1
|
Nazari M, Karimi Abadchi J, Naghizadeh M, Bermudez-Contreras EJ, McNaughton BL, Tatsuno M, Mohajerani MH. Regional variation in cholinergic terminal activity determines the non-uniform occurrence of cortical slow waves during REM sleep in mice. Cell Rep 2023; 42:112450. [PMID: 37126447 DOI: 10.1016/j.celrep.2023.112450] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/17/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
Sleep consists of two basic stages: non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep is characterized by slow high-amplitude cortical electroencephalogram (EEG) signals, while REM sleep is characterized by desynchronized cortical rhythms. Despite this, recent electrophysiological studies have suggested the presence of slow waves (SWs) in local cortical areas during REM sleep. Electrophysiological techniques, however, have been unable to resolve the regional structure of these activities because of relatively sparse sampling. Here, we map functional gradients in cortical activity during REM sleep using mesoscale imaging in mice and show local SW patterns occurring mainly in somatomotor and auditory cortical regions with minimum presence within the default mode network. The role of the cholinergic system in local desynchronization during REM sleep is also explored by calcium imaging of cholinergic activity within the cortex and analyzing structural data. We demonstrate weaker cholinergic projections and terminal activity in regions exhibiting frequent SWs during REM sleep.
Collapse
Affiliation(s)
- Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Javad Karimi Abadchi
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Milad Naghizadeh
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | - Bruce L McNaughton
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Center for Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Masami Tatsuno
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
2
|
Barman B, Kushwaha A, Thakur MK. Muscarinic Acetylcholine Receptors-Mediated Activation of PKC Restores the Hippocampal Immediate Early Gene Expression and CREB Phosphorylation in Scopolamine-Induced Amnesic Mice. Mol Neurobiol 2022; 59:5722-5733. [DOI: 10.1007/s12035-022-02940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
|
3
|
MacDonald KJ, Cote KA. Contributions of post-learning REM and NREM sleep to memory retrieval. Sleep Med Rev 2021; 59:101453. [PMID: 33588273 DOI: 10.1016/j.smrv.2021.101453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It has become clear that sleep after learning has beneficial effects on the later retrieval of newly acquired memories. The neural mechanisms underlying these effects are becoming increasingly clear as well, particularly those of non-REM sleep. However, much is still unknown about the sleep and memory relationship: the sleep state or features of sleep physiology that associate with memory performance often vary by task or experimental design, and the nature of this variability is not entirely clear. This paper describes pertinent features of sleep physiology and provides a detailed review of the scientific literature indicating beneficial effects of post-learning sleep on memory retrieval. This paper additionally introduces a hypothesis which attributes these beneficial effects of post-learning sleep to separable processes of memory reinforcement and memory refinement whereby reinforcement supports one's ability to retrieve a given memory and refinement supports the precision of that memory retrieval in the context of competitive alternatives. It is observed that features of non-REM sleep are involved in a post-learning substantiation of memory representations that benefit memory performance; thus, memory reinforcement is primarily attributed to non-REM sleep. Memory refinement is primarily attributed to REM sleep given evidence of bidirectional synaptic plasticity in REM sleep and findings from studies of selective REM sleep deprivation.
Collapse
|
4
|
Functional Characterization of Muscarinic Receptors in Human Schwann Cells. Int J Mol Sci 2020; 21:ijms21186666. [PMID: 32933046 PMCID: PMC7555815 DOI: 10.3390/ijms21186666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Functional characterization of muscarinic cholinergic receptors in myelinating glial cells has been well described both in central and peripheral nervous system. Rat Schwann cells (SCs) express different muscarinic receptor subtypes with the prevalence of the M2 subtype. The selective stimulation of this receptor subtype inhibits SC proliferation, improving their differentiation towards myelinating phenotype. In this work, we describe for the first time that human SCs are cholinoceptive as they express several muscarinic receptor subtypes and, as for rat SCs, M2 receptor is one of the most abundant. Human SCs, isolated from adult nerves, were cultured in vitro and stimulated with M2 muscarinic agonist arecaidine propargyl ester (APE). Similarly to that observed in rat, M2 receptor activation causes a decreased cell proliferation and promotes SC differentiation as suggested by increased Egr2 expression with an improved spindle-like shape cell morphology. Conversely, the non-selective stimulation of muscarinic receptors appears to promote cell proliferation with a reduction of SC average cell diameter. The data obtained demonstrate that human SCs are cholinoceptive and that human cultured SCs may represent an interesting tool to understand their physiology and increase the knowledge on how the cholinergic stimulation may contribute to address human SC development in normal and pathological conditions.
Collapse
|
5
|
Lü S, Jiang M, Tian X, Hong S, Zhang J, Zhang Y. Characterization of an A-Type Muscarinic Acetylcholine Receptor and Its Possible Non-neuronal Role in the Oriental Armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae). Front Physiol 2020; 11:400. [PMID: 32425811 PMCID: PMC7203735 DOI: 10.3389/fphys.2020.00400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Muscarinic acetylcholine receptor (mAChR) regulates many neurophysiological functions in insects. In this report, a full-length cDNA encoding an A-type mAChR was cloned from the oriental armyworm, Mythimna separata. Pharmacological properties studies revealed that nanomolar to micromolar concentrations of carbachol or muscarine induced an increase of intracellular Ca2+ concentration ([Ca2+] i ), with the EC50 values of 124.6 and 388.1 nM, respectively. The increases of [Ca2+] i can be greatly blocked by the antagonist atropine, with an IC50 value of 0.09 nM. The receptor mRNA is expressed in all developmental stages, with great differential expression between male and female adults. The tissue expression analysis identified novel target tissues for this receptor, including ovaries and Malpighian tubules. The distribution of Ms A-type mAChR protein in the male brain may suggest the neurophysiological roles that are mediated by this receptor. However, the receptor protein was found to be distributed on the membranes of oocytes that are not innervated by neurons at all. These results indicate that Ms A-type mAChR selectively mediates intracellular Ca2+ mobilization. And the high level of receptor protein in the membrane of oocytes may indicate a possible non-neuronal role of A-type mAChR in the reproductive system of M. separata.
Collapse
Affiliation(s)
- Shumin Lü
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Ming Jiang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Xing Tian
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Shanwang Hong
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Junwei Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
6
|
Konar A, Gupta R, Shukla RK, Maloney B, Khanna VK, Wadhwa R, Lahiri DK, Thakur MK. M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. Sci Rep 2019; 9:13990. [PMID: 31570736 PMCID: PMC6769020 DOI: 10.1038/s41598-019-48238-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Memory loss is one of the most tragic symptoms of Alzheimer's disease. Our laboratory has recently demonstrated that 'i-Extract' of Ashwagandha (Withania somnifera) restores memory loss in scopolamine (SC)-induced mice. The prime target of i-Extract is obscure. We hypothesize that i-Extract may primarily target muscarinic subtype acetylcholine receptors that regulate memory processes. The present study elucidates key target(s) of i-Extract via cellular, biochemical, and molecular techniques in a relevant amnesia mouse model and primary hippocampal neuronal cultures. Wild type Swiss albino mice were fed i-Extract, and hippocampal cells from naïve mice were treated with i-Extract, followed by muscarinic antagonist (dicyclomine) and agonist (pilocarpine) treatments. We measured dendritic formation and growth by immunocytochemistry, kallikrein 8 (KLK8) mRNA by reverse transcription polymerase chain reaction (RT-PCR), and levels of KLK8 and microtubule-associated protein 2, c isoform (MAP2c) proteins by western blotting. We performed muscarinic receptor radioligand binding. i-Extract stimulated an increase in dendrite growth markers, KLK8 and MAP2. Scopolamine-mediated reduction was significantly reversed by i-Extract in mouse cerebral cortex and hippocampus. Our study identified muscarinic receptor as a key target of i-Extract, providing mechanistic evidence for its clinical application in neurodegenerative cognitive disorders.
Collapse
Affiliation(s)
- Arpita Konar
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
| | - Richa Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
- Devision of ECD, Indian Council of Medical Research, New Delhi, 110029, India
| | - Rajendra K Shukla
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
- Department of Biochemistry, Autonomous State Medical College, Bahraich, Utter Pradesh, 271801, India
| | - Bryan Maloney
- Departments of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN-46202, USA
| | - Vinay K Khanna
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Renu Wadhwa
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8562, Japan.
| | - Debomoy K Lahiri
- Departments of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN-46202, USA.
- Departments of Medical and Molecular Genetics, Indiana Alzheimer Disesae Center, Indiana University School of Medicine, Indianapolis, IN-46202, USA.
| | - Mahendra K Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Bielopolski N, Amin H, Apostolopoulou AA, Rozenfeld E, Lerner H, Huetteroth W, Lin AC, Parnas M. Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila. eLife 2019; 8:48264. [PMID: 31215865 PMCID: PMC6641838 DOI: 10.7554/elife.48264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/18/2019] [Indexed: 11/13/2022] Open
Abstract
Olfactory associative learning in Drosophila is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs from projection neurons are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here, we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A), particularly in the gamma subtype of Kenyon cells. mAChR-A inhibits odor responses and is localized in Kenyon cell dendrites. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A function in Kenyon cell dendrites is required for synaptic plasticity between Kenyon cells and their output neurons.
Collapse
Affiliation(s)
- Noa Bielopolski
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hoger Amin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Lerner
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wolf Huetteroth
- Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Hu YT, Chen XL, Huang SH, Zhu QB, Yu SY, Shen Y, Sluiter A, Verhaagen J, Zhao J, Swaab D, Bao AM. Early growth response-1 regulates acetylcholinesterase and its relation with the course of Alzheimer's disease. Brain Pathol 2019; 29:502-512. [PMID: 30511454 DOI: 10.1111/bpa.12688] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/28/2018] [Indexed: 01/15/2023] Open
Abstract
Our previous studies showed that the transcription factor early growth response-1 (EGR1) may play a role in keeping the brain cholinergic function intact in the preclinical stages of Alzheimer's disease (AD). In order to elucidate the mechanisms involved, we first performed data mining on our previous microarray study on postmortem human prefrontal cortex (PFC) for the changes in the expression of EGR1 and acetylcholinesterase (AChE) and the relationship between them during the course of AD. The study contained 49 patients, ranging from non-demented controls (Braak stage 0) to late AD patients (Braak stage VI). We found EGR1-mRNA was high in early AD and decreased in late AD stages, while AChE-mRNA was stable in preclinical AD and slightly decreased in late AD stages. A significant positive correlation was found between the mRNA levels of these two molecules. In addition, we studied the relationship between EGR1 and AChE mRNA levels in the frontal cortex of 3-12-months old triple-transgenic AD (3xTg-AD) mice. EGR1- and AChE-mRNA were lower in 3xTg-AD mice compared with wild-type (WT) mice. A significant positive correlation between these two molecules was present in the entire group and in each age group of either WT or 3xTg-AD mice. Subsequently, AChE expression was determined following up- or down-regulating EGR1 in cell lines and the EGR1 levels were found to regulate AChE at both the mRNA and protein levels. Dual-luciferase assay and electrophoretic mobility shift assay in the EGR1-overexpressing cells were performed to determine the functionally effective binding sites of the EGR1 on the AChE gene promoter. We conclude that the EGR1 can upregulate AChE expression by a direct effect on its gene promoter, which may contribute significantly to the changes in cholinergic function in the course of AD. The 3xTg-AD mouse model only reflects later stage AD.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xin-Lu Chen
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Shu-Han Huang
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qiong-Bin Zhu
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Si-Yang Yu
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yi Shen
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Arja Sluiter
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Juan Zhao
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Dick Swaab
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Ai-Min Bao
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
9
|
Abstract
After either acute psychological stress or exposure to acetylcholinesterase (AChE) inhibitors, long-lasting deleterious changes of a similar nature occur in the mammalian brain. We explored the molecular and neurophysiological mechanisms preceding these convergent delayed consequences in vivo and in perfused hippocampal brain slices. In stressed mice, we observed a disruption of the blood-brain barrier, which leads to efficient brain penetrance of anti-AChEs. This increase in penetrance of anti-AChEs, and consequently in acetylcholine (ACh) levels, induces a cascade of c-fos-mediated transcriptional responses dependent on intracellular Ca2+ accumulation. Consequently, the capacity for synthesis and vesicle packaging of ACh is suppressed simultaneously with enhanced AChE production that potentiates ACh hydrolysis. This bimodal decrease in ACh bioavailability, which is independent of the hypothalamic-pituitary-adrenal axis, then ter minates the initial neurophysiological excitation. In vivo, this AChE overexpression leads to enzyme accu mulation that is evident for more than 80 hr. The overexpressed enzyme can protect the brain from sustained hyperexcitability and from increased susceptibility to seizure activity and neuronal toxicity. However, exper imental accumulation of AChE in brain neurons through transgenic manipulations leads to a slowly pro gressive deterioration in cognitive and neuromotor faculties. The transcriptional consequences of stress and anti-AChEs may therefore be beneficial in the short term but deleterious in the long term. NEURO SCIENTIST 5:173-183, 1999
Collapse
|
10
|
Cruz ME, Flores A, Alvarado BE, Hernández CG, Zárate A, Chavira R, Cárdenas M, Arrieta-Cruz I, Gutiérrez-Juárez R. Ovulation requires the activation on proestrus of M₁ muscarinic receptors in the left ovary. Endocrine 2015; 49:809-19. [PMID: 25586874 DOI: 10.1007/s12020-014-0524-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
We analyzed the effects of chemically blocking type 1 muscarinic receptors (M1R) on either the left or right ovary on ovulation rate, number of ova shed and steroid hormones levels. M1R were unilaterally blocked in ovary with the M1R selective antagonist pirenzepine (PZP). PZP was delivered into the bursa ovarica of the left or right ovary of adult rats at 13:00 h on proestrus day. PZP treatment in the left but not in the right ovary blocked ovulation. PZP did not modify the number of ova shed, nor progesterone or 17β-estradiol serum levels. The surge of luteinizing hormone levels was diminished while that of follicle-stimulating hormone did not change in animals treated with PZP in the left ovary. Interestingly, treatment with either synthetic luteinizing hormone-releasing hormone or human chorionic gonadotropin 1 h after PZP administration in the left ovary restored ovulation in both ovaries. The presence of M1R protein in the theca cells of the ovarian follicles as well as in cells of the corpus luteum was detected on proestrus day. These results suggest that M1R activation in the left ovary is required for pre-ovulatory gonadotropin-releasing hormone (GnRH) secretion and ovulation. Furthermore, these results also suggest that M1R in the left ovary might be regulating ovulation asymmetrically through a stimulatory neural signal relayed to the hypothalamus via the vagus nerve to induce the GnRH secretion which then triggers ovulation.
Collapse
Affiliation(s)
- M E Cruz
- Laboratory of Neuroendocrinology, Reproductive Biology Research Unit, Facultad de Estudios Superiores Zaragoza, UNAM, A.P. 9-020, 15000, Mexico City, DF, Mexico,
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pereira de Vasconcelos A, Cassel JC. The nonspecific thalamus: A place in a wedding bed for making memories last? Neurosci Biobehav Rev 2014; 54:175-96. [PMID: 25451763 DOI: 10.1016/j.neubiorev.2014.10.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/11/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023]
Abstract
We summarize anatomical, electrophysiological and behavioral evidence that the rostral intralaminar (ILN) and the reuniens and rhomboid (ReRh) nuclei that belong to the nonspecific thalamus, might be part of a hippocampo-cortico-thalamic network underlying consolidation of enduring declarative(-like) memories at systems level. The first part of this review describes the anatomical and functional organization of these thalamic nuclei. The second part presents the theoretical models supporting the active systems-level consolidation, a process that relies upon sleep specific field-potential oscillations occurring during both slow-wave sleep (SWS) and rapid eye movement (REM) sleep. The last part presents data in the rat showing that the lesion of the rostral ILN or of the ReRh specifically hinders the formation of remote spatial memories without affecting task acquisition or retrieval of a recent memory. These results showing a critical role of the ILN and ReRh nuclei in the transformation of a recent memory into a remote one are discussed in the context of their control of cortical arousal (ARAS) and of thalamo-cortico-thalamic synchronization.
Collapse
Affiliation(s)
- Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie Neuropôle de Strasbourg - GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France.
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie Neuropôle de Strasbourg - GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France
| |
Collapse
|
12
|
Uggenti C, De Stefano ME, Costantino M, Loreti S, Pisano A, Avallone B, Talora C, Magnaghi V, Tata AM. M2 muscarinic receptor activation regulates Schwann cell differentiation and myelin organization. Dev Neurobiol 2014; 74:676-91. [PMID: 24403178 DOI: 10.1002/dneu.22161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/14/2013] [Accepted: 12/15/2013] [Indexed: 01/01/2023]
Abstract
Glial cells express acetylcholine receptors. In particular, rat Schwann cells express different muscarinic receptor subtypes, the most abundant of which is the M2 subtype. M2 receptor activation causes a reversible arrest of the cell cycle. This negative effect on Schwann cell proliferation suggests that these cells may possibly progress into a differentiating program. In this study we analyzed the in vitro modulation, by the M2 agonist arecaidine, of transcription factors and specific signaling pathways involved in Schwann cell differentiation. The arecaidine-induced M2 receptor activation significantly upregulates transcription factors involved in the promyelinating phase (e.g., Sox10 and Krox20) and downregulates proteins involved in the maintenance of the undifferentiated state (e.g., c-jun, Notch-1, and Jagged-1). Furthermore, arecaidine stimulation significantly increases the expression of myelin proteins, which is accompanied by evident changes in cell morphology, as indicated by electron microscopy analysis, and by substantial cellular re-distribution of actin and cell adhesion molecules. Moreover, ultrastructural and morphometric analyses on sciatic nerves of M2/M4 knockout mice show numerous degenerating axons and clear alterations in myelin organization compared with wild-type mice. Therefore, our data demonstrate that acetylcholine mediates axon-glia cross talk, favoring Schwann cell progression into a differentiated myelinating phenotype and contributing to compact myelin organization.
Collapse
Affiliation(s)
- Carolina Uggenti
- Dipartmento di Biologia e Biotecnologie "Charles Darwin,", "Sapienza" Università di Roma, Roma, Italy; Centro di ricerca in Neurobiologia "Daniel Bovet,", "Sapienza" Università di Roma, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells. PLoS One 2013; 8:e72011. [PMID: 24023725 PMCID: PMC3759376 DOI: 10.1371/journal.pone.0072011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/10/2013] [Indexed: 01/10/2023] Open
Abstract
HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (>24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.
Collapse
|
14
|
Activation of M3 muscarinic receptors inhibits T-type Ca(2+) channel currents via pertussis toxin-sensitive novel protein kinase C pathway in small dorsal root ganglion neurons. Cell Signal 2011; 23:1057-67. [PMID: 21329754 DOI: 10.1016/j.cellsig.2011.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/28/2011] [Accepted: 02/07/2011] [Indexed: 11/23/2022]
Abstract
Cobrotoxin (CbT), a short-chain postsynaptic α-neurotoxin, has been reported to play a role in analgesia. However, to date, the detailed mechanisms still remain unknown. In the present study, we identify a novel functional role of CbT in modulating T-type Ca(2+) channel currents (T-currents) in small dorsal root ganglia (DRG) neurons as well as pain behaviors in mice. We found that CbT inhibited T-currents in a dose-dependent manner. CbT at 1μM reversibly inhibited T-currents by ~26.3%. This inhibitory effect was abolished by the non-selective muscarinic acetylcholine receptor (mAChR) antagonist atropine, or the selective M3 mAChR antagonist 4-DAMP, while naloxone, an opioid receptor antagonist had no effect. Intracellular infusion of GDP-β-S or pretreatment of the cells with pertussis toxin (PTX) completely blocked the inhibitory effects of CbT. Using depolarizing prepulse, we found the absence of direct binding between G-protein βγ subunits and T-type Ca(2+) channels in CbT-induced T-current inhibition. CbT responses were abolished by the phospholipase C inhibitor U73122 (but not the inactive analog U73343). The classical and novel protein kinase C (nPKC) antagonist chelerythrine chlorid or GF109203X abolished CbT responses, whereas the classical PKC antagonist Ro31-8820 or inhibition of PKA elicited no such effects. Intrathecal administration of CbT (5μg/kg) produced antinociceptive effects in mechanical, thermal, and inflammatory pain models. Moreover, CbT-induced antinociception could be abrogated by 4-DAMP. Taken together, these results suggest that CbT acting through M3 mAChR inhibits T-currents via a PTX-sensitive nPKC pathway in small DRG neurons, which could contribute to its analgesic effects in mice.
Collapse
|
15
|
Kumbrink J, Kirsch KH, Johnson JP. EGR1, EGR2, and EGR3 activate the expression of their coregulator NAB2 establishing a negative feedback loop in cells of neuroectodermal and epithelial origin. J Cell Biochem 2011; 111:207-17. [PMID: 20506119 DOI: 10.1002/jcb.22690] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inducible zinc finger transcription factors EGR1, EGR2, and EGR3 regulate the expression of numerous genes involved in differentiation, growth, and response to extracellular signals. Their activity is modulated in part through NAB2 which is induced by the same stimuli. In melanoma and carcinoma cells EGR1 activates NAB2 expression. In T lymphocytes EGR2 and EGR3 have been shown to inhibit NAB2 expression. Therefore, we investigated the influence of EGR2 and EGR3 on NAB2 expression in melanoma and carcinoma cells. Here, we show that like EGR1, EGR2 and EGR3 induced NAB2 expression in these cells. EGR1 and EGR3 act in concert on the NAB2 promoter and are more potent activators of NAB2 transcription than EGR2. EGR1-, EGR2-, and EGR3-induced NAB2 promoter activity is mediated through similar cis-regulatory elements and the activation by each EGR is repressed by NAB2. Kinetic studies suggest that induction of EGR1 leads to low NAB2 expression, while EGR2 and EGR3 are necessary for maximal and sustained expression. As already shown for EGR1, reduction of EGR2 or EGR3 expression by siRNAs reduced endogenous NAB2 levels. Depletion of EGR3 also resulted in a reduction of EGR2 levels confirming EGR2 as a target gene of EGR3. Our results suggest that in many cells of neuroectodermal and epithelial origin EGR1, EGR2, and EGR3 activate NAB2 transcription which is in turn repressed by NAB2, thus establishing a negative feedback loop. This points to a complex relationship between the EGR factors and NAB2 expression likely depending on the cellular context.
Collapse
Affiliation(s)
- Joerg Kumbrink
- Institute for Immunology, University of Munich, Munich 80336, Germany
| | | | | |
Collapse
|
16
|
Kim SH, Song JY, Joo EJ, Lee KY, Ahn YM, Kim YS. EGR3 as a potential susceptibility gene for schizophrenia in Korea. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1355-60. [PMID: 20687139 DOI: 10.1002/ajmg.b.31115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early growth response (EGR) genes play critical roles in signal transduction in the brain, which is involved in neuronal activation, brain development, and synaptic plasticity. EGR genes, including EGR2, EGR3, and EGR4, showed significant association with schizophrenia in Japanese schizophrenic pedigrees. In particular, EGR3, which resides at the chromosomal location 8p21.3, was suggested to be a potential susceptibility gene in schizophrenia based on a study of Japanese cases. However, this requires further replication with an independent sample set. We investigated the association of the EGR3 and EGR2 genes, which were suggested as potential susceptibility genes for schizophrenia supported by both genetic association and postmortem brain expression studies, with schizophrenia in Korean patients. Along with 350 healthy individuals, 244 schizophrenic patients were analyzed. Among the four examined single-nucleotide polymorphisms (SNPs) of EGR3 (rs1008949, rs7009708, rs35201266, and rs3750192), SNP rs35201266 in intron 1 of the EGR3 gene showed a significant association with schizophrenia (P = 0.0008, χ(2) = 11.156, OR = 1.493), which withstands multiple testing correction. In addition, the "T-G-C-G" haplotype of EGR3 was under-represented in the patients with schizophrenia (P = 0.0073, χ(2) = 7.188, OR = 0.697). However, an association between the SNPs of EGR2 (rs2295814 and rs2297488) and schizophrenia was not found. These findings are consistent with the previous genetic association of the EGR3 gene in Japanese cohorts, which is the first replication concerning the association of EGR3 with schizophrenia in an independent cohort. Taken together, EGR3 could be suggested as a compelling susceptibility gene in schizophrenia.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde ALW, Jessen F, Hoessler YC, Sanhai WR, Zetterberg H, Woodcock J, Blennow K. Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 2010; 9:560-74. [PMID: 20592748 DOI: 10.1038/nrd3115] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Advances in therapeutic strategies for Alzheimer's disease that lead to even small delays in onset and progression of the condition would significantly reduce the global burden of the disease. To effectively test compounds for Alzheimer's disease and bring therapy to individuals as early as possible there is an urgent need for collaboration between academic institutions, industry and regulatory organizations for the establishment of standards and networks for the identification and qualification of biological marker candidates. Biomarkers are needed to monitor drug safety, to identify individuals who are most likely to respond to specific treatments, to stratify presymptomatic patients and to quantify the benefits of treatments. Biomarkers that achieve these characteristics should enable objective business decisions in portfolio management and facilitate regulatory approval of new therapies.
Collapse
Affiliation(s)
- Harald Hampel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Johann Wolfgang Goethe-University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Sleep has been identified as a state that optimizes the consolidation of newly acquired information in memory, depending on the specific conditions of learning and the timing of sleep. Consolidation during sleep promotes both quantitative and qualitative changes of memory representations. Through specific patterns of neuromodulatory activity and electric field potential oscillations, slow-wave sleep (SWS) and rapid eye movement (REM) sleep support system consolidation and synaptic consolidation, respectively. During SWS, slow oscillations, spindles and ripples - at minimum cholinergic activity - coordinate the re-activation and redistribution of hippocampus-dependent memories to neocortical sites, whereas during REM sleep, local increases in plasticity-related immediate-early gene activity - at high cholinergic and theta activity - might favour the subsequent synaptic consolidation of memories in the cortex.
Collapse
|
19
|
Rasch B, Gais S, Born J. Impaired off-line consolidation of motor memories after combined blockade of cholinergic receptors during REM sleep-rich sleep. Neuropsychopharmacology 2009; 34:1843-53. [PMID: 19194375 DOI: 10.1038/npp.2009.6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rapid eye movement (REM) sleep has been considered important for the consolidation of memories, particularly of procedural skills. REM sleep, in contrast to slow-wave sleep (SWS), is hallmarked by the high, wake-like activity of the neurotransmitter acetylcholine (ACh), which promotes certain synaptic plastic processes underlying the formation of memories. Here, we show in healthy young men that off-line consolidation of a motor skill during a period of late sleep with high amounts of REM sleep depends essentially on high cholinergic activity. After a 3-h sleep period during the early night to satisfy the need for SWS, subjects learned a procedural finger sequence tapping task and a declarative word-pair learning task. After learning, they received either placebo or a combination of the muscarinic receptor antagonist scopolamine (4 microg/kg bodyweight, intravenously) and the nicotinic receptor antagonist mecamylamine (5 mg, orally), and then slept for another 3 h, ie, the late nocturnal sleep period, which is dominated by REM sleep. Retrieval was tested the following evening. Combined cholinergic receptor blockade significantly impaired motor skill consolidation, whereas word-pair memory remained unaffected. Additional data show that the impairing effect of cholinergic receptor blockade is specific to sleep-dependent consolidation of motor skill and does not occur during a wake-retention interval. Taken together, these results identify high cholinergic activity during late, REM sleep-rich sleep as an essential factor promoting sleep-dependent consolidation of motor skills.
Collapse
Affiliation(s)
- Björn Rasch
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
20
|
Salani M, Anelli T, Tocco GA, Lucarini E, Mozzetta C, Poiana G, Tata AM, Biagioni S. Acetylcholine-induced neuronal differentiation: muscarinic receptor activation regulates EGR-1 and REST expression in neuroblastoma cells. J Neurochem 2009; 108:821-34. [PMID: 19187099 DOI: 10.1111/j.1471-4159.2008.05829.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotransmitters are considered part of the signaling system active in nervous system development and we have previously reported that acetylcholine (ACh) is capable of enhancing neuronal differentiation in cultures of sensory neurons and N18TG2 neuroblastoma cells. To study the mechanism of ACh action, in this study, we demonstrate the ability of choline acetyltransferase-transfected N18TG2 clones (e.g. 2/4 clone) to release ACh. Analysis of muscarinic receptors showed the presence of M1-M4 subtypes and the activation of both IP(3) and cAMP signal transduction pathways. Muscarinic receptor activation increases early growth response factor-1 (EGR-1) levels and treatments with agonists, antagonists, and signal transduction enzyme inhibitors suggest a role for M3 subtype in EGR-1 induction. The role of EGR-1 in the enhancement of differentiation was investigated transfecting in N18TG2 cells a construct for EGR-1. EGR-1 clones show increased neurite extension and a decrease in Repressor Element-1 silencing transcription factor (REST) expression: both these features have also been observed for the 2/4 clone. Transfection of this latter with EGR zinc-finger domain, a dominant negative inhibitor of EGR-1 action, increases REST expression, and decreases fiber outgrowth. The data reported suggest that progression of the clone 2/4 in the developmental program is dependent on ACh release and the ensuing activation of muscarinic receptors, which in turn modulate the level of EGR-1 and REST transcription factors.
Collapse
Affiliation(s)
- Monica Salani
- Dipartimento di Biologia Cellulare e dello Sviluppo, Unità di Ricerca di Neurobiologia e Centro di Ricerca in Neurobiologia Daniel Bovet, Università La Sapienza, Piazzale Aldo Moro, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mayer SI, Willars GB, Nishida E, Thiel G. Elk-1, CREB, and MKP-1 regulate Egr-1 expression in gonadotropin-releasing hormone stimulated gonadotrophs. J Cell Biochem 2009; 105:1267-78. [PMID: 18814180 DOI: 10.1002/jcb.21927] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stimulation of gonadotropin-releasing hormone (GnRH) receptors with the GnRH analogue buserelin enhances expression of the zinc finger transcription factor Egr-1 in a pituitary gonadotroph cell line. The signaling cascade is blocked by overexpression of MAP kinase phosphatase-1 that dephosphorylates extracellular signal-regulated protein kinase in the nucleus. Chromatin immunoprecipitation experiments revealed that the phosphorylated form of Elk-1, a key regulator of gene transcription driven by serum response element (SRE), binds to the 5'-upstream region of the Egr-1 gene in buserelin-stimulated gonadotrophs. Expression of a dominant-negative mutant of Elk-1 completely blocked Egr-1 expression, indicating that Elk-1 connects the intracellular signaling cascade elicited by activation of GnRH receptors with transcription of the Egr-1 gene. GnRH receptor activation additionally induced the phosphorylation of CREB, which in its phosphorylated form bound to the Egr-1 gene. Expression of a dominant-negative mutant of CREB reduced GnRH receptor-induced upregulation of Egr-1 expression, indicating that CREB plays a role in the signaling pathway that regulates Egr-1 expression in gonadotrophs. We further identified the genes encoding basic fibroblast growth factor, tumor necrosis factor alpha, and transforming growth factor beta as bona fide target genes of Egr-1 in gonadotrophs. The analysis of gonadotroph cells that express--in addition to GnRH receptors--muscarinic M(3) acetylcholine receptors revealed that the nuclear events connecting GnRH receptors and muscarinic M(3) acetylcholine receptors with the Egr-1 gene are indistinguishable.
Collapse
Affiliation(s)
- Sabine I Mayer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | |
Collapse
|
22
|
Shaked I, Zimmerman G, Soreq H. Stress-induced Alternative Splicing Modulations in Brain and Periphery. Ann N Y Acad Sci 2008; 1148:269-81. [DOI: 10.1196/annals.1410.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Rössler OG, Henß I, Thiel G. Transcriptional response to muscarinic acetylcholine receptor stimulation: Regulation of Egr-1 biosynthesis by ERK, Elk-1, MKP-1, and calcineurin in carbachol-stimulated human neuroblastoma cells. Arch Biochem Biophys 2008; 470:93-102. [DOI: 10.1016/j.abb.2007.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 01/14/2023]
|
24
|
Yamada K, Yoshikawa T. From the EGR gene family to common pathways in schizophrenia: single genes versus convergent pathways. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kazuo Yamada
- RIKEN Brain Science Institute, Laboratory for Molecular Psychiatry, Wako, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- RIKEN Brain Science Institute, Laboratory for Molecular Psychiatry, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
25
|
Brouillette J, Young D, During MJ, Quirion R. Hippocampal gene expression profiling reveals the possible involvement ofHomer1andGABABreceptors in scopolamine-induced amnesia. J Neurochem 2007; 102:1978-1989. [PMID: 17540011 DOI: 10.1111/j.1471-4159.2007.04666.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Scopolamine-treated rats are commonly used as a psychopharmacological model of memory dysfunction and have been extensively studied to establish the effectiveness of acetylcholinesterase inhibitors in the treatment of Alzheimer's disease. Scopolamine is a muscarinic acetylcholine receptor antagonist that induces memory deficits in young subjects similar to those occurring during aging. The amnesic effect of scopolamine is well established but the molecular and cellular mechanisms that sustain its neuropharmacological action are still unclear. The present genome wide study investigates hippocampal gene expression profiling in scopolamine-treated adult rats following stimulation in a spatial memory task. Using microarray and quantitative real-time RT-PCR approaches, we identified several genes previously known to be associated with memory processes (Homer1, GABA(B) receptor, early growth response 1, prodynorphin, VGF nerve growth factor inducible) and multiple novel candidate genes possibly involved in cognition (including calcium/calmodulin-dependent protein kinase kinase 2, dual specificity phosphatase 5 and 6, glycophorin C) that were altered following scopolamine treatment. Moreover, we found that stable over-expression of glutamatergic components Homer1a and 1c in the hippocampus of adult rats induced by recombinant adeno-associated virus vector abolished memory improvement produced by the GABA(B) receptor antagonist SGS742 in scopolamine-treated rats. Taken together, these results reveal novel genes and mechanisms involved in scopolamine-induced amnesia, and demonstrate the involvement of both GABA and glutamate neurotransmission in this animal model of cognitive dysfunctions.
Collapse
Affiliation(s)
- Jonathan Brouillette
- Department of Neurology & Neurosurgery, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, CanadaDepartment of Molecular Medicine and Pathology, University of Auckland, Auckland, New ZealandDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Deborah Young
- Department of Neurology & Neurosurgery, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, CanadaDepartment of Molecular Medicine and Pathology, University of Auckland, Auckland, New ZealandDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Matthew J During
- Department of Neurology & Neurosurgery, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, CanadaDepartment of Molecular Medicine and Pathology, University of Auckland, Auckland, New ZealandDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Rémi Quirion
- Department of Neurology & Neurosurgery, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, CanadaDepartment of Molecular Medicine and Pathology, University of Auckland, Auckland, New ZealandDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
26
|
Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T, Aruga J, Minabe Y, Tonegawa S, Yoshikawa T. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci U S A 2007; 104:2815-20. [PMID: 17360599 PMCID: PMC1815264 DOI: 10.1073/pnas.0610765104] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Indexed: 01/05/2023] Open
Abstract
The calcineurin cascade is central to neuronal signal transduction, and genes in this network are intriguing candidate schizophrenia susceptibility genes. To replicate and extend our previously reported association between the PPP3CC gene, encoding the calcineurin catalytic gamma-subunit, and schizophrenia, we examined 84 SNPs from 14 calcineurin-related candidate genes for genetic association by using 124 Japanese schizophrenic pedigrees. Four of these genes (PPP3CC, EGR2, EGR3, and EGR4) showed nominally significant association with schizophrenia. In a postmortem brain study, EGR1, EGR2, and EGR3 transcripts were shown to be down-regulated in the prefrontal cortex of schizophrenic, but not bipolar, patients. These findings raise a potentially important role for EGR genes in schizophrenia pathogenesis. Because EGR3 is an attractive candidate gene based on its chromosomal location close to PPP3CC within 8p21.3 and its functional link to dopamine, glutamate, and neuregulin signaling, we extended our analysis by resequencing the entire EGR3 genomic interval and detected 15 SNPs. One of these, IVS1 + 607A-->G SNP, displayed the strongest evidence for disease association, which was confirmed in 1,140 independent case-control samples. An in vitro promoter assay detected a possible expression-regulatory effect of this SNP. These findings support the previous genetic association of altered calcineurin signaling with schizophrenia pathogenesis and identify EGR3 as a compelling susceptibility gene.
Collapse
Affiliation(s)
| | - David J. Gerber
- Howard Hughes Medical Institute and RIKEN–MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | | | - Jun Aruga
- Comparative Neural Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshio Minabe
- Laboratories for *Molecular Psychiatry and
- Department of Psychiatry and Neurology, Kanazawa University School of Medicine, Ishikawa 920-8641, Japan; and
| | - Susumu Tonegawa
- Howard Hughes Medical Institute and RIKEN–MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Takeo Yoshikawa
- Laboratories for *Molecular Psychiatry and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Papassotiropoulos A, Lambert JC, Wavrant-De Vrièze F, Wollmer MA, von der Kammer H, Streffer JR, Maddalena A, Huynh KD, Wolleb S, Lutjohann D, Schneider B, Thal DR, Grimaldi LME, Tsolaki M, Kapaki E, Ravid R, Konietzko U, Hegi T, Pasch T, Jung H, Braak H, Amouyel P, Rogaev EI, Hardy J, Hock C, Nitsch RM. Cholesterol 25-hydroxylase on chromosome 10q is a susceptibility gene for sporadic Alzheimer's disease. NEURODEGENER DIS 2006; 2:233-41. [PMID: 16909003 DOI: 10.1159/000090362] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. It is characterized by beta-amyloid (A beta) plaques, neurofibrillary tangles and the degeneration of specifically vulnerable brain neurons. We observed high expression of the cholesterol 25-hydroxylase (CH25H) gene in specifically vulnerable brain regions of AD patients. CH25H maps to a region within 10q23 that has been previously linked to sporadic AD. Sequencing of the 5' region of CH25H revealed three common haplotypes, CH25Hchi2, CH25Hchi3 and CH25Hchi4; CSF levels of the cholesterol precursor lathosterol were higher in carriers of the CH25Hchi4 haplotype. In 1,282 patients with AD and 1,312 healthy control subjects from five independent populations, a common variation in the vicinity of CH25H was significantly associated with the risk for sporadic AD (p = 0.006). Quantitative neuropathology of brains from elderly non-demented subjects showed brain A beta deposits in carriers of CH25Hchi4 and CH25Hchi3 haplotypes, whereas no A beta deposits were present in CH25Hchi2 carriers. Together, these results are compatible with a role of CH25Hchi4 as a putative susceptibility factor for sporadic AD; they may explain part of the linkage of chromosome 10 markers with sporadic AD, and they suggest the possibility that CH25H polymorphisms are associated with different rates of brain A beta deposition.
Collapse
|
28
|
Mitchell ES, Hoplight BJ, Lear SP, Neumaier JF. BGC20-761, a novel tryptamine analog, enhances memory consolidation and reverses scopolamine-induced memory deficit in social and visuospatial memory tasks through a 5-HT6 receptor-mediated mechanism. Neuropharmacology 2006; 50:412-20. [PMID: 16298400 DOI: 10.1016/j.neuropharm.2005.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 09/28/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Inhibition of 5-HT(6) receptors has been shown to improve memory consolidation, thus we tested whether a novel tryptamine analog with high affinity for 5-HT(6) receptors, BGC20-761 (5-methoxy-2-phenyl-N,N-dimethyltryptamine, PMDT), can enhance long-term memory. BGC20-761 (10 mg/kg i.p.) alone had no effect on social recognition in young rats, however, at doses of 5 mg/kg and 10 mg/kg i.p, BGC20-761 dose-dependently reversed a deficit of social recognition induced by scopolamine (0.4 mg/kg i.p.), an anticholinergic drug that impairs memory. BGC20-761 (10 mg/kg i.p.), scopolamine (0.2 mg/kg i.p.) or BGC20-761 + scopolamine had no effects on novel object discrimination in young rats (2 months). In mature rats (6 months), recognition of the novel object was improved following administration of BGC20-761. Scopolamine had no effect in object recognition. However, the addition of scopolamine disrupted the memory-enhancing effect of BGC20-761. Based on the high affinity of BGC20-761 for 5-HT(6) receptors, these cognitive enhancing effects are most likely mediated by 5-HT(6) receptor inhibition. The difference in effects of BGC20-761 in young vs. mature rats may reflect the status of memory consolidation in these different age ranges.
Collapse
Affiliation(s)
- Ellen S Mitchell
- 1-University of Washington, Harborview Medical Center, Seattle, 98104, USA
| | | | | | | |
Collapse
|
29
|
Abstract
We have recently provided evidence that acetylcholine (ACh) is a non-neuronal intraovarian signalling molecule, produced by granulosa cells (GCs) and which appears to act as signalling factor in the growing follicle. The ACh biosynthesis enzyme, choline-acetyltransferase (ChAT), is expressed only in growing, antral follicles in rodent and primate species. This restriction to follicle stages, which depend on the activity of follicle-stimulating hormone (FSH), may suggest that ACh could be an as yet unknown local mediator of FSH actions. In respect of ACh actions, our ongoing studies indicate that they may be exerted via different muscarinic ACh-receptors (MR) in GCs, but also in oocytes in an overlapping fashion. To elucidate functional details we have studied cultured human GCs isolated from preovulatory follicles. Activation of MRs increases intracellular calcium and, e.g., induces the master transcription factor egr-1, implying involvement in cell differentiation events. ACh agonists also activate a calcium-activated potassium channel (BK(Ca)) resulting in membrane hyperpolarization, which allows activation of other voltage-dependent ion channels. Experimental modulation of the chain of these events causes altered steroidogenesis, implying a crucial role of ACh in endocrine functions. Further ACh actions include phosphorylation of the gap junction molecule connexin 43 and disruption of intercellular communication between GCs. This may allow strongly coupled GCs to escape from the functional syncytium of the follicle in order to initiate proliferation. Proliferation is indeed strongly increased in cultured human GCs when treated with cholinergic agents. The repertoire of ACh/MR actions is far from being fully appreciated and may include epigenetic regulation in healthy growing follicles. Although many aspects of the ovarian cholinergic system, including, for instance, influence of follicular ACh on the MR-bearing oocyte, remain to be examined. The present data pinpoint ACh as an emerging, unique intraovarian signalling molecule.
Collapse
Affiliation(s)
- Artur Mayerhofer
- Anatomisches Institut der Universität München, Biedersteiner Strasse 29, 80802 München, Germany.
| | | |
Collapse
|
30
|
Tan X, Sanders P, Bolado J, Whitney M. Integration of G-protein coupled receptor signaling pathways for activation of a transcription factor (EGR-3). GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 1:173-9. [PMID: 15629029 PMCID: PMC5172350 DOI: 10.1016/s1672-0229(03)01022-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We recently reported the use of a gene-trapping approach to isolate cell clones in which a reporter gene had integrated into genes modulated by T-cell activation. We have now tested a panel of clones from that report and identified the one that responds to a variety of G-protein coupled receptors (GPCR). The β-lactamase tagged EGR-3 Jurkat cell was used to dissect specific GPCR signaling in vivo. Three GPCRs were studied, including the chemokine receptor CXCR4 (Gi-coupled) that was endogenously expressed, the platelet activation factor (PAF) receptor (Gq-coupled), and β2 adrenergic receptor (Gs-coupled) that was both stably transfected. Agonists for each receptor activated transcription of the β-lactamase tagged EGR-3 gene. Induction of EGR-3 through CXCR4 was blocked by pertussis toxin and PD58059, a specific inhibitor of MEK (MAPK/ERK kinase). Neither of these inhibitors blocked isoproterenol or PAF-mediated activation of EGR-3. Conversely, β2- and PAF-mediated EGR-3 activation was blocked by the p38, specific inhibitor SB580. In addition, both β2- and PAF-mediated EGR-3 activation could be synergistically activated by CXCR4 activation. This combined result indicates that EGR-3 can be activated through distinct signal transduction pathways by different GPCRs and that signals can be integrated and amplified to efficiently tune the level of activation.
Collapse
Affiliation(s)
- Xuehai Tan
- Beijing Genomics Institute, Beijing 101300, China.
| | | | | | | |
Collapse
|
31
|
Nguyen VT, Chernyavsky AI, Arredondo J, Bercovich D, Orr-Urtreger A, Vetter DE, Wess J, Beaudet AL, Kitajima Y, Grando SA. Synergistic control of keratinocyte adhesion through muscarinic and nicotinic acetylcholine receptor subtypes. Exp Cell Res 2004; 294:534-49. [PMID: 15023540 DOI: 10.1016/j.yexcr.2003.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Indexed: 11/30/2022]
Abstract
The biological mechanisms involved in initiating, coordinating, and ultimately terminating cell-cell adhesion in the stratified epithelium are not well understood at present. This study was designed to elucidate the roles of the muscarinic M3, the nicotinic alpha3, and the mixed muscarinic-nicotinic alpha9 acetylcholine receptors in physiologic control of keratinocyte adhesion. Both muscarinic and nicotinic antagonists caused keratinocyte detachment and reversibly increased the permeability of keratinocyte monolayers, indicative of the involvement of both muscarinic and nicotinic pathways in the cholinergic control of keratinocyte adhesion. Since phosphorylation of adhesion proteins plays an important role in rapid assembly and disassembly of intercellular junctions, we measured muscarinic and nicotinic effects on phosphorylation of keratinocyte adhesion molecules. The phosphorylation levels of E-cadherin, beta-catenin, and gamma-catenin increased following pharmacological blockage of muscarinic receptors. Long-term blocking of alpha3, alpha9, and M3 receptor signaling pathways with antisense oligonucleotides resulted in cell-cell detachment and changes in the expression levels of E-cadherin, beta-catenin, and gamma-catenin in cultured human keratinocytes. Simultaneous inhibition of several receptor subtypes with a mixture of antisense oligonucleotides produced intensified abnormalities with cell adhesion. Moreover, altered cell-cell adhesion was found in the stratified epithelium of alpha3, alpha9, and M3 receptor knockout mice. Keratinocytes from these mice exhibited abnormal expression of adhesion molecules at both the protein and the mRNA levels. Thus, our data indicate that the alpha3, alpha9, and M3 acetylcholine receptors play key roles in regulating in a synergistic mode keratinocyte adhesion, most probably by modulating cadherin and catenin levels and activities. These findings may aid in the development of novel methods useful for the treatment of skin adhesion diseases and tumor metastasis.
Collapse
MESH Headings
- Animals
- Cadherins/metabolism
- Cell Adhesion/drug effects
- Cell Adhesion/genetics
- Cell Adhesion Molecules/metabolism
- Cell Communication/drug effects
- Cell Communication/genetics
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Cytoskeletal Proteins/metabolism
- Desmoplakins
- Humans
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Mice
- Mice, Knockout
- Muscarinic Antagonists/pharmacology
- Nicotinic Antagonists/pharmacology
- Oligonucleotides, Antisense/pharmacology
- Phosphorylation
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/metabolism
- Receptors, Nicotinic/deficiency
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Trans-Activators/metabolism
- beta Catenin
- gamma Catenin
Collapse
Affiliation(s)
- Vu Thuong Nguyen
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Darreh-Shori T, Hellström-Lindahl E, Flores-Flores C, Guan ZZ, Soreq H, Nordberg A. Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer's disease patients. J Neurochem 2004; 88:1102-13. [PMID: 15009666 DOI: 10.1046/j.1471-4159.2003.02230.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein levels of different acetylcholinesterase (AChE) splice variants were explored by a combination of immunoblot techniques, using two different antibodies, directed against the C-terminus of the AChE-R splice variant or the core domain common to all variants. Both AChE-R and AChE-S splice variants as well as several heavier AChE complexes were detected in brain homogenates from the parietal cortex of patients with or without Alzheimer's disease (AD) as well as the cerebrospinal fluid (CSF) of AD patients, compatible with the assumption that CSF AChEs might originate from CNS neurons. Long-term changes in the composition of CSF AChE variants were further pursued in AD patients treated with rivastigmine (n = 11) or tacrine (n = 17) in comparison to untreated AD patients (n = 5). In untreated patients, AChE-R was markedly reduced as compared with the baseline level (37%), whereas the medium size AChE-S complex was increased by 32%. Intriguingly, tacrine produced a general and profound up-regulation of all detected AChE variants (up to 117%), whereas rivastigmine treatment caused a mild and selective up-regulation of AChE-R ( approximately 10%, p < 0.05). Moreover, the change in the ratio of AChE-R to AChE-S (R/S-ratio) strongly and positively correlated with sustained cognition at 12 months (p < 0.0001). Thus, evaluation of changes in the composition of CSF AChE variants may yield important information referring to the therapeutic efficacy and/or development of drug tolerance in AD patients treated with anti-cholinesterases.
Collapse
Affiliation(s)
- T Darreh-Shori
- Karolinska Institute, Neurotec Department, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Hoyer S. Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 541:135-52. [PMID: 14977212 DOI: 10.1007/978-1-4419-8969-7_8] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer disease is not a single disorder. Etiologically, two different types or even diseases exist: inheritance in 5% to 10% of all Alzheimer cases versus 90% to 95% AD cases whith sporadic origin (SAD). Different susceptibility genes along with adult lifestyle risk-factors- in the case of SAD the risk factor aging- may be assumed to cause the latter disorder. There is evidence that a disturbance in the insulin signal transduction pathway may be a central and early pathophysiologic event in SAD. Both, hypercortisolemia and increased adrenergic activity, in both old age and SAD may render the function of the neuronal insulin receptor vulnerable resulting in a diminished production of ATP. The reduced availability of ATP may damage the function of the endoplasmic reticulum/Golgi apparatus/trans Golgi network generating misfolded and malfolded proteins retained in the cell. In SAD, amyloid precursor protein is found to accumulate intracellularly thus not representing the cause but a driving force in the pathogenesis of SAD. Additionally, both disturbed insulin signaling and reduced ATP forward the hyperphosphorylation of tau protein. Thus, abnormalities in oxidative brain metabolism lead to the formation of two main morphologic hallmarks of SAD: senile plaques and neurofibrillary tangles. Therefore, the therapeutic goal in SAD should be the improvement of the neuronal energy state. Findings from both basic and clinical studies showed that Ginkgo biloba extract (EGb 761) may be appropiate to approach that goal.
Collapse
Affiliation(s)
- Siegfried Hoyer
- Department of Pathochemistry and General Neurochemistry, University of Heidelberg, Im Neuenheimer Feld 220/221, Heidelberg, Germany 69120
| |
Collapse
|
34
|
Sawatzky DA, Kingham PJ, Durcan N, McLean WG, Costello RW. Eosinophil-induced release of acetylcholine from differentiated cholinergic nerve cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1296-304. [PMID: 12948933 DOI: 10.1152/ajplung.00107.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One immunological component of asthma is believed to be the interaction of eosinophils with parasympathetic cholinergic nerves and a consequent inhibition of acetylcholine muscarinic M2 receptor activity, leading to enhanced acetylcholine release and bronchoconstriction. Here we have used an in vitro model of cholinergic nerve function, the human IMR32 cell line, to study this interaction. IMR32 cells, differentiated in culture for 7 days, expressed M2 receptors. Cells were radiolabeled with [3H]choline and electrically stimulated. The stimulation-induced release of acetylcholine was prevented by the removal of Ca2+. The muscarinic M1/M2 receptor agonist arecaidine reduced the release of acetylcholine after stimulation (to 82 +/- 2% of control at 10(-7) M), and the M2 receptor antagonist AF-DX 116 increased it (to 175 +/- 23% of control at 10(-5) M), indicating the presence of a functional M2 receptor that modulated acetylcholine release. When human eosinophils were added to IMR32 cells, they enhanced acetylcholine release by 36 +/- 10%. This effect was prevented by inhibitors of adhesion of the eosinophils to the IMR32 cells. Pretreatment of IMR32 cells with 10 mM carbachol, to desensitize acetylcholine receptors, prevented the potentiation of acetylcholine release by eosinophils or AF-DX 116. Acetylcholine release was similarly potentiated (by up to 45 +/- 7%) by degranulation products from eosinophils that had been treated with N-formyl-methionyl-leucyl-phenylalanine or that had been in contact with IMR32 cells. Contact between eosinophils and IMR32 cells led to an initial increase in expression of M2 receptors, whereas prolonged exposure reduced M2 receptor expression.
Collapse
Affiliation(s)
- Deborah A Sawatzky
- Department of Pharmacology and Therapeutics, University of Liverpool L69 3GE, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. There has been a rapid increase in the knowledge of epidemiology, genetics, risk factors, and underlying neuropathological mechanisms, but still there is no cure for AD. Recent promising studies with functional imaging using positron emission tomography (PET) and magnetic resonance imaging reveal that disease processes can be detected when very early subjective symptoms of AD are manifest. Recently the PET ligand PIB was reported to bind in vivo to beta-amyloid in the brains of AD patients. Also cerebrospinal fluid markers including tau, phosphotau, and A beta 1-42 are probably important early biological markers that will provide an early diagnosis of AD. An obvious impairment in central cholinergic transmitter function and its close relation to cognitive function led to the development of the acetylcholinesterase inhibitors that now are used as symptomatic therapy. A drug interfering with the glutaminergic brain transmitter system, the NMDA antagonist memantine, has recently been approved for the treatment of patients with severe AD. In order to stop or reverse disease progression, different AD treatment strategies are of great interest. Epidemiological studies support the hypothesis that long-term treatment with estrogen, antioxidants, anti-inflammatory drugs, and cholesterol-lowering agents could protect against the development of AD. Treatment with these drugs in manifest AD has been less promising. The use of nerve growth factors was limited by severe side effects. Much evidence supports the key role of beta-amyloid in the pathogenesis of AD. Compounds such as amyloid beta-sheet breakers, cholesterol-lowering drugs, estrogen, nicotine, zinc and copper chelators, inhibitors of beta- and gamma-secretases, and immunization to reduce the amyloid burden in transgenic mice overexpressing beta-amyloid all have their advocates. The latter exciting strategy turned out to cause meningoencephalitis in 6% of AD patients so treated. One patient from the trial has died showing less beta-amyloid burden in brain than expected and patients with serum beta-amyloid plaque reactive antibodies had less cognitive decline after 1 year than AD patients without antibodies. There is a great optimism for early diagnosis and effective treatment of AD in the future.
Collapse
Affiliation(s)
- Agneta Nordberg
- Karolinska Institutet, Neurotec Department, Division of Molecular Neuropharmacology, Huddinge University Hospital, Stockholm, Sweden.
| |
Collapse
|
36
|
Mayerhofer A, Dimitrijevic N, Kunz L. The expression and biological role of the non-neuronal cholinergic system in the ovary. Life Sci 2003; 72:2039-45. [PMID: 12628454 DOI: 10.1016/s0024-3205(03)00081-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Functioning of the ovary depends on an interplay between hormones, locally produced growth factors and neurotransmitters. Neurotransmitters are delivered to the ovary via its sympathetic innervation and originate from intrinsic nerve cells expressing catecholaminergic and peptidergic traits. We found that the nerve fibers and nerve cells of the ovary were however not immunoreactive for the ACh-synthesizing enzyme, choline-acetyl transferase (ChAT). Immunoreactivity was instead detected in ovarian endocrine cells, namely granulosa cells (GCs), of rodents and primates. Importantly, isolated GCs produce ACh. Thus, endocrine cells are an unexpected non-neuronal source of ACh in the ovary. GCs in vivo and in vitro also contain ACh-receptors of the muscarinic subtype (MR), namely M1 and M5. MR of human GCs are functional and linked to rapid increases in intracellular calcium levels. A role of ovarian ACh/MR in the crucial process of cell proliferation is suggested by the observation that in growing follicles, ChAT-immunoreactive GCs co-express "proliferating cell nuclear antigen" (PCNA) and that cholinergic agents stimulate cell proliferation of human GCs in vitro. This proliferative effect is associated with rapid disruption of gap junction communication and phosphorylation of connexin 43. In addition, calcium-dependent channels are activated. Ongoing studies have begun to identify down-stream effects of M1/5 activation in GCs, which include, for example, expression of a transcription factor (egr-1). In summary, ovarian endocrine cells are sources and targets of ACh. We propose that an as yet unexplored intraovarian cholinergic system exists, which contributes to physiological ovarian tissue remodeling by stimulation of cell proliferation.
Collapse
Affiliation(s)
- Artur Mayerhofer
- Anatomisches Institut der Universität München, Biedersteiner Strasse 29, D-80802 München, Germany.
| | | | | |
Collapse
|
37
|
Bachurin SO. Medicinal chemistry approaches for the treatment and prevention of Alzheimer's disease. Med Res Rev 2003; 23:48-88. [PMID: 12424753 DOI: 10.1002/med.10026] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which is characterised by progressive deterioration of memory and higher cortical functions that ultimately result in total degradation of intellectual and mental activities. Modern strategies in the search of new therapeutic approaches are based on the morphological and biochemical characteristics of AD, and focused on following directions: agents that compensate the hypofunction of cholinergic system, agents that interfere with the metabolism of beta-amyloid peptide, agents that protect nerve cells from toxic metabolites formed in neurodegenerative processes, agents that activate other neurotransmitter systems that indirectly compensate for the deficit of cholinergic functions, agents that affect the process of the formation of neurofibrillary tangles, anti-inflammatory agents that prevent the negative response of nerve cells to the pathological process. The goal of the present review is the validation and an analysis from the point of view of medicinal chemistry of the principles of the directed search of drugs for the treatment and prevention of AD and related neurodegenerative disorders. It is based on systematization of the data on biochemical and structural similarities in the interaction between physiologically active compounds and their biological targets related to the development of such pathologies. The main emphasis is on cholinomimetic, anti-amyloid and anti-metabolic agents, using the data that were published during the last 3 to 4 years, as well as the results of clinical trials presented on corresponding websites.
Collapse
Affiliation(s)
- S O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Moscow region, Russia.
| |
Collapse
|
38
|
Mayerhofer A, Fritz S. Ovarian acetylcholine and muscarinic receptors: hints of a novel intrinsic ovarian regulatory system. Microsc Res Tech 2002; 59:503-8. [PMID: 12467026 DOI: 10.1002/jemt.10228] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
More than two decades ago, the degrading enzyme of the neurotransmitter acetylcholine (ACH) was reported in nerve fibers of the rat ovary. Subsequently, it was assumed that ACH is a neurotransmitter of ovarian nerves, although the sole presence of the degrading enzyme, ACH-esterase, does not allow such a conclusion. That ACH may be involved in the complex regulation of ovarian functions, including hormone production, was indicated by studies using, for example, granulosa cells (GCs). The lack of detailed information about both source(s) and functions of ACH in the ovary prompted us to examine sites of ovarian ACH-synthesis and ACH-receptor-bearing target cells. We also started to identify functions of ACH in cultured human GCs. While ovarian innervation and recently described neuron-like cells of the ovary were not immunoreactive for the ACH-synthesizing enzyme, choline-acetyl transferase (CHAT), we found immunoreactivity in GCs of rodents and primates. Isolated human and rat GCs produced ACH and contained the vesicular ACH transporter (VACHT). These results indicate that endocrine GCs are an unexpected non-neuronal source of ACH in the ovary. Moreover, these cells and GCs in vivo contain ACH-receptors of the muscarinic subtype (MR), namely M1R and M5R. In contrast, oocytes express M3R. MR of human GCs are functional and cholinergic stimulation is linked to rapid increases in intracellular Ca(++) levels. M1/5R activation also led to increased cell proliferation of human GCs in vitro and this stimulatory effect was found to be associated with rapid disruption of gap junction communication. Ongoing studies begin to identify regulation of ion channels and altered gene expression as consequences of MR stimulation. Thus, our results outline first details of an unexpected intraovarian, non-neuronal cholinergic system, and suggest that it may be involved in the regulation of cell proliferation in the ovary.
Collapse
Affiliation(s)
- Artur Mayerhofer
- Anatomisches Institut der Universität München, D-80802 München, Germany.
| | | |
Collapse
|
39
|
De Jaco A, Augusti-Tocco G, Biagioni S. Muscarinic acetylcholine receptors induce neurite outgrowth and activate the synapsin I gene promoter in neuroblastoma clones. Neuroscience 2002; 113:331-8. [PMID: 12127090 DOI: 10.1016/s0306-4522(02)00179-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The possible role of acetylcholine as a modulator of neuronal differentiation has been tested using a neuroblastoma cell line (N18TG2), which does not synthesize any neurotransmitter. Acetylcholine synthesis has been activated in this line by transfection with a construct containing a choline acetyltransferase (ChAT) cDNA; ChAT-positive clones share a higher ability to grow fibers and an activation of synapsin I expression compared to the parental cells. Atropine, a muscarinic antagonist, abolishes the higher ability to grow fibers of ChAT-positive transfected clones, and the cholinergic agonist carbachol induces higher neurite outgrowth in the parental line. In transient transfections of ChAT-positive clones, the expression of a reporter gene under the control of synapsin I promoter is considerably reduced by atropine, while it is not modified by carbachol; in contrast, in the parental cells, which do not synthesize acetylcholine, the reporter gene expression is induced by carbachol and this effect is abolished by atropine. The data presented provide evidence for the existence of a direct modulation of fiber outgrowth and synapsin I expression by muscarinic receptor activation, which may be related to early growth response gene-1 (EGR-1) levels.
Collapse
Affiliation(s)
- A De Jaco
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | | | | |
Collapse
|
40
|
Greenwood JM, Dragunow M. Muscarinic receptor-mediated phosphorylation of cyclic AMP response element binding protein in human neuroblastoma cells. J Neurochem 2002; 82:389-97. [PMID: 12124440 DOI: 10.1046/j.1471-4159.2002.00992.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study describes the effect of signalling through muscarinic acetylcholine receptors on two transcription factors implicated in long-term synaptic plasticity and memory formation, EGR1 and the cyclic AMP response element binding protein (CREB). In SK-N-SH neuroblastoma cells, treatment with the cholinergic agonist carbachol led to maximal induction of EGR1 1 h after stimulation. This was preceded by the phosphorylation of CREB, which peaked as early as 5 minutes after carbachol treatment. The levels of both EGR1 and phosphorylated CREB (pCREB) slowly decayed over 4-8 h. CREB phosphorylation and EGR1 induction showed similar sensitivity to carbachol concentration, with EC(50) values in the range of 1-10 microM, and the changes in both transcription factors were blocked by the muscarinic antagonist atropine. As has been described elsewhere, EGR1 induction was dependent on activation of p42/44 MAP kinase, as it was blocked by the MEK inhibitor U0126. However, CREB phosphorylation by carbachol was largely unaffected by MAP kinase blockade. As both CREB phosphorylation and EGR1 induction have been linked to long-term potentiation and some forms of memory consolidation, these results may implicate CREB and EGR1 in independent or partially independent cholinergic signalling pathways involved in memory processes.
Collapse
Affiliation(s)
- Jeffrey M Greenwood
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
41
|
Bahouth SW, Beauchamp MJ, Vu KN. Reciprocal regulation of beta(1)-adrenergic receptor gene transcription by Sp1 and early growth response gene 1: induction of EGR-1 inhibits the expression of the beta(1)-adrenergic receptor gene. Mol Pharmacol 2002; 61:379-90. [PMID: 11809863 DOI: 10.1124/mol.61.2.379] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The beta(1)-adrenergic receptor (beta(1)-AR) plays a key role in regulating heart rate and contractility in response to catecholamines. Our studies have focused on defining the factors that regulate the expression of the beta(1)-AR gene. We determined that a 65-base-pair (bp) region in the beta(1)-AR promoter between bp -394 and bp -330 directs basal transcription. An element located between -377 and -365 can bind Sp1 and Sp3. In Drosophila melanogaster SL2 cells, Sp1 stimulated the expression of the beta(1)-AR promoter, whereas Sp3 was unable to activate transcription. Site-directed mutagenesis indicated that an intact Sp1-binding site is essential for maintaining the activity of the basal promoter. In addition to binding Sp family members, the nucleotides between -381 and -367 can bind the zinc-finger transcription factor Egr-1. The Egr-1 and Sp1 binding sites are partially overlapping and their binding sequence is conserved among mammalian beta(1)-AR genes. The induction of Egr-1 in rat neonatal ventricular myocytes with phorbol-12-myristate-13-acetate or in HeLa S3 cells by regulated expression of Egr-1 in a tetracycline-responsive promoter, suppressed expression from the beta(1)-AR promoter. Overexpression of Sp1 in SK-N-MC cells increased beta(1)-AR mRNA by 2.4-fold, whereas overexpression of Egr-1 reduced beta(1)-AR mRNA by 40%. Coexpression of Egr-1 with Sp1 reduced Sp1-mediated up-regulation of beta(1)-AR mRNA by 60%. Mutagenesis revealed that an intact Sp1-binding site is essential for observing transcriptional repression by Egr-1 and that Egr-1 suppressed the transcription of the beta(1)-AR gene by competing with Sp1 for binding to their overlapping sites. These results reveal a novel physiologically relevant transcriptional mechanism for reciprocal regulation of beta(1)-AR gene expression.
Collapse
Affiliation(s)
- Suleiman W Bahouth
- Department of Pharmacology, College of Medicine, the University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA.
| | | | | |
Collapse
|
42
|
Abstract
During the last decade, a systematic effort to develop a pharmacological treatment for Alzheimer disease (AD) has resulted in drugs being registered for the first time in the US and Europe for this specific indication. The 3 agents registered are cholinesterase inhibitors (ChEIs). The major therapeutic effect of ChEIs in patients with AD is the maintenance of cognitive function, as compared with placebo, during a 6-month to 1-year period of treatment. Additional drug effects that may occur are the slowing of cognitive deterioration and improvement of behaviour and daily living activities. Comparison of clinical effects of 6 ChEIs demonstrates a rather similar magnitude of improvement in cognitive outcome measures. For some drugs, this level may represent an upper limit, while for others it may be possible to increase the benefit further. In order to maximise and prolong positive drug effects it is important to start treatment early and adjust the dosage during treatment. Recent studies that used this administration strategy have shown that in many patients, the stabilisation effect produced by ChEIs can be prolonged for as long as 36 months. This long-lasting effect suggests mechanisms of action other than symptomatic ones. In this article, the effects of ChEIs on beta-amyloid metabolism are postulated to explain the stabilising (i.e. disease-modifying) effects of the drugs. Evidence for such a mechanism is available at the experimental but not yet at the clinical level.
Collapse
Affiliation(s)
- E Giacobini
- University Hospitals of Geneva, Department of Geriatrics, University of Geneva Medical School, Thonex, Switzerland.
| |
Collapse
|
43
|
Abstract
The discovery of the first neurotransmitter--acetylcholine--was soon followed by the discovery of its hydrolysing enzyme, acetylcholinesterase. The role of acetylcholinesterase in terminating acetylcholine-mediated neurotransmission made it the focus of intense research for much of the past century. But the complexity of acetylcholinesterase gene regulation and recent evidence for some of the long-suspected 'non-classical' actions of this enzyme have more recently driven a profound revolution in acetylcholinesterase research. Although our understanding of the additional roles of acetylcholinesterase is incomplete, the time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions.
Collapse
|
44
|
Erb C, Troost J, Kopf S, Schmitt U, Löffelholz K, Soreq H, Klein J. Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase. J Neurochem 2001; 77:638-46. [PMID: 11299326 DOI: 10.1046/j.1471-4159.2001.00287.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Central cholinergic neurotransmission was studied in learning-impaired transgenic mice expressing human acetylcholinesterase (hAChE-Tg). Total catalytic activity of AChE was approximately twofold higher in synaptosomes from hippocampus, striatum and cortex of hAChE-Tg mice as compared with controls (FVB/N mice). Extracellular acetylcholine (ACh) levels in the hippocampus, monitored by microdialysis in the absence or presence of 10(-8)-10(-3) M neostigmine in the perfusion fluid, were indistinguishable in freely moving control and hAChE-Tg mice. Muscarinic receptor functions were unchanged as indicated by similar effects of scopolamine on ACh release and of carbachol on inositol phosphate formation. However, when the mice were anaesthetized with halothane (0.8 vol. %), hippocampal ACh reached significantly lower levels in AChE-Tg mice as compared with controls. Also, the high-affinity choline uptake (HACU) in hippocampal synaptosomes from awake hAChE-Tg mice was accelerated but was reduced by halothane anaesthesia. Moreover, hAChE-Tg mice displayed increased motor activity in novel but not in familiar environment and presented reduced anxiety in the elevated plus-maze test. Systemic application of a low dose of physostigmine (100 microgram/kg i.p.) normalized all of the enhanced parameters in hAChE-Tg mice: spontaneous motor activity, hippocampal ACh efflux and hippocampal HACU, attributing these parameters to the hypocholinergic state due to excessive AChE activity. We conclude that, in hAChE-Tg mice, hippocampal ACh release is up-regulated in response to external stimuli thereby facilitating cholinergic neurotransmission. Such compensatory phenomena most likely play important roles in counteracting functional deficits in mammals with central cholinergic dysfunctions.
Collapse
Affiliation(s)
- C Erb
- Department of Pharmacology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
von der Kammer H, Mayhaus M, Albrecht C, Andresen B, Klaudiny J, Demiralay C, Nitsch RM. Regulation of gene expression by muscarinic acetylcholine receptors. A comprehensive approach for the identification of regulated genes. Ann N Y Acad Sci 2001; 920:305-8. [PMID: 11193168 DOI: 10.1111/j.1749-6632.2000.tb06939.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H von der Kammer
- Center for Molecular Neurobiology, University of Hamburg, Martinistr. 5, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer's disease-associated neurodegeneration and oxidative stress. J Neurosci 2001. [PMID: 11007892 DOI: 10.1523/jneurosci.20-19-07345.2000] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Alzheimer's disease (AD) brains, selected populations of neurons degenerate heavily, whereas others are frequently spared from degeneration. To address the cellular basis for this selective vulnerability of neurons in distinct brain regions, we compared gene expression between the severely affected inferior temporal lobes and the mostly unaffected fronto-parietal cortices by using an mRNA differential display. We identified seladin-1, a novel gene, which was downregulated in large pyramidal neurons in vulnerable regions in AD but not control brains. Seladin-1 is a human homolog of the DIMINUTO/DWARF1 gene described in plants and Caenorhabditis elegans. Its sequence shares similarities with flavin-adenin-dinucleotide (FAD)-dependent oxidoreductases. In human control brain, seladin-1 was highly expressed in almost all neurons. In PC12 cell clones that were selected for resistance against AD-associated amyloid-beta peptide (Abeta)-induced toxicity, both mRNA and protein levels of seladin-1 were approximately threefold higher as compared with the non-resistant wild-type cells. Functional expression of seladin-1 in human neuroglioma H4 cells resulted in the inhibition of caspase 3 activation after either Abeta-mediated toxicity or oxidative stress and protected the cells from apoptotic cell death. In apoptotic cells, however, endogenous seladin-1 was cleaved to a 40 kDa derivative in a caspase-dependent manner. These results establish that seladin-1 is an important factor for the protection of cells against Abeta toxicity and oxidative stress, and they suggest that seladin-1 may be involved in the regulation of cell survival and death. Decreased expression of seladin-1 in specific neurons may be a cause for selective vulnerability in AD.
Collapse
|
47
|
Fisher A. Therapeutic strategies in Alzheimer's disease: M1 muscarinic agonists. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 84:101-12. [PMID: 11128032 DOI: 10.1254/jjp.84.101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cholinergic hypofunction in Alzheimer's disease (AD) appears to be linked with two other major hallmarks of this disease, beta-amyloid and hyperphosphorylated tau protein. Formation of beta-amyloids might impair the coupling of M1 muscarinic acetylcholine receptors (mAChR) with G-proteins. This can lead to decreased signal transduction, a decrease of trophic and non-amyloidogenic amyloid precursor protein (APPs) and generation of more beta-amyloids, aggravating further the cholinergic deficiency. This review is an attempt to explore the M1 mAChR regulation of beta-amyloid metabolism, tau hyperphosphorylation and cognitive functions. The therapeutic potential of M1-selective muscarinic agonists including AF102B, AF150(S), AF267B (the AF series) is evaluated and compared, when possible, with several FDA-approved acetylcholinesterase inhibitors. These M1 agonists can elevate APPs, decrease tau protein phosphorylation/hyperphosphorylation in vitro and in vivo and restore cognitive impairments in several animal models for AD. Except for the M1 agonists, no other compounds were reported yet with combined effects; e.g., amelioration of cognition dysfunction and beneficial modulation of APPs/beta-amyloid together with tau hyperphosphorylation/phosphorylation. This property of M1 agonists to alter different aspects associated with AD pathogenesis could represent the most remarkable clinical value of such drugs.
Collapse
Affiliation(s)
- A Fisher
- Israel Institute for Biological Research, Ness-Ziona.
| |
Collapse
|
48
|
Albrecht C, von Der Kammer H, Mayhaus M, Klaudiny J, Schweizer M, Nitsch RM. Muscarinic acetylcholine receptors induce the expression of the immediate early growth regulatory gene CYR61. J Biol Chem 2000; 275:28929-36. [PMID: 10852911 DOI: 10.1074/jbc.m003053200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In brain, muscarinic acetylcholine receptors (mAChRs) modulate neuronal functions including long term potentiation and synaptic plasticity in neuronal circuits that are involved in learning and memory formation. To identify mAChR-inducible genes, we used a differential display approach and found that mAChRs rapidly induced transcription of the immediate early gene CYR61 in HEK 293 cells with a maximum expression after 1 h of receptor stimulation. CYR61 is a member of the emerging CCN gene family that includes CYR61/CEF10, CTGF/FISP-12, and NOV; these encode secretory growth regulatory proteins with distinct functions in cell proliferation, migration, adhesion, and survival. We found that CYR61, CTGF, and NOV were expressed throughout the human central nervous system. Stimulation of mAChRs induced CYR61 expression in primary neurons and rat brain where CYR61 mRNA was detected in cortical layers V and VI and in thalamic nuclei. In contrast, CTGF and NOV expression was not altered by mAChRs neither in neuronal tissue culture nor rat brain. Receptor subtype analyses demonstrated that m1 and m3 mAChR subtypes strongly induced CYR61 expression, whereas m2 and m4 mAChRs had only subtle effects. Increased CYR61 expression was coupled to mAChRs by both protein kinase C and elevations of intracellular Ca(2+). Our results establish that CYR61 expression in mammalian brain is under the control of cholinergic neurotransmission; it may thus be involved in cholinergic regulation of synaptic plasticity.
Collapse
Affiliation(s)
- C Albrecht
- Center for Molecular Neurobiology Hamburg, University of Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
De Jaco A, Ajmone-Cat MA, Baldelli P, Carbone E, Augusti-Tocco G, Biagioni S. Modulation of acetylcholinesterase and voltage-gated Na(+) channels in choline acetyltransferase- transfected neuroblastoma clones. J Neurochem 2000; 75:1123-31. [PMID: 10936194 DOI: 10.1046/j.1471-4159.2000.0751123.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurotransmitters appear early in the developing embryo and may play a role in the regulation of neuronal differentiation. To study potential effects of acetylcholine production in neuronal differentiation, we used the FB5 subclone of N18TG2 murine neuroblastoma cells stably transfected with cDNA for choline acetyltransferase. We tested whether the forced acetylcholine production can modify the expression or the cellular localization of different neuronal markers. We studied the activity, localization, and secretion of acetylcholinesterase in view of its possible role in the modulation of the morphogenetic action of acetylcholine and of its proposed role of a regulator of neurite outgrowth. FB5 cells are characterized by a high level of acetylcholinesterase, predominantly released into the culture medium. Acetylcholinesterase secretion into the medium was lower in choline acetyltransferase-transfected clones than in nontransfected and antisense-transfected controls. Moreover, sequential extraction of acetylcholinesterase revealed that detergent-extracted, i.e., membrane-associated, activity was higher in the transfected clones expressing choline acetyltransferase activity than in both control groups. These observations suggest that a shift occurs in the utilization of acetylcholinesterase in choline acetyltransferase-transfected clones from a secretion pathway to a pathway leading to membrane localization. In addition, the choline acetyltransferase-positive clones showed higher densities of voltage-gated Na(+) channels and enhanced high-affinity choline uptake, suggesting the accomplishment of a more advanced differentiated neuronal phenotype. Finally, binding experiments demonstrated the presence of muscarinic acetylcholine receptors in all examined clones. This observation is consistent with the proposed existence of an autocrine loop, which may be important for the enhancement in the expression of neurospecific traits.
Collapse
Affiliation(s)
- A De Jaco
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Roma, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Meyer zu Heringdorf D, Lass H, Kuchar I, Alemany R, Guo Y, Schmidt M, Jakobs KH. Role of sphingosine kinase in Ca(2+) signalling by epidermal growth factor receptor. FEBS Lett 1999; 461:217-22. [PMID: 10567700 DOI: 10.1016/s0014-5793(99)01463-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Contribution of sphingosine kinase (SPK)-catalyzed production of sphingosine-1-phosphate (SPP), in comparison to phospholipase C (PLC), to Ca(2+) signalling by epidermal growth factor (EGF) was studied in two HEK-293 cell clones (HEK2 and HEK3), expressing functional EGF receptors and exhibiting release of stored Ca(2+) by intracellular SPP. In HEK3 cells, EGF increased [Ca(2+)](i) and stimulated both, SPK and PLC. [Ca(2+)](i) increase, but not PLC stimulation, was strongly reduced by SPK inhibition. In HEK2 cells, EGF similarly stimulated PLC, but did not increase [Ca(2+)](i) or stimulate SPK, suggesting that intracellular SPP production plays a major role for Ca(2+) signalling by EGF in HEK-293 cells.
Collapse
Affiliation(s)
- D Meyer zu Heringdorf
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122, Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|