in vitro processing assay using either native or recombinant PDGF-C as the substrate. Plasmin activity was blocked using alpha(2)-plasmin inhibitor. Phosphorylation of the PDGF receptor (PDGFR) was monitored by antiphosphotyrosine Western blotting. Vitreous specimens were collected from experimental rabbits or from patients undergoing vitrectomy to repair retinal detachment or for other reasons. RESULTS A number of prominent serum proteins (albumin and IgG) were detected in the vitreous of all patients undergoing retinal surgery. The level of these proteins markedly increased in the vitreous of rabbits as they developed PVR. These observations suggested that serum-borne proteases are also likely to be present in the vitreous. Indeed, plasmin (a protease capable of processing PDGF-C) was present in the vitreous from PVR rabbits and retinal surgery patients. Plasmin was dramatically more effective than tPA in processing PDGF-C in an in vitro assay. Blocking plasmin activity eliminated most of the processing activity in the vitreous of patients and rabbits with PVR. CONCLUSIONS Plasmin was the major PDGF-C processing protease in the vitreous of PVR rabbits and patients undergoing retinal surgery. Blocking plasmin prevented the generation of active PDGF-C, which is the major PDGF isoform relevant for PVR. These observations are the first report of an in vivo protease responsible for processing PDGF-C. In addition, plasmin was identified as a novel therapeutic target for patients with PVR.
Collapse
Affiliation(s)
- Hetian Lei
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Gisela Velez
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Peter Hovland
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Retina Associates, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Tatsuo Hirose
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Retina Associates, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Andrius Kazlauskas
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Kazlauskas A. Platelet-Derived Growth Factor. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
SRC family kinases and receptors: analysis of three activation mechanisms by dynamic systems modeling. Biophys J 2007; 94:1995-2006. [PMID: 18055537 DOI: 10.1529/biophysj.107.115022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Src family kinases (SFKs) interact with a number of cellular receptors. They participate in diverse signaling pathways and cellular functions. Most of the receptors involved in SFK signaling are characterized by similar modes of regulation. This computational study discusses a general kinetic model of SFK-receptor interaction. The analysis of the model reveals three major ways of SFK activation: release of inhibition by C-terminal Src kinase, weakening of the inhibitory intramolecular phosphotyrosine-SH2 interaction, and amplification of a stimulating kinase activity. The SFK model was then extended to simulate interaction with growth factor and T-cell receptors. The modular SFK signaling system was shown to adapt to the requirements of specific signaling contexts and yield qualitatively different responses in the different simulated environments. The model also provides a systematic overview of the major interactions between SFKs and various cellular signaling systems and identifies their common properties.
Collapse
|
25
|
Smith D, Shimamura T, Barbera S, Bejcek BE. NF-kappaB controls growth of glioblastomas/astrocytomas. Mol Cell Biochem 2007; 307:141-7. [PMID: 17828582 DOI: 10.1007/s11010-007-9593-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/23/2007] [Indexed: 01/06/2023]
Abstract
NF-kappaB is a family of transcription factors that have been shown to be elevated in a variety of tumor types and in some cases central to their survival and growth. Here we present evidence that U-87 MG and U-118 MG growth is regulated by NF-kappaB and controlled by PDGF. NF-kappaB activity was suppressed by a dominant negative mutant of the human PDGF type beta receptor and PDGF-B chain neutralizing antibodies. Creation of cell lines that had inducible expression of shRNAs directed against either c-Rel or RelA inhibited growth almost 90% indicating that NF-kappaB plays a central role in glioblastoma growth.
Collapse
Affiliation(s)
- Denise Smith
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | | | | | | |
Collapse
|
26
|
Barcia RN, Dana MR, Kazlauskas A. Corneal graft rejection is accompanied by apoptosis of the endothelium and is prevented by gene therapy with bcl-xL. Am J Transplant 2007; 7:2082-9. [PMID: 17614980 DOI: 10.1111/j.1600-6143.2007.01897.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Corneal transplants normally enjoy a high percentage of survival, mainly because the eye is an immune-privileged site. When allograft failure occurs, it is most commonly due to rejection, an immune-mediated reaction that targets the corneal endothelium. While the exact mechanism by which the endothelium is targeted is still unknown, we postulate that corneal endothelial cell loss during allograft failure is mediated by apoptosis. Furthermore, because corneal endothelial cells do not normally regenerate, we hypothesize that suppressing apoptosis in the graft endothelium will promote transplant survival. In a murine model of transplantation, TUNEL staining and confocal microscopy showed apoptosis of the graft endothelium occurring in rejecting corneas as early as 2 weeks posttransplantation. We found that bcl-xL protected cultured corneal endothelial cells from apoptosis and that lentiviral delivery of bcl-xL to the corneal endothelium of donor corneas significantly improved the survival of allografts. These studies suggest a novel approach to improve corneal allograft survival by preventing apoptosis of the endothelium.
Collapse
Affiliation(s)
- R N Barcia
- Schepens Eye Research Institute, Harvaard Medical School, 20 Staniford St, Boston, MA, USA
| | | | | |
Collapse
|
27
|
Im E, Kazlauskas A. Src family kinases promote vessel stability by antagonizing the Rho/ROCK pathway. J Biol Chem 2007; 282:29122-9. [PMID: 17684019 DOI: 10.1074/jbc.m702637200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src family kinases (SFKs) are one of the signaling enzymes that contribute to angiogenesis, but their precise input to the various phases of the angiogenic program has not been defined. Using an in vitro model system, we discovered that SFKs promoted the formation of tubes and prevented their regression. They suppressed regression by activating the ERK pathway that antagonized the Rho/ROCK pathway, which was essential for regression. These studies reveal that SFKs contribute to several phases of the angiogenic program and identify the downstream effectors by which SFKs stabilize tubes.
Collapse
Affiliation(s)
- Eunok Im
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
28
|
Choudhury GG, Mahimainathan L, Das F, Venkatesan B, Ghosh-Choudhury N. c-Src couples PI 3 kinase/Akt and MAPK signaling to PDGF-induced DNA synthesis in mesangial cells. Cell Signal 2007; 18:1854-64. [PMID: 16530387 DOI: 10.1016/j.cellsig.2006.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 02/02/2006] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
Platelet-derived growth factor BB (PDGF) and PDGF receptor-beta (PDGFR) play critical roles in mesangial cell proliferation during embryonic development and in mesangioproliferative glomerulonephritis. We have shown previously that phosphatidylinositol (PI) 3 kinase/Akt and Erk1/2 mitogen-activated protein kinase (MAPK) contribute to PDGF-dependent proliferation of mesangial cells, but the mechanism by which these two enzyme cascades are activated by PDGFR signaling is not precisely known. We examined the role of c-Src tyrosine kinase in this process. PDGF increased phosphorylation of c-Src in a time-dependent manner indicating its activation. A pharmacologic inhibitor of c-Src, PP1, blocked PDGF-induced DNA synthesis with concomitant inhibition of c-Src phosphorylation. Immune-complex kinase assays of c-Src and PDGFR demonstrated inhibition of c-Src tyrosine kinase activity by PP1, without an effect on PDGFR tyrosine phosphorylation. Both PP1 and expression of dominant negative c-Src inhibited PDGF-induced PI 3 kinase, resulting in attenuation of Akt kinase activity. Expression of constitutively active c-Src increased Akt activity to the same extent as with PDGF. Constitutively active c-Src augmented PDGF-induced Akt activity, thus contributing to Akt signaling. Inhibition of c-Src tyrosine kinase blocked PDGF-stimulated MAPK activity and resulted in attenuation of c-fos gene transcription with concomitant prevention of Elk-1 transactivation. Furthermore, inhibition of c-Src increased p27(Kip1) cyclin kinase inhibitor, and attenuated PDGF-induced pRb phosphorylation and CDK2 activity. These data provide the first evidence in mesangial cells that PDGF-activated c-Src tyrosine kinase relays signals to PI 3 kinase/Akt and MAPK. Furthermore our results demonstrate that c-Src integrates signals into the nucleus to activate CDK2, which is required for DNA synthesis.
Collapse
Affiliation(s)
- Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
29
|
Vantler M, Huntgeburth M, Caglayan E, Ten Freyhaus H, Schnabel P, Rosenkranz S. PI3-kinase/Akt-dependent antiapoptotic signaling by the PDGF alpha receptor is negatively regulated by Src family kinases. FEBS Lett 2006; 580:6769-76. [PMID: 17141222 DOI: 10.1016/j.febslet.2006.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 11/10/2006] [Indexed: 11/18/2022]
Abstract
Regulation of growth factor dependent cell survival is crucial for development and disease progression. Here, we report a novel function of Src kinases as a negative regulator of platelet-derived growth factor (PDGF) dependent cell survival. We characterized a series of PDGF alpha receptor (PDGFRA) mutants, which lack the binding sites for Src, phosphatidylinositol 3'-kinase (PI3K), SHP-2 or phospholipase C-gamma. We found that PDGFRA-dependent cell survival was mainly mediated through activation of PI3K, and was negatively regulated by Src. Characterization of the downstream signaling events revealed that PI3K activates the protein kinase Akt, which in turn phosphorylates and thus inactivates proapoptotic Forkhead transcription factors. Src phosphorylates the ubiquitin-ligase c-Cbl, which is required for degradation of the activated receptor. Consequently, overexpression of c-Cbl prevented PDGFRA-mediated cell survival, whereas it did not affect this response, when Src was unable to associate with the receptor. This novel function of Src in antiapoptotic signaling introduces Src kinases as an interesting therapeutic target in apoptosis related diseases.
Collapse
Affiliation(s)
- Marius Vantler
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Strasse 62, D-50924 Köln, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Catarzi S, Biagioni C, Giannoni E, Favilli F, Marcucci T, Iantomasi T, Vincenzini MT. Redox regulation of platelet-derived-growth-factor-receptor: Role of NADPH-oxidase and c-Src tyrosine kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:166-75. [PMID: 16129124 DOI: 10.1016/j.bbamcr.2005.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
This study identifies some early events contributing to the redox regulation of platelet-derived growth factor receptor (PDGFr) activation and its signalling in NIH3T3 fibroblasts. We demonstrate for the first time that the redox regulation of PDGFr tyrosine autophosphorylation and its signalling are related to NADPH oxidase activity through protein kinase C (PKC) and phosphoinositide-3-kinase (PI3K) activation and H2O2 production. This event is also essential for complete PDGF-induced activation of c-Src kinase by Tyr416 phosphorylation, and the involvement of c-Src kinase on H2O2-induced PDGFr tyrosine phosphorylation is demonstrated, suggesting a role of this kinase on the redox regulation of PDGFr activation. Finally, it has been determined that not only PI3K activity, but also PKC activity, are related to NADPH oxidase activation due to PDGF stimulation in NIH3T3 cells, as it occurs in non-phagocyte cells. Therefore, we suggest a redox circuit whereby, upon PDGF stimulation, PKC, PI3K and NADPH oxidase activity contribute to complete c-Src kinase activation, thus promoting maximal phosphorylation and activation of PDGFr tyrosine phosphorylation.
Collapse
Affiliation(s)
- Serena Catarzi
- Department of Biochemical Sciences, University of Florence, viale Morgagni 50, 50134, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Van Stry M, Kazlauskas A, Schreiber SL, Symes K. Distinct effectors of platelet-derived growth factor receptor-alpha signaling are required for cell survival during embryogenesis. Proc Natl Acad Sci U S A 2005; 102:8233-8. [PMID: 15919820 PMCID: PMC1149433 DOI: 10.1073/pnas.0502885102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling is essential for normal embryonic development in many organisms, including frog, mouse, zebrafish, and sea urchin. The mode of action of PDGFR signaling during early development is poorly understood, however, mostly because inhibition of signaling through either the PDGFRalpha or PDGFRbeta is embryonic lethal. In Xenopus embryos, disruption of PDGFRalpha signaling causes migrating anterior mesoderm cells to lose direction and undergo apoptosis through the mitochondrial pathway. To understand the mechanism of PDGFRalpha function in this process, we have analyzed all known effector-binding sites in vivo. By using a chemical inducer of dimerization to activate chimera PDGFRalphas, we have identified a role for phospholipase Cgamma (PLCgamma) in protecting cells from death. PDGFRalpha-mediated cell survival requires PLCgamma and phosphatidylinositol 3-kinase signaling, and that PDGFRalpha with binding sites for these two signaling factors is sufficient for this activity. Other effectors of PDGFRalpha signaling, Shf, SHP-2, and Crk, are not required for this process. Thus, our findings show that PDGFRalpha signaling through PLCgamma and phosphatidylinositol 3-kinase has a protective role in preventing apoptosis in early development. Furthermore, we demonstrate that small molecule inducers of dimerization provide a powerful system to manipulate receptor function in developing embryos.
Collapse
Affiliation(s)
- Melanie Van Stry
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Since its discovery over three decades ago, platelet-derived growth factor (PDGF) has been a model system for learning how growth factors regulate biological processes. For the first several decades investigators used cells grown in tissue culture. More recently, PDGF signaling has also been investigated in mice. This review outlines the advances in these two systems, and highlights some of the directions for future investigation.
Collapse
Affiliation(s)
- Michelle Tallquist
- Deptartment of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | | |
Collapse
|
33
|
Waters C, Pyne S, Pyne NJ. The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Semin Cell Dev Biol 2004; 15:309-23. [PMID: 15125894 DOI: 10.1016/j.semcdb.2003.12.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that stimulation of G-protein coupled receptors (GPCRs) can activate signalling from receptor tyrosine kinases by a process termed transactivation. Indeed, in recent years, it has become apparent that transactivation is a general phenomenon that has been demonstrated for many unrelated GPCRs and receptor tyrosine kinases. In this case the GPCR/G-protein participation is up-stream of the receptor tyrosine kinase. Substantial research has addressed these findings but meanwhile another mechanism of cross talk has been slowly emerging. For over a decade, a growing body of evidence has demonstrated that numerous growth factors use G-proteins and attendant signalling molecules such as beta-arrestins that participate down-stream of the receptor tyrosine kinase to signal to effectors, such as p42/p44 MAPK. This review highlights this novel mechanism of cross talk between receptor tyrosine kinases and GPCRs, which is distinct from growth factor receptor transactivation by GPCRs.
Collapse
Affiliation(s)
- Catherine Waters
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 ONR, Scotland, UK
| | | | | |
Collapse
|
34
|
Romeo G, Frangioni JV, Kazlauskas A. Profilin acts downstream of LDL to mediate diabetic endothelial cell dysfunction. FASEB J 2004; 18:725-7. [PMID: 14977885 DOI: 10.1096/fj.03-0841fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The changes occurring at the luminal surface of endothelial cells in diabetes and their relevance to endothelial dysfunction are poorly characterized in vivo. In this study, we developed an integrated strategy to discover cell surface proteins associated with diabetes and to test their role in endothelial dysfunction. First, a peptide phage display library was screened over the endothelial surface of the intact aorta or in retinal endothelial cells from diabetic and control rats. Then, we purified profilin-1 as a binding partner for one of the diabetic aorta-specific phage. Profilin was increased in the aortic endothelium of human diabetic individuals and streptozotocin-diabetic rats. Furthermore, overexpressing profilin in rat aortic endothelial cells triggered 3 indicators of endothelial dysfunction: increased apoptosis, elevated expression of ICAM-1, and decreased phosphorylation of the vasodilator-stimulated phosphoprotein, a marker for nitric oxide signaling. The changes in ICAM-1 and vasodilator-stimulated phosphoprotein were recapitulated in the diabetic aorta in vivo. LDL and oxysterols elevated profilin in cultured aortic endothelial cells. Interference with the de novo synthesis of profilin abrogated the LDL-mediated increase in ICAM-1 expression. Finally, profilin expression was markedly elevated in atherosclerotic plaques. These data indicate that profilin contributes to endothelial dysfunction in a pathway that is downstream of LDL.
Collapse
Affiliation(s)
- Giulio Romeo
- Schepens Eye Research Institute and Department Of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
35
|
Li X, Yang Y, Hu Y, Dang D, Regezi J, Schmidt BL, Atakilit A, Chen B, Ellis D, Ramos DM. Alphavbeta6-Fyn signaling promotes oral cancer progression. J Biol Chem 2003; 278:41646-53. [PMID: 12917446 DOI: 10.1074/jbc.m306274200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that the integrin beta6 is neo-expressed in invasive oral squamous cell carcinoma (SCC) and is correlated with oral tumor progression. However, the mechanism by which the integrin beta6 promotes oral tumor progression is not well understood. The purpose of the present study was to determine whether integrin beta6 signaling activates Fyn and thus promotes oral squamous cell carcinoma progression. We analyzed the integrin beta6 signaling complex and investigated the function of these signaling molecules in oral SCC cells. We found that, upon ligation of the integrin beta6 with fibronectin, beta6 complexed with Fyn and activated it. The activation of Fyn recruited and activated focal adhesion kinase to this complex. This complex was necessary to activate Shc and to couple beta6 signaling to the Raf-ERK/MAPK pathway. This pathway transcriptionally activated the matrix metalloproteinase-3 gene and promoted oral SCC cell proliferation and experimental metastasis in vivo. These findings indicate that integrin beta6 signaling activates Fyn and thus promotes oral cancer progression.
Collapse
Affiliation(s)
- Xiaowu Li
- Department of Stomatology, University of California-San Francisco, San Francisco, CA 94143-0512, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
After a brief overview of the themes and variations that occur in the family of receptors containing immunoreceptor tyrosine-based activation motifs (ITAMs), and of recent structural data on the ligand-binding subunits of these receptors, we use these data to revisit how information on the state and quality of occupancy of the binding site of the T cell antigen receptor (TCR) is conveyed to the proximal components of the TCR transduction cassette.
Collapse
Affiliation(s)
- Bernard Malissen
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Marseille, France.
| |
Collapse
|
37
|
Irusta PM, Luo Y, Bakht O, Lai CC, Smith SO, DiMaio D. Definition of an inhibitory juxtamembrane WW-like domain in the platelet-derived growth factor beta receptor. J Biol Chem 2002; 277:38627-34. [PMID: 12181311 DOI: 10.1074/jbc.m204890200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of tumors contain activating mutations in the cytoplasmic juxtamembrane domain of the type III family of receptor-tyrosine kinases, and some constructed mutations in this domain induce ligand-independent receptor activation. To explore the role of this domain in regulation of receptor activity, we subjected the juxtamembrane domain of the murine platelet-derived growth factor (PDGF) beta receptor to alanine-scanning mutagenesis. The mutant receptors were expressed in Ba/F3 cells and tested for constitutive tyrosine phosphorylation, association with phosphatidylinositol 3'-kinase, and their ability to induce cell survival and proliferation in the absence of interleukin-3. The mutant receptors accumulated to similar levels and appeared to undergo a normal PDGF-induced increase in tyrosine phosphorylation. Alanine substitutions at numerous positions located throughout the juxtamembrane domain caused constitutive receptor activation, as did an alanine insertion in the membrane-proximal segment of the juxtamembrane domain and a six-amino acid deletion in the center of the domain. It is possible to model the PDGF receptor juxtamembrane domain as a short alpha-helix followed by a three-stranded beta-sheet very similar to the known structures of WW domains. Strikingly, the activating mutations clustered in the central portions of the first and second beta strands and along one face of the beta-sheet, whereas the loops connecting the strands were largely devoid of mutationally sensitive positions. These findings provide strong support for the model that the activating mutations in the juxtamembrane region stimulate receptor activity by disrupting an inhibitory WW-like domain.
Collapse
Affiliation(s)
- Pablo M Irusta
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sato KI, Nagao T, Kakumoto M, Kimoto M, Otsuki T, Iwasaki T, Tokmakov AA, Owada K, Fukami Y. Adaptor protein Shc is an isoform-specific direct activator of the tyrosine kinase c-Src. J Biol Chem 2002; 277:29568-76. [PMID: 12048194 DOI: 10.1074/jbc.m203179200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of c-Src protein-tyrosine kinase is up-regulated under a number of receptor signaling pathways. However, the activation mechanism of c-Src under physiological conditions has remained unclear. We show here that the Shc adaptor protein is a novel direct activator of c-Src in epidermal growth factor receptor signaling in A431 human epidermoid carcinoma cells. Among the three Shc isoforms, P66 and P52, but not P46, were found to interact with and activate c-Src in vitro and in vivo. Activation of c-Src accompanied autophosphorylation of c-Src in the activation segment, but the carboxyl-terminal dephosphorylation was not observed. We have identified the interaction sites between Shc and c-Src and constructed a point mutant of Shc that abolishes the c-Src activation. Using this mutant, we have confirmed that the Shc-mediated c-Src activation triggers Stat-p21/WAF1/Cip1 pathway that has been implicated in the cell cycle arrest and apoptosis of epidermal growth factor-stimulated A431 cells.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Research Center for Environmental Genomics, Department of Biology, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Newcomb LF, Mastick CC. Src family kinase-dependent phosphorylation of a 29-kDa caveolin-associated protein. Biochem Biophys Res Commun 2002; 290:1447-53. [PMID: 11820784 DOI: 10.1006/bbrc.2002.6371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PDGF receptors and Src family kinases are concentrated in caveolae, where signal transduction cascades involving these molecules are thought to be organized. The Src family tyrosine kinases are cotransducers of signals emanating from the activated PDGF receptor. However, the Src family kinase substrates that are involved in PDGF-induced signaling remain to be fully elucidated. We have identified a 29-kDa protein in caveolae that was phosphorylated in response to PDGF stimulation. This protein, pp29, was tightly bound to the caveolar coat protein caveolin-1. pp29 was among the most prominent phosphoproteins observed in cells overexpressing Fyn, suggesting that it may be a Fyn substrate. Consistent with this, pp29 was among a specific subset of proteins whose PDGF-stimulated phosphorylation was blocked by expression of kinase inactive Fyn. These data indicate that pp29 lies downstream of Fyn activation in a PDGF-stimulated signaling pathway, and that pp29 is an abundant site for nucleation of signal transduction cascades.
Collapse
Affiliation(s)
- Lisa F Newcomb
- Department of Biochemistry, University of Nevada, Reno, Nevada 89557, USA
| | | |
Collapse
|
40
|
Klinghoffer RA, Hamilton TG, Hoch R, Soriano P. An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev Cell 2002; 2:103-13. [PMID: 11782318 DOI: 10.1016/s1534-5807(01)00103-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A central issue in signal transduction is the physiological contribution of different growth factor-initiated signaling pathways. We have generated knockin mice harboring mutations in the PDGFalpha receptor (PDGFalphaR) that selectively eliminate its capacity to activate PI3 kinase (alpha(PI3K)) or Src family kinases (alpha(Src)). The alpha(PI3K) mutation leads to neonatal lethality due to impaired signaling in many cell types, but the alpha(Src) mutation only affects oligodendrocyte development. A third knockin line containing mutations that eliminate multiple docking sites does not increase the severity of the alpha(PI3K) mutation. However, embryos with mutations in the PI3K binding sites of both PDGFRs (alpha and beta) recapitulate the PDGFalphaR null phenotype. Our results indicate that PI3K has a predominant role in PDGFalphaR signaling in vivo and that RTK-activated signaling pathways execute both specific and overlapping functions during mammalian development.
Collapse
Affiliation(s)
- Richard A Klinghoffer
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The adapter protein Shc was initially identified as an SH2 containing proto-oncogene involved in growth factor signaling. Since then a number of studies in multiple systems have implicated a role for Shc in signaling via many different types of receptors, such as growth factor receptors, antigen receptors, cytokine receptors, G-protein coupled receptors, hormone receptors and integrins. In addition to the ubiquitous ShcA, two other shc gene products, ShcB and ShcC, which are predominantly expressed in neuronal cells, have also been identified. ShcA knockout mice are embryonic lethal and have clearly suggested an important role for ShcA in vivo. Based on dominant negative studies and mouse embryos deficient in ShcA, a clear role for Shc in leading to mitogen activated protein kinase (MAPK) activation has been established. However MAPK activation may not be the sole function of Shc proteins. Although Shc has also been linked to other signaling events such as c-Myc activation and cell survival, the mechanistic understanding of these signaling events remains poorly characterized. Given the apparently central role that Shc plays signaling via many receptors, delineating the precise mechanism(s) of Shc-mediated signaling may be critical to our understanding of the effects mediated through these receptors.
Collapse
Affiliation(s)
- K S Ravichandran
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia, VA 22908, USA.
| |
Collapse
|
42
|
Wheldon LM, Nahorski SR, Willars GB. Inositol 1,4,5-trisphosphate-independent calcium signalling by platelet-derived growth factor in the human SH-SY5Y neuroblastoma cell. Cell Calcium 2001; 30:95-106. [PMID: 11440467 DOI: 10.1054/ceca.2001.0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.
Collapse
Affiliation(s)
- L M Wheldon
- Department of Cell Physiology & Pharmacology, University of Leicester, UK.
| | | | | |
Collapse
|
43
|
Affiliation(s)
- S M Jones
- Schepens Eye Research Institute, 20 Staniford Street, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
44
|
Nickas ME, Bernard A, Kazlauskas A. The requirement of tyrosines 579 and 581 for maximal ligand-dependent activation of the betaPDGFR is influenced by noncytoplasmic regions of the receptor. Exp Cell Res 2001; 265:80-9. [PMID: 11281646 DOI: 10.1006/excr.2001.5169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutating tyrosines 579 and 581 of the beta platelet-derived growth factor receptor (betaPDGFR) tyrosine kinase to phenylalanines (the F2 mutation) impair activation of the receptor in response to ligand, but mutation of the analogous tyrosines in the alphaPDGFR has no effect on ligand-dependent receptor activation. We have found that the F2 mutation has only a modest effect on ligand-dependent activation of a chimeric PDGFR composed of the extracellular and transmembrane domains of the alphaPDGFR and the cytoplasmic domain of the betaPDGFR by three measures: (1) the ability to phosphorylate endogenous and exogenous protein substrates in vitro, (2) phosphorylation of tyrosine 857, and (3) binding of the effector proteins PLCgamma, RasGAP, and SHP-2. Conversely, the F2 mutation substantially impairs ligand-dependent activation of chimeric PDGFRs that consist of either the extracellular domain alone or the extracellular and transmembrane domains of the betaPDGFR and all remaining sequence from the alphaPDGFR by two measures: (1) phosphorylation of endogenous protein substrates in vitro and (2) binding of PLCgamma and SHP-2. Our results indicate that the requirement of tyrosines 579 and 581 for maximal activation of the betaPDGFR in response to ligand is primarily determined by noncytoplasmic regions of the receptor.
Collapse
Affiliation(s)
- M E Nickas
- The Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
45
|
Klinghoffer RA, Mueting-Nelsen PF, Faerman A, Shani M, Soriano P. The two PDGF receptors maintain conserved signaling in vivo despite divergent embryological functions. Mol Cell 2001; 7:343-54. [PMID: 11239463 DOI: 10.1016/s1097-2765(01)00182-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gene targeting studies have indicated that the two receptors for PDGF, alpha and beta, direct unique functions during development. Distinct ligand affinities, patterns of gene expression, and/or mechanisms of signal relay may account for functional specificity of the two PDGF receptor isoforms. To distinguish between these factors, we have created two complementary lines of knockin mice in which the intracellular signaling domains of one PDGFR have been removed and replaced by those of the other PDGFR. While both lines demonstrated substantial rescue of normal development, substitution of the PDGFbetaR signaling domains with those of the PDGFalphaR resulted in varying degrees of vascular disease. This observation provides a framework for discussing the evolution of receptor tyrosine kinase functional specificity.
Collapse
Affiliation(s)
- R A Klinghoffer
- Program in Developmental Biology and Division, Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
46
|
Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol Ther 2000; 88:229-79. [PMID: 11337027 DOI: 10.1016/s0163-7258(00)00085-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review focuses on the Ras-Raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signal transduction pathway and the consequences of its unregulation in the development of cancer. The roles of some of the cell membrane receptors involved in the activation of this pathway, the G-protein Ras, the Raf, MEK and ERK kinases, the phosphatases that regulate these kinases, as well as the downstream transcription factors that become activated, are discussed. The roles of the Ras-Raf-MEK-ERK pathway in the regulation of apoptosis and cell cycle progression are also analyzed. In addition, potential targets for pharmacological intervention in growth factor-responsive cells are evaluated.
Collapse
Affiliation(s)
- C R Weinstein-Oppenheimer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Brody Building of Medical Sciences 5N98C, Greenville, NC 27858, USA
| | | | | | | | | |
Collapse
|
47
|
Jones SM, Kazlauskas A. Connecting signaling and cell cycle progression in growth factor-stimulated cells. Oncogene 2000; 19:5558-67. [PMID: 11114735 DOI: 10.1038/sj.onc.1203858] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A widely used model system to investigate cell proliferation is stimulation of serum-arrested cells with growth factors. Recent data suggest that there are two waves of growth factor-dependent signaling events required for a proliferative response. One is an acute burst of signaling, which occurs immediately after growth factor stimulation and lasts for 30 - 60 min. The other occurs in a different time frame (8 - 12 h post stimulation), and involves activation of cyclin dependent kinases (Cdks). In addition to a general overview of growth factor-dependent signaling, we present our 'two wave' hypothesis for how signaling and cell cycle progression are linked.
Collapse
Affiliation(s)
- S M Jones
- Schepens Eye Research Institute, 20 Staniford Street, Boston, Massachusetts, MA 02114, USA
| | | |
Collapse
|
48
|
Kraker AJ, Hartl BG, Amar AM, Barvian MR, Showalter HD, Moore CW. Biochemical and cellular effects of c-Src kinase-selective pyrido[2, 3-d]pyrimidine tyrosine kinase inhibitors. Biochem Pharmacol 2000; 60:885-98. [PMID: 10974196 DOI: 10.1016/s0006-2952(00)00405-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Increased expression or activity of c-Src tyrosine kinase has been associated with the transformed phenotype in tumor cells and with progression of neoplastic disease. A number of pyrido[2, 3-d]pyrimidines have been characterized biochemically and in cells as part of an assessment of their potential as anti-tumor agents. The compounds were ATP-competitive inhibitors of c-Src kinase with IC(50) values < 10 nM and from 6 to >100-fold selectivity for c-Src tyrosine kinase relative to basic fibroblast growth factor receptor (bFGFr) tyrosine kinase, platelet-derived growth factor receptor (PDGFr) tyrosine kinase, and epidermal growth factor receptor (EGFr) tyrosine kinase. The compounds yielded IC(50) values < 5 nM against Lck. Human colon tumor cell growth in culture was inhibited, as was colony formation in soft agar at concentrations < 1 microM. Phosphorylation of the c-Src cellular substrates paxillin, p130(cas), and Stat3 was also inhibited at concentrations < 1 microM. Autophosphorylation of EGFr tyrosine kinase or PDGFr tyrosine kinase was not inhibited by c-Src inhibitors, thus showing the selective nature of the compounds in cells. In a mitogenesis assay measuring thymidine incorporation stimulated by specific mitogens, the c-Src tyrosine kinase inhibitors reduced incorporated thymidine in a manner consistent with previously reported roles of c-Src in mitogenic signaling. Progression through the cell cycle was inhibited at G(2)/M in human colon tumor cells treated with two of the c-Src-selective compounds, which is also consistent with earlier reports describing a requirement for active c-Src tyrosine kinase for G(2) to M phase progression. The compounds described here are selective inhibitors of c-Src tyrosine kinase and have antiproliferative effects in tumor cells consistent with inhibition of c-Src.
Collapse
Affiliation(s)
- A J Kraker
- Department of Cancer Research Parke-Davis Pharmaceutical Research, Division of the Warner-Lambert Co., Ann Arbor, MI 48105, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Hooshmand-Rad R, Lu L, Heldin CH, Claesson-Welsh L, Welsh M. Platelet-derived growth factor-mediated signaling through the Shb adaptor protein: effects on cytoskeletal organization. Exp Cell Res 2000; 257:245-54. [PMID: 10837138 DOI: 10.1006/excr.2000.4896] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Src homology (SH) 2 domain adaptor protein Shb has previously been shown to interact with the platelet-derived growth factor (PDGF)-beta receptor. In this study we show an association between Shb and the PDGF-alpha receptor which is mediated by the SH2 domain of Shb and involves tyrosine residue 720 in the kinase insert domain of the receptor. To assess the role of Shb in PDGF-mediated signaling, we have overexpressed wild-type Shb or Shb carrying a mutation (R522K) which renders the SH2 domain inactive, in Patch mouse (PhB) fibroblasts expressing both PDGF receptors (PhB/Ralpha). Overexpression of wild-type Shb, but not the R522K Shb mutant, affected PDGF-mediated reorganization of the cytoskeleton by decreasing membrane ruffle formation and stimulating the generation of filopodia relative the parental control cells. In addition, the PDGF-induced receptor-associated phosphatidylinositol 3'-kinase activity and phosphorylation of Akt was similar in both PhB/Ralpha/Shb and PhB/Ralpha/ShbR522K cells compared with the parental control, whereas the activation of Rac in response to PDGF-BB was diminished only in the PhB/Ralpha/Shb cells. We conclude that Shb plays a role in PDGF-dependent regulation of certain cytoskeletal changes by modulating the ability of PDGF to activate Rac.
Collapse
Affiliation(s)
- R Hooshmand-Rad
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, S-751 24, Sweden
| | | | | | | | | |
Collapse
|
50
|
Wang YZ, Wharton W, Garcia R, Kraker A, Jove R, Pledger WJ. Activation of Stat3 preassembled with platelet-derived growth factor beta receptors requires Src kinase activity. Oncogene 2000; 19:2075-85. [PMID: 10815799 DOI: 10.1038/sj.onc.1203548] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Members of the STAT family of transcriptional regulators modulate the expression of a variety of gene products that promote cell proliferation, survival and transformation. Although initially identified as mediators of cytokine signaling, the STAT proteins are also activated by, and thus may contribute to the actions of, polypeptide growth factors. To define the mechanism by which these factors activate STATs, we examined the process of Stat3 activation in Balb/c-3T3 fibroblasts treated with platelet-derived growth factor (PDGF). As STATs are activated by tyrosine phosphorylation, and as PDGF receptors are ligand-activated tyrosine kinases, we considered the possibility that Stat3 interacts with and is phosphorylated by PDGF receptors. We find that Stat3 associates with PDGF beta receptors in both the presence and, surprisingly, the absence of PDGF. Moreover, Stat3 was phosphorylated on tyrosine in PDGF beta receptor immunoprecipitates of PDGF-treated but not untreated cells. Although required, receptor activation was insufficient for Stat3 activation. When added to cells in combination with a pharmacologic agent (PD180970) that specifically inhibits the activity of Src family tyrosine kinases, PDGF did not activate Stat3 as monitored by electrophoretic mobility shift assay. PD180970 did not affect MAPK activation by PDGF or the JAK-dependent activation of Stat3 by interleukin-6. The necessity of Src activity for Stat3 activation by PDGF was further evidenced by data showing the presence of Src in complexes containing both Stat3 and PDGF beta receptors in PDGF-treated cells. These results suggest a novel mechanism of STAT activation in which inactive Stat3 pre-assembles with inactive PDGF receptors, and in response to ligand binding and in a manner dependent on Src kinase activity, is rapidly phosphorylated and activated. Additional data demonstrate that Src kinase activity is also required for PDGF stimulation of DNA synthesis in density-arrested cells.
Collapse
Affiliation(s)
- Y Z Wang
- Molecular Oncology, Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|