1
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
2
|
de Pablo Y, Marasek P, Pozo-Rodrigálvarez A, Wilhelmsson U, Inagaki M, Pekna M, Pekny M. Vimentin Phosphorylation Is Required for Normal Cell Division of Immature Astrocytes. Cells 2019; 8:cells8091016. [PMID: 31480524 PMCID: PMC6769829 DOI: 10.3390/cells8091016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Vimentin (VIM) is an intermediate filament (nanofilament) protein expressed in multiple cell types, including astrocytes. Mice with VIM mutations of serine sites phosphorylated during mitosis (VIMSA/SA) show cytokinetic failure in fibroblasts and lens epithelial cells, chromosomal instability, facilitated cell senescence, and increased neuronal differentiation of neural progenitor cells. Here we report that in vitro immature VIMSA/SA astrocytes exhibit cytokinetic failure and contain vimentin accumulations that co-localize with mitochondria. This phenotype is transient and disappears with VIMSA/SA astrocyte maturation and expression of glial fibrillary acidic protein (GFAP); it is also alleviated by the inhibition of cell proliferation. To test the hypothesis that GFAP compensates for the effect of VIMSA/SA in astrocytes, we crossed the VIMSA/SA and GFAP−/− mice. Surprisingly, the fraction of VIMSA/SA immature astrocytes with abundant vimentin accumulations was reduced when on GFAP−/− background. This indicates that the disappearance of vimentin accumulations and cytokinetic failure in mature astrocyte cultures are independent of GFAP expression. Both VIMSA/SA and VIMSA/SAGFAP−/− astrocytes showed normal mitochondrial membrane potential and vulnerability to H2O2, oxygen/glucose deprivation, and chemical ischemia. Thus, mutation of mitotic phosphorylation sites in vimentin triggers formation of vimentin accumulations and cytokinetic failure in immature astrocytes without altering their vulnerability to oxidative stress.
Collapse
Affiliation(s)
- Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Andrea Pozo-Rodrigálvarez
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie 5148507, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, New South Wales 2308, Australia
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden.
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.
- University of Newcastle, New South Wales 2308, Australia.
| |
Collapse
|
3
|
Vahabikashi A, Park CY, Perkumas K, Zhang Z, Deurloo EK, Wu H, Weitz DA, Stamer WD, Goldman RD, Fredberg JJ, Johnson M. Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness. Biophys J 2019; 116:518-529. [PMID: 30685055 DOI: 10.1016/j.bpj.2018.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
In development, wound healing, and pathology, cell biomechanical properties are increasingly recognized as being of central importance. To measure these properties, experimental probes of various types have been developed, but how each probe reflects the properties of heterogeneous cell regions has remained obscure. To better understand differences attributable to the probe technology, as well as to define the relative sensitivity of each probe to different cellular structures, here we took a comprehensive approach. We studied two cell types-Schlemm's canal endothelial cells and mouse embryonic fibroblasts (MEFs)-using four different probe technologies: 1) atomic force microscopy (AFM) with sharp tip, 2) AFM with round tip, 3) optical magnetic twisting cytometry (OMTC), and 4) traction microscopy (TM). Perturbation of Schlemm's canal cells with dexamethasone treatment, α-actinin overexpression, or RhoA overexpression caused increases in traction reported by TM and stiffness reported by sharp-tip AFM as compared to corresponding controls. By contrast, under these same experimental conditions, stiffness reported by round-tip AFM and by OMTC indicated little change. Knockout (KO) of vimentin in MEFs caused a diminution of traction reported by TM, as well as stiffness reported by sharp-tip and round-tip AFM. However, stiffness reported by OMTC in vimentin-KO MEFs was greater than in wild type. Finite-element analysis demonstrated that this paradoxical OMTC result in vimentin-KO MEFs could be attributed to reduced cell thickness. Our results also suggest that vimentin contributes not only to intracellular network stiffness but also cortex stiffness. Taken together, this evidence suggests that AFM sharp tip and TM emphasize properties of the actin-rich shell of the cell, whereas round-tip AFM and OMTC emphasize those of the noncortical intracellular network.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Chan Young Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kristin Perkumas
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Zhiguo Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Emily K Deurloo
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Huayin Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts; Department of Physics, Harvard University, Cambridge, Massachusetts
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Mechanical Engineering, Northwestern University, Evanston, Illinois.
| |
Collapse
|
4
|
Tsikitis M, Galata Z, Mavroidis M, Psarras S, Capetanaki Y. Intermediate filaments in cardiomyopathy. Biophys Rev 2018; 10:1007-1031. [PMID: 30027462 DOI: 10.1007/s12551-018-0443-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece.
| |
Collapse
|
5
|
Abstract
INTRODUCTION Stroke is a major cause of disability and the fifth leading cause of death. Currently, the only approved acute medical treatment of ischemic stroke is tissue plasminogen activator (tPA), but its effectiveness is greatly predicated upon early administration of the drug. There is, therefore, an urgent need to find new therapeutic options for acute stroke. Areas covered: In this review, we summarize the role of Rho-associated coiled-coil containing kinase (ROCK) and its potential as a therapeutic target in stroke pathophysiology. ROCK is a major regulator of cell contractility, motility, and proliferation. Many of these ROCK-mediated processes in endothelial cells, vascular smooth muscle cells, pericytes, astrocytes, glia, neurons, leukocytes, and platelets are important in stroke pathophysiology, and the inhibition of such processes could improve stroke outcome. Expert commentary: ROCK is a potential therapeutic target for cardiovascular disease and ROCK inhibitors have already been approved for human use in Japan and China for the treatment of acute stroke. Further studies are needed to determine the role of ROCK isoforms in the pathophysiology of cerebral ischemia and whether there are further therapeutic benefits with selective ROCK inhibitors.
Collapse
Affiliation(s)
- Nikola Sladojevic
- a Department of Medicine, Section of Cardiology , University of Chicago , Chicago , IL , USA
| | - Brian Yu
- a Department of Medicine, Section of Cardiology , University of Chicago , Chicago , IL , USA
| | - James K Liao
- a Department of Medicine, Section of Cardiology , University of Chicago , Chicago , IL , USA
| |
Collapse
|
6
|
Chen M, Puschmann TB, Marasek P, Inagaki M, Pekna M, Wilhelmsson U, Pekny M. Increased Neuronal Differentiation of Neural Progenitor Cells Derived from Phosphovimentin-Deficient Mice. Mol Neurobiol 2017; 55:5478-5489. [PMID: 28956310 PMCID: PMC5994207 DOI: 10.1007/s12035-017-0759-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/27/2017] [Indexed: 01/06/2023]
Abstract
Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIMSA/SA) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIMSA/SA astrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIMSA/SA astrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIMSA/SA neurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.
Collapse
Affiliation(s)
- Meng Chen
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Till B Puschmann
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia. .,University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
7
|
Makihara H, Inaba H, Enomoto A, Tanaka H, Tomono Y, Ushida K, Goto M, Kurita K, Nishida Y, Kasahara K, Goto H, Inagaki M. Desmin phosphorylation by Cdk1 is required for efficient separation of desmin intermediate filaments in mitosis and detected in murine embryonic/newborn muscle and human rhabdomyosarcoma tissues. Biochem Biophys Res Commun 2016; 478:1323-9. [PMID: 27565725 DOI: 10.1016/j.bbrc.2016.08.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 11/25/2022]
Abstract
Desmin is a type III intermediate filament (IF) component protein expressed specifically in muscular cells. Desmin is phosphorylated by Aurora-B and Rho-kinase specifically at the cleavage furrow from anaphase to telophase. The disturbance of this phosphorylation results in the formation of unusual long bridge-like IF structures (IF-bridge) between two post-mitotic (daughter) cells. Here, we report that desmin also serves as an excellent substrate for the other type of mitotic kinase, Cdk1. Desmin phosphorylation by Cdk1 loses its ability to form IFs in vitro. We have identified Ser6, Ser27, and Ser31 on murine desmin as phosphorylation sites for Cdk1. Using a site- and phosphorylation-state-specific antibody for Ser31 on desmin, we have demonstrated that Cdk1 phosphorylates desmin in entire cytoplasm from prometaphase to metaphase. Desmin mutations at Cdk1 sites exhibit IF-bridge phenotype, the frequency of which is significantly increased by the addition of Aurora-B and Rho-kinase site mutations to Cdk1 site mutations. In addition, Cdk1-induced desmin phosphorylation is detected in mitotic muscular cells of murine embryonic/newborn muscles and human rhabdomyosarcoma specimens. Therefore, Cdk1-induced desmin phosphorylation is required for efficient separation of desmin-IFs and generally detected in muscular mitotic cells in vivo.
Collapse
Affiliation(s)
- Hiroyuki Makihara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Hironori Inaba
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroki Tanaka
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Yasuko Tomono
- Division of Molecular and Cell Biology, Shigei Medical Research Institute, Okayama, 701-0202, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mitsuo Goto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Kenichi Kurita
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Physiology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Physiology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
8
|
Li J, Wang R, Tang DD. Vimentin dephosphorylation at ser-56 is regulated by type 1 protein phosphatase in smooth muscle. Respir Res 2016; 17:91. [PMID: 27457922 PMCID: PMC4960799 DOI: 10.1186/s12931-016-0415-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/21/2016] [Indexed: 11/22/2022] Open
Abstract
Background The intermediate filament protein vimentin undergoes reversible phosphorylation and dephosphorylation at Ser-56, which plays an important role in regulating the contraction-relaxation cycles of smooth muscle. The protein phosphatases that mediate vimentin dephosphorylation in smooth muscle have not been previously investigated. Methods The associations of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) with vimentin in mouse tracheal rings was evaluated by co-immunoprecipitation. Lentivirus-mediated shRNA against PP1 was used to assess the role of PP1 in vimentin dephosphorylation and the vimentin-associated process in smooth muscle. Results Co-immunoprecipitation analysis showed that vimentin interacted with PP1, but barely with PP2A, in airway smooth muscle. Knockdown of PP1 by lentivirus-mediated shRNA increased the acetylcholine-induced vimentin phosphorylation and smooth muscle contraction. Because vimentin phosphorylation is able to modulate p130 Crk-associated substrate (p130CAS) and actin polymerization, we also evaluated the role of PP1 in the biological processes. Silencing of PP1 also enhanced the agonist-induced the dissociation of p130CAS from vimentin and F/G-actin ratios (an index of actin polymerization). However, PP1 knockdown did not affect c-Abl tyrosine phosphorylation, an important molecule that controls actin dynamics. Conclusions Taken together, these findings suggest that PP1 is a key protein serine/threonine phosphatase that controls vimentin Ser-56 dephosphorylation in smooth muscle. PP1 regulates actin polymerization by modulating the dissociation of p130CAS from vimentin, but not by affecting c-Abl tyrosine kinase.
Collapse
Affiliation(s)
- Jia Li
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA.
| |
Collapse
|
9
|
Goto H, Tanaka H, Kasahara K, Inagaki M. Phospho-Specific Antibody Probes of Intermediate Filament Proteins. Methods Enzymol 2016; 568:85-111. [DOI: 10.1016/bs.mie.2015.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Otsu K, Harada H. Rho GTPases in ameloblast differentiation. JAPANESE DENTAL SCIENCE REVIEW 2015; 52:32-40. [PMID: 28408954 PMCID: PMC5382790 DOI: 10.1016/j.jdsr.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
During tooth development, ameloblasts differentiate from inner enamel epithelial cells to enamel-forming cells by modulating the signal pathways mediating epithelial–mesenchymal interaction and a cell-autonomous gene network. The differentiation process of epithelial cells is characterized by marked changes in their morphology and polarity, accompanied by dynamic cytoskeletal reorganization and changes in cell–cell and cell–matrix adhesion over time. Functional ameloblasts are tall, columnar, polarized cells that synthesize and secrete enamel-specific proteins. After deposition of the full thickness of enamel matrix, ameloblasts become smaller and regulate enamel maturation. Recent significant advances in the fields of molecular biology and genetics have improved our understanding of the regulatory mechanism of the ameloblast cell life cycle, mediated by the Rho family of small GTPases. They act as intracellular molecular switch that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. In our review, we summarize studies that provide current evidence for Rho GTPases and their involvement in ameloblast differentiation. In addition to the Rho GTPases themselves, their downstream effectors and upstream regulators have also been implicated in ameloblast differentiation.
Collapse
Affiliation(s)
- Keishi Otsu
- Corresponding author. Tel.: +81 19 651 5111x5881; fax: +81 19 908 8017.
| | | |
Collapse
|
11
|
Bear MD, Liu T, Abualkhair S, Ghamloush MA, Hill NS, Preston I, Fanburg BL, Kayyali US, Toksoz D. Alpha-Catulin Co-Localizes With Vimentin Intermediate Filaments and Functions in Pulmonary Vascular Endothelial Cell Migration via ROCK. J Cell Physiol 2015; 231:934-43. [PMID: 26377600 DOI: 10.1002/jcp.25185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/03/2015] [Indexed: 01/01/2023]
Abstract
The ubiquitous α-catulin acts as a scaffold for distinct signalosomes including RhoA/ROCK; however, its function is not well understood. While α-catulin has homology to the cytoskeletal linkers α-catenin and vinculin, it appears to be functionally divergent. Here we further investigated α-catulin function in pulmonary vascular endothelial cells (VEC) on the premise that α-catulin has a unique cytoskeletal role. Examination of endogenous α-catulin intracellular localization by immunofluorescence revealed a highly organized cytosolic filamentous network suggestive of a cytoskeletal system in a variety of cultured VEC. Double-immunofluorescence analyses of VEC showed endogenous α-catulin co-localization with vimentin intermediate filaments. Similar to vimentin, α-catulin was found to distribute into detergent-soluble and -insoluble fractions. Treatment of VEC with withaferinA, an agent that targets vimentin filaments, disrupted the α-catulin network distribution and altered α-catulin solubility. Vimentin participates in cell migration, and withaferinA was found to inhibit VEC migration in vitro; similarly, α-catulin knock-down reduced VEC migration. Based on previous reports showing that ROCK modulates vimentin, we found that ROCK depletion attenuated VEC migration; furthermore, α-catulin depletion was shown to reduce ROCK-induced signaling. These findings indicate that α-catulin has a unique function in co-localization with vimentin filaments that contributes to VEC migration via a pathway that may involve ROCK signaling. J. Cell. Physiol. 231: 934-943, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael D Bear
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Tiegang Liu
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Shereen Abualkhair
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | | | - Nicholas S Hill
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Ioana Preston
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Barry L Fanburg
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Usamah S Kayyali
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Deniz Toksoz
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
12
|
Hyder CL, Kemppainen K, Isoniemi KO, Imanishi SY, Goto H, Inagaki M, Fazeli E, Eriksson JE, Törnquist K. Sphingolipids inhibit vimentin-dependent cell migration. J Cell Sci 2015; 128:2057-69. [PMID: 25908861 DOI: 10.1242/jcs.160341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), can induce or inhibit cellular migration. The intermediate filament protein vimentin is an inducer of migration and a marker for epithelial-mesenchymal transition. Given that keratin intermediate filaments are regulated by SPC, with consequences for cell motility, we wanted to determine whether vimentin is also regulated by sphingolipid signalling and whether it is a determinant for sphingolipid-mediated functions. In cancer cells where S1P and SPC inhibited migration, we observed that S1P and SPC induced phosphorylation of vimentin on S71, leading to a corresponding reorganization of vimentin filaments. These effects were sphingolipid-signalling-dependent, because inhibition of either the S1P2 receptor (also known as S1PR2) or its downstream effector Rho-associated kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) nullified the sphingolipid-induced effects on vimentin organization and S71 phosphorylation. Furthermore, the anti-migratory effect of S1P and SPC could be prevented by expressing S71-phosphorylation-deficient vimentin. In addition, we demonstrated, by using wild-type and vimentin-knockout mouse embryonic fibroblasts, that the sphingolipid-mediated inhibition of migration is dependent on vimentin. These results imply that this newly discovered sphingolipid-vimentin signalling axis exerts brake-and-throttle functions in the regulation of cell migration.
Collapse
Affiliation(s)
- Claire L Hyder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kati Kemppainen
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kimmo O Isoniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Environmental Science Lab, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku. Nagoya 468-8503, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya 466-8550, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya 466-8550, Japan
| | - Elnaz Fazeli
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kid Törnquist
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
13
|
Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 2014; 5:e29846. [PMID: 25010901 PMCID: PMC4114931 DOI: 10.4161/sgtp.29846] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 12/29/2022] Open
Abstract
Rho-associated coiled-coil containing kinases (ROCK) were originally identified as effectors of the RhoA small GTPase. (1)(-) (5) They belong to the AGC family of serine/threonine kinases (6) and play vital roles in facilitating actomyosin cytoskeleton contractility downstream of RhoA and RhoC activation. Since their discovery, ROCK kinases have been extensively studied, unveiling their manifold functions in processes including cell contraction, migration, apoptosis, survival, and proliferation. Two mammalian ROCK homologs have been identified, ROCK1 (also called ROCK I, ROKβ, Rho-kinase β, or p160ROCK) and ROCK2 (also known as ROCK II, ROKα, or Rho kinase), hereafter collectively referred to as ROCK. In this review, we will focus on the structure, regulation, and functions of ROCK.
Collapse
Affiliation(s)
- Linda Julian
- Beatson Institute for Cancer Research; Glasgow, UK
| | | |
Collapse
|
14
|
Goto H, Inagaki M. New insights into roles of intermediate filament phosphorylation and progeria pathogenesis. IUBMB Life 2014; 66:195-200. [PMID: 24659572 DOI: 10.1002/iub.1260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/06/2014] [Indexed: 01/20/2023]
Abstract
Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Because of their insoluble nature, cellular IFs had been considered to be stable for a long time. The discovery that a purified protein kinase phosphorylated a purified IF protein and in turn induced the disassembly of IF structure in vitro led to the novel concept of dynamic IF regulation. Since then, a variety of protein kinases have been identified to phosphorylate IF proteins such as vimentin in a spatiotemporal regulated manner. A series of studies using cultured cells have demonstrated that preventing IF phosphorylation during mitosis inhibits cytokinesis by the retention of an IF bridge-like structure (IF-bridge) connecting the two daughter cells. Knock-in mice expressing phosphodeficient vimentin variants developed binucleation/aneuploidy in lens epithelial cells, which promoted microophthalmia and lens cataract. Therefore, mitotic phosphorylation of vimentin is of great importance in the completion of cytokinesis, the impairment of which promotes chromosomal instability and premature aging. © 2014 IUBMB Life, 66(3):195-200, 2014.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| |
Collapse
|
15
|
Monici M, Cialdai F, Ranaldi F, Paoli P, Boscaro F, Moneti G, Caselli A. Effect of IR laser on myoblasts: a proteomic study. MOLECULAR BIOSYSTEMS 2014; 9:1147-61. [PMID: 23364335 DOI: 10.1039/c2mb25398d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Laser therapy is used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of this research was to get insight into possible benefits deriving from the application of an advanced IR laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of hypotrophic tissue. We studied the effect of IR laser treatment on proliferation, differentiation, cytoskeleton organization and global protein expression in C2C12 myoblasts. We found that laser treatment induced a decrease in the cell proliferation rate without affecting cell viability, while leading to cytoskeletal rearrangement and expression of the early differentiation marker MyoD. The differential proteome analysis revealed the up-regulation and/or modulation of many proteins known to be involved in cell cycle regulation, cytoskeleton organization and differentiation.
Collapse
Affiliation(s)
- Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Dept. Clinical Physiopathology, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Otsu K, Sakano M, Masuda T, Fujiwara N, Harada H. The role of Rho-kinases in ameloblast differentiation. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, Hayashi Y, Kondo E, Itohara S, Izawa I, Inagaki M. Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. J Biol Chem 2013; 288:35626-35. [PMID: 24142690 PMCID: PMC3861614 DOI: 10.1074/jbc.m113.514737] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.
Collapse
|
18
|
Winter DL, Paulin D, Mericskay M, Li Z. Posttranslational modifications of desmin and their implication in biological processes and pathologies. Histochem Cell Biol 2013; 141:1-16. [DOI: 10.1007/s00418-013-1148-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
|
19
|
Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 2013; 48:301-16. [PMID: 23601011 DOI: 10.3109/10409238.2013.786671] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.
Collapse
Affiliation(s)
- Alice V Schofield
- St Vincent's Institute of Medical Research, Cytoskeleton and Cancer Unit and Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria 3065, Australia
| | | |
Collapse
|
20
|
Rana MK, Worthylake RA. Novel mechanism for negatively regulating Rho-kinase (ROCK) signaling through Coronin1B protein in neuregulin 1 (NRG-1)-induced tumor cell motility. J Biol Chem 2012; 287:21836-45. [PMID: 22563075 DOI: 10.1074/jbc.m112.346114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although many mechanisms that activate ROCK are known, corresponding negative regulatory mechanisms required for cytoskeletal plasticity are poorly understood. We have discovered that Coronin1B is a novel attenuator of ROCK signaling. We initially identified Coronin1A in a proteomics screen for ROCK2-binding proteins, and here we demonstrate that Coronin1A/B bind directly to ROCK2 through its PH (Pleckstrin Homology) domain. The consequence of the ROCK2-Coronin1B interaction was tested and revealed that increased expression of Coronin1B inhibited, whereas knockdown of Coronin1B stimulated, phosphorylation of the ROCK substrate myosin light chain phosphatase and subsequently, myosin light chain. Thus, Coronin1B is a previously unrecognized inhibitor of ROCK signaling to myosin. Furthermore, we found that the phosphatase Slingshot IL (SSH1L) was required for Coronin1B to inhibit ROCK signaling. To test the significance of this novel mechanism in tumor cell motility, we investigated its role in neuregulin 1 (NRG-1)-induced cell scattering. Importantly, we found that attenuation of the ROCK signaling by Coronin1B was required for NRG-1 stimulated scattering. Our data support a model in which Coronin1B fine-tunes ROCK signaling to modulate myosin activity, which is important for tumor cell motility.
Collapse
Affiliation(s)
- Manish K Rana
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70119, USA
| | | |
Collapse
|
21
|
Lee KY, Liu L, Jin Y, Fu SB, Rosales JL. Cdk5 mediates vimentin Ser56 phosphorylation during GTP-induced secretion by neutrophils. J Cell Physiol 2012; 227:739-50. [PMID: 21465480 DOI: 10.1002/jcp.22782] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Secretion by neutrophils contributes to acute inflammation following injury or infection. Vimentin has been shown to be important for secretion by neutrophils but little is known about its dynamics during secretion, which is regulated by cyclin-dependent kinase 5 (Cdk5). In this study, we sought to examine the vimentin dynamics and its potential regulation by Cdk5 during neutrophil secretion. We show that vimentin is a Cdk5 substrate that is specifically phosphorylated at Ser56. In response to neutrophil stimulation with GTP, vimentin Ser56 was phosphorylated and colocalized with Cdk5 in the cytoplasmic compartment. Vimentin pSer56 and Cdk5 colocalization was consistent with coimmunoprecipitation from stimulated cells. Vimentin Ser56 phosphorylation occurred immediately after stimulation, and a remarkable increase in phosphorylation was noted later in the secretory process. Decreased GTP-induced vimentin Ser56 phosphorylation and secretion resulted from inhibition of Cdk5 activity by roscovitine or olomoucine or by depletion of Cdk5 by siRNA, suggesting that GTP-induced Cdk5-mediated vimentin Ser56 phosphorylation may be related to GTP-induced Cdk5-mediated secretion by neutrophils. Indeed, inhibition of vimentin Ser56 phosphorylation led to a corresponding inhibition of GTP-induced secretion, indicating a link between these two events. While fMLP also induced vimentin Ser56 phosphorylation, such phosphorylation was unaffected by roscovitine, which nonetheless, inhibited secretion, suggesting that Cdk5 regulates fMLP-induced secretion via a mechanism independent of Cdk5-mediated vimentin Ser56 phosphorylation. These findings demonstrate the distinct involvement of Cdk5 in GTP- and fMLP-induced secretion by neutrophils, and support the notion that specific targeting of Cdk5 may serve to inhibit the neutrophil secretory process.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
22
|
Abstract
Podosomes are dynamic actin-enriched membrane structures that play an important role in invasive cell motility and extracellular matrix degradation. They are often found to assemble into large rosettelike structures in highly invasive cells. However, the mechanism of this assembly remains obscure. In this study, we identified focal adhesion kinase (FAK) as a key molecule necessary for assembly. Moreover, phosphorylation of p130Cas and suppression of Rho signaling by FAK were found to be important for FAK to induce the assembly of podosome rosettes. Finally, we found that suppression of vimentin intermediate filaments by FAK facilitates the assembly of podosome rosettes. Collectively, our results strongly suggest a link between FAK, podosome rosettes, and tumor invasion and unveil a negative role for Rho signaling and vimentin filaments in podosome rosette assembly.
Collapse
Affiliation(s)
- Yi-Ru Pan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | | | | |
Collapse
|
23
|
Halperin-Barlev O, Kalcheim C. Sclerotome-derived Slit1 drives directional migration and differentiation of Robo2-expressing pioneer myoblasts. Development 2011; 138:2935-45. [PMID: 21653616 DOI: 10.1242/dev.065714] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pioneer myoblasts generate the first myotomal fibers and act as a scaffold to pattern further myotome development. From their origin in the medial epithelial somite, they dissociate and migrate towards the rostral edge of each somite, from which differentiation proceeds in both rostral-to-caudal and medial-to-lateral directions. The mechanisms underlying formation of this unique wave of pioneer myofibers remain unknown. We show that rostrocaudal or mediolateral somite inversions in avian embryos do not alter the original directions of pioneer myoblast migration and differentiation into fibers, demonstrating that regulation of pioneer patterning is somite-intrinsic. Furthermore, pioneer myoblasts express Robo2 downstream of MyoD and Myf5, whereas the dermomyotome and caudal sclerotome express Slit1. Loss of Robo2 or of sclerotome-derived Slit1 function perturbed both directional cell migration and fiber formation, and their effects were mediated through RhoA. Although myoblast specification was not affected, expression of the intermediate filament desmin was reduced. Hence, Slit1 and Robo2, via RhoA, act to pattern formation of the pioneer myotome through the regulation of cytoskeletal assembly.
Collapse
Affiliation(s)
- Osnat Halperin-Barlev
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
24
|
Membrane-initiated actions of thyroid hormones on the male reproductive system. Life Sci 2011; 89:507-14. [PMID: 21557952 DOI: 10.1016/j.lfs.2011.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 11/22/2022]
Abstract
The presence of specific nuclear receptors to thyroid hormones, described in prepubertal Sertoli cells, implies the existence of an early and critical influence of these hormones on testis development. Although the mechanism of action thyroid hormones has been classically established as a genomic action regulating testis development, our research group has demonstrated that these hormones exert several effects in Sertoli cells lacking nuclear receptor activation. These findings led to the identification of non-classical thyroid hormone binding elements in the plasma membrane of testicular cells. Through binding to these sites, thyroid hormones could exert nongenomic effects, including those on ion fluxes at the plasma membrane, on signal transduction via kinase pathways, on amino acid accumulation, on modulation of extracellular nucleotide levels and on vimentin cytoskeleton. The evidence of the participation of different K(+), Ca(2+) and Cl(-) channels in the mechanism of action of thyroid hormones, characterizes the plasma membrane as an important microenvironment able to coordinate strategic signal transduction pathways in rat testis. The physiological responses of the Sertoli cells to hormones are dependent on continuous cross-talking of different signal transduction pathways. Apparently, the choice of the signaling pathways to be activated after the interaction of the hormone with cell surface binding sites is directly related to the physiological action to be accomplished. Yet, the enormous complexity of the nongenomic actions of thyroid hormones implies that different specific binding sites located on the plasma membrane or in the cytosol are believed to initiate specific cell responses.
Collapse
|
25
|
Liu T, Guevara OE, Warburton RR, Hill NS, Gaestel M, Kayyali US. Regulation of vimentin intermediate filaments in endothelial cells by hypoxia. Am J Physiol Cell Physiol 2010; 299:C363-73. [PMID: 20427712 DOI: 10.1152/ajpcell.00057.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia triggers responses in endothelial cells that play roles in many conditions including high-altitude pulmonary edema and tumor angiogenesis. Signaling pathways activated by hypoxia modify cytoskeletal and contractile proteins and alter the biomechanical properties of endothelial cells. Intermediate filaments are major components of the cytoskeleton whose contribution to endothelial physiology is not well understood. We have previously shown that hypoxia-activated signaling in endothelial cells alters their contractility and adhesiveness. We have also linked p38-MAP kinase signaling pathway leading to HSP27 phosphorylation and increased actin stress fiber formation to endothelial barrier augmentation. We now show that vimentin, a major intermediate filament protein in endothelial cells, is regulated by hypoxia. Our results indicate that exposure of endothelial cells to hypoxia causes vimentin filament networks to initially redistribute perinuclearly. However, by 1 hour hypoxia these networks reform and appear more continuous across cells than under normoxia. Hypoxia also causes transient changes in vimentin phosphorylation, and activation of PAK1, a kinase that regulates vimentin filament assembly. In addition, exposure to 1 hour hypoxia increases the ratio of insoluble/soluble vimentin. Overexpression of phosphomimicking mutant HSP27 (pmHSP27) causes changes in vimentin distribution that are similar to those observed in hypoxic cells. Knocking-down HSP27 destroys the vimentin filamentous network, and disrupting vimentin filaments with acrylamide increases endothelial permeability. Both hypoxia- and pmHSP27 overexpression-induced changes are reversed by inhibition of phosphatase activity. In conclusion hypoxia causes redistribution of vimentin to a more insoluble and extensive filamentous network that could play a role in endothelial barrier stabilization. Vimentin redistribution appears to be mediated through altering the phosphorylation of the protein and its interaction with HSP27.
Collapse
Affiliation(s)
- Tiegang Liu
- Pulmonary & Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts Medical Center, and Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
26
|
Amano M, Tsumura Y, Taki K, Harada H, Mori K, Nishioka T, Kato K, Suzuki T, Nishioka Y, Iwamatsu A, Kaibuchi K. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase. PLoS One 2010; 5:e8704. [PMID: 20090853 PMCID: PMC2806833 DOI: 10.1371/journal.pone.0008704] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 12/22/2009] [Indexed: 01/19/2023] Open
Abstract
Background Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. Methodology/Principal Findings We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. Conclusions/Significance This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.
Collapse
Affiliation(s)
- Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lartey J, López Bernal A. RHO protein regulation of contraction in the human uterus. Reproduction 2009; 138:407-24. [DOI: 10.1530/rep-09-0160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The state of contraction in smooth muscle cells of the human uterus is dependent on the interaction of activated forms of actin and myosin. Ras homology (RHO) proteins are small monomeric GTP-binding proteins that regulate actin polymerisation and myosin phosphorylation in smooth muscle cells. Their action is determined by their level of expression, GTP-bound state, intracellular localisation and phosphorylated status. Agonist activated RHO proteins bind to effector kinases such as RHO kinase (ROCK) and diaphanous proteins (DIAPH) to regulate smooth muscle contraction by two mechanisms: ROCK activates smooth muscle myosin either by direct phosphorylation at Ser19/Thr18 or through inhibition of myosin phosphatase which is a trimeric protein regulated by ROCK and by other protein kinases. Actin-polymerising proteins such as DIAPH homolog 1 increase filamentous actin assembly to enhance acto-myosin cross bridge formation and contraction. This review explores recent advances in RHO protein signalling in human myometrium and proposes areas of further research to investigate the involvement of these proteins in the regulation of uterine contractility in pregnancy and labour.
Collapse
|
28
|
Brauksiepe B, Mujica AO, Herrmann H, Schmidt ER. The Serine/threonine kinase Stk33 exhibits autophosphorylation and phosphorylates the intermediate filament protein Vimentin. BMC BIOCHEMISTRY 2008; 9:25. [PMID: 18811945 PMCID: PMC2567967 DOI: 10.1186/1471-2091-9-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 09/23/2008] [Indexed: 02/02/2023]
Abstract
Background Colocalization of Stk33 with vimentin by double immunofluorescence in certain cells indicated that vimentin might be a target for phosphorylation by the novel kinase Stk33. We therefore tested in vitro the ability of Stk33 to phosphorylate recombinant full length vimentin and amino-terminal truncated versions thereof. In order to prove that Stk33 and vimentin are also in vivo associated proteins co-immunoprecipitation experiments were carried out. For testing the enzymatic activity of immunoprecipitated Stk33 we incubated precipitated Stk33 with recombinant vimentin proteins. To investigate whether Stk33 binds directly to vimentin, an in vitro co-sedimentation assay was performed. Results The results of the kinase assays demonstrate that Stk33 is able to specifically phosphorylate the non-α-helical amino-terminal domain of vimentin in vitro. Furthermore, co-immunoprecipitation experiments employing cultured cell extracts indicate that Stk33 and vimentin are associated in vivo. Immunoprecipitated Stk33 has enzymatic activity as shown by successful phosphorylation of recombinant vimentin proteins. The results of the co-sedimentation assay suggest that vimentin binds directly to Stk33 and that no additional protein mediates the association. Conclusion We hypothesize that Stk33 is involved in the in vivo dynamics of the intermediate filament cytoskeleton by phosphorylating vimentin.
Collapse
|
29
|
Abstract
The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
30
|
Zamoner A, Barreto KP, Filho DW, Sell F, Woehl VM, Guma FCR, Silva FRMB, Pessoa-Pureur R. Hyperthyroidism in the developing rat testis is associated with oxidative stress and hyperphosphorylated vimentin accumulation. Mol Cell Endocrinol 2007; 267:116-26. [PMID: 17306450 DOI: 10.1016/j.mce.2007.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/06/2007] [Accepted: 01/09/2007] [Indexed: 12/20/2022]
Abstract
Hyperthyroidism was induced in rats and somatic indices and metabolic parameters were analyzed in testis. In addition, the morphological analysis evidenced testes maturation and intense protein synthesis and processing, supporting the enhancement in vimentin synthesis in hyperthyroid testis. Furthermore, vimentin phosphorylation was increased, indicating an accumulation of phosphorylated vimentin associated to the cytoskeleton, which could be a consequence of the extracellular-regulated kinase (ERK) activation regulating the cytoskeleton. Biomarkers of oxidative stress demonstrated an increased basal metabolic rate measured by tissue oxygen consumption, as well as, increased TBARS levels. In addition, the enzymatic and non-enzymatic antioxidant defences appeared to respond according to the augmented oxygen consumption. We observed decreased total glutathione levels, with enhancement of reduced glutathione, whereas most of the antioxidant enzyme activities were induced. Otherwise, superoxide dismutase activity was inhibited. These results support the idea that an increase in mitochondrial ROS generation, underlying cellular oxidative damage, is a side effect of hyperthyroid-induced biochemical changes by which rat testis increase their metabolic capacity.
Collapse
Affiliation(s)
- Ariane Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hu E, Lee D. Rho kinase as potential therapeutic target for cardiovascular diseases: opportunities and challenges. Expert Opin Ther Targets 2007; 9:715-36. [PMID: 16083339 DOI: 10.1517/14728222.9.4.715] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rho kinase (ROCK) belongs to a family of Ser/Thr protein kinases that are activated via interaction with the small GTP-binding protein RhoA. Growing evidence suggests that RhoA and ROCK participate in a variety of important physiological functions in vasculature including smooth muscle contraction, cell proliferation, cell adhesion and migration, and many aspects of inflammatory responses. As these processes mediate the onset and progression of cardiovascular disease, modulation of the Rho/ROCK signalling pathway is a potential strategy for targeting an array of cardiovascular indications. Two widely employed ROCK inhibitors, fasudil and Y-27632, have provided preliminary but compelling evidence supporting the potential cardiovascular benefits of ROCK inhibition in preclinical animal disease models and in the clinic. This review summarises the molecular biology of ROCK and its biological functions in smooth muscle, endothelium and other vascular tissues. In addition, there will be a focus on recent progress demonstrating the benefits of ROCK inhibition in several animal models of cardiovascular diseases. Finally, recent progress in the identification of novel ROCK inhibitors and challenges associated with their development for clinical use will be discussed.
Collapse
Affiliation(s)
- Erding Hu
- Center of Excellence for Cardiovascular and Urogenital Drug Discovery, Department of Vascular Biology, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | |
Collapse
|
32
|
Russell MA, Lund LM, Haber R, McKeegan K, Cianciola N, Bond M. The intermediate filament protein, synemin, is an AKAP in the heart. Arch Biochem Biophys 2006; 456:204-15. [PMID: 16934740 DOI: 10.1016/j.abb.2006.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/01/2006] [Accepted: 06/06/2006] [Indexed: 11/28/2022]
Abstract
Targeting of protein kinase A (PKA) by A-kinase anchoring proteins (AKAPs) contributes to high specificity of PKA signaling pathways. PKA phosphorylation of myofilament and cytoskeletal proteins may regulate myofibrillogenesis and myocyte remodeling during heart disease; however, known cardiac AKAPs do not localize to these regions. To identify novel AKAPs which target PKA to the cytoskeleton or myofilaments, a human heart cDNA library was screened and the intermediate filament (IF) protein, synemin, was identified as a putative RII (PKA regulatory subunit type II) binding protein. A predicted RII binding region was mutated and resulted in loss of RII binding. Furthermore, synemin co-localized with RII in SW13/cl.1-vim+ cells and co-immunoprecipitated with RII from adult rat cardiomyocytes. Synemin was localized at the level of Z-lines with RII and desmin in adult hearts, however, neonatal cardiomyocytes showed differential synemin and desmin localization. Quantitative Western blots also showed significantly more synemin was present in failing human hearts. We propose that synemin provides temporal and spatial targeting of PKA in adult and neonatal cardiac myocytes.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
33
|
Oguri T, Inoko A, Shima H, Izawa I, Arimura N, Yamaguchi T, Inagaki N, Kaibuchi K, Kikuchi K, Inagaki M. Vimentin-Ser82 as a memory phosphorylation site in astrocytes. Genes Cells 2006; 11:531-40. [PMID: 16629905 DOI: 10.1111/j.1365-2443.2006.00961.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In astrocytes, the PGF(2alpha) or ionomycin treatment induces the phosphorylation at Ser38 and Ser82 of vimentin, a type III intermediate filament, by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). We found here that vimentin phospho-Ser82 was dephosphorylated much slower than phospho-Ser38. Vimentin phospho-Ser38 was dephosphorylated quickly by purified PP1 catalytic subunit (PP1c) in vitro, whereas phospho-Ser82 was insensitive to PP1c. Because PP1c directly bound to vimentin through a VxF motif (Val83-Asp84-Phe85), the PP1c active site appeared to be unable to approach phospho-Ser82, leading to the prolongation of the phosphorylation at Ser-82. In astrocytes, PP1calpha was in vivo associated with vimentin filaments. The repetitive treatment by ionomycin at a short interval resulted in the sustained elevation of Ser82 phosphorylation, leading to the marked disassembly of vimentin filaments. Taken together, these results suggest that vimentin is a novel member of binding partner of PP1c in astrocytes, and vimentin-Ser82 may act as a memory phosphorylation site.
Collapse
Affiliation(s)
- Takashi Oguri
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Y Capetanaki
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
35
|
Yamaguchi T, Goto H, Yokoyama T, Silljé H, Hanisch A, Uldschmid A, Takai Y, Oguri T, Nigg EA, Inagaki M. Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. J Cell Biol 2005; 171:431-6. [PMID: 16260496 PMCID: PMC2171270 DOI: 10.1083/jcb.200504091] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 09/29/2005] [Indexed: 01/19/2023] Open
Abstract
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at approximately 1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin.
Collapse
Affiliation(s)
- Tomoya Yamaguchi
- Division of Biochemistry, Aichi Cancer Center Research Institute, Aichi 464-8681, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The Rho family of GTPases is part of the Ras superfamily. The Rho, Rac, and Cdc42 members of the family are present in mammalian cells and have been the subject of attention of researchers due to their vast spectrum of functions. Rac 1, Cdc42, and RhoA are well-known for their role in the regulation of the actin cytoskeleton in promoting the formation of lamellipodia, filopodia, and stress fibers, respectively. The Rho proteins also participate in the control of cell growth, motility, cell-cell adhesions, morphogenesis, cytoskeletal dynamics, and cellular trafficking. The mechanisms for eliciting these functions have become clearer during the last decade. Concordant with their roles in multiple processes of cellular control, the Rho proteins have been shown to be involved in tumor growth, progression, metastasis, and now angiogenesis.
Collapse
Affiliation(s)
- Sofia D Merajver
- Breast and Ovarian Cancer Risk Evaluation Program, University of Michigan Comprehensive Cancer Center, 7217 CCGC, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0948, USA.
| | | |
Collapse
|
37
|
Milia J, Teyssier F, Dalenc F, Ader I, Delmas C, Pradines A, Lajoie-Mazenc I, Baron R, Bonnet J, Cohen-Jonathan E, Favre G, Toulas C. Farnesylated RhoB inhibits radiation-induced mitotic cell death and controls radiation-induced centrosome overduplication. Cell Death Differ 2005; 12:492-501. [PMID: 15776002 DOI: 10.1038/sj.cdd.4401586] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Our previous results demonstrated that expressing the GTPase ras homolog gene family, member B (RhoB) in radiosensitive NIH3T3 cells increases their survival following 2 Gy irradiation (SF2). We have first demonstrated here that RhoB expression inhibits radiation-induced mitotic cell death. RhoB is present in both a farnesylated and a geranylgeranylated form in vivo. By expressing RhoB mutants encoding for farnesylated (RhoB-F cells), geranylgeranylated or the CAAX deleted form of RhoB, we have then shown that only RhoB-F expression was able to increase the SF2 value by reducing the sensitivity of these cells to radiation-induced mitotic cell death. Moreover, RhoB-F cells showed an increased G2 arrest and an inhibition of centrosome overduplication following irradiation mediated by the Rho-kinase, strongly suggesting that RhoB-F may control centrosome overduplication during the G2 arrest after irradiation. Overall, our results for the first time clearly implicate farnesylated RhoB as a crucial protein in mediating cellular resistance to radiation-induced nonapoptotic cell death.
Collapse
Affiliation(s)
- J Milia
- INSERM U563, CPTP, Département d'Innovation Thérapeutique et d'Oncologie Moléculaire, Institut Claudius Regaud, 20-24 rue du Pont St Pierre, 31052 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Borkó R, Batta TJ, Sziklai I. Slow motility, electromotility and lateral wall stiffness in the isolated outer hair cells. Hear Res 2005; 207:68-75. [PMID: 15950414 DOI: 10.1016/j.heares.2005.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 04/05/2005] [Accepted: 04/08/2005] [Indexed: 11/18/2022]
Abstract
Slow motile length changes of isolated, apical turn outer hair cells (OHCs) (n=36) were induced by perfusion of saline (flow rate: 0.6 microl/min) as a mechanical challenge or by perfusion of 12.5 mM KCl solution for 90 s as a chemical and mechanical challenge with and without ocadaic acid (OA), a serine/threonine protein phosphatase inhibitor. Electromotility was evoked by square pulses from +/-35 mV to +/-240 mV during the slow shortening and recovery period (n=36). Stiffness of the lateral wall was measured by the micropipette aspiration technique (n=20). Saline perfusion caused a reversible shortening of 774+/-87 nm (n=9) as well as K+ of 1465+/-159 nm (n=9). Slow shortening increased lateral wall stiffness (1.25+/-0.02 to 1.52+/-0.03 nN/microm) (n=5-5). Simultaneously, electromotility magnitude decreased (n=9). Ocadaic acid blocked slow shortening, increased lateral wall stiffness, and decreased the magnitude of electromotility. Mechanical or mechanical+chemical stimulation of ocadaic acid treated OHCs do not further change stiffness or electromotility. Isolated OHCs respond with slow shortening and consutive cell stiffness increase to mechanical insult. This phenomenon seems operating with calcium-, and phosphorylation-dependent modifications of the cytoskeletal proteins. The subsequent electromotility gain decrease suggests a slow OHC shortening driven regulation of the cochlear amplifier with simultaneous safety control of the auditory periphery against overstimulation.
Collapse
Affiliation(s)
- Rezsö Borkó
- ORL Clinic, University of Debrecen, Health Science Center, Nagyerdei krt. 98, 4012 Debrecen, Hungary
| | | | | |
Collapse
|
39
|
Zamoner A, Corbelini PF, Funchal C, Menegaz D, Silva FRMB, Pessoa-Pureur R. Involvement of calcium-dependent mechanisms in T3-induced phosphorylation of vimentin of immature rat testis. Life Sci 2005; 77:3321-35. [PMID: 15985269 DOI: 10.1016/j.lfs.2005.05.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 05/09/2005] [Indexed: 11/29/2022]
Abstract
Thyroid hormones have been shown to act at extra nuclear sites, inducing target cell responses by several mechanisms, frequently involving intracellular calcium concentration. It has also been reported that cytoskeletal proteins are a target for thyroid and steroid hormones and cytoskeletal rearrangements are observed during hormone-induced differentiation and development of rat testes. However, little is known about the effect of 3,5,3'-triiodo-L-thyronine (T3) on the intermediate filament (IF) vimentin in rat testes. In this study we investigated the immunocontent and in vitro phosphorylation of vimentin in the cytoskeletal fraction of immature rat testes after a short-term in vitro treatment with T3. Gonads were incubated with or without T3 and 32P orthophosphate for 30 min and the intermediate filament-enriched cytoskeletal fraction was extracted in a high salt Triton-containing buffer. Vimentin immunoreactivity was analyzed by immunoblotting and the in vitro 32P incorporation into this protein was measured. Results showed that 1 microM T3 was able to increase the vimentin immunoreactivity and in vitro phosphorylation in the cytoskeletal fraction without altering total vimentin immunocontent in immature rat testes. Besides, these effects were independent of active protein synthesis. The involvement of Ca2+-mediated mechanisms in vimentin phosphorylation was evident when specific channel blockers (verapamil and nifedipine) or chelating agents (EGTA and BAPTA) were added during pre-incubation and incubation of the testes with T3. The effect of T3 was prevented when Ca2+ influx was blocked or intracellular Ca2+ was chelated. These results demonstrate a rapid nongenomic Ca2+-dependent action of T3 in phosphorylating vimentin in immature rat testes.
Collapse
Affiliation(s)
- Ariane Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo CEP 90035-003 Porto Alegre RS Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Santos-Bredariol AS, Belmonte MA, Kihara AH, Santos MF, Hamassaki DE. Small GTP-binding protein RhoB is expressed in glial müller cells in the vertebrate retina. J Comp Neurol 2005; 494:976-85. [PMID: 16385489 DOI: 10.1002/cne.20861] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among several small Rho GTPases observed in the chick retina, RhoB was transiently expressed during development and mainly present in glial Müller cells in the adult. The aim of this study was to compare the distribution of RhoB in the chick and mouse adult retinas and to study its potential role in the maintenance of cell morphology. The distribution of RhoB was studied in situ and pure Müller cell cultures were submitted to Clostridium difficile toxin A and lysophosphatidic acid (LPA) treatment in order to inactivate and activate Rho proteins, respectively. Cell morphology, F-actin arrangement, RhoB, and vimentin distribution were studied by immunofluorescence and confocal microscopy. The results showed that, in both species, all vimentin-containing cells also expressed RhoB in situ and in vitro. Toxin A promoted cell rounding and detachment due to actin depolymerization, changing the distribution of RhoB only in chick cells. In serum-starved cells LPA stimulated actin polymerization and cell spreading, but only in chick cells was RhoB distribution recruited to expanding cellular processes and newly formed focal adhesions. These data suggest that, although RhoB is expressed by Müller cells in chick and mouse, its role in the maintenance of cellular morphology and regulation may be different. In addition, we show that RhoB may be an interesting Müller cell marker in the adult retina.
Collapse
Affiliation(s)
- Andréa Silveira Santos-Bredariol
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | | | | | | | |
Collapse
|
41
|
Lee HH, Chien CL, Liao HK, Chen YJ, Chang ZF. Nuclear efflux of heterogeneous nuclear ribonucleoprotein C1/C2 in apoptotic cells: a novel nuclear export dependent on Rho-associated kinase activation. J Cell Sci 2004; 117:5579-89. [PMID: 15494373 DOI: 10.1242/jcs.01482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a proteomic approach, we searched for protein changes dependent on Rho-associated kinase (ROCK) during phorbol-12-myristate-13-acetate (PMA)-induced apoptosis. We found that heterogeneous nuclear ribonucleoprotein C1 and C2 (hnRNP C1/C2), two nuclear restricted pre-mRNA binding proteins, are translocated to the cytosolic compartment in a ROCK-dependent manner in PMA-induced pro-apoptotic cells, where nuclear envelopes remain intact. The subcellular localization change of hnRNP C1/C2 appears to be dependent on ROCK-mediated cytoskeletal change and independent of caspase execution and new protein synthesis. Such a ROCK-dependent translocation is also seen in TNFalpha-induced apoptotic NIH3T3 cells. By overexpressing the dominant active form of ROCK, we showed that a ROCK-mediated signal is sufficient to induce translocation of hnRNP C1/C2. Deletion experiments indicated that the C-terminal 40-amino-acid region of hnRNP C1/C2 is required for ROCK-responsive translocation. By using nuclear yellow fluorescent protein (YFP) fusion, we determined that the C-terminal 40-amino-acid region of hnRNP C1/C2 is a novel nuclear export signal responsive to ROCK-activation. We conclude that a novel nuclear export is activated by the ROCK signaling pathway to exclude hnRNP C1/C2 from nucleus, by which the compartmentalization of specific hnRNP components is disturbed in apoptotic cells.
Collapse
Affiliation(s)
- Hsiao-Hui Lee
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1 Jen Ai Road Sec.1, Taipei, 100, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
42
|
Frizzo JK, Tramontina F, Bortoli E, Gottfried C, Leal RB, Lengyel I, Donato R, Dunkley PR, Gonçalves CA. S100B-mediated inhibition of the phosphorylation of GFAP is prevented by TRTK-12. Neurochem Res 2004; 29:735-40. [PMID: 15098935 DOI: 10.1023/b:nere.0000018844.51009.40] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
S100B belongs to a family of calcium-binding proteins involved in cell cycle and cytoskeleton regulation. We observed an inhibitory effect of S100B on glial fibrillary acidic protein (GFAP) phosphorylation, when stimulated by cAMP or Ca2+/calmodulin, in a cytoskeletal fraction from primary astrocyte cultures. We found that S100B has no direct effect on CaM KII activity, the major kinase in this cytoskeletal fraction able to phosphorylate GFAP. The inhibition of GFAP phosphorylation is most likely due to the binding of S100B to the phosphorylation sites on this protein and blocking the access of these sites to the protein kinases. This inhibition was dependent on Ca2+. However, Zn2+ could substitute for Ca2+. The inhibitory effect of S100B was prevented by TRTK-12, a peptide that blocks S100B interaction with several target proteins including glial fibrillary acidic protein. These data suggest a role for S100B in the assembly of intermediate filaments in astrocytes.
Collapse
Affiliation(s)
- Juliana Karl Frizzo
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kawajiri A, Inagaki M. Approaches to Study Phosphorylation of Intermediate Filament Proteins Using Site-Specific and Phosphorylation State-Specific Antibodies. Methods Cell Biol 2004; 78:353-71. [PMID: 15646625 DOI: 10.1016/s0091-679x(04)78013-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Affiliation(s)
- Aie Kawajiri
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | | |
Collapse
|
44
|
Abstract
ROCKs, or Rho kinases, are serine/threonine kinases that are involved in many aspects of cell motility, from smooth-muscle contraction to cell migration and neurite outgrowth. Recent experiments have defined new functions of ROCKs in cells, including centrosome positioning and cell-size regulation, which might contribute to various physiological and pathological states.
Collapse
Affiliation(s)
- Kirsi Riento
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, 91 Riding House Street, London W1W 7BS, UK.
| | | |
Collapse
|
45
|
Cheng TJ, Tseng YF, Chang WM, Chang MDT, Lai YK. Retaining of the assembly capability of vimentin phosphorylated by mitogen-activated protein kinase-activated protein kinase-2. J Cell Biochem 2003; 89:589-602. [PMID: 12761892 DOI: 10.1002/jcb.10511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intermediate filament (IF) networks can be regulated by phosphorylation of unit proteins, such as vimentin, by specific kinases leading to reorganization of the IF filamentous structure. Recently, we identified mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP kinase-2) as a vimentin kinase (Cheng and Lai [1998] J. Cell. Biochem. 71:169-181). Herein we describe the results of further in vitro studies investigating the effects of MAPKAP kinase-2 phosphorylation on vimentin and the effects of the phosphorylation on the filamentous structure. We show that MAPKAP kinase-2 mainly phosphorylates vimentin at Ser-38, Ser-50, Ser-55, and Ser-82, residues all located in the head domain of the protein. Surprisingly, and in stark contrast to phosphorylation by most other kinases, phosphorylation of vimentin by MAPKAP kinase-2 has no discernable effect on its assembly. It suggested that structure disassembly is not the only obligated consequence of phosphorylated vimentin as regulated by other kinases. Finally, a mutational analysis of each of the phosphorylated serine residues in vimentin suggested that no single serine site was primarily responsible for structure maintenance, implying that the retention of filamentous structure may be the result of the coordinated action of several phosphorylated serine sites. This also shed new lights on the functional task(s) of vimentin that is intermediate filament proteins might provide a phosphate reservoir to accommodate the phosphate surge without any structural changes.
Collapse
Affiliation(s)
- Ting-Jen Cheng
- Department of Life Science, National Tsing Hua University, Hsinshu, Taiwan 30013, Republic of China
| | | | | | | | | |
Collapse
|
46
|
Kawajiri A, Yasui Y, Goto H, Tatsuka M, Takahashi M, Nagata KI, Inagaki M. Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol Biol Cell 2003; 14:1489-500. [PMID: 12686604 PMCID: PMC153117 DOI: 10.1091/mbc.e02-09-0612] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aurora-B is a protein kinase required for chromosome segregation and the progression of cytokinesis during the cell cycle. We report here that Aurora-B phosphorylates GFAP and desmin in vitro, and this phosphorylation leads to a reduction in filament forming ability. The sites phosphorylated by Aurora-B; Thr-7/Ser-13/Ser-38 of GFAP, and Thr-16 of desmin are common with those related to Rho-associated kinase (Rho-kinase), which has been reported to phosphorylate GFAP and desmin at cleavage furrow during cytokinesis. We identified Ser-59 of desmin to be a specific site phosphorylated by Aurora-B in vitro. Use of an antibody that specifically recognized desmin phosphorylated at Ser-59 led to the finding that the site is also phosphorylated specifically at the cleavage furrow during cytokinesis in Saos-2 cells. Desmin mutants, in which in vitro phosphorylation sites by Aurora-B and/or Rho-kinase are changed to Ala or Gly, cause dramatic defects in filament separation between daughter cells in cytokinesis. The results presented here suggest the possibility that Aurora-B may regulate cleavage furrow-specific phosphorylation and segregation of type III IFs coordinatedly with Rho-kinase during cytokinesis.
Collapse
Affiliation(s)
- Aie Kawajiri
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Hsieh-Wilson LC, Benfenati F, Snyder GL, Allen PB, Nairn AC, Greengard P. Phosphorylation of spinophilin modulates its interaction with actin filaments. J Biol Chem 2003; 278:1186-94. [PMID: 12417592 DOI: 10.1074/jbc.m205754200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinophilin is a protein phosphatase 1 (PP1)- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We report that spinophilin is phosphorylated in vitro by protein kinase A (PKA). Phosphorylation of spinophilin was stimulated by treatment of neostriatal neurons with a dopamine D1 receptor agonist or with forskolin, consistent with spinophilin being a substrate for PKA in intact cells. Using tryptic phosphopeptide mapping, site-directed mutagenesis, and microsequencing analysis, we identified two major sites of phosphorylation, Ser-94 and Ser-177, that are located within the actin-binding domain of spinophilin. Phosphorylation of spinophilin by PKA modulated the association between spinophilin and the actin cytoskeleton. Following subcellular fractionation, unphosphorylated spinophilin was enriched in the postsynaptic density, whereas a pool of phosphorylated spinophilin was found in the cytosol. F-actin co-sedimentation and overlay analysis revealed that phosphorylation of spinophilin reduced the stoichiometry of the spinophilin-actin interaction. In contrast, the ability of spinophilin to bind to PP1 remained unchanged. Taken together, our studies suggest that phosphorylation of spinophilin by PKA modulates the anchoring of the spinophilin-PP1 complex within dendritic spines, thereby likely contributing to the efficacy and plasticity of synaptic transmission.
Collapse
Affiliation(s)
- Linda C Hsieh-Wilson
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
48
|
Rombouts K, Knittel T, Machesky L, Braet F, Wielant A, Hellemans K, De Bleser P, Gelman I, Ramadori G, Geerts A. Actin filament formation, reorganization and migration are impaired in hepatic stellate cells under influence of trichostatin A, a histone deacetylase inhibitor. J Hepatol 2002; 37:788-96. [PMID: 12445420 DOI: 10.1016/s0168-8278(02)00275-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Previously, trichostatin A (TSA), a histone deacetylase inhibitor, has been shown to exhibit strong antifibrotic characteristics in hepatic stellate cells (HSC), which are known to play a central role in chronic liver diseases. TSA retained a more quiescent phenotype in spite of culture conditions that favor transdifferentiation into activated HSC. METHODS To identify TSA-sensitive genes, differential mRNA display, Northern and Western blot analysis were used and genes were functionally validated by using contraction and motility assays. RESULTS TSA prevented new actin filament formation by down-regulation of two nucleating proteins, actin related protein 2 (Arp2) and Arp3, and by up-regulation of adducin like protein 70 (ADDL70) and gelsolin, two capping proteins. RhoA, a key mediator in the development of the actin cytoskeleton, decreased following TSA exposure. Expression of proteins of Class III intermediate filaments was affected by TSA. Furthermore, F-actin and G-actin were expressed heterogeneously under influence of TSA. Functionally, TSA treatment abrogated migration of quiescent HSC, while migration was reduced in transitional HSC. The endothelin-1-induced contractility properties of HSC was not affected by TSA. CONCLUSIONS These data indicate that TSA affects the development of the actin cytoskeleton in quiescent HSC and thereby abrogates the process of HSC transdifferentiation.
Collapse
Affiliation(s)
- Krista Rombouts
- Laboratory for Molecular Liver Cell Biology, Faculty of Medicine and Pharmacy, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Davis GE, Bayless KJ, Mavila A. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. THE ANATOMICAL RECORD 2002; 268:252-75. [PMID: 12382323 DOI: 10.1002/ar.10159] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although many studies have focused on blood vessel development and new blood vessel formation associated with disease processes, the question of how endothelial cells (ECs) assemble into tubes in three dimensions (i.e., EC morphogenesis) remains unanswered. EC morphogenesis is particularly dependent on a signaling axis involving the extracellular matrix (ECM), integrins, and the cytoskeleton, which regulates EC shape changes and signals the pathways necessary for tube formation. Recent studies reveal that genes regulating this matrix-integrin-cytoskeletal (MIC) signaling axis are differentially expressed during EC morphogenesis. The Rho GTPases represent an important class of molecules involved in these events. Cdc42 and Rac1 are required for the process of EC intracellular vacuole formation and coalescence that regulates EC lumen formation in three-dimensional (3D) extracellular matrices, while RhoA appears to stabilize capillary tube networks. Once EC tube networks are established, supporting cells, such as pericytes, are recruited to further stabilize these networks, perhaps by regulating EC basement membrane matrix assembly. Furthermore, we consider recent work showing that EC morphogenesis is balanced by a tendency for newly formed tubes to regress. This morphogenesis-regression balance is controlled by differential gene expression of such molecules as VEGF, angiopoietin-2, and PAI-1, as well as a plasmin- and matrix metalloproteinase-dependent mechanism that induces tube regression through degradation of ECM scaffolds that support EC-lined tubes. It is our hope that this review will stimulate increased interest and effort focused on the basic mechanisms regulating capillary tube formation and regression in 3D extracellular matrices.
Collapse
Affiliation(s)
- George E Davis
- Department of Pathology, Texas A&M University System Health Science Center, College Station 77843, USA.
| | | | | |
Collapse
|
50
|
Abstract
Signalling pathways activated by Rho small GTPases have recently been identified that coordinate junction assembly, stability and function, as well as interactions of adhesive complexes with the underlying cortical cytoskeleton. Particularly exciting is the interplay between adherens junctions, activation of Rho proteins and the dynamics of microtubule, actin and intermediate filaments. This interplay has important implications for functional regulation of cell-cell adhesion, and points to a more integrated view of signalling processes.
Collapse
Affiliation(s)
- Vania M M Braga
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|