1
|
Desai M, Hemant, Deo A, Naik J, Dhamale P, Kshirsagar A, Bose T, Majumdar A. Mrj is a chaperone of the Hsp40 family that regulates Orb2 oligomerization and long-term memory in Drosophila. PLoS Biol 2024; 22:e3002585. [PMID: 38648719 PMCID: PMC11034981 DOI: 10.1371/journal.pbio.3002585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.
Collapse
Affiliation(s)
- Meghal Desai
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hemant
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Ankita Deo
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Jagyanseni Naik
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Prathamesh Dhamale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Avinash Kshirsagar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Tania Bose
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
2
|
Avni A, Swasthi HM, Majumdar A, Mukhopadhyay S. Intrinsically disordered proteins in the formation of functional amyloids from bacteria to humans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:109-143. [PMID: 31521230 DOI: 10.1016/bs.pmbts.2019.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amyloids are nanoscopic ordered self-assemblies of misfolded proteins that are formed via aggregation of partially unfolded or intrinsically disordered proteins (IDPs) and are commonly linked to devastating human diseases. An enlarging body of recent research has demonstrated that certain amyloids can be beneficial and participate in a wide range of physiological functions from bacteria to humans. These amyloids are termed as functional amyloids. Like disease-associated amyloids, a vast majority of functional amyloids are derived from a range of IDPs or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs). In this chapter, we describe an account of recent studies on the aggregation behavior of IDPs resulting in the formation of functional amyloids in a diverse range of organisms from bacteria to human. We also discuss the strategies that are used by these organisms to regulate the spatiotemporal amyloid assembly in their physiological functions.
Collapse
Affiliation(s)
- Anamika Avni
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Hema M Swasthi
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anupa Majumdar
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
3
|
Chrysoviruses in Magnaporthe oryzae. Viruses 2018; 10:v10120697. [PMID: 30544784 PMCID: PMC6315753 DOI: 10.3390/v10120697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023] Open
Abstract
Magnaporthe oryzae, the fungus that causes rice blast, is the most destructive pathogen of rice worldwide. A number of M. oryzae mycoviruses have been identified. These include Magnaporthe oryzae. viruses 1, 2, and 3 (MoV1, MoV2, and MoV3) belonging to the genus, Victorivirus, in the family, Totiviridae; Magnaporthe oryzae. partitivirus 1 (MoPV1) in the family, Partitiviridae; Magnaporthe oryzae. chrysovirus 1 strains A and B (MoCV1-A and MoCV1-B) belonging to cluster II of the family, Chrysoviridae; a mycovirus related to plant viruses of the family, Tombusviridae (Magnaporthe oryzae. virus A); and a (+)ssRNA mycovirus closely related to the ourmia-like viruses (Magnaporthe oryzae. ourmia-like virus 1). Among these, MoCV1-A and MoCV1-B were the first reported mycoviruses that cause hypovirulence traits in their host fungus, such as impaired growth, altered colony morphology, and reduced pigmentation. Recently we reported that, although MoCV1-A infection generally confers hypovirulence to fungi, it is also a driving force behind the development of physiological diversity, including pathogenic races. Another example of modulated pathogenicity caused by mycovirus infection is that of Alternaria alternata chrysovirus 1 (AaCV1), which is closely related to MoCV1-A. AaCV1 exhibits two contrasting effects: Impaired growth of the host fungus while rendering the host hypervirulent to the plant, through increased production of the host-specific AK-toxin. It is inferred that these mycoviruses might be epigenetic factors that cause changes in the pathogenicity of phytopathogenic fungi.
Collapse
|
4
|
Sharma A, Behrens SH, Chernoff YO, Bommarius AS. Modulation of the Formation of Aβ- and Sup35NM-Based Amyloids by Complex Interplay of Specific and Nonspecific Ion Effects. J Phys Chem B 2018; 122:4972-4981. [PMID: 29668283 PMCID: PMC6932987 DOI: 10.1021/acs.jpcb.7b12836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In vitro formation of highly ordered protein aggregates, amyloids, is influenced by the presence of ions. Here, we have studied the effect of anions on amyloid fibril formation by two different amyloidogenic proteins, human amyloid beta-42 (Aβ42), associated with Alzheimer disease and produced recombinantly with an N-terminal methionine (Met-Aβ42), and histidine-tagged NM fragment of Sup35 protein (Sup35NM-His6), a yeast release factor controlling protein-based inheritance, at pH values above and below their isoelectric points. We demonstrate here that pH plays a critical role in determining the effect of ions on the aggregation of Met-Aβ42 and Sup35NM-His6. Further, the electrophoretic mobilities of Met-Aβ42 and Sup35NM-His6 were measured in the presence of different anions at pH above and below the isoelectric points to understand how anions interact with these proteins when they bear a net positive or negative charge. We find that although ion-protein interactions generally follow expectations based on the anion positions within the Hofmeister series, there are qualitative differences in the aggregation behavior of Met-Aβ42 and Sup35NM-His6. These differences arise from a competition between nonspecific charge neutralization and screening effects and specific ion adsorption and can be explained by the different biochemical and biophysical properties of Met-Aβ42 and Sup35NM-His6.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sven H. Behrens
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Prion-like characteristics of the bacterial protein Microcin E492. Sci Rep 2017; 7:45720. [PMID: 28361921 PMCID: PMC5374632 DOI: 10.1038/srep45720] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2017] [Indexed: 11/10/2022] Open
Abstract
Microcin E492 (Mcc) is a pore-forming bacteriotoxin. Mcc activity is inhibited at the stationary phase by formation of amyloid-like aggregates in the culture. Here we report that, in a similar manner as prions, Mcc naturally exists as two conformers: a β-sheet-rich, protease-resistant, aggregated, inactive form (Mccia), and a soluble, protease-sensitive, active form (Mcca). The exogenous addition of culture medium containing Mccia or purified in vitro-generated Mccia into the culture induces the rapid and efficient conversion of Mcca into Mccia, which is maintained indefinitely after passaging, changing the bacterial phenotype. Mccia prion-like activity is conformation-dependent and could be reduced by immunodepleting Mccia. Interestingly, an internal region of Mcc shares sequence similarity with the central domain of the prion protein, which is key to the formation of mammalian prions. A synthetic peptide spanning this sequence forms amyloid-like fibrils in vitro and is capable of inducing the conversion of Mcca into Mcciain vivo, suggesting that this region corresponds to the prion domain of Mcc. Our findings suggest that Mcc is the first prokaryotic protein with prion properties which harnesses prion-like transmission to regulate protein function, suggesting that propagation of biological information using a prion-based conformational switch is an evolutionary conserved mechanism.
Collapse
|
6
|
Sideri T, Yashiroda Y, Ellis DA, Rodríguez-López M, Yoshida M, Tuite MF, Bähler J. The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe. MICROBIAL CELL 2017; 4:16-28. [PMID: 28191457 PMCID: PMC5302157 DOI: 10.15698/mic2017.01.552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prions are protein-based infectious entities associated with fatal brain diseases
in animals, but also modify a range of host-cell phenotypes in the budding
yeast, Saccharomyces cerevisiae. Many questions remain about
the evolution and biology of prions. Although several functionally distinct
prion-forming proteins exist in S. cerevisiae, [HET-s] of
Podospora anserina is the only other known fungal prion.
Here we investigated prion-like, protein-based epigenetic transmission in the
fission yeast Schizosaccharomyces pombe. We show that
S. pombe cells can support the formation and maintenance of
the prion form of the S. cerevisiae Sup35 translation factor
[PSI+], and that the formation and propagation
of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating
commonalities in prion propagation machineries in these evolutionary diverged
yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as
a putative prion with a predicted prion-like domain. Overexpression of
the ctr4 gene resulted in large Ctr4 protein aggregates
that were both detergent and proteinase-K resistant. Cells carrying such
[CTR+] aggregates showed increased sensitivity
to oxidative stress, and this phenotype could be transmitted to aggregate-free
[ctr-] cells by transformation with
[CTR+] cell extracts. Moreover, this
[CTR+] phenotype was inherited in a
non-Mendelian manner following mating with naïve
[ctr-] cells, but intriguingly the
[CTR+] phenotype was not eliminated by
guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features
diagnostic of other fungal prions and is the first example of a prion in fission
yeast. These findings suggest that transmissible protein-based determinants of
traits may be more widespread among fungi.
Collapse
Affiliation(s)
- Theodora Sideri
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - Yoko Yashiroda
- Chemical Genetics Laboratory, RIKEN and Chemical Genomics Research Group, RIKEN CSRS, Saitama, Japan
| | - David A Ellis
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - María Rodríguez-López
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN and Chemical Genomics Research Group, RIKEN CSRS, Saitama, Japan
| | - Mick F Tuite
- Kent Fungal Group, University of Kent, School of Biosciences, Canterbury, Kent, U.K
| | - Jürg Bähler
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| |
Collapse
|
7
|
Molecular genetics and Biochemical analyses of mycoviruses in rice blast fungus, Magnaporthe oryzae. Uirusu 2015; 65:219-228. [PMID: 27760920 DOI: 10.2222/jsv.65.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have found a novel mycovirus, MoCV1 in the rice blast fungus, Magnaporthe oryzae. MoCV1 has five dRNA segments as genome, and belong to Chrysoviridae tentatively. Using micro-spin column method or one-step reverse-transcription PCR (RT-PCR) assay, we detected a MoCV1-related virus from M. oryzae in Japan, whose sequence shares considerable identity with that of the MoCV1 Vietnamese isolate. To establish a system for comprehensive survey of MoCV1 infection in the field, we developed a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for direct detection of the virus. In this review, we introduce our current knowledges of MoCV1 properties for biochemical and molecular genetic aspects and also describe its negative effects to host fungus, which imply potentiality to utilize MoCV1 as bio-controller. Heterologous gene-expression system in yeast is employed to investigate biological activities or functions of mycoviral proteins in fungal host cells. MoCV1-A infection caused hypovirulence to the host fungus, unexpectedly, also resulted in the change of pathogenic races in several differential rice lines, namely S (compatible) to R (incompatible) reaction or R to S. The cause of epigenetic alteration is also discussed.
Collapse
|
8
|
Feller A, Georis I, Tate JJ, Cooper TG, Dubois E. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation. J Biol Chem 2012. [PMID: 23184930 DOI: 10.1074/jbc.m112.385054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ure2 is a phosphoprotein and central negative regulator of nitrogen-responsive Gln3/Gat1 localization and their ability to activate transcription. This negative regulation is achieved by the formation of Ure2-Gln3 and -Gat1 complexes that are thought to sequester these GATA factors in the cytoplasm of cells cultured in excess nitrogen. Ure2 itself is a dimer the monomer of which consists of two core domains and a flexible protruding αcap. Here, we show that alterations in this αcap abolish rapamycin-elicited nuclear Gln3 and, to a more limited extent, Gat1 localization. In contrast, these alterations have little demonstrable effect on the Gln3 and Gat1 responses to nitrogen limitation. Using two-dimensional PAGE we resolved eight rather than the two previously reported Ure2 isoforms and demonstrated Ure2 dephosphorylation to be stimulus-specific, occurring after rapamycin treatment but only minimally if at all in nitrogen-limited cells. Alteration of the αcap significantly diminished the response of Ure2 dephosphorylation to the TorC1 inhibitor, rapamycin. Furthermore, in contrast to Gln3, rapamycin-elicited Ure2 dephosphorylation occurred independently of Sit4 and Pph21/22 (PP2A) as well as Siw14, Ptc1, and Ppz1. Together, our data suggest that distinct regions of Ure2 are associated with the receipt and/or implementation of signals calling for cessation of GATA factor sequestration in the cytoplasm. This in turn is more consistent with the existence of distinct pathways for TorC1- and nitrogen limitation-dependent control than it is with these stimuli representing sequential steps in a single regulatory pathway.
Collapse
Affiliation(s)
- Andre Feller
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
9
|
Park YN, Morales D, Rubinson EH, Masison D, Eisenberg E, Greene LE. Differences in the curing of [PSI+] prion by various methods of Hsp104 inactivation. PLoS One 2012; 7:e37692. [PMID: 22719845 PMCID: PMC3377701 DOI: 10.1371/journal.pone.0037692] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/27/2012] [Indexed: 11/25/2022] Open
Abstract
[PSI+] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI+] by the same mechanism– inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI+] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI+] and inactivation of Hsp104 cures [PSI+] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.
Collapse
Affiliation(s)
- Yang-Nim Park
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Morales
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emily H. Rubinson
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institute of Health, Bethesda, Maryland, United States of America
| | - Evan Eisenberg
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Crow ET, Li L. Newly identified prions in budding yeast, and their possible functions. Semin Cell Dev Biol 2011; 22:452-9. [PMID: 21397710 PMCID: PMC3155609 DOI: 10.1016/j.semcdb.2011.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Yeast prions are atypical genetic elements that are transmitted as heritable protein conformations. [PSI+], [URE3], and [PIN+] are three well-studied prions in the budding yeast, Saccharomyces cerevisiae. In the last three years, several additional prions have been reported in yeast, including [SWI+], [OCT+], [MCA], [GAR+], [MOT3+], [ISP+], and [NSI+]. The growing number of yeast prions suggests that protein-based inheritance might be a widespread biological phenomenon. In this review, we summarize the characteristics of each prion element, and discuss their potential functional roles in yeast biology.
Collapse
Affiliation(s)
- Emily T. Crow
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Searle 5-474 MC S205, 320 East Superior Street, Chicago, IL 60611, USA
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Searle 5-474 MC S205, 320 East Superior Street, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Gonzalez Nelson AC, Ross ED. Interactions between non-identical prion proteins. Semin Cell Dev Biol 2011; 22:437-43. [PMID: 21354317 DOI: 10.1016/j.semcdb.2011.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 11/24/2022]
Abstract
Prion formation involves the conversion of soluble proteins into an infectious amyloid form. This process is highly specific, with prion aggregates templating the conversion of identical proteins. However, in some cases non-identical prion proteins can interact to promote or inhibit prion formation or propagation. These interactions affect both the efficiency with which prion diseases are transmitted across species and the normal physiology of yeast prion formation and propagation. Here we examine two types of heterologous prion interactions: interactions between related proteins from different species (the species barrier) and interactions between unrelated prion proteins within a single species. Interestingly, although very subtle changes in protein sequence can significantly reduce or eliminate cross-species prion transmission, in Saccharomyces cerevisiae completely unrelated prion proteins can interact to affect prion formation and propagation.
Collapse
Affiliation(s)
- Aaron C Gonzalez Nelson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
12
|
Deriziotis P, Tabrizi SJ. Prions and the proteasome. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:713-22. [PMID: 18644436 DOI: 10.1016/j.bbadis.2008.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders that include Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in animals. They are unique in terms of their biology because they are caused by the conformational re-arrangement of a normal host-encoded prion protein, PrPC, to an abnormal infectious isoform, PrPSc. Currently the precise mechanism behind prion-mediated neurodegeneration remains unclear. It is hypothesised than an unknown toxic gain of function of PrPSc, or an intermediate oligomeric form, underlies neuronal death. Increasing evidence suggests a role for the ubiquitin proteasome system (UPS) in prion disease. Both wild-type PrPC and disease-associated PrP isoforms accumulate in cells after proteasome inhibition leading to increased cell death, and abnormal beta-sheet-rich PrP isoforms have been shown to inhibit the catalytic activity of the proteasome. Here we review potential interactions between prions and the proteasome outlining how the UPS may be implicated in prion-mediated neurodegeneration.
Collapse
Affiliation(s)
- Pelagia Deriziotis
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | | |
Collapse
|
13
|
Crozet C, Lehmann S. [Prions: where do we stand 20 years after the appearance of bovine spongiform encephalopathy?]. Med Sci (Paris) 2007; 23:1148-57. [PMID: 18154718 DOI: 10.1051/medsci/200723121148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) identified twenty years ago in the British cattle herds. Creutzfeldt-Jakob disease (CJD) is a TSE that occurs in humans. In 1996, scientists found a possible link between BSE and a new variant of CJD (vCJD). The fact that the non conventional infectious agent of TSE, named prions, could cross the species barrier from cattle to human through meat consumption, raised a tremendous concern for public safety in Europe. This led to the development in the following two decades of substantial and expensive measures to contain BSE and prevent its transmission to humans. In parallel, scientific programs have been funded to progress through the comprehension of the physiopathology of these fatal disorders. In Europe, the BSE epidemics is now ending and the number of cases is decreasing thanks to the strict control of animal foodstuff that was the main source of prion contamination. Only a small number of vCJD have been detected, however, additional concerns have been raised recently for public safety as secondary transmission of CJD through medical procedure and blood transfusion is possible. In addition, the possibility that the BSE was transmitted to other animals including small ruminants is also worrisome. Research efforts are now focussing on decontamination and ante mortem diagnosis of TSE to prevent animal and human transmission. However, needs for fundamental research are still important as many questions remain to be addressed to understand the mechanism of prion transmission, as well as its pathogenesis.
Collapse
Affiliation(s)
- Carole Crozet
- Institut de Génétique Humaine, UPR1142 CNRS, CHU de Montpellier, UM1 Montpellier, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
14
|
Cai H, Hauser M, Naider F, Becker JM. Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:1805-13. [PMID: 17693598 PMCID: PMC2043388 DOI: 10.1128/ec.00257-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dal5p has been shown previously to act as an allantoate/ureidosuccinate permease and to play a role in the utilization of certain dipeptides as a nitrogen source in Saccharomyces cerevisiae. Here, we provide direct evidence that dipeptides are transported by Dal5p, although the affinity of Dal5p for allantoate and ureidosuccinate is higher than that for dipeptides. Allantoate, ureidosuccinate, and to a lesser extent allantoin competed with dipeptide transport by reducing the toxicity of the peptide Ala-Eth and decreasing the accumulation of [(14)C]Gly-Leu. In contrast to the well-studied di/tripeptide transporter Ptr2p, whose substrate specificity is very broad, Dal5p preferred to transport non-N-end rule dipeptides. S. cerevisiae W303 was sensitive to the toxic peptide Ala-Eth (non-N-end rule peptide) but not Leu-Eth (N-end rule peptide). Non-N-end rule dipeptides showed better competition with the uptake of [(14)C]Gly-Leu than N-end rule dipeptides. Similar to the regulation of PTR2, DAL5 expression was influenced by the addition of Leu and by the CUP9 gene. However, DAL5 expression was downregulated in the presence of leucine and the absence of CUP9, whereas PTR2 was upregulated. Toxic dipeptide and uptake assays indicated that either Ptr2p or Dal5p was predominantly used for dipeptide transport in the common laboratory strains S288c and W303, respectively. These studies highlight the complementary activities of two dipeptide transport systems under different regulatory controls in common laboratory yeast strains, suggesting that dipeptide transport pathways evolved to respond to different environmental conditions.
Collapse
Affiliation(s)
- Houjian Cai
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | | | | | | |
Collapse
|
15
|
Solans A, Zambrano A, Rodríguez M, Barrientos A. Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum Mol Genet 2006; 15:3063-81. [PMID: 16968735 DOI: 10.1093/hmg/ddl248] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dysfunction may play an important role in the pathogenic mechanism of Huntington's disease (HD). However, the exact mechanism by which mutated huntingtin could cause bioenergetic dysfunction is still unknown. We have constructed a stable inducible yeast model of HD by expressing a human huntingtin fragment containing a mutant polyglutamine tract of 103Q fused to green fluorescent protein (GFP), and a control expressing a wild-type 25Q domain fused to GFP in a wild-type strain. We showed that in yeast cells expressing 103Q, cell respiration was progressively reduced after 4-6 h of induction with galactose, down to 50% of the control after 10 h of induction. The cell respiration defect results from an alteration in the function and amount of mitochondrial respiratory chain complex II+III, in congruency to data obtained from postmortem brain of HD patients and from toxin models. In our model, the production of reactive oxygen species (ROS) is significantly enhanced in cells expressing 103Q. Quenching of ROS with resveratrol partially prevents the cell respiration defect. Mitochondrial morphology and distribution were also altered in cells expressing 103Q, probably resulting from the interaction of aggregates with portions of the mitochondrial web and from a progressive disruption of the actin cytoskeleton. We propose a mechanism for mitochondrial dysfunction in our yeast model of HD in which the interactions of misfolded/aggregated polyglutamine domains with the mitochondrial and actin networks lead to disturbances in mitochondrial distribution and function and to increase in ROS production. Oxidative damage could preferentially affect the stability and function of enzymes containing iron-sulfur clusters such as complexes II and III. Our yeast model represents a very useful paradigm to study mitochondrial physiology alterations in the pathogenic mechanism of HD.
Collapse
Affiliation(s)
- Asun Solans
- Department of Neurology, Dr. John T. Macdonald Foundation Center for Medical Genetics, University of Miami, Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
16
|
Zhang H, Sawashita J, Fu X, Korenaga T, Yan J, Mori M, Higuchi K. Transmissibility of mouse AApoAII amyloid fibrils: inactivation by physical and chemical methods. FASEB J 2006; 20:1012-4. [PMID: 16549653 DOI: 10.1096/fj.05-4890fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AApoAII amyloid fibrils have exhibited prion-like transmissibility in mouse senile amyloidosis. We have demonstrated that AApoAII is extremely active and can induce amyloidosis following doses less than 1 pg. We tested physical and chemical methods to disrupt AApoAII fibrils in vitro as determined by thioflavin T binding and electron microscopy (EM) as well as inactivating the transmissibility of AApoAII fibrils in vivo. Complete disruption of AApoAII fibrils was achieved by treatment with formic acid, 6 M guanidine hydrochloride, and autoclaving in an alkaline solution. Injection of these disrupted AApoAII fibrils did not induce amyloidosis in mice. Disaggregation with 6 M urea, autoclaving, and alkaline solution was incomplete, and injection of these AApoAII fibrils induced mild amyloidosis. Treatment with formalin, delipidation, freeze-thaw, and RNase did not have any major effect. A distinct correlation was obtained between the amounts of amyloid fibrils and the transmissibility of amyloid fibrils, thereby indicating the essential role of fibril conformation for transmission of amyloidosis. We also studied the inactivation of AApoAII fibrils by several organic compounds in vitro and in vivo. AApoAII amyloidosis provides a valuable system for studying factors that may prevent transmission of amyloid disease as well as potential novel therapies.
Collapse
Affiliation(s)
- Huanyu Zhang
- Department of Aging Biology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Si K, Lindquist S, Kandel E. A possible epigenetic mechanism for the persistence of memory. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:497-8. [PMID: 16117686 DOI: 10.1101/sqb.2004.69.497] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K Si
- Columbia University, Center for Neurobiology, New York, New York 10032, USA
| | | | | |
Collapse
|
18
|
Dalstra HJP, van der Zee R, Swart K, Hoekstra RF, Saupe SJ, Debets AJM. Non-mendelian inheritance of the HET-s prion or HET-s prion domains determines the het-S spore killing system in Podospora anserina. Fungal Genet Biol 2005; 42:836-47. [PMID: 16043372 DOI: 10.1016/j.fgb.2005.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/01/2005] [Accepted: 05/19/2005] [Indexed: 11/30/2022]
Abstract
Two alleles of the het-s/S locus occur naturally in the filamentous fungus Podospora anserina, het-s and het-S. The het-s encoded protein can form a prion that propagates a self-perpetuating amyloid aggregate, resulting in two phenotypes for the het-s strains. The prion-infected [Het-s] shows an antagonistic interaction to het-S whereas the prion-free [Het-s*] is neutral in interaction to het-S. The antagonism between [Het-s] and het-S is seen as heterokaryon incompatibility at the somatic level and as het-S spore killing in the sexual cycle. Two different domains of the HET-s and HET-S proteins have been identified, and a structure-function relationship has been established for interactions at the somatic level. In this study, we correlate accumulation of the HET-s and HET-S proteins (visualized using GFP) during the sexual cycle with timing of het-S spore abortion. Also, we present the structure-function relationship of the HET-s domains for interactions in the sexual cycle. We show that the constructs that ensure het-s incompatibility function in somatic mycelium are also active in het-S spore killing in the sexual cycle. In addition, paternal prion transmission and het-S spore killing has been found with the HET-s(157-289) truncated protein. The consequences of the unique transition from a coenocytic to a cellular state in the sexual phase and the timing, and localization of paternal and maternal HET-s and HET-S expression that are pertinent to prion transmission, and het-S spore killing are elaborated. These data further support our previously proposed model for het-S spore killing.
Collapse
Affiliation(s)
- Henk J P Dalstra
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Aron R, Lopez N, Walter W, Craig EA, Johnson J. In vivo bipartite interaction between the Hsp40 Sis1 and Hsp70 in Saccharomyces cerevisiae. Genetics 2005; 169:1873-82. [PMID: 15687271 PMCID: PMC1449600 DOI: 10.1534/genetics.104.037242] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The essential Hsp40, Sis1, is a J-protein cochaperone for the Ssa class of Hsp70's of Saccharomyces cerevisiae. Sis1 is required for the maintenance of the prion [RNQ(+)], as Sis1 lacking its 55-amino-acid glycine-rich region (G/F) does not maintain [RNQ(+)]. We report that overexpression of Sis1DeltaG/F in an otherwise wild-type strain had a negative effect on both cell growth and [RNQ(+)] maintenance, while overexpression of wild-type Sis1 did not. Overexpression of the related Hsp40 Ydj1 lacking its G/F region did not cause inhibition of growth, indicating that this dominant effect of Sis1DeltaG/F is not a characteristic shared by all Hsp40's. Analysis of small deletions within the SIS1 G/F region indicated that the observed dominant effects were caused by the absence of sequences known to be important for Sis1's unique cellular functions. These inhibitory effects of Sis1DeltaG/F were obviated by alterations in the N-terminal J-domain of Sis1 that affect interaction with Ssa's ATPase domain. In addition, a genetic screen designed to isolate additional mutations that relieved these inhibitory effects identified two residues in Sis1's carboxy-terminal domain. These alterations disrupted the interaction of Sis1 with the 10-kD carboxy-terminal regulatory domain of Ssa1, indicating that Sis1 has a bipartite interaction with Ssa in vivo.
Collapse
Affiliation(s)
- Rebecca Aron
- Department of Biochemistry, University of Wisconsin, Madison, 53706, USA
| | | | | | | | | |
Collapse
|
20
|
Collin P, Beauregard PB, Elagöz A, Rokeach LA. A non-chromosomal factor allows viability of Schizosaccharomyces pombe lacking the essential chaperone calnexin. J Cell Sci 2004; 117:907-18. [PMID: 14963023 DOI: 10.1242/jcs.00943] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calnexin is a molecular chaperone playing key roles in protein folding and the quality control of this process in the endoplasmic reticulum. We, and others, have previously demonstrated that cnx1(+), the gene encoding the calnexin homologue in Schizosaccharomyces pombe, is essential for viability. We show that a particular cnx1 mutant induces a novel mechanism allowing the survival of S. pombe cells in the absence of calnexin/Cnx1p. Calnexin independence is dominant in diploid cells and is inherited in a non-Mendelian manner. Remarkably, this survival pathway, bypassing the necessity for calnexin, can be transmitted by transformation of cell extracts into a wild-type naive strain, thus implicating a non-chromosomal factor. Nuclease and UV treatments of cells extracts did not obliterate transmission of calnexin independence by transformation. However, protease digestion of extracts did reduce the appearance of calnexin-independent cells, indicating that a protein element is required for calnexin-less viability. We discuss a model in which this calnexin-less survival mechanism would be activated and perpetuated by a protein component acting as a genetic element.
Collapse
Affiliation(s)
- Philippe Collin
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
21
|
Korenaga T, Fu X, Xing Y, Matsusita T, Kuramoto K, Syumiya S, Hasegawa K, Naiki H, Ueno M, Ishihara T, Hosokawa M, Mori M, Higuchi K. Tissue distribution, biochemical properties, and transmission of mouse type A AApoAII amyloid fibrils. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1597-606. [PMID: 15111306 PMCID: PMC2222805 DOI: 10.1016/s0002-9440(10)63718-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/15/2004] [Indexed: 11/18/2022]
Abstract
In mouse strains with the amyloidogenic apolipoprotein A-II (ApoA-II) gene (Apoa2c), the type C ApoA-II protein (APOAIIC) associates to form amyloid fibrils AApoAII(C) that lead to development of early onset and systemic amyloidosis with characteristic heavy amyloid deposits in the liver and spleen. We found age-associated heavy deposition of amyloid fibrils [AApoAII(A)] composed of type A ApoA-II protein (APOAIIA) in BDF1 and C57BL/6 mice reared at one of our institutes. AApoAII(A) fibrils were deposited in the intestine, lungs, tongue, and stomach but not in the liver or spleen. AApoAII(A) fibrils were isolated, and morphological, biochemical, and structural characteristics distinct from those seen in AApoAII(C) and mouse AA amyloid fibrils were found. Transmission electron and atomic force microscopy showed that the majority of isolated AApoAII(A) amyloid fibrils featured fine, protofibril-like shapes. AApoAII(A) fibrils have a much weaker affinity for thioflavine T than for AApoAII(C), whereas APOAIIA protein contains less of the beta-pleated sheet structure than does APOAIIC. The injection of AApoAII(A) fibrils induced amyloid deposition in C57BL/6 and DBA2 mice (Apoa2a) as well as in R1.P1-Apoa2c mice (Apoa2c), but AApoAII(A) induced more severe amyloidosis in Apoa2a strains than in the Apoa2c strain. It was found that AApoAII(A) fibrils isolated from mice with mildly amyloidogenic APOAIIA protein have distinct characteristics. Induction of amyloidosis by heterologous amyloid fibrils clearly showed interactions between amyloid protein monomers and fibrils having different primary structures.
Collapse
Affiliation(s)
- Tatsumi Korenaga
- Department of Aging Biology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nazabal A, Dos Reis S, Bonneu M, Saupe SJ, Schmitter JM. Conformational transition occurring upon amyloid aggregation of the HET-s prion protein of Podospora anserina analyzed by hydrogen/deuterium exchange and mass spectrometry. Biochemistry 2003; 42:8852-61. [PMID: 12873146 DOI: 10.1021/bi0344275] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [Het-s] infectious element of the filamentous fungus Podospora anserina corresponds to the prion form of the HET-s protein. HET-s (289 amino acids in length) aggregates into amyloid fibers in vitro. Such fibers obtained in vitro are infectious, indicating that the [Het-s] prion can propagate as a self-perpetuating amyloid aggregate of the HET-s protein. Previous analyses have suggested that only a limited region of the HET-s protein is involved in amyloid formation and prion propagation. To document the conformational transition occurring upon amyloid aggregation of HET-s, we have developed a method involving hydrogen/deuterium exchange monitored by MALDI-MS. In a first step, a peptide mass fingerprint of the protein was obtained, leading to 87% coverage of the HET-s primary structure. Amyloid aggregates of HET-s were obtained, and H/D exchange was monitored on the soluble and on the amyloid form of HET-s. This study revealed that in the soluble form of HET-s, the C-terminal region (spanning from residues 240-289) displays a high solvent accessibility. In sharp contrast, solvent accessibility is drastically reduced in that region in the amyloid form. H/D exchange rates and levels in the N-terminal part of the protein (residues 1-220) are comparable in the soluble and the aggregated state. These results indicate that amyloid aggregation of HET-s involves a conformational transition of the C-terminal part of the protein from a mainly disordered to an aggregated state in which this region is highly protected from hydrogen exchange.
Collapse
Affiliation(s)
- Alexis Nazabal
- CNRS FRE 2247 Institut Européen de Chimie et Biologie, 16, Avenue Pey Berland 33607 Pessac, France.
| | | | | | | | | |
Collapse
|
23
|
Hilleman MR. Overview of the needs and realities for developing new and improved vaccines in the 21st century. Intervirology 2003; 45:199-211. [PMID: 12566702 DOI: 10.1159/000067911] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The science of present day vaccinology is based on the pioneering discoveries of the late 18th and late 19th centuries and the technologic breakthroughs of the past 60 years. The driving force for the development of new vaccines resides in technologic feasibility, public need and economic incentive for translating the basic knowledge into a product. Past efforts by government to define which particular vaccines to develop were mostly irrelevant to the realistic choices which were made. There is a vast array of viral, bacterial, parasitic and fungal disease agents against which preventative vaccines may be developed, and to this may be added cancer and certain amyloidoses such as Alzheimer's and 'mad cow' diseases. The proven past for vaccines has relied on live, killed, protein and polysaccharide antigens plus the single example of recombinant-expressed hepatitis B vaccine. The validity of redirection of vaccinology to exploration of simplified vaccines such as recombinant vectored and DNA preparations and reductionist vaccines based on peptides of contrived epitope composition remains to be proved. Reductionism imposes vastly increased complexity and difficulty on vaccine development and might not be capable of achievement. The challenge in the 21st century will involve new and uncertain pathways toward worthwhile accomplishments.
Collapse
Affiliation(s)
- Maurice R Hilleman
- Merck Institute for Vaccinology, Merck & Co., Inc., West Point, Pa 19486, USA.
| |
Collapse
|
24
|
Abstract
Fungal prions are fascinating protein-based genetic elements. They alter cellular phenotypes through self-perpetuating changes in protein conformation and are cytoplasmically partitioned from mother cell to daughter. The four prions of Saccharomyces cerevisiae and Podospora anserina affect diverse biological processes: translational termination, nitrogen regulation, inducibility of other prions, and heterokaryon incompatibility. They share many attributes, including unusual genetic behaviors, that establish criteria to identify new prions. Indeed, other fungal traits that baffled microbiologists meet some of these criteria and might be caused by prions. Recent research has provided notable insight about how prions are induced and propagated and their many biological roles. The ability to become a prion appears to be evolutionarily conserved in two cases. [PSI(+)] provides a mechanism for genetic variation and phenotypic diversity in response to changing environments. All available evidence suggests that prions epigenetically modulate a wide variety of fundamental biological processes, and many await discovery.
Collapse
Affiliation(s)
- Susan M Uptain
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA.
| | | |
Collapse
|
25
|
Xing Y, Nakamura A, Korenaga T, Guo Z, Yao J, Fu X, Matsushita T, Kogishi K, Hosokawa M, Kametani F, Mori M, Higuchi K. Induction of protein conformational change in mouse senile amyloidosis. J Biol Chem 2002; 277:33164-9. [PMID: 12077115 DOI: 10.1074/jbc.m111570200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggregated amyloid fibrils can induce further polymerization of precursor proteins in vitro, thus providing a possible basis for propagation or transmission in the pathogenesis of amyloidoses. Previously, we postulated that the transmission of amyloid fibrils induces conformational changes of endogenous amyloid protein in mouse senile amyloidosis (Xing, Y., Nakamura, A., Chiba, T., Kogishi, K., Matsushita, T., Fu, L., Guo Z., Hosokawa, M., Mori, M., and Higuchi, K. (2001) Lab. Invest. 81, 493-499). To further characterize this transmissibility, we injected amyloid fibrils (AApoAII(C)) of amyloidogenic C type apolipoprotein A-II (APOAIIC) intravenously into 2-month-old SAMR1 mice, which have B type apolipoprotein A-II (APOAIIB), and develop few if any amyloid deposits spontaneously. 10 months after amyloid injection, deposits were detected in the tongue, stomach, intestine, lungs, heart, liver, and kidneys. The intensity of deposition increased thereafter, whereas no amyloid was detected in distilled water-injected SAMR1 mice, even after 20 months. The deposited amyloid was composed of endogenous APOAIIB with a different amyloid fibril conformation. The injection of these amyloid fibrils of APOAIIB (AApoAII(B)) induced earlier and more severe amyloidosis in SAMR1 mice than the injection of AApoAII(C) amyloid fibrils. Thus, AApoAII(C) from amyloidogenic mice could induce a conformational change of less amyloidogenic APOAIIB to a different amyloid fibril structure, which could also induce amyloidosis in the less amyloidogenic strain. These results provide important insights into the pathogenesis of amyloid diseases.
Collapse
Affiliation(s)
- Yanming Xing
- Department of Aging Angiology, Research Center on Aging and Adaptation, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Soto C, Saborio GP, Anderes L. Cyclic amplification of protein misfolding: application to prion-related disorders and beyond. Trends Neurosci 2002; 25:390-4. [PMID: 12127750 DOI: 10.1016/s0166-2236(02)02195-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Diverse human disorders, including the majority of neurodegenerative diseases, are thought to arise from the misfolding and aggregation of protein. We have recently described a novel technology to amplify cyclically misfolded proteins in vitro. This procedure, named protein misfolding cyclic amplification (PMCA), is conceptually analogous to DNA amplification by PCR and has tremendous implications for research and diagnosis. The PMCA concept has been proved on the amplification of prions implicated in the pathogenesis of transmissible spongiform encephalopathies. In this article we describe the rational behind PMCA and some of the many potential applications of this novel technology.
Collapse
|
27
|
Meriin AB, Zhang X, He X, Newnam GP, Chernoff YO, Sherman MY. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J Cell Biol 2002; 157:997-1004. [PMID: 12058016 PMCID: PMC2174031 DOI: 10.1083/jcb.200112104] [Citation(s) in RCA: 309] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The cause of Huntington's disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones Sis1 and Hsp104 inhibited seeding of polyQ aggregates, whereas ssa1, ssa2, and ydj1-151 mutations inhibited expansion of aggregates. The latter three mutants strongly suppressed the polyQ toxicity. Spontaneous mutants with suppressed aggregation appeared with high frequency, and in all of them the toxicity was relieved. Aggregation defects in these mutants and in sis1-85 were not complemented in the cross to the hsp104 mutant, demonstrating an unusual type of inheritance. Since Hsp104 is required for prion maintenance in yeast, this suggested a role for prions in polyQ aggregation and toxicity. We screened a set of deletions of nonessential genes coding for known prions and related proteins and found that deletion of the RNQ1 gene specifically suppressed aggregation and toxicity of polyQ. Curing of the prion form of Rnq1 from wild-type cells dramatically suppressed both aggregation and toxicity of polyQ. We concluded that aggregation of polyQ is critical for its toxicity and that Rnq1 in its prion conformation plays an essential role in polyQ aggregation leading to the toxicity.
Collapse
|
28
|
Abstract
The central theme in prion diseases is the conformational transition of a cellular protein from a physiologic to a pathologic (so-called scrapie) state. Currently, two alternative models exist for the mechanism of this autocatalytic process; in the template assistance model the prion is assumed to be a monomer of the scrapie conformer, whereas in the nucleated polymerization model it is thought to be an amyloid rod. A recent variation on the latter assumes disulfide reshuffling as the mechanism of polymerization. The existence of stable dimers, let alone their mechanistic role, is not taken into account in either of these models. In this paper we review evidence supporting that the dimerization of either the normal or the scrapie state, or both, has a decisive role in prion replication. The contribution of redox changes, i.e., the temporary opening and possible rearrangement of the intramolecular disulfide bridge is also considered. We present a model including these features largely ignored so far and show that it adheres satisfactorily to the observed phenomenology of prion replication.
Collapse
Affiliation(s)
- Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest
| | | | | | | |
Collapse
|
29
|
Cordeiro Y, Machado F, Juliano L, Juliano MA, Brentani RR, Foguel D, Silva JL. DNA converts cellular prion protein into the beta-sheet conformation and inhibits prion peptide aggregation. J Biol Chem 2001; 276:49400-9. [PMID: 11604397 DOI: 10.1074/jbc.m106707200] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which in most cases undergoes aggregation. In an organism infected with PrP(Sc), PrP(C) is converted into the beta-sheet form, generating more PrP(Sc). We find that sequence-specific DNA binding to recombinant murine prion protein (mPrP-(23-231)) converts it from an alpha-helical conformation (cellular isoform) into a soluble, beta-sheet isoform similar to that found in the fibrillar state. The recombinant murine prion protein and prion domains bind with high affinity to DNA sequences. Several double-stranded DNA sequences in molar excess above 2:1 (pH 4.0) or 0.5:1 (pH 5.0) completely inhibit aggregation of prion peptides, as measured by light scattering, fluorescence, and circular dichroism spectroscopy. However, at a high concentration, fibers (or peptide aggregates) can rescue the peptide bound to the DNA, converting it to the aggregating form. Our results indicate that a macromolecular complex of prion-DNA may act as an intermediate for the formation of the growing fiber. We propose that host nucleic acid may modulate the delicate balance between the cellular and the misfolded conformations by reducing the protein mobility and by making the protein-protein interactions more likely. In our model, the infectious material would act as a seed to rescue the protein bound to nucleic acid. Accordingly, DNA would act on the one hand as a guardian of the Sc conformation, preventing its propagation, but on the other hand may catalyze Sc conversion and aggregation if a threshold level is exceeded.
Collapse
Affiliation(s)
- Y Cordeiro
- Programa de Biologia Estrutural, Departamento de Bioquimica Médica, Instituto de Ciências Biomédicas and Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-590, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Ivanova L, Barmada S, Kummer T, Harris DA. Mutant prion proteins are partially retained in the endoplasmic reticulum. J Biol Chem 2001; 276:42409-21. [PMID: 11527974 DOI: 10.1074/jbc.m106928200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial prion diseases are linked to point and insertional mutations in the prion protein (PrP) gene that are presumed to favor conversion of the cellular isoform of PrP to the infectious isoform. In this report, we have investigated the subcellular localization of PrP molecules carrying pathogenic mutations using immunofluorescence staining, immunogold labeling, and PrP-green fluorescent protein chimeras. To facilitate visualization of the mutant proteins, we have utilized a novel Sindbis viral replicon engineered to produce high protein levels without cytopathology. We demonstrate that several different pathogenic mutations have a common effect on the trafficking of PrP, impairing delivery of the molecules to the cell surface and causing a portion of them to accumulate in the endoplasmic reticulum. These observations suggest that protein quality control in the endoplasmic reticulum may play an important role in prion diseases, as it does in some other inherited human disorders. Our experiments also show that chimeric PrP molecules with the sequence of green fluorescent protein inserted adjacent to the glycolipidation site are post-translationally modified and localized normally, thus documenting the utility of these constructs in cell biological studies of PrP.
Collapse
Affiliation(s)
- L Ivanova
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
31
|
Abstract
A great deal of effort has been devoted during the past 20 years to defining the chemical nature of prions, the infectious agents responsible for transmissible spongiform encephalopathies. In contrast, much less attention has been paid to elucidating how prions actually damage the central nervous system. Although it is commonly assumed that PrP(Sc), the protein constituent of infectious prions, is the primary culprit, increasing evidence indicates that this may not be the case. Several alternative molecular forms of PrP are reasonable candidates for the neurotoxic species in prion diseases, although it is still too early to tell whether these or other ones will turn out to be the true instigating factors. The cellular pathways activated by neurotoxic forms of PrP that ultimately result in neuronal death are also being investigated, and several possible mechanisms have been uncovered, including the operation of quality control processes in the endoplasmic reticulum. Elucidating the distinction between the infectious and neurotoxic forms of PrP has important implications for designing therapy of prion diseases, as well as for understanding pathogenic mechanisms operative in other neurodegenerative disorders and the role of prion-like states in biology.
Collapse
Affiliation(s)
- R Chiesa
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, 20157, Italy
| | | |
Collapse
|
32
|
Crystallization and preliminary X-ray crystallographic analysis of yeast prion protein Ure2p with shortened N-terminal. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf03183548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Klar AJ, Srikantha T, Soll DR. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 2001; 158:919-24. [PMID: 11404352 PMCID: PMC1461676 DOI: 10.1093/genetics/158.2.919] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most strains of Candida albicans undergo high frequency phenotypic switching. Strain WO-1 undergoes the white-opaque transition, which involves changes in colony and cellular morphology, gene expression, and virulence. We have hypothesized that the switch event involves heritable changes in chromatin structure. To test this hypothesis, we transiently exposed cells to the histone deacetylase inhibitor trichostatin-A (TSA). Treatment promoted a dramatic increase in the frequency of switching from white to opaque, but not opaque to white. Targeted deletion of HDA1, which encodes a deacetylase sensitive to TSA, had the same selective effect. These results support the model that the acetylation of histones plays a selective role in regulating the switching process.
Collapse
Affiliation(s)
- A J Klar
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute at Frederick, DHHS, NCI, DBS, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
34
|
Abstract
The prion protein displays a unique structural ambiguity in that it can adopt multiple stable conformations under physiological conditions. In our view, this puzzling feature resulted from a sudden environmental change in evolution when the prion, previously an integral membrane protein, got expelled into the extracellular space. Analysis of known vertebrate prions unveils a primordial transmembrane protein encrypted in their sequence, underlying this relocalization hypothesis. Apparently, the time elapsed since this event was insufficient to create a "minimally frustrated" sequence in the new milieu, probably due to the functional constraints set by the importance of the very flexibility that was created in the relocalization. This scenario may explain why, in a structural sense, the prion protein is still en route toward becoming a foldable globular protein.
Collapse
Affiliation(s)
- P Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary
| | | | | | | |
Collapse
|
35
|
Abstract
Transmissible spongiform encephalopathies - also known as prion-related diseases - are a group of fatal neurodegenerative disorders associated with the misfolding of prion protein. Several unprecedented scientific findings, which have directly confronted popular dogmas in biology, have put prion research in the spotlight. The experimental evidence supports an entirely novel disease mechanism, involving disease transmission by replication of protein conformation. Here, we describe exciting scientific findings that make the prion field attractively heretical, and we propose the transmission of protein conformation as a novel approach to producing drugs to combat a variety of diseases.
Collapse
Affiliation(s)
- C Soto
- Serono Pharmaceutical Research Institute, 14 Chemin des Aulx, 1228 Plan les Ouates, Geneva, Switzerland.
| | | |
Collapse
|
36
|
Abstract
The experimental evidence accumulated for the last half of the century clearly suggests that inherited variation is not restricted to the changes in genomic sequences. The prion model, originally based on unusual transmission of certain neurodegenerative diseases in mammals, provides a molecular mechanism for the template-like reproduction of alternative protein conformations. Recent data extend this model to protein-based genetic elements in yeast and other fungi. Reproduction and transmission of yeast protein-based genetic elements is controlled by the "prion replication" machinery of the cell, composed of the protein helpers responsible for the processes of assembly and disassembly of protein structures and multiprotein complexes. Among these, the stress-related chaperones of Hsp100 and Hsp70 groups play an important role. Alterations of levels or activity of these proteins result in "mutator" or "antimutator" affects in regard to protein-based genetic elements. "Protein mutagens" have also been identified that affect formation and/or propagation of the alternative protein conformations. Prion-forming abilities appear to be conserved in evolution, despite the divergence of the corresponding amino acid sequences. Moreover, a wide variety of proteins of different origins appear to possess the ability to form amyloid-like aggregates, that in certain conditions might potentially result in prion-like switches. This suggests a possible mechanism for the inheritance of acquired traits, postulated in the Lamarckian theory of evolution. The prion model also puts in doubt the notion that cloned animals are genetically identical to their genome donors, and suggests that genome sequence would not provide a complete information about the genetic makeup of an organism.
Collapse
Affiliation(s)
- Y O Chernoff
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, M/C 0363, 315 Ferst Drive, Atlanta, GA 30332-0363, USA.
| |
Collapse
|
37
|
Dobson CM. The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 2001; 356:133-45. [PMID: 11260793 PMCID: PMC1088418 DOI: 10.1098/rstb.2000.0758] [Citation(s) in RCA: 644] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability of proteins to fold to their functional states following synthesis in the intracellular environment is one of the most remarkable features of biology. Substantial progress has recently been made towards understanding the fundamental nature of the mechanism of the folding process. This understanding has been achieved through the development and concerted application of a variety of novel experimental and theoretical approaches to this complex problem. The emerging view of folding is that it is a stochastic process, but one biased by the fact that native-like interactions between residues are on average more stable than non-native ones. The sequences of natural proteins have emerged through evolutionary processes such that their unique native states can be found very efficiently even in the complex environment inside a living cell. But under some conditions proteins fail to fold correctly, or to remain correctly folded, in living systems, and this failure can result in a wide range of diseases. One group of diseases, known as amyloidoses, which includes Alzheimer's and the transmissible spongiform encephalopathies, involves deposition of aggregated proteins in a variety of tissues. These diseases are particularly intriguing because evidence is accumulating that the formation of the highly organized amyloid aggregates is a generic property of polypeptides, and not simply a feature of the few proteins associated with recognized pathological conditions. That such aggregates are not normally found in properly functional biological systems is again a testament to evolution, in this case of a variety of mechanisms inhibiting their formation. Understanding the nature of such protective mechanisms is a crucial step in the development of strategies to prevent and treat these debilitating diseases.
Collapse
Affiliation(s)
- C M Dobson
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QT, UK.
| |
Collapse
|
38
|
Thual C, Bousset L, Komar AA, Walter S, Buchner J, Cullin C, Melki R. Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p. Biochemistry 2001; 40:1764-73. [PMID: 11327838 DOI: 10.1021/bi001916l] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The [URE3] factor of Saccharomyces cerevisiae propagates by a prion-like mechanism and corresponds to the loss of the function of the cellular protein Ure2. The molecular basis of the propagation of this phenotype is unknown. We recently expressed Ure2p in Escherichia coli and demonstrated that the N-terminal region of the protein is flexible and unstructured, while its C-terminal region is compactly folded. Ure2p oligomerizes in solution to form mainly dimers that assemble into fibrils [Thual et al. (1999) J. Biol. Chem. 274, 13666-13674]. To determine the role played by each domain of Ure2p in the overall properties of the protein, specifically, its stability, conformation, and capacity to assemble into fibrils, we have further analyzed the properties of Ure2p N- and C-terminal regions. We show here that Ure2p dimerizes through its C-terminal region. We also show that the N-terminal region is essential for directing the assembly of the protein into a particular pathway that yields amyloid fibrils. A full-length Ure2p variant that possesses an additional tryptophan residue in its N-terminal moiety was generated to follow conformational changes affecting this domain. Comparison of the overall conformation, folding, and unfolding properties, and the behavior upon proteolytic treatments of full-length Ure2p, Ure2pW37 variant, and Ure2p C-terminal fragment reveals that Ure2p N-terminal domain confers no additional stability to the protein. This study reveals the existence of a stable unfolding intermediate of Ure2p under conditions where the protein assembles into amyloid fibrils. Our results contradict the intramolecular interaction between the N- and C-terminal moieties of Ure2p and the single unfolding transitions reported in a number of previous studies.
Collapse
Affiliation(s)
- C Thual
- Laboratoire d'Enzymologie et Biochimie Structurales and Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Bousset L, Belrhali H, Janin J, Melki R, Morera S. Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae. Structure 2001; 9:39-46. [PMID: 11342133 DOI: 10.1016/s0969-2126(00)00553-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The [URE3] non-Mendelian element of the yeast S. cerevisiae is due to the propagation of a transmissible form of the protein Ure2. The infectivity of Ure2p is thought to originate from a conformational change of the normal form of the prion protein. This conformational change generates a form of Ure2p that assembles into amyloid fibrils. Hence, knowledge of the three-dimensional structure of prion proteins such as Ure2p should help in understanding the mechanism of amyloid formation associated with a number of neurodegenerative diseases. RESULTS Here we report the three-dimensional crystal structure of the globular region of Ure2p (residues 95--354), also called the functional region, solved at 2.5 A resolution by the MAD method. The structure of Ure2p 95--354 shows a two-domain protein forming a globular dimer. The N-terminal domain is composed of a central 4 strand beta sheet flanked by four alpha helices, two on each side. In contrast, the C-terminal domain is entirely alpha-helical. The fold of Ure2p 95--354 resembles that of the beta class glutathione S-transferases (GST), in line with a weak similarity in the amino acid sequence that exists between these proteins. Ure2p dimerizes as GST does and possesses a potential ligand binding site, although it lacks GST activity. CONCLUSIONS The structure of the functional region of Ure2p is the first crystal structure of a prion protein. Structure comparisons between Ure2p 95--354 and GST identified a 32 amino acid residues cap region in Ure2p exposed to the solvent. The cap region is highly flexible and may interact with the N-terminal region of the partner subunit in the dimer. The implication of this interaction in the assembly of Ure2p into amyloid fibrils is discussed.
Collapse
Affiliation(s)
- L Bousset
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
40
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Moriyama H, Edskes HK, Wickner RB. [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol Cell Biol 2000; 20:8916-22. [PMID: 11073991 PMCID: PMC86546 DOI: 10.1128/mcb.20.23.8916-8922.2000] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The [URE3] nonchromosomal genetic element is an infectious form (prion) of the Ure2 protein, apparently a self-propagating amyloidosis. We find that an insertion mutation or deletion of HSP104 results in inability to propagate the [URE3] prion. Our results indicate that Hsp104 is a common factor in the maintenance of two independent yeast prions. However, overproduction of Hsp104 does not affect the stability of [URE3], in contrast to what is found for the [PSI(+)] prion, which is known to be cured by either overproduction or deficiency of Hsp104. Like Hsp104, the Hsp40 class chaperone Ydj1p, with the Hsp70 class Ssa1p, can renature proteins. We find that overproduction of Ydj1p results in a gradual complete loss of [URE3]. The involvement of protein chaperones in the propagation of [URE3] indicates a role for protein conformation in inheritance.
Collapse
Affiliation(s)
- H Moriyama
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
42
|
Caughey B. Transmissible spongiform encephalopathies, amyloidoses and yeast prions: common threads? Nat Med 2000; 6:751-4. [PMID: 10888922 DOI: 10.1038/77476] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- B Caughey
- Laboratory of Persistent Viral Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories 903 S. 4th St. Hamilton, Montana 59840 USA.
| |
Collapse
|
43
|
Affiliation(s)
- D A Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
Derkatch IL, Bradley ME, Masse SV, Zadorsky SP, Polozkov GV, Inge-Vechtomov SG, Liebman SW. Dependence and independence of [PSI(+)] and [PIN(+)]: a two-prion system in yeast? EMBO J 2000; 19:1942-52. [PMID: 10790361 PMCID: PMC305693 DOI: 10.1093/emboj/19.9.1942] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The [PSI(+)] prion can be induced by overproduction of the complete Sup35 protein, but only in strains carrying the non-Mendelian [PIN(+)] determinant. Here we demonstrate that just as [psi (-)] strains can exist as [PIN(+)] and [pin(-)] variants, [PSI(+)] can also exist in the presence or absence of [PIN(+)]. [PSI(+)] and [PIN(+)] tend to be cured together, but can be lost separately. [PSI(+)]-related phenotypes are not affected by [PIN(+)]. Thus, [PIN(+)] is required for the de novo formation of [PSI(+)], not for [PSI(+)] propagation. Although [PSI(+)] induction is shown to require [PIN(+)] even when the only overexpressed region of Sup35p is the prion domain, two altered prion domain fragments circumventing the [PIN(+)] requirement are characterized. Finally, in strains cured of [PIN(+)], prolonged incubation facilitates the reappearance of [PIN(+)]. Newly appearing [PIN(+)] elements are often unstable but become stable in some mitotic progeny. Such reversibility of curing, together with our previous demonstration that the inheritance of [PIN(+)] is non-Mendelian, supports the hypothesis that [PIN(+)] is a prion. Models for [PIN(+)] action, which explain these findings, are discussed.
Collapse
Affiliation(s)
- I L Derkatch
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 1999; 19:8103-12. [PMID: 10567536 PMCID: PMC84895 DOI: 10.1128/mcb.19.12.8103] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Accepted: 08/30/1999] [Indexed: 11/20/2022] Open
Abstract
Propagation of the yeast protein-based non-Mendelian element [PSI], a prion-like form of the release factor Sup35, was shown to be regulated by the interplay between chaperone proteins Hsp104 and Hsp70. While overproduction of Hsp104 protein cures cells of [PSI], overproduction of the Ssa1 protein of the Hsp70 family protects [PSI] from the curing effect of Hsp104. Here we demonstrate that another protein of the Hsp70 family, Ssb, previously implicated in nascent polypeptide folding and protein turnover, exhibits effects on [PSI] which are opposite those of Ssa. Ssb overproduction increases, while Ssb depletion decreases, [PSI] curing by the overproduced Hsp104. Both spontaneous [PSI] formation and [PSI] induction by overproduction of the homologous or heterologous Sup35 protein are increased significantly in the strain lacking Ssb. This is the first example when inactivation of an unrelated cellular protein facilitates prion formation. Ssb is therefore playing a role in protein-based inheritance, which is analogous to the role played by the products of mutator genes in nucleic acid-based inheritance. Ssb depletion also decreases toxicity of the overproduced Sup35 and causes extreme sensitivity to the [PSI]-curing chemical agent guanidine hydrochloride. Our data demonstrate that various members of the yeast Hsp70 family have diverged from each other in regard to their roles in prion propagation and suggest that Ssb could serve as a proofreading component of the enzymatic system, which prevents formation of prion aggregates.
Collapse
Affiliation(s)
- Y O Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| | | | | | | | | |
Collapse
|
46
|
Weihl CC, Roos RP. Creutzfeldt-Jakob disease, new variant creutzfeldt-jakob disease, and bovine spongiform encephalopathy. Neurol Clin 1999; 17:835-59. [PMID: 10517931 DOI: 10.1016/s0733-8619(05)70169-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Creutzfeldt-Jakob disease (CJD) is a subacute spongiform encephalopathy (SSE) that is manifested by a variety of neurologic signs that usually include dementia, myoclonus, and an abnormal electroencephalogram (EEG). In 1996, a new variant of CJD (nvCJD) with a somewhat distinctive clinical presentation and neuropathology was reported in adolescents and young adults, a cohort of patients not normally affected with CJD. The appearance of nvCJD coincided temporally and geographically with the emergence of an SSE in cattle known as bovine spongiform encephalopathy (BSE), or mad cow disease. This article discusses the clinical syndrome, pathology, and pathogenesis of classical CJD, nvCJD, and other human SSEs, as well as the link between BSE and nvCJD.
Collapse
Affiliation(s)
- C C Weihl
- Department of Neurology, University of Chicago Medical Center, Chicago, Illinois
| | | |
Collapse
|
47
|
Abstract
Recent studies of a transmembrane form of the prion protein (PrP) have indicated its importance for neuropathogenesis in certain contexts, and have analysed the transacting factors at the endoplasmic reticulum and the mutations within PrP that regulate its appearance. A significant focus for our understanding of the normal role of PrP has emerged from its interaction with copper ions. Studies on two yeast prions have analysed the structure and phenotype of the aggregated conformers underlying the prion state, as well as the interactions regulating their formation and turnover within a dividing cell.
Collapse
Affiliation(s)
- J P Brockes
- Department of Biochemistry and Molecular Biology University College London Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
48
|
Affiliation(s)
- C M Dobson
- Oxford Centre for Molecular Sciences, University of Oxford, New Chemistry Laboratory, South Parks Road, Oxford, UK OX1 3QT
| |
Collapse
|
49
|
Perrett S, Freeman SJ, Butler PJ, Fersht AR. Equilibrium folding properties of the yeast prion protein determinant Ure2. J Mol Biol 1999; 290:331-45. [PMID: 10388576 DOI: 10.1006/jmbi.1999.2872] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The yeast non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The [URE3] phenotype is equivalent to loss of function of Ure2, a protein involved in regulation of nitrogen metabolism. The prion-like behaviour of Ure2 in vivo is dependent on the first 65 amino acid residues of its N-terminal region which contains a highly repetitive sequence rich in asparagine. This region has been termed the prion-determining domain (PrD). Removal of as little as residues 2-20 of the protein is sufficient to prevent occurrence of the [URE3] phenotype. Removal of the PrD does not affect the regulatory activity of Ure2. The C-terminal portion of the protein has homology to glutathione S -transferases, which are dimeric proteins. We have produced the Ure2 protein to high yield in Escherichia coli from a synthetic gene. The recombinant purified protein is shown to be a dimer. The stability, folding and oligomeric state of Ure2 and a series of N-terminally truncated or deleted variants were studied and compared. The stability of Ure2, DeltaGD-N, H2O, determined by chemical denaturation and monitored by fluorescence, is 12.1(+/-0.4) kcal mol-1at 25 degrees C and pH 8.4. A range of structural probes show a single, coincident unfolding transition, which is invariant over a 550-fold change in protein concentration. The stability is the same within error for Ure2 variants lacking all or part of the prion-determining domain. The data indicate that in the folded protein the PrD is in an unstructured conformation and does not form specific intra- or intermolecular interactions at micromolar protein concentrations. This suggests that the C-terminal domain may stabilise the PrD against prion formation by steric means, and implies that the PrD does not induce prion formation by altering the thermodynamic stability of the folded protein.
Collapse
Affiliation(s)
- S Perrett
- Centre for Protein Engineering, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- S W Liebman
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607, USA.
| | | |
Collapse
|