1
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
2
|
Wilburn DT, Machek SB, Cardaci TD, Willoughby DS. Carbohydrate-Induced Insulin Signaling Activates Focal Adhesion Kinase: A Nutrient and Mechanotransduction Crossroads. Nutrients 2020; 12:nu12103145. [PMID: 33076263 PMCID: PMC7602406 DOI: 10.3390/nu12103145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
Research has suggested that nutrient, exercise, and metabolism-related proteins interact to regulate mammalian target of rapamycin complex one (mTOR) post-exercise and their interactions needs clarification. In a double-blind, cross-over, repeated measures design, ten participants completed four sets to failure at 70% of 1-repitition maximum (1-RM) with 45 s rest on angled leg press with or without pre-exercise maltodextrin (2 g/kg) after a 3 h fast. Vastus lateralis biopsies were collected at baseline before supplementation and 1 h post-exercise to analyze Focal Adhesion Kinase (FAK), ribosomal protein S6 kinase beta-1 (p70S6K), insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and 5' AMP-activated protein kinase (AMPK) activation. FAK and IRS-1 activity were only elevated 1 h post-exercise with carbohydrate ingestion (p < 0.05). PI3K and p70S6K activation were both elevated after exercise in both conditions (p < 0.05). However, AMPK activity did not change from baseline in both conditions (p > 0.05). We conclude that FAK does not induce mTOR activation through PI3K crosstalk in response to exercise alone. In addition, FAK may not be regulated by AMPK catalytic activity, but this needs further research. Interestingly, carbohydrate-induced insulin signaling appears to activate FAK at the level of IRS-1 but did not enhance mTOR activity 1 h post-exercise greater than the placebo condition. Future research should investigate these interactions under different conditions and within different time frames to clearly understand the interactions between these signaling molecules.
Collapse
Affiliation(s)
- Dylan T. Wilburn
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (D.T.W.); (S.B.M.); (T.D.C.)
| | - Steven B. Machek
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (D.T.W.); (S.B.M.); (T.D.C.)
| | - Thomas D. Cardaci
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (D.T.W.); (S.B.M.); (T.D.C.)
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Darryn S. Willoughby
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (D.T.W.); (S.B.M.); (T.D.C.)
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA
- Correspondence:
| |
Collapse
|
3
|
Luo Q, Xiao Y, Alex A, Cummins TR, Bhatwadekar AD. The Diurnal Rhythm of Insulin Receptor Substrate-1 (IRS-1) and Kir4.1 in Diabetes: Implications for a Clock Gene Bmal1. Invest Ophthalmol Vis Sci 2019; 60:1928-1936. [PMID: 31042800 PMCID: PMC6735779 DOI: 10.1167/iovs.18-26045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Diabetes leads to the downregulation of the retinal Kir4.1 channels and Müller cell dysfunction. The insulin receptor substrate-1 (IRS-1) is a critical regulator of insulin signaling in Müller cells. Circadian rhythms play an integral role in normal physiology; however, diabetes leads to a circadian dysrhythmia. We hypothesize that diabetes will result in a circadian dysrhythmia of IRS-1 and Kir4.1 and disturbed clock gene function will have a critical role in regulating Kir4.1 channels. Methods We assessed a diurnal rhythm of retinal IRS-1 and Kir4.1 in db/db mice. The Kir4.1 function was evaluated using a whole-cell recording of Müller cells. The rat Müller cells (rMC-1) were used to undertake in vitro studies using a siRNA. Results The IRS-1 exhibited a diurnal rhythm in control mice; however, with diabetes, this natural rhythm was lost. The Kir4.1 levels peaked and troughed at times similar to the IRS-1 rhythm. The IRS-1 silencing in the rMC-1 led to a decrease in Kir4.1 and BMAL1. The insulin treatment of retinal explants upregulated Kir4.1 possibly via upregulation of BMAL1 and phosphorylation of IRS-1 and Akt-1. Conclusions Our studies highlight that IRS-1, by regulating BMAL1, is an important regulator of Kir4.1 in Müller cells and the dysfunctional signaling mediated by IRS-1 may be detrimental to Kir4.1.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yucheng Xiao
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, United States
| | - Alpha Alex
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Theodore R Cummins
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, United States
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
4
|
Siddiqa A, Cirillo E, Tareen SHK, Ali A, Kutmon M, Eijssen LMT, Ahmad J, Evelo CT, Coort SL. Biological Pathways Leading From ANGPTL8 to Diabetes Mellitus-A Co-expression Network Based Analysis. Front Physiol 2019; 9:1841. [PMID: 30627105 PMCID: PMC6309236 DOI: 10.3389/fphys.2018.01841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/06/2018] [Indexed: 01/11/2023] Open
Abstract
Angiopoietin like protein 8 (ANGPTL8) is a newly identified hormone with unique nature due to its ability to regulate both glucose and lipid metabolic pathways. It is characterized as an important molecular player of insulin induced nutrient storage and utilization pathway during fasting to re-feeding metabolic transition. Several studies have contributed to increase our knowledge regarding its function and mechanism of action. Moreover, its altered expression levels have been observed in Insulin Resistance, Diabetes Mellitus (Types I & II) and Non Alcohlic Fatty Liver Disease emphasizing its assessment as a drug target. However, there is still a great deal of information that remains to be investigated including its associated biological processes, partner proteins in these processes, its regulators and its association with metabolic pathogenesis. In the current study, the analysis of a transcriptomic data set was performed for functional assessment of ANGPTL8 in liver. Weighted Gene Co-expression Network Analysis coupled with pathway analysis tools was performed to identify genes that are significantly co-expressed with ANGPTL8 in liver and investigate their presence in biological pathways. Gene ontology term enrichment analysis was performed to select the gene ontology classes that over-represent the hepatic ANGPTL8-co-expressed genes. Moreover, the presence of diabetes linked SNPs within the genes set co-expressed with ANGPTL8 was investigated. The co-expressed genes of ANGPTL8 identified in this study (n = 460) provides narrowed down list of molecular targets which are either co-regulated with it and/or might be regulation partners at different levels of interaction. These results are coherent with previously demonstrated roles and regulators of ANGPTL8. Specifically, thirteen co-expressed genes (MAPK8, CYP3A4, PIK3R2, PIK3R4,PRKAB2, G6PC, MAP3K11, FLOT1, PIK3C2G, SHC1, SLC16A2, and RAPGEF1) are also present in the literature curated pathway of ANGPTL8 (WP39151). Moreover, the gene-SNP analysis of highly associated biological processes with ANGPTL8 revealed significant genetic signals associated to Diabetes Mellitus and similar phenotypic traits. It provides meaningful insights on the influencing genes involved and co-expressed in these pathways. Findings of this study have implications in functional characterization of ANGPTL8 with emphasis on the identified genes and pathways and their possible involvement in the pathogenesis of Diabetes Mellitus and Insulin Resistance.
Collapse
Affiliation(s)
- Amnah Siddiqa
- Research Centre for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Samar H K Tareen
- Maastricht Centre for Systems Biology(MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Martina Kutmon
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology(MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Lars M T Eijssen
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jamil Ahmad
- Research Centre for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan.,Department of Computer Science and Information Technology, University of Malakand, Chakdara, Pakistan
| | - Chris T Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology(MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Susan L Coort
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Cheng P, Li J, Wang J, Zhang X, Zhai H. Investigations of FAK inhibitors: a combination of 3D-QSAR, docking, and molecular dynamics simulations studies. J Biomol Struct Dyn 2017; 36:1529-1549. [PMID: 28490269 DOI: 10.1080/07391102.2017.1329095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Focal adhesion kinase (FAK) is one kind of tyrosine kinases that modulates integrin and growth factor signaling pathways, which is a promising therapeutic target because of involving in cancer cell migration, proliferation, and survival. To investigate the mechanism between FAK and triazinic inhibitors and design high activity inhibitors, a molecular modeling integrated with 3D-QSAR, molecular docking, molecular dynamics simulations, and binding free energy calculations was performed. The optimum CoMFA and CoMSIA models showed good reliability and satisfactory predictability (with Q2 = 0.663, R2 = 0.987, [Formula: see text] = 0.921 and Q2 = 0.670, R2 = 0.981, [Formula: see text] = 0.953). Its contour maps could provide structural features to improve inhibitory activity. Furthermore, a good consistency between contour maps, docking, and molecular dynamics simulations strongly demonstrates that the molecular modeling is reliable. Based on it, we designed several new compounds and their inhibitory activities were validated by the molecular models. We expect our studies could bring new ideas to promote the development of novel inhibitors with higher inhibitory activity for FAK.
Collapse
Affiliation(s)
- Peng Cheng
- a College of Chemistry and Chemical Engineering , Lanzhou University , No.222, Tianshui Road (South), Lanzhou , Gansu , 730000 , People's Republic of China
| | - Jiaojiao Li
- a College of Chemistry and Chemical Engineering , Lanzhou University , No.222, Tianshui Road (South), Lanzhou , Gansu , 730000 , People's Republic of China
| | - Juan Wang
- a College of Chemistry and Chemical Engineering , Lanzhou University , No.222, Tianshui Road (South), Lanzhou , Gansu , 730000 , People's Republic of China
| | - Xiaoyun Zhang
- a College of Chemistry and Chemical Engineering , Lanzhou University , No.222, Tianshui Road (South), Lanzhou , Gansu , 730000 , People's Republic of China
| | - Honglin Zhai
- a College of Chemistry and Chemical Engineering , Lanzhou University , No.222, Tianshui Road (South), Lanzhou , Gansu , 730000 , People's Republic of China
| |
Collapse
|
6
|
Haywood NJ, Cordell PA, Tang KY, Makova N, Yuldasheva NY, Imrie H, Viswambharan H, Bruns AF, Cubbon RM, Kearney MT, Wheatcroft SB. Insulin-Like Growth Factor Binding Protein 1 Could Improve Glucose Regulation and Insulin Sensitivity Through Its RGD Domain. Diabetes 2017; 66:287-299. [PMID: 28108607 DOI: 10.2337/db16-0997] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 11/13/2022]
Abstract
Low circulating levels of insulin-like growth factor binding protein 1 (IGFBP-1) are associated with insulin resistance and predict the development of type 2 diabetes. IGFBP-1 can affect cellular functions independently of IGF binding through an Arg-Gly-Asp (RGD) integrin-binding motif. Whether causal mechanisms underlie the favorable association of high IGFBP-1 levels with insulin sensitivity and whether these could be exploited therapeutically remain unexplored. We used recombinant IGFBP-1 and a synthetic RGD-containing hexapeptide in complementary in vitro signaling assays and in vivo metabolic profiling in obese mice to investigate the effects of IGFBP-1 and its RGD domain on insulin sensitivity, insulin secretion, and whole-body glucose regulation. The RGD integrin-binding domain of IGFBP-1, through integrin engagement, focal adhesion kinase, and integrin-linked kinase, enhanced insulin sensitivity and insulin secretion in C2C12 myotubes and INS-1 832/13 pancreatic β-cells. Both acute administration and chronic infusion of an RGD synthetic peptide to obese C57BL/6 mice improved glucose clearance and insulin sensitivity. These favorable effects on metabolic homeostasis suggest that the RGD integrin-binding domain of IGFBP-1 may be a promising candidate for therapeutic development in the field of insulin resistance.
Collapse
Affiliation(s)
- Natalie J Haywood
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Paul A Cordell
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Kar Yeun Tang
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Natallia Makova
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Nadira Y Yuldasheva
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Helen Imrie
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Hema Viswambharan
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Alexander F Bruns
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Richard M Cubbon
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Mark T Kearney
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Stephen B Wheatcroft
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K.
| |
Collapse
|
7
|
Williams AS, Trefts E, Lantier L, Grueter CA, Bracy DP, James FD, Pozzi A, Zent R, Wasserman DH. Integrin-Linked Kinase Is Necessary for the Development of Diet-Induced Hepatic Insulin Resistance. Diabetes 2017; 66:325-334. [PMID: 27899483 PMCID: PMC5248997 DOI: 10.2337/db16-0484] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/17/2016] [Indexed: 12/17/2022]
Abstract
The liver extracellular matrix (ECM) expands with high-fat (HF) feeding. This finding led us to address whether receptors for the ECM, integrins, are key to the development of diet-induced hepatic insulin resistance. Integrin-linked kinase (ILK) is a downstream integrin signaling molecule involved in multiple hepatic processes, including those related to differentiation, wound healing, and metabolism. We tested the hypothesis that deletion of ILK in mice on an HF diet would disrupt the ECM-integrin signaling axis, thereby preventing the transformation into the insulin-resistant liver. To determine the role of ILK in hepatic insulin action in vivo, male C57BL/6J ILKlox/lox mice were crossed with Albcre mice to produce a hepatocyte-specific ILK deletion (ILKlox/loxAlbcre). Results from this study show that hepatic ILK deletion has no effect on insulin action in lean mice but sensitizes the liver to insulin during the challenge of HF feeding. This effect corresponds to changes in the expression and activation of key insulin signaling pathways as well as a greater capacity for hepatic mitochondrial glucose oxidation. This demonstrates that ILK contributes to hepatic insulin resistance and highlights the previously undefined role of integrin signaling in the pathogenesis of diet-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Elijah Trefts
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN
| | - Carrie A Grueter
- Department of Anesthesiology, Vanderbilt University, Nashville, TN
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Freyja D James
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Ambra Pozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, TN
- Department of Medicine, Veteran Affairs, Nashville, TN
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, TN
- Department of Medicine, Veteran Affairs, Nashville, TN
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
8
|
Williams AS, Kang L, Zheng J, Grueter C, Bracy DP, James FD, Pozzi A, Wasserman DH. Integrin α1-null mice exhibit improved fatty liver when fed a high fat diet despite severe hepatic insulin resistance. J Biol Chem 2015; 290:6546-57. [PMID: 25593319 DOI: 10.1074/jbc.m114.615716] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hepatic insulin resistance is associated with increased collagen. Integrin α1β1 is a collagen-binding receptor expressed on hepatocytes. Here, we show that expression of the α1 subunit is increased in hepatocytes isolated from high fat (HF)-fed mice. To determine whether the integrin α1 subunit protects against impairments in hepatic glucose metabolism, we analyzed glucose tolerance and insulin sensitivity in HF-fed integrin α1-null (itga1(-/-)) and wild-type (itga1(+/+)) littermates. Using the insulin clamp, we found that insulin-stimulated hepatic glucose production was suppressed by ∼50% in HF-fed itga1(+/+) mice. In contrast, it was not suppressed in HF-fed itga1(-/-) mice, indicating severe hepatic insulin resistance. This was associated with decreased hepatic insulin signaling in HF-fed itga1(-/-) mice. Interestingly, hepatic triglyceride and diglyceride contents were normalized to chow-fed levels in HF-fed itga1(-/-) mice. This indicates that hepatic steatosis is dissociated from insulin resistance in HF-fed itga1(-/-) mice. The decrease in hepatic lipid accumulation in HF-fed itga1(-/-) mice was associated with altered free fatty acid metabolism. These studies establish a role for integrin signaling in facilitating hepatic insulin action while promoting lipid accumulation in mice challenged with a HF diet.
Collapse
Affiliation(s)
| | - Li Kang
- From the Departments of Molecular Physiology and Biophysics and
| | - Jenny Zheng
- From the Departments of Molecular Physiology and Biophysics and
| | | | - Deanna P Bracy
- From the Departments of Molecular Physiology and Biophysics and
| | - Freyja D James
- From the Departments of Molecular Physiology and Biophysics and
| | - Ambra Pozzi
- From the Departments of Molecular Physiology and Biophysics and Division of Nephrology, Department of Medicine, and the Department of Medicine, Department of Veteran Affairs, Nashville, Tennessee 37212-2637
| | - David H Wasserman
- From the Departments of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee 37232 and
| |
Collapse
|
9
|
Hakuno F, Fukushima T, Yoneyama Y, Kamei H, Ozoe A, Yoshihara H, Yamanaka D, Shibano T, Sone-Yonezawa M, Yu BC, Chida K, Takahashi SI. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins. Front Endocrinol (Lausanne) 2015; 6:73. [PMID: 26074875 PMCID: PMC4443775 DOI: 10.3389/fendo.2015.00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022] Open
Abstract
Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Laboratory of Biomedical Chemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yosuke Yoneyama
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsufumi Ozoe
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidehito Yoshihara
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Shibano
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meri Sone-Yonezawa
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Bu-Chin Yu
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Chida
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Shin-Ichiro Takahashi, Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
10
|
Czarnowski A, Papp S, Szaraz P, Opas M. Calreticulin affects cell adhesiveness through differential phosphorylation of insulin receptor substrate-1. Cell Mol Biol Lett 2014; 19:77-97. [PMID: 24470116 PMCID: PMC6275655 DOI: 10.2478/s11658-014-0181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/20/2014] [Indexed: 11/21/2022] Open
Abstract
Cellular adhesion to the underlying substratum is regulated through numerous signaling pathways. It has been suggested that insulin receptor substrate 1 (IRS-1) is involved in some of these pathways, via association with and activation of transmembrane integrins. Calreticulin, as an important endoplasmic reticulum-resident, calcium-binding protein with a chaperone function, plays an obvious role in proteomic expression. Our previous work showed that calreticulin mediates cell adhesion not only by affecting protein expression but also by affecting the state of regulatory protein phosphorylation, such as that of c-src. Here, we demonstrate that calreticulin affects the abundance of IRS-1 such that the absence of calreticulin is paralleled by a decrease in IRS-1 levels and the unregulated overexpression of calreticulin is accompanied by an increase in IRS-1 levels. These changes in the abundance of calreticulin and IRS-1 are accompanied by changes in cell-substratum adhesiveness and phosphorylation, such that increases in the expression of calreticulin and IRS-1 are paralleled by an increase in focal contact-based cell-substratum adhesiveness, and a decrease in the expression of these proteins brings about a decrease in cell-substratum adhesiveness. Wild type and calreticulin-null mouse embryonic fibroblasts (MEFs) were cultured and the IRS-1 isoform profile was assessed. Differences in morphology and motility were also quantified. While no substantial differences in the speed of locomotion were found, the directionality of cell movement was greatly promoted by the presence of calreticulin. Calreticulin expression was also found to have a dramatic effect on the phosphorylation state of serine 636 of IRS-1, such that phosphorylation of IRS-1 on serine 636 increased radically in the absence of calreticulin. Most importantly, treatment of cells with the RhoA/ROCK inhibitor, Y-27632, which among its many effects also inhibited serine 636 phosphorylation of IRS-1, had profound effects on cell-substratum adhesion, in that it suppressed focal contacts, induced extensive close contacts, and increased the strength of adhesion. The latter effect, while counterintuitive, can be explained by the close contacts comprising labile bonds but in large numbers. In addition, the lability of bonds in close contacts would permit fast locomotion. An interesting and novel finding is that Y-27632 treatment of MEFs releases them from contact inhibition of locomotion, as evidenced by the invasion of a cell's underside by the thin lamellae and filopodia of a cell in close apposition.
Collapse
Affiliation(s)
- Arthur Czarnowski
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Peter Szaraz
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Medical Sciences Building, room 6326, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
11
|
Cai EP, Casimir M, Schroer SA, Luk CT, Shi SY, Choi D, Dai XQ, Hajmrle C, Spigelman AF, Zhu D, Gaisano HY, MacDonald PE, Woo M. In vivo role of focal adhesion kinase in regulating pancreatic β-cell mass and function through insulin signaling, actin dynamics, and granule trafficking. Diabetes 2012; 61:1708-18. [PMID: 22498697 PMCID: PMC3379666 DOI: 10.2337/db11-1344] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) acts as an adaptor at the focal contacts serving as a junction between the extracellular matrix and actin cytoskeleton. Actin dynamics is known as a determinant step in insulin secretion. Additionally, FAK has been shown to regulate insulin signaling. To investigate the essential physiological role of FAK in pancreatic β-cells in vivo, we generated a transgenic mouse model using rat insulin promoter (RIP)-driven Cre-loxP recombination system to specifically delete FAK in pancreatic β-cells. These RIPcre(+)fak(fl/fl) mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell viability and proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with attenuated insulin/Akt (also known as protein kinase B) and extracellular signal-related kinase 1/2 signaling and increased caspase 3 activation. FAK-deficient β-cells exhibited impaired insulin secretion with normal glucose sensing and preserved Ca(2+) influx in response to glucose, but a reduced number of docked insulin granules and insulin exocytosis were found, which was associated with a decrease in focal proteins, paxillin and talin, and an impairment in actin depolymerization. This study is the first to show in vivo that FAK is critical for pancreatic β-cell viability and function through regulation in insulin signaling, actin dynamics, and granule trafficking.
Collapse
Affiliation(s)
- Erica P. Cai
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Marina Casimir
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Cynthia T. Luk
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Sally Yu Shi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Diana Choi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Xiao Qing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Hajmrle
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Dan Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Y. Gaisano
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Corresponding author: Minna Woo, , or Patrick E. MacDonald,
| | - Minna Woo
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Corresponding author: Minna Woo, , or Patrick E. MacDonald,
| |
Collapse
|
12
|
Saporito MS, Ochman AR, Lipinski CA, Handler JA, Reaume AG. MLR-1023 is a potent and selective allosteric activator of Lyn kinase in vitro that improves glucose tolerance in vivo. J Pharmacol Exp Ther 2012; 342:15-22. [PMID: 22473614 DOI: 10.1124/jpet.112.192096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
2(1H)-pyrimidinone,5-(3-methylphenoxy) (MLR-1023) is a candidate for the treatment of type 2 diabetes. The current studies were aimed at determining the mechanism by which MLR-1023 mediates glycemic control. In these studies, we showed that MLR-1023 reduced blood glucose levels without increasing insulin secretion in vivo. We have further determined that MLR-1023 did not activate peroxisome proliferator-activated α, δ, and γ receptors or glucagon-like peptide-1 receptors or inhibit dipeptidyl peptidase-4 or α-glucosidase enzyme activity. However, in an in vitro broad kinase screen MLR-1023 activated the nonreceptor-linked Src-related tyrosine kinase Lyn. MLR-1023 increased the V(max) of Lyn with an EC(50) of 63 nM. This Lyn kinase activation was ATP binding site independent, indicating that MLR-1023 regulated the kinase through an allosteric mechanism. We have established a link between Lyn activation and blood glucose lowering with studies showing that the glucose-lowering effects of MLR-1023 were abolished in Lyn knockout mice, consistent with existing literature linking Lyn kinase and the insulin-signaling pathway. In summary, these studies describe MLR-1023 as a unique blood glucose-lowering agent and show that MLR-1023-mediated blood glucose lowering depends on Lyn kinase activity. These results, coupled with other results (J Pharmacol Exp Ther 342:23-32, 2012), suggest that MLR-1023 and Lyn kinase activation may be a new treatment modality for type 2 diabetes.
Collapse
|
13
|
Immunofluorescent visualisation of focal adhesion kinase in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 2012; 138:617-26. [PMID: 22752263 DOI: 10.1007/s00418-012-0980-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Within animal skeletal muscle, focal adhesion kinase (FAK) has been associated with load-dependent molecular and metabolic adaptation including the regulation of insulin sensitivity. This study aimed to generate the first visual images of the localisation of FAK within human skeletal muscle fibres and its associated microvasculature using widefield and confocal immunofluorescence microscopy. Percutaneous muscle biopsies, taken from five lean, active males, were frozen and 5-μm cryosections were incubated with FAK antibodies for visualisation in muscle fibres and the microvasculature. Anti-myosin heavy chain type I was used for fibre-type differentiation. Muscle sections were also incubated with anti-dihydropyridine receptor (DHPR) to investigate co-localisation of FAK with the t-tubules. FITC-conjugated Ulex europaeus Agglutinin I stained the endothelium of the capillaries, whilst anti-smooth muscle actin stained the vascular smooth muscle of arterioles. Fibre-type differences in the intensity of FAK immunofluorescence were determined with image analysis software. In transversely and longitudinally orientated fibres, FAK was localised at the sarcolemmal regions. In longitudinally orientated fibres, FAK staining also showed uniform striations across the fibre and co-staining with DHPR suggests FAK associates with the t-tubules. There was no fibre-type difference in sarcoplasmic FAK content. Within the capillary endothelium and arteriolar smooth muscle, FAK was distributed heterogeneously as clusters. This is the first study to visualise FAK in human skeletal muscle microvasculature and within the (sub)sarcolemmal and t-tubule regions using immunofluorescence microscopy. This technique will be an important tool for investigating the role of FAK in the intracellular signalling of human skeletal muscle and the endothelium of its associated microvasculature.
Collapse
|
14
|
Sam68 interacts with IRS1. Biochem Pharmacol 2011; 83:78-87. [PMID: 22005517 DOI: 10.1016/j.bcp.2011.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 12/18/2022]
Abstract
Sam68 (Src associated in mitosis) is a RNA binding protein that links cellular signaling to RNA processing. In previous studies we found that insulin promotes Sam68 relocalization in the cytoplasm allowing Sam68 to associate with p85PI3K, Grb2, GAP and probably the insulin receptor (IR), modulating insulin action positively. In the present work, we wanted to define the role of Sam68 in the first stages of IR signaling. Both BRET and co-immunoprecipitation assays have been used for the study of Sam68 binding to IR, IRS1 and p85-PI3K. BRET saturation experiments indicated, for the first time, that Sam68 associates with IRS1 in basal condition. To map the region of Sam68 implicated in the interaction with IRS1, different Sam68 mutants deleted in the proline-rich domains were used. The deletion of P0, P1 and P2 proline rich domains in N-terminus as well as P4 and P5 in C-terminus of Sam68 increased BRET(50), thus indicating that the affinity of Sam68 for IRS1 is lower when these domains are missing. Moreover, in IR-transfected HEK-293 cells, BRET saturation experiment indicated that insulin increases the affinity between Sam68-Rluc and IRS1-YFP. In conclusion, our data indicate that Sam68 interacts with IRS-1 in basal conditions, and insulin increases the affinity between these two partners.
Collapse
|
15
|
Daval M, Gurlo T, Costes S, Huang CJ, Butler PC. Cyclin-dependent kinase 5 promotes pancreatic β-cell survival via Fak-Akt signaling pathways. Diabetes 2011; 60:1186-97. [PMID: 21378178 PMCID: PMC3064092 DOI: 10.2337/db10-1048] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1-like 1 has recently been linked to type 2 diabetes by genome-wide association studies. While CDK5 and its regulatory protein p35 are both expressed and display enzymatic activity in pancreatic β-cells, their precise role in the β-cell remains unknown. Because type 2 diabetes is characterized by a deficit in β-cell mass and increased β-cell apoptosis, we investigated the role of CDK5 in β-cell survival. RESEARCH DESIGN AND METHODS We used INS 832/13 cells, rat islets isolated from wild-type or human islet amyloid polypeptide (h-IAPP) transgenic rats, and pancreatic tissue from rats and humans with and without type 2 diabetes and investigated the effect of CDK5/p35 inhibition (by small interfering RNA or by chemical inhibition) as well as CDK5/p35 overexpression on β-cell vulnerability to apoptosis. RESULTS CDK5 inhibition led to increased β-cell apoptosis. To identify the mechanisms involved, we examined the phosphorylation state of focal adhesion kinase (Fak)(Ser732), a known target of CDK5. Following CDK5 inhibition, the phosphorylation of Fak(Ser732) decreased with resulting attenuation of phosphatidylinositol 3-kinase (PI3K)/Akt survival pathway. Conversely, CDK5 overexpression increased Fak(Ser732) phosphorylation and protected β-cells against apoptosis induced by the inhibition of the β-1 integrin signaling pathway. Also, Fak(Ser732) phosphorylation was less abundant in β-cells in both h-IAPP transgenic rats and humans with type 2 diabetes. CONCLUSIONS This study shows that by regulating Fak phosphorylation and subsequently PI3K/Akt survival pathway, CDK5 plays a previously unrecognized role in promoting β-cell survival.
Collapse
Affiliation(s)
- Marie Daval
- Larry Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Focal adhesion kinase (FAK) is a scaffold and tyrosine kinase protein that binds to itself and cellular partners through its four-point-one, ezrin, radixin, moesin (FERM) domain. Recent structural work reveals that regulatory protein partners convert auto-inhibited FAK into its active state by binding to its FERM domain. Further, the identity of FAK FERM domain-interacting proteins yields clues as to how FAK coordinates diverse cellular responses, including cell adhesion, polarization, migration, survival and death, and suggests that FERM domains might mediate information transfer between the cell cortex and nucleus. Importantly, the FAK FERM domain might act as a paradigm for the actions of other FERM domain-containing proteins.
Collapse
|
17
|
Beattie J, McIntosh L, van der Walle CF. Cross-talk between the insulin-like growth factor (IGF) axis and membrane integrins to regulate cell physiology. J Cell Physiol 2010; 224:605-11. [PMID: 20432472 DOI: 10.1002/jcp.22183] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biology of cross-talk between activated growth factor receptors and cell-surface integrins is an area which has attracted much interest in recent years (Schwartz and Ginsberg, 2002). This review discusses the relationship between the insulin-like growth factor (IGF) axis and cell-surface integrin receptors in the regulation of various aspects of cell physiology. Key to these interactions are signals transmitted between integrins and the IGF-I receptor (IGF-IR) when either or both are bound to their cognate ligands and we will review the current state of knowledge in this area. The IGF axis comprises many molecular components and we will also discuss the potential role of these species in cross-talk with the integrin receptor. With respect to integrin ligands, we will mainly focus on the well-characterized interactions of the two extracellular matrix (ECM) glycoproteins fibronectin (FN) and vitronectin (VN) with cell-surface ligands, and, how this affects activity through the IGF axis. However, we will also highlight the importance of other integrin activation mechanisms and their impact on IGF activity.
Collapse
Affiliation(s)
- James Beattie
- Department of Oral Biology, Leeds Dental Institute, University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
18
|
Smith TJ. Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol Rev 2010; 62:199-236. [PMID: 20392809 PMCID: PMC2879913 DOI: 10.1124/pr.109.002469] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This topically limited review explores the relationship between the immune system and insulin-like growth factors (IGF-I and IGF-II) and the proteins through which they act, including IGF-I receptor (IGF-IR) and the IGF-I binding proteins. The IGF/IGF-IR pathway plays important and diverse roles in tissue development and function. It regulates cell cycle progression, apoptosis, and the translation of proteins. Many of the consequences ascribed to IGF-IR activation result from its association with several accessory proteins that are either identical or closely related to those involved in insulin receptor signaling. Relatively recent awareness that IGF-I and IGF-IR regulate immune function has cast this pathway in an unexpected light; it may represent an important switch governing the quality and amplitude of immune responses. IGF-I/IGF-IR signaling may also participate in the pathogenesis of autoimmune diseases, although its relationship with these processes seems complex and relatively unexplored. On the one hand, IGF-I seems to protect experimental animals from developing insulin-deficient diabetes mellitus. In contrast, activating antibodies directed at IGF-IR have been detected in patients with Graves' disease, where the receptor is overexpressed by multiple cell types. The frequency of IGF-IR+ B and T cells is substantially increased in patients with that disease. Potential involvement of IGF-I and IGF-IR in the pathogenesis of autoimmune diseases suggests that this pathway might constitute an attractive therapeutic target. IGF-IR has been targeted in efforts directed toward drug development for cancer, employing both small-molecule and monoclonal antibody approaches. These have been generally well-tolerated. Recognizing the broader role of IGF-IR in regulating both normal and pathological immune responses may offer important opportunities for therapeutic intervention in several allied diseases that have proven particularly difficult to treat.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| |
Collapse
|
19
|
Kim B, Feldman EL. Insulin receptor substrate (IRS)-2, not IRS-1, protects human neuroblastoma cells against apoptosis. Apoptosis 2009; 14:665-73. [PMID: 19259821 DOI: 10.1007/s10495-009-0331-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin receptor substrates (IRS)-1 and -2 are major substrates of insulin and type I insulin-like growth factor (IGF-I) receptor (IGF-IR) signaling. In this study, SH-EP human neuroblastoma cells are used as a model system to examine the differential roles of IRS-1 and IRS-2 on glucose-mediated apoptosis. In the presence of high glucose, IRS-1 underwent caspase-mediated degradation, followed by focal adhesion kinase (FAK) and Akt degradation and apoptosis. IRS-2 expression blocked all these changes whereas IRS-1 overexpression had no effect. In parallel, IRS-2, but not IRS-1, overexpression enhanced IGF-I-mediated Akt activation without affecting extracellular regulated kinase signaling. While IRS-1 was readily degraded by caspases, hyperglycemia-mediated IRS-2 degradation was unaffected by caspase inhibitors but blocked by proteasome and calpain inhibitors. Our data suggest that the differential degradation of IRS-1 and IRS-2 contributes to their distinct modes of action and the increased neuroprotective effects of IRS-2 in this report are due, in part, to its resistance to caspase-mediated degradation.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of Neurology, University of Michigan, 5371 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
20
|
Lee YJ, Hsu TC, Du JY, Valentijn AJ, Wu TY, Cheng CF, Yang Z, Streuli CH. Extracellular matrix controls insulin signaling in mammary epithelial cells through the RhoA/Rok pathway. J Cell Physiol 2009; 220:476-84. [DOI: 10.1002/jcp.21793] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Novosyadlyy R, Vijayakumar A, Lann D, Fierz Y, Kurshan N, LeRoith D. Physical and functional interaction between polyoma virus middle T antigen and insulin and IGF-I receptors is required for oncogene activation and tumour initiation. Oncogene 2009; 28:3477-86. [PMID: 19617901 PMCID: PMC2756316 DOI: 10.1038/onc.2009.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polyoma virus middle T antigen (PyVmT) is a powerful viral oncogene; however, the mechanisms of PyVmT activation are poorly understood. The insulin-like growth factor I receptor (IGF-IR) and the insulin receptor (IR) are known to be implicated in the development of many cancers. Furthermore, PyVmT-overexpressing mouse mammary carcinoma Met-1 cells are highly responsive to IGF-I and insulin. Herein, we demonstrate that PyVmT physically interacts with IGF-IR and IR in Met-1 cells. Insulin and IGF-I increase association of the IR and IGF-IR with PyVmT, enhance tyrosine phosphorylation of PyVmT and augment the recruitment of Src and PLCgamma(1) to PyVmT. This is accompanied by robust and sustained phosphorylation of Akt and ERK1/2, which are implicated in both PyVmT and IGF-IR/IR signalling. Both ligands significantly increase proliferation, survival, migration and invasion of Met-1 cells. Furthermore, orthotopic inoculation of Met-1 cells with shRNAmir-mediated knockdown of IR or IGF-IR fails to initiate tumour growth in recipient mice. In conclusion, our data indicate that the physical and functional interaction between PyVmT and cellular receptor tyrosine kinases, including IR and IGF-IR, is critical for PyVmT activation and tumour initiation. These results also provide a novel mechanism for oncogene activation in the host cell.
Collapse
Affiliation(s)
- R Novosyadlyy
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yan J, Erdem H, Li R, Cai Y, Ayala G, Ittmann M, Yu-Lee LY, Tsai SY, Tsai MJ. Steroid receptor coactivator-3/AIB1 promotes cell migration and invasiveness through focal adhesion turnover and matrix metalloproteinase expression. Cancer Res 2008; 68:5460-8. [PMID: 18593949 DOI: 10.1158/0008-5472.can-08-0955] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroid receptor coactivator-3 (SRC-3)/AIB1 is a member of the p160 nuclear receptor coactivator family involved in development and cell cycle progression. We previously showed that SRC-3/AIB1 is required for prostate cancer cell proliferation and survival. Here, we reported that the elevated SRC-3/AIB1 expression is significantly correlated with human prostate cancer seminal vesicle invasion and lymph node metastasis. Furthermore, SRC-3/AIB1 is associated with increased prostate cancer cell migration and invasion. SRC-3/AIB1 is required for focal adhesion turnover and focal adhesion kinase activation. In addition, SRC-3/AIB1 directly regulates transcription of matrix metalloproteinase (MMP)-2 and MMP-13 through its coactivation of AP-1 and PEA3. Taken together, these data suggest that SRC-3/AIB1 plays an essential role in prostate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Jun Yan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J, Coleman K, Yao L, Martinez-Alsina L, Lorenzen M, Berliner M, Luzzio M, Patel N, Schmitt E, LaGreca S, Jani J, Wessel M, Marr E, Griffor M, Vajdos F. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 2008; 68:1935-44. [PMID: 18339875 DOI: 10.1158/0008-5472.can-07-5155] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells are characterized by the ability to grow in an anchorage-independent manner. The activity of the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is thought to contribute to this phenotype. FAK localizes in focal adhesion plaques and has a role as a scaffolding and signaling protein for other adhesion molecules. Recent studies show a strong correlation between increased FAK expression and phosphorylation status and the invasive phenotype of aggressive human tumors. PF-562,271 is a potent, ATP-competitive, reversible inhibitor of FAK and Pyk2 catalytic activity with a IC(50) of 1.5 and 14 nmol/L, respectively. Additionally, PF-562,271 displayed robust inhibition in an inducible cell-based assay measuring phospho-FAK with an IC(50) of 5 nmol/L. PF-562,271 was evaluated against multiple kinases and displays >100x selectivity against a long list of nontarget kinases. PF-562,271 inhibits FAK phosphorylation in vivo in a dose-dependent fashion (calculated EC(50) of 93 ng/mL, total) after p.o. administration to tumor-bearing mice. In vivo inhibition of FAK phosphorylation (>50%) was sustained for >4 hours with a single p.o. dose of 33 mg/kg. Antitumor efficacy and regressions were observed in multiple human s.c. xenograft models. No weight loss, morbidity, or mortality were observed in any in vivo experiment. Tumor growth inhibition was dose and drug exposure dependent. Taken together, these data show that kinase inhibition with an ATP-competitive small molecule inhibitor of FAK decreases the phospho-status in vivo, resulting in robust antitumor activity.
Collapse
|
24
|
Jin YP, Korin Y, Zhang X, Jindra PT, Rozengurt E, Reed EF. RNA interference elucidates the role of focal adhesion kinase in HLA class I-mediated focal adhesion complex formation and proliferation in human endothelial cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:7911-22. [PMID: 17548629 DOI: 10.4049/jimmunol.178.12.7911] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ligation of class I molecules by anti-HLA Ab stimulates an intracellular signaling cascade resulting in endothelial cell (EC) survival and proliferation, and has been implicated in the process of chronic allograft rejection and transplant-associated vasculopathy. In this study, we used small interfering RNA blockade of focal adhesion kinase (FAK) protein to determine its role in class I-mediated organization of the actin cytoskeleton, cell survival, and cell proliferation in primary cultures of human aortic EC. Knockdown of FAK appreciably inhibited class I-mediated phosphorylation of Src at Tyr(418), p85 PI3K, and Akt at both Thr(308) and Ser(473) sites. FAK knockdown also reduced class I-mediated phosphorylation of paxillin at Try(118) and blocked class I-induced paxillin assembly into focal contacts. FAK small interfering RNA completely abrogated class I-mediated formation of actin stress fibers. Interestingly, FAK knockdown did not modify fibroblast growth factor receptor expression induced by class I ligation. However, FAK knockdown blocked HLA class I-stimulated cell cycle proliferation in the presence and absence of basic fibroblast growth factor. This study shows that FAK plays a critical role in class I-induced cell proliferation, cell survival, and focal adhesion assembly in EC and may promote the development of transplant-associated vasculopathy.
Collapse
Affiliation(s)
- Yi-Ping Jin
- Department of Pathology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
25
|
Bisht B, Goel HL, Dey CS. Focal adhesion kinase regulates insulin resistance in skeletal muscle. Diabetologia 2007; 50:1058-69. [PMID: 17333113 DOI: 10.1007/s00125-007-0591-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/15/2006] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS On the basis of our previous studies, we investigated the possible role of focal adhesion kinase (FAK) in the development of insulin resistance in skeletal muscle, a major organ responsible for insulin-stimulated glucose uptake. MATERIALS AND METHODS Insulin-resistant C2C12 skeletal muscle cells were transfected with FAK wild-type or FAK mutant plasmids, knocked down using small interfering RNA (siRNA), and their effects on the levels and activities of insulin-signalling molecules and on glucose uptake were determined. RESULTS A significant decrease in tyrosine phosphorylation of FAK in insulin-resistant C2C12 cells was observed. A similar decrease was observed in skeletal muscle obtained from insulin-resistant Sprague-Dawley rats fed a high-fat diet. Increased levels of FAK in insulin-resistant C2C12 skeletal muscle cells increased insulin sensitivity and glucose uptake. These effects were reversed by an increase in the level of kinase activity mutant FAK or suppression of endogenous FAK by siRNA. FAK was also found to interact downstream with insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase C and glycogen synthase kinase 3beta, leading to translocation of glucose transporter 4 and resulting in the regulation of glucose uptake. CONCLUSIONS/INTERPRETATION The present study provides strong evidence that the modulation of FAK level regulates the insulin sensitivity of skeletal muscle cells. The results demonstrate a direct role of FAK in insulin-resistant skeletal muscle cells for the first time.
Collapse
Affiliation(s)
- B Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Chandigarh 160062, India
| | | | | |
Collapse
|
26
|
Goutzanis L, Vairaktaris E, Yapijakis C, Kavantzas N, Nkenke E, Derka S, Vassiliou S, Acil Y, Kessler P, Stavrianeas N, Perrea D, Donta I, Skandalakis P, Patsouris E. Diabetes may increase risk for oral cancer through the insulin receptor substrate-1 and focal adhesion kinase pathway. Oral Oncol 2007; 43:165-73. [PMID: 16860589 DOI: 10.1016/j.oraloncology.2006.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 02/06/2006] [Indexed: 11/20/2022]
Abstract
In light of recent epidemiological studies that associate diabetes mellitus with increased risk for oral cancer, we investigated in diabetic (type I) and normal rats with induced oral squamous cell carcinoma whether the molecular basis for that putative association involves insulin receptor substrate-1 (IRS-1) and focal adhesion kinase (FAK). Fourteen diabetic and 12 normal rats developed cancer after 4-nitroquinoline-N-oxide treatment, while six diabetic and six normal animals were used as controls. Oral sections were studied using monoclonal antibodies against IRS-1 and FAK proteins. Expression of IRS-1 was significantly higher in diabetic than normal rats, but it decreased in diabetic animals with tumor, especially in more advanced stages. FAK expression was significantly higher in rats with cancer in comparison to the ones without it, regardless the diabetes status. These data suggest that the IRS-1/FAK pathway is altered by diabetes resulting in reduced cell adhesion and possibly increasing risk for oral cancer.
Collapse
Affiliation(s)
- L Goutzanis
- Department of Oral and Maxillofacial Surgery, University of Athens Medical School, Vas. Sofias 93 & Dim. Soutsou 1, Athens 11521, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cui X, Kim HJ, Kuiatse I, Kim H, Brown PH, Lee AV. Epidermal growth factor induces insulin receptor substrate-2 in breast cancer cells via c-Jun NH(2)-terminal kinase/activator protein-1 signaling to regulate cell migration. Cancer Res 2006; 66:5304-13. [PMID: 16707456 DOI: 10.1158/0008-5472.can-05-2858] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermal growth factor (EGF) and insulin-like growth factor (IGF) signaling pathways are critically involved in cancer development and progression. However, how these two signals cross-talk with each other to regulate cancer cell growth is not clearly understood. In this study, we found that EGF remarkably induced expression of major IGF signaling components, insulin receptor substrate (IRS)-1 and IRS-2, an effect that could be blocked by EGF receptor (EGFR) tyrosine kinase inhibitors. Although both extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase (JNK) signaling pathways were involved in the EGF up-regulation of IRS-1, the IRS-2 induction by EGF was specifically mediated by JNK signaling. Consistent with this, EGF increased IRS-2 promoter activity, which was associated with recruitment of activator protein-1 (AP-1) transcription factors and was inhibited by blocking AP-1 activity. Moreover, EGF treatment enhanced IGF-I and integrin engagement-elicited tyrosine phosphorylation of IRS and their downstream signaling, such as binding to phosphatidylinositol 3'-kinase regulatory subunit p85. Finally, repressing the induction of IRS-2 levels abolished the EGF enhancement of cell motility, suggesting that increased IRS-2 is essential for the EGF regulation of breast cancer cell migration. Taken together, our results reveal a novel mechanism of cross-talk between the EGF and IGF signaling pathways, which could have implications in therapeutic applications of targeting EGFR in tumors. Because AP-1 activity is involved in breast cancer progression, our work may also suggest IRS-2 as a useful marker for aggressive breast cancer.
Collapse
Affiliation(s)
- Xiaojiang Cui
- Breast Center, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine and Methodist Hospital, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Koga F, Xu W, Karpova TS, McNally JG, Baron R, Neckers L. Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci U S A 2006; 103:11318-22. [PMID: 16844778 PMCID: PMC1544084 DOI: 10.1073/pnas.0604705103] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hsp90 plays an essential role in maintaining stability and activity of its clients, including oncogenic signaling proteins that regulate key signal transduction nodes. Hsp90 inhibitors interfere with diverse signaling pathways by destabilizing and attenuating activity of such proteins, and thus they exhibit antitumor activity. However, Hsp90 inhibition has recently been reported to activate Akt and Erk and potentiate Akt activation induced by insulin-like growth factor 1 and insulin, raising the concern that clinical use of Hsp90 inhibitors might promote tumor progression under certain circumstances. Here, we show that the prototypical Hsp90 inhibitor geldanamycin induces Akt and Erk activation that is independent of PTEN status and is mediated by transient activation of Src kinase. Activated Src phosphorylates Cbl, which recruits the p85 subunit of phosphatidylinositol 3-kinase, resulting in phosphatidylinositol 3-kinase activation and eventually the activation of Akt and Erk. We show that geldanamycin rapidly disrupts Src association with Hsp90, suggesting that Src activation results directly from dissociation of the chaperone. These data suggest that, under certain circumstances, dual inhibition of Hsp90 and Src may be warranted.
Collapse
Affiliation(s)
- Fumitaka Koga
- *Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10, Room 1-5940, Bethesda, MD 20892-1107
| | - Wanping Xu
- *Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10, Room 1-5940, Bethesda, MD 20892-1107
| | - Tatiana S. Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD 20892; and
| | - James G. McNally
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD 20892; and
| | - Roland Baron
- Department of Orthopedics, Yale University School of Medicine, New Haven, CT 06510
| | - Len Neckers
- *Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10, Room 1-5940, Bethesda, MD 20892-1107
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Park S, Mazina O, Kitagawa A, Wong P, Matsumura F. TCDD causes suppression of growth and differentiation of MCF10A, human mammary epithelial cells by interfering with their insulin receptor signaling through c-Src kinase and ERK activation. J Biochem Mol Toxicol 2005; 18:322-31. [PMID: 15674848 DOI: 10.1002/jbt.20040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the proposed mechanisms of carcinogenic action of TCDD (=dioxin) on breast cells is that it causes significant inhibition of proper differentiation of mammary duct epithelial cells and thereby increases the number of terminal end buds, which are susceptible to other carcinogens (Fenton et al., Toxicol Sci 2002;67:63-74; Brown et al., Carcinogenesis 1998; 19:1623-1629; Lamartiniere, J Mammary Gland Biol Neoplasia 2002;7:67-76). To address this topic, we selected MCF10A, a line of immortalized normal human breast epithelial cells as an in vitro model. An initial effort was made to optimize the cultural condition of MCF10A cells to promote the cell differentiation effect of insulin. Under this condition, TCDD clearly antagonized the action of insulin only in the presence of cholera toxin that is known to promote the differentiation of normal human breast epithelial cells. To test the hypothesis that TCDD-induced c-Src kinase activation is casually related to this compound's antagonistic action against insulin, we treated MCF10A cells with two c-Src blocking agents, an anti-Src antisense oligonucleotides blocker and a known specific inhibitor of c-Src kinase, PP-2 and studied the effect of insulin and TCDD on cell proliferation. The results showed that, in cells treated with either of these two c-Src blocking agents, the antagonistic effect of TCDD disappeared. It was also found that agents which specifically block the activation of ERK could also abrogate the action of TCDD to suppress insulin signaling. Together, these results indicate that the mechanism of the antagonistic action of TCDD on insulin signaling is mainly mediated through c-Src signaling through activation of ERK.
Collapse
Affiliation(s)
- Sujin Park
- Department of Environmental Toxicology and the Center for Environmental Health Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
30
|
Clemmons DR, Maile LA. Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Mol Endocrinol 2004; 19:1-11. [PMID: 15528274 DOI: 10.1210/me.2004-0376] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrins are heterodimeric transmembrane proteins that mediate cell attachment to extracellular matrix, migration, division, and inhibition of apoptosis. Because growth factors are also important for these processes, there has been interest in cooperative signaling between growth factor receptors and integrins. IGF-I is an important growth factor for vascular cells. One integrin, alphaVbeta3, that is expressed in smooth muscle cells modulates IGF-I actions. Ligand occupancy of alphaVbeta3 is required for IGF-I to stimulate cell migration and division. Src homology 2 containing tyrosine phosphatase (SHP-2) is a tyrosine phosphatase whose recruitment to signaling molecules is stimulated by growth factors including IGF-I. If alphaVbeta3 ligand occupancy is inhibited, there is no recruitment of SHP-2 to alphaVbeta3 and its transfer to downstream signaling molecules is blocked. Ligand occupancy of alphaVbeta3 stimulates tyrosine phosphorylation of the beta3-subunit, resulting in recruitment of SHP-2. This transfer is mediated by an insulin receptor substrate-1-related protein termed DOK-1. Subsequently, SHP-2 is transferred to another transmembrane protein, SHPS-1. This transfer requires IGF-I receptor-mediated tyrosine phosphorylation of SHPS-1, which contains two YXXL motifs that mediate SHP-2 binding. The transfer of SHP-2 to SHPS-1 is also required for recruitment of Shc to SHPS-1. Ligand occupancy of alphaVbeta3 results in sustained Shc phosphorylation and enhanced Shc recruitment. Shc activation results in induction of MAPK. Inhibition of the Shc/SHPS-1 complex formation results in failure to achieve sustained MAPK activation and an attenuated mitogenic response. Thus, within the vessel wall, a mechanism exists whereby ligand occupancy of the alphaVbeta3 integrin is required for assembly of a multicomponent membrane signaling complex that is necessary for cells to respond optimally to IGF-I.
Collapse
Affiliation(s)
- D R Clemmons
- Department of Medicine, Division of Endocrinology, University of North Carolina School of Medicine, CB 7170, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
31
|
Abstract
Src family nonreceptor protein tyrosine kinases transduce signals that control normal cellular processes such as cell proliferation, adhesion and motility. Normally, cellular Src is held in an inactive state, but in several cancer types, abnormal events lead to elevated kinase activity of the protein and cause pleiotropic cellular responses inducing transformation and metastasis. A prerequisite of the ability of a cancer cell to undergo metastasis into distant tissues is to penetrate surrounding extracellular matrices. These processes are facilitated by the integrin family of cell adhesion molecules. As is the case with Src, altered integrin activity or substrate affinity can contribute to the neoplastic phenotype. Therefore, understanding the interplay between Src and integrin function has been of intense interest over the past few years. This review focuses on the role of Src and integrin signaling in normal cells and how this is deregulated in human cancer. We will identify the key players in the integrin-mediated signaling pathways involved in cell motility and apoptosis, such as FAK, paxillin and p130(CAS), and discuss how Src signaling affects the formation of focal adhesions and the extracellular matrix.
Collapse
Affiliation(s)
- Martin P Playford
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
32
|
Abstract
Neuroblastoma is a heterogeneous tumor consisting of N (neuronal) and S (stromal) cells. We report that more tumorigenic and motile N cells express higher levels of IGF-I receptor (IGF-IR) than less tumorigenic, more adherent S cells. Shc, one of the two major docking partners of IGF-IR, is equally expressed in N and S cell lines. IGF-I treatment phosphorylates Shc in N cells, but only weakly activates Shc in S cells. Expression of the second partner, insulin receptor substrate (IRS), is cell type specific. S cells exclusively express IRS-1 that undergoes sustained phosphorylation by IGF-I. In contrast, N cells express IRS-2 that is transiently phosphorylated by IGF-I. Downstream of IRS-2 and Shc, IGF-I treatment results in strong activation of Akt and MAPK in N cells and activation of both pathways is required for IGF-I-mediated differentiation. Only IGF-IR activation of phosphatidylinositol-3 kinase is required for tumor edge ruffling in N and S cells, with stimulation of focal adhesion kinase (FAK) and paxillin. This detailed understanding of the 'biochemical signature' of N and S cells provides the background needed to target and disrupt specific IGF signaling pathways in an attempt to develop more effective therapies.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of Neurology, University of Michigan, 4414 Kresge III, 200 Zina Pitcher Place, Ann Arbor, MI 48109-0588, USA.
| | | | | |
Collapse
|
33
|
Yujiri T, Nawata R, Takahashi T, Sato Y, Tanizawa Y, Kitamura T, Oka Y. MEK kinase 1 interacts with focal adhesion kinase and regulates insulin receptor substrate-1 expression. J Biol Chem 2003; 278:3846-51. [PMID: 12458213 DOI: 10.1074/jbc.m206087200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MEK kinase 1 (MEKK1) has been shown to contribute to the regulation of cell migration, whereas focal adhesion kinase (FAK) is a major player involved in both cell migration and integrin signaling. Here we show that MEKK1 and FAK are co-immunoprecipitated from mouse fibroblasts. Moreover, the association between MEKK1 and FAK appears to be physiologically relevant, as it is enhanced by treatment with epidermal growth factor (EGF). Targeting FAK to the membrane also enhanced its association with MEKK1, indicating that MEKK1 is localized to a membrane-related subcellular domain, perhaps focal adhesions. Interestingly, the expression of insulin receptor substrate-1 (IRS-1) was diminished in MEKK1-deficient fibroblasts, which is similar to an earlier finding in FAK-deficient fibroblasts. Insulin-like growth factor 1 (IGF-1)-induced ERK activation was diminished in MEKK1-deficient cells, but phosphatidylinositol 3-kinase/Akt activation was not. Although integrin reportedly regulates the transcription of the IRS-1 gene via FAK-mediated JNK activation, no impairment of fibronectin-stimulated activation of FAK, ERK, or JNK was observed in MEKK1-deficient cells. Reconstitution of MEKK1 expression restored IRS-1 expression as well as IGF-1-induced ERK activation. Taken together, these findings indicate that MEKK1 interacts with FAK in focal adhesions and regulates IRS-1 expression.
Collapse
Affiliation(s)
- Toshiaki Yujiri
- Department of Bio-Signal Analysis, Yamaguchi University Graduate School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Welsh N, Makeeva N, Welsh M. Overexpression of the Shb SH2 Domain-Protein in Insulin-Producing Cells Leads to Altered Signaling Through the IRS-1 and IRS-2 Proteins. Mol Med 2002. [DOI: 10.1007/bf03402033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
35
|
Anderwald C, Müller G, Koca G, Fürnsinn C, Waldhäusl W, Roden M. Short-term leptin-dependent inhibition of hepatic gluconeogenesis is mediated by insulin receptor substrate-2. Mol Endocrinol 2002; 16:1612-28. [PMID: 12089355 DOI: 10.1210/mend.16.7.0867] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Leptin has both insulin-like and insulin-antagonistic effects on glucose metabolism. To test whether leptin interferes directly with insulin signaling, we perfused isolated rat livers with leptin (0.1, 0.5, 5, and 25 nmol/liter), leptin + insulin (5 nmol/liter + 10 nmol/liter), insulin (10 nmol/liter), or vehicle (control). Leptin reduced L-lactate-(10 mmol/liter)-stimulated glucose production by 39-66% (P < 0.006 vs. control) and phosphoenolpyruvate carboxykinase (PEPCK) activity by 22-52% (P < 0.001). Physiological leptin concentrations (0.1-5 nmol/liter) stimulated the tyrosine phosphorylation (pY) of insulin receptor substrate-2 (IRS-2) (280-954%; P < 0.05) and its associated phosphatidylinositol-3 kinase activity (122-621%; P < 0.003). Leptin (0.5-25 nmol/liter) inhibited IRS-1 pY and its associated phosphatidylinositol-3 kinase activity (20-89%; P < 0.03) but stimulated janus kinase-2 pY (272-342%; P < 0.001). Leptin also down-regulated its short receptor isoform in a time- and concentration-dependent manner (28-54%; P < 0.05). Exposure to leptin + insulin additively reduced glucose production and PEPCK activity (approximately 50%; P < 0.001 vs. control) and doubled IRS-2 pY (P < 0.01 vs. insulin). However, leptin + insulin decreased IRS-1 pY by 57% (P < 0.01 vs. insulin). Insulin alone (P < 0.01), but not leptin, increased autophosphorylation of nonreceptor tyrosine kinases (pp59(Lyn) + pp125(Fak)). In conclusion, leptin both alone and in combination with insulin reduces hepatic glucose production by decreasing the synthesis of the key enzyme of gluconeogenesis, PEPCK, which results mainly from the stimulation of the IRS-2 pathway.
Collapse
Affiliation(s)
- Christian Anderwald
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, University of Vienna, Austria A-1090
| | | | | | | | | | | |
Collapse
|
36
|
Huang D, Cheung AT, Parsons JT, Bryer-Ash M. Focal adhesion kinase (FAK) regulates insulin-stimulated glycogen synthesis in hepatocytes. J Biol Chem 2002; 277:18151-60. [PMID: 11809746 DOI: 10.1074/jbc.m104252200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Experimental data support a role for FAK, an important component of the integrin signaling pathway, in insulin action. To test the hypothesis that FAK plays a regulatory role in hepatic insulin action, we overexpressed wild type (WT), a kinase inactive (KR), or a COOH-terminal focal adhesion targeting (FAT) sequence-truncated mutant of FAK in HepG2 hepatoma cells. In control untransfected (NON) and vector (CMV2)- and WT-transfected cells, insulin stimulated an expected 54 +/- 13, 37 +/- 4, and 47 +/- 12 increase in [U-(14)C]glucose incorporation into glycogen, respectively. This was entirely abolished in the presence of either KR (-1 +/- 7%) or FAT mutants (0 +/- 8%, n = 5, p < 0.05 for KR or FAT versus other groups), and this was associated with a significant attenuation of incremental insulin-stimulated glycogen synthase (GS) activity. Insulin-stimulated serine phosphorylation of Akt/protein kinase B was significantly impaired in mutant-transfected cells. Moreover, the ability of insulin to inactivate GS kinase-3beta (GSK-3beta), the regulatory enzyme immediately upstream of GS, by serine phosphorylation (308 +/- 16, 321 +/- 41, and 458 +/- 34 optical densitometric units (odu) in NON, CMV2, and WT, respectively, p < 0.02 for WT versus CMV2) was attenuated in the presence of either FAT (205 +/- 14, p < 0.01) or KR (189 +/- 4, p < 0.005) mutants. FAK co-immunoprecipitated with GSK-3beta, but only in cells overexpressing the KR (374 +/- 254 odu) and FAT (555 +/- 308) mutants was this association stimulated by insulin compared with NON (-209 +/- 92), CMV2 (-47 +/- 70), and WT (-39 +/- 31 odu). This suggests that FAK and GSK-3beta form both a constitutive association and a transient complex upon insulin stimulation, the dissociation of which requires normal function and localization of FAK. We conclude that FAK regulates the activity of Akt/protein kinase B and GSK-3beta and the association of GSK-3beta with FAK to influence insulin-stimulated glycogen synthesis in hepatocytes. Insulin action may be subject to regulation by the integrin signaling pathway, ensuring that these growth and differentiation-promoting pathways act in a coordinated and/or complementary manner.
Collapse
Affiliation(s)
- Danshan Huang
- UCLA Gonda (Goldschmied) Diabetes Center and the Research Service, West Los Angeles Veterans Administration Medical Center, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
37
|
El Annabi S, Gautier N, Baron V. Focal adhesion kinase and Src mediate integrin regulation of insulin receptor phosphorylation. FEBS Lett 2001; 507:247-52. [PMID: 11696350 DOI: 10.1016/s0014-5793(01)02981-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show here that phosphorylation of the insulin receptor and insulin receptor substrate-1 is increased when suspended cells are replated on fibronectin. This is not due to decreased numbers of cell surface receptors, alteration of insulin binding, or stimulation of a phosphatase activity in non-adherent cells. Expression of Src together with focal adhesion kinase (FAK) in suspended cells restores insulin-induced receptor autophosphorylation to levels observed in fibronectin-attached cells. Conversely, expression of dominant-negative mutants of either Src or FAK abolishes potentiation of insulin receptor phosphorylation by cell adhesion. The results suggest that both Src and FAK participate in integrin-mediated regulation of insulin receptor signal.
Collapse
Affiliation(s)
- S El Annabi
- Institut National de la Santé et de la Recherche Médicale, U145/IFR 50, Faculté de Médecine, Avenue de Valombrose, 06107 Cedex 02, Nice, France
| | | | | |
Collapse
|
38
|
Van Obberghen E, Baron V, Delahaye L, Emanuelli B, Filippa N, Giorgetti-Peraldi S, Lebrun P, Mothe-Satney I, Peraldi P, Rocchi S, Sawka-Verhelle D, Tartare-Deckert S, Giudicelli J. Surfing the insulin signaling web. Eur J Clin Invest 2001; 31:966-77. [PMID: 11737239 DOI: 10.1046/j.1365-2362.2001.00896.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diverse biological actions of insulin and insulin-like growth factor I (IGF-I) are initiated by binding of the polypeptides to their respective cell surface tyrosine kinase receptors. These activated receptors phosphorylate a series of endogenous substrates on tyrosine, amongst which the insulin receptor substrate (IRS) proteins are the best characterized. Their phosphotyrosine-containing motifs become binding sites for Src homology 2 (SH2) domains on proteins such as SH2 domain-containing protein-tyrosine-phosphatase (SHP)-2/Syp, growth factor receptor bound-2 protein, (Grb-2), and phosphatidyl inositol 3 kinase (PI3 kinase), which participate in activation of specific signaling cascades. However, the IRS molecules are not only platforms for signaling molecules, they also orchestrate the generation of signal specificity, integration of signals induced by several extracellular stimuli, and signal termination and modulation. An extensive review is beyond the scope of the present article, which will be centered on our own contribution and reflect our biases.
Collapse
Affiliation(s)
- E Van Obberghen
- Inserm U 145, IFR 50, Faculté de Médecine, Avenue de Valombrose, Nice Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brodt P, Fallavollita L, Khatib AM, Samani AA, Zhang D. Cooperative regulation of the invasive and metastatic phenotypes by different domains of the type I insulin-like growth factor receptor beta subunit. J Biol Chem 2001; 276:33608-15. [PMID: 11445567 DOI: 10.1074/jbc.m102754200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor for the type 1 insulin-like growth factor (IGF-I) regulates multiple cellular functions impacting on the metastatic phenotype of tumor cells, including cellular proliferation, anchorage-independent growth, survival, migration, synthesis of the 72-kDa type IV collagenase and invasion. We have used site-directed mutagenesis to generate domain-specific mutants of the receptor beta subunit to analyze the role of specific tyrosines in the regulation of the invasive/metastatic phenotype. Poorly invasive M-27 carcinoma cells expressing low receptor numbers were transfected with a plasmid vector expressing IGF-I receptor cDNA in which single or multiple tyrosine codons in the kinase domain, namely Tyr-1131, Tyr-1135, and Tyr-1136 or the C-terminal tyrosines 1250 and 1251 were substituted with phenylalanine. Changes in the invasive and metastatic properties were analyzed relative to M-27 cells expressing the wild type receptor. We found that cells expressing the Y1131F,Y1135F,Y1136F or Y1135F receptor mutants lost all IGF-IR-dependent functions and their phenotypes were indistinguishable from, or suppressed relative to, the parent line. The Y1250F,Y1251F substitution abolished anchorage-independent growth, cell spreading, and the anti-apoptotic effect of IGF-I whereas all other IGF-IR-dependent phenotypes were either unperturbed (i.e. mitogenicity) or only partially reduced (migration and invasion). The results identify three types of receptor-dependent functions in this model: those dependent only on an intact kinase domain (DNA synthesis), those dependent equally on kinase domain and Tyr-1250/1251 signaling (e.g. apoptosis, soft agar cloning) and those dependent on kinase domain and enhanced through Tyr-1250/1251 signaling (migration, invasion). They suggest that signals derived from both regions of the receptor cooperate to enhance tumor metastasis.
Collapse
MESH Headings
- Cell Movement
- Cloning, Molecular
- DNA Mutational Analysis
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic
- Genes, Dominant
- Humans
- Insulin-Like Growth Factor I/metabolism
- Kinetics
- Matrix Metalloproteinase 2/metabolism
- Mutagenesis, Site-Directed
- Mutation
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Phenotype
- Protein Structure, Tertiary
- Receptor, IGF Type 1/chemistry
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Tumor Cells, Cultured
- Tyrosine/chemistry
Collapse
Affiliation(s)
- P Brodt
- Department of Surgery, McGill University Health Center, Royal Victoria Hospital, 687 Pine Ave W., Montreal, Quebec H3A 1A1, Canada.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Rapid progress has been made recently in the definition of growth hormone (GH) receptor signal transduction pathways. It is now apparent that many cytokines, including GH, share identical or similar signalling components to exert their cellular effects. This review provides a brief discourse on the signal transduction pathways, which have been demonstrated to be utilized by GH. The identification of such pathways provides a basis for understanding the pleiotropic actions of GH. The mechanisms by which the specific cellular effects of GH are achieved remain to be elucidated.
Collapse
Affiliation(s)
- T Zhu
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | | | |
Collapse
|
41
|
Khatib AM, Siegfried G, Prat A, Luis J, Chrétien M, Metrakos P, Seidah NG. Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J Biol Chem 2001; 276:30686-93. [PMID: 11402025 DOI: 10.1074/jbc.m101725200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proprotein convertases (PCs) of the subtilisin/kexin family are responsible for the activation of prohormones, protrophic factors, and their receptors. We sought to determine whether loss of PC-mediated activities might affect the malignant phenotypes of cancer cells. Stable transfectants of alpha(1)-antitrypsin Portland (alpha(1)-PDX) cDNA, coding for a potent PC inhibitor, were analyzed in model HT-29 cells (HT-29/PDX) and in other cell lines. Expression of alpha(1)-PDX resulted in a proinsulin-like growth factor-1 receptor (pro-IGF-1R) processing blockade, hence inhibiting the ability of exogenous IGF-1 to induce tyrosine phosphorylation of its beta-subunit and insulin-related substrate-1. Coexpression of IGF-1R with four different PCs or the novel convertase SKI-1 in the furin-defective LoVo-C5 cells demonstrated that pro-IGF-1R ( approximately 200 kDa) cleavage into IGF-1R (beta-subunit, approximately 105 kDa) can be achieved by furin and PC5A, but not by PACE4, PC7, or SKI-1. Expression of alpha(1)-PDX resulted in reduction of DNA synthesis and in anchorage-independent growth. Following serum deprivation, the alpha(1)-PDX transfectants exhibited an enhanced apoptotic phenotype and were insensitive to IGF-1-mediated [(3)H]thymidine incorporation and protection against apoptosis. These cells showed reduced invasiveness that paralleled decreased mRNA levels of urokinase-type plasminogen activator and its receptor, tissue-type plasminogen activator, and plasminogen activator inhibitor-1. Comparative subcutaneous inoculation of cells in nude mice revealed that animals injected with HT-29/PDX cells exhibited delayed and lower incidence of tumor development as well as reduced tumor size. Immunohistochemical analysis of CD31 antigen expression, a marker of endothelial cells, revealed reduced HT-29/PDX tumor vascularization. These findings indicate that PCs actively contribute to the growth and malignant phenotypes of HT-29 tumors, suggesting that PC inhibition strategies may be a useful adduct to the arsenal of colorectal anticancer gene therapies.
Collapse
Affiliation(s)
- A M Khatib
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Shaw LM. Identification of insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the alpha6beta4 integrin-dependent activation of phosphoinositide 3-OH kinase and promotion of invasion. Mol Cell Biol 2001; 21:5082-93. [PMID: 11438664 PMCID: PMC87234 DOI: 10.1128/mcb.21.15.5082-5093.2001] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Accepted: 04/30/2001] [Indexed: 11/20/2022] Open
Abstract
Expression of the alpha6beta4 integrin increases the invasive potential of carcinoma cells by a mechanism that involves activation of phosphoinositide 3-OH kinase (PI3K). In the present study, we investigated the signaling pathway by which the alpha6beta4 integrin activates PI3K. Neither the alpha6 nor the beta4 cytoplasmic domain contains the consensus binding motif for PI3K, pYMXM, indicating that additional proteins are likely to be involved in the activation of this lipid kinase by the alpha6beta4 integrin. We identified insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the activation of PI3K by the alpha6beta4 integrin. IRS-1 and IRS-2 are cytoplasmic adapter proteins that do not contain intrinsic kinase activity but rather function by recruiting proteins to surface receptors, where they organize signaling complexes. Ligation of the alpha6beta4 receptor promotes tyrosine phosphorylation of IRS-1 and IRS-2 and increases their association with PI3K, as determined by coimmunoprecipitation. Moreover, we identified a tyrosine residue in the cytoplasmic domain of the beta4 subunit, Y1494, that is required for alpha6beta4-dependent phosphorylation of IRS-2 and activation of PI3K in response to receptor ligation. Most importantly, Y1494 is essential for the ability of the alpha6beta4 integrin to promote carcinoma invasion. Taken together, these results imply a key role for the IRS proteins in the alpha6beta4-dependent promotion of carcinoma invasion.
Collapse
Affiliation(s)
- L M Shaw
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|
43
|
Müller G, Jung C, Wied S, Welte S, Jordan H, Frick W. Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes. Mol Cell Biol 2001; 21:4553-67. [PMID: 11416134 PMCID: PMC87114 DOI: 10.1128/mcb.21.14.4553-4567.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caveolae and caveolin-containing detergent-insoluble glycolipid-enriched rafts (DIG) have been implicated to function as plasma membrane microcompartments or domains for the preassembly of signaling complexes, keeping them in the basal inactive state. So far, only limited in vivo evidence is available for the regulation of the interaction between caveolae-DIG and signaling components in response to extracellular stimuli. Here, we demonstrate that in isolated rat adipocytes, synthetic intracellular caveolin binding domain (CBD) peptide derived from caveolin-associated pp59(Lyn) (10 to 100 microM) or exogenous phosphoinositolglycan derived from glycosyl-phosphatidylinositol (GPI) membrane protein anchor (PIG; 1 to 10 microM) triggers the concentration-dependent release of caveolar components and the GPI-anchored protein Gce1, as well as the nonreceptor tyrosine kinases pp59(Lyn) and pp125(Fak), from interaction with caveolin (up to 45 to 85%). This dissociation, which parallels redistribution of the components from DIG to non-DIG areas of the adipocyte plasma membrane (up to 30 to 75%), is accompanied by tyrosine phosphorylation and activation of pp59(Lyn) and pp125(Fak) (up to 8- and 11-fold) but not of the insulin receptor. This correlates well to increased tyrosine phosphorylation of caveolin and the insulin receptor substrate protein 1 (up to 6- and 15-fold), as well as elevated phosphatidylinositol-3' kinase activity and glucose transport (to up to 7- and 13-fold). Insulin-mimetic signaling by both CBD peptide and PIG as well as redistribution induced by CBD peptide, but not by PIG, was blocked by synthetic intracellular caveolin scaffolding domain (CSD) peptide. These data suggest that in adipocytes a subset of signaling components is concentrated at caveolae-DIG via the interaction between their CBD and the CSD of caveolin. These inhibitory interactions are relieved by PIG. Thus, caveolae-DIG may operate as signalosomes for insulin-independent positive cross talk to metabolic insulin signaling downstream of the insulin receptor based on redistribution and accompanying activation of nonreceptor tyrosine kinases.
Collapse
Affiliation(s)
- G Müller
- Aventis Pharma Germany, 65926 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Samani AA, Brodt P. The Receptor for the Type I Insulin-like Growth Factor and its Ligands Regulate Multiple Cellular Functions That Impact on Metastasis. Surg Oncol Clin N Am 2001. [DOI: 10.1016/s1055-3207(18)30066-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Andersen JN, Elson A, Lammers R, Rømer J, Clausen JT, Møller KB, Møller NP. Comparative study of protein tyrosine phosphatase-epsilon isoforms: membrane localization confers specificity in cellular signalling. Biochem J 2001; 354:581-90. [PMID: 11237862 PMCID: PMC1221689 DOI: 10.1042/0264-6021:3540581] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To study the influence of subcellular localization as a determinant of signal transduction specificity, we assessed the effects of wild-type transmembrane and cytoplasmic protein tyrosine phosphatase (PTP) epsilon on tyrosine kinase signalling in baby hamster kidney (BHK) cells overexpressing the insulin receptor (BHK-IR). The efficiency by which differently localized PTPepsilon and PTPalpha variants attenuated insulin-induced cell rounding and detachment was determined in a functional clonal-selection assay and in stable cell lines. Compared with the corresponding receptor-type PTPs, the cytoplasmic PTPs (cytPTPs) were considerably less efficient in generating insulin-resistant clones, and exceptionally high compensatory expression levels were required to counteract phosphotyrosine-based signal transduction. Targeting of cytPTPepsilon to the plasma membrane via the Lck-tyrosine kinase dual acylation motif restored high rescue efficiency and abolished the need for high cytPTPepsilon levels. Consistent with these results, expression levels and subcellular localization of PTPepsilon were also found to determine the phosphorylation level of cellular proteins including focal adhesion kinase (FAK). Furthermore, PTPepsilon stabilized binding of phosphorylated FAK to Src, suggesting this complex as a possible mediator of the PTPepsilon inhibitory response to insulin-induced cell rounding and detachment in BHK-IR cells. Taken together, the present localization-function study indicates that transcriptional control of the subcellular localization of PTPepsilon may provide a molecular mechanism that determines PTPepsilon substrate selectivity and isoform-specific function.
Collapse
Affiliation(s)
- J N Andersen
- Signal Transduction, Novo Nordisk, DK-2880 Bagsvaerd, Denmark
| | | | | | | | | | | | | |
Collapse
|
46
|
Reiss K, Wang JY, Romano G, Tu X, Peruzzi F, Baserga R. Mechanisms of regulation of cell adhesion and motility by insulin receptor substrate-1 in prostate cancer cells. Oncogene 2001; 20:490-500. [PMID: 11313980 DOI: 10.1038/sj.onc.1204112] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2000] [Revised: 11/09/2000] [Accepted: 11/13/2000] [Indexed: 11/09/2022]
Abstract
LNCaP cells are human prostatic cancer cells that have a frame-shift mutation of the tumor suppressor gene PTEN and do not express the insulin receptor substrate-1 (IRS-1), a major substrate of the type 1 insulin-like growth factor receptor (IGF-IR). Ectopic expression of IRS-1 in LNCaP cells increases cell adhesion and decreases cell motility by an IGF-I-independent mechanism. We show now that these effects of IRS-1 are accompanied by serine phosphorylation of IRS-1 and are inhibited by inhibitors of phosphatidylinositol 3-kinase (PI3K). We have confirmed the requirement for PI3K activity and serine phosphorylation by the use of IRS-1 mutants, expressed in LNCaP cells. Serine phosphorylation inhibits IGF-I-induced tyrosyl phosphorylation of IRS-1, which is restored by the expression of wild-type PTEN or by inhibition of PI3K activity. Finally, IRS-1 in LNCaP cells co-immunoprecipitates with integrin alpha 5 beta 1, and the association is again IGF-I-independent. We conclude that in LNCaP cells, IRS-1 is serine phosphorylated by PI3K, generating effects that are different, and even opposite, from those generated by IGF-I.
Collapse
Affiliation(s)
- K Reiss
- Kimmel Cancer Center, Thomas Jefferson University, 624 Biology Life Science Building, 233 South 10th Street, Philadelphia, Pennsylvania, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lebrun P, Baron V, Hauck CR, Schlaepfer DD, Van Obberghen E. Cell adhesion and focal adhesion kinase regulate insulin receptor substrate-1 expression. J Biol Chem 2000; 275:38371-7. [PMID: 10967115 DOI: 10.1074/jbc.m006162200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Integrins are transmembrane receptors involved in interactions between cells and extracellular matrix proteins. Here we show that cell adhesion regulates insulin receptor substrate-1 (IRS-1) mRNA synthesis. When fibroblasts are held in suspension, lower levels of IRS-1 mRNA, but not of IRS-2 mRNA, are detected, and this effect is due to the negative regulation of IRS-1 transcription rather than to decreased mRNA stability. Upon fibronectin- or vitronectin-mediated integrin stimulation, the level of IRS-1 mRNA was restored within 4 h. The focal adhesion kinase (FAK) is known to be activated upon integrin stimulation, and we found that IRS-1 was not expressed in FAK(-)(/-) cells. Stable re-expression of epitope-tagged FAK in FAK(-)(/-) fibroblasts (DA2 cells) restored normal levels of IRS-1 expression, confirming that IRS-1 mRNA expression is regulated by FAK. It is known that integrins activate the JNK pathway. However, in adherent FAK(-)(/-) cells, we failed to detect activation of JNK, whereas JNK was stimulated in DA2 cells. This confirms the role of FAK in integrin-induced JNK stimulation. FAK-independent stimulation of JNK with anisomycin treatment both in FAK(-)(/-) cells and in suspended FAK(+/+) cells confirmed that IRS-1 mRNA transcription can be partially regulated by JNK. We suggest that integrins can modulate insulin and insulin-like growth factor-1 signaling pathways by regulating the levels of IRS-1 in cells and that FAK-mediated signaling to JNK is one pathway involved in this process.
Collapse
Affiliation(s)
- P Lebrun
- INSERM U145, Institut Federatif de Recherche 50, Avenue de Valombrose, 06107 Nice Cédex 2, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
In recent years, the type 1 insulin-like growth factor receptor (IGF-IR) has emerged as a receptor that plays a very important role in the growth of cells, both in vivo and in vitro. The ability of the IGF-IR to induce mitogenesis and to promote survival of cells against a variety of apoptotic agents is well documented. Somewhat less known are other functions of the IGF-IR, like its ability to induce differentiation, to regulate cell size and to affect the organization of the cytoskeleton of cells. This review will focus on these lesser known functions of the IGF-IR. At the same time, we will emphasize how the IGF-IR can send contradictory signals, which depend on different domains of the receptor and the availability of downstream transducing molecules.
Collapse
Affiliation(s)
- R Baserga
- Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, 624 BLSB, Philadelphia, Pennsylvania, PA 19107, USA
| |
Collapse
|
49
|
Müller G, Wied S, Frick W. Cross talk of pp125(FAK) and pp59(Lyn) non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes. Mol Cell Biol 2000; 20:4708-23. [PMID: 10848597 PMCID: PMC85892 DOI: 10.1128/mcb.20.13.4708-4723.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling molecules downstream from the insulin receptor, such as the insulin receptor substrate protein 1 (IRS-1), are also activated by other receptor tyrosine kinases. Here we demonstrate that the non-receptor tyrosine kinases, focal adhesion kinase pp125(FAK) and Src-class kinase pp59(Lyn), after insulin-independent activation by phosphoinositolglycans (PIG), can cross talk to metabolic insulin signaling in rat and 3T3-L1 adipocytes. Introduction by electroporation of neutralizing antibodies against pp59(Lyn) and pp125(FAK) into isolated rat adipocytes blocked IRS-1 tyrosine phosphorylation in response to PIG but not insulin. Introduction of peptides encompassing either the major autophosphorylation site of pp125(FAK), tyrosine 397, or its regulatory loop with the twin tyrosines 576 and 577 inhibited PIG-induced IRS-1 tyrosine phosphorylation and glucose transport. PIG-induced pp59(Lyn) kinase activation and pp125(FAK) tyrosine phosphorylation were impaired by the former and latter peptide, respectively. Up-regulation of pp125(FAK) by integrin clustering diminished PIG-induced IRS-1 tyrosine phosphorylation and glucose transport in nonadherent but not adherent adipocytes. In conclusion, PIG induced IRS-1 tyrosine phosphorylation by causing (integrin antagonized) recruitment of IRS-1 and pp59(Lyn) to the common signaling platform molecule pp125(FAK), where cross talk of PIG-like structures and extracellular matrix proteins to metabolic insulin signaling may converge, possibly for the integration of the demands of glucose metabolism and cell architecture.
Collapse
Affiliation(s)
- G Müller
- Aventis Pharma Deutschland GmbH, 65926 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
50
|
Goh EL, Zhu T, Yakar S, LeRoith D, Lobie PE. CrkII participation in the cellular effects of growth hormone and insulin-like growth factor-1. Phosphatidylinositol-3 kinase dependent and independent effects. J Biol Chem 2000; 275:17683-92. [PMID: 10748058 DOI: 10.1074/jbc.m001972200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the role of CrkII in the cellular response to both human growth hormone (hGH) and human insulin-like growth factor-1 (hIGF-1). We have demonstrated that overexpression of the adaptor molecule enhances both basal phosphatidylinositol 3-kinase (PI 3-kinase) activity and also dramatically enhances the ability of both hormones to stimulate PI 3-kinase activity in the cell. Many of the effects of CrkII overexpression on hGH- and hIGF-1-stimulated cellular function can then be attributed to CrkII enhancement of PI 3-kinase stimulation by these hormones. Thus, CrkII-enhanced PI 3-kinase activity is used to enhance actin filament reorganization in response to both hGH and hIGF-1, to enhance stress activated protein kinase (SAPK) activity in response to hGH, and to diminish STAT5-mediated transcription in response to hGH. It is apparent, however, that CrkII also regulates cellular function independent of its ability to stimulate PI 3-kinase activity. This is evidenced by the ability of CrkII, in a PI 3-kinase-independent manner, to diminish the activation of p44/42 mitogen-activated protein kinase in response to both hGH and hIGF-1 and to inhibit the activation of SAPK by hIGF-1. Therefore, despite the common use of CrkII to activate PI 3-kinase, CrkII also allows hGH or hIGF-1 to selectively switch the activation of SAPK. Thus, common utilization of CrkII by hGH and hIGF-1 allows the execution of common cellular effects of these hormones, concomitant with the retention of hormonal specificity.
Collapse
Affiliation(s)
- E L Goh
- Institute of Molecular and Cell Biology, 30 Medical Dr., Singapore 117609, Republic of Singapore
| | | | | | | | | |
Collapse
|