1
|
Tabary M, Gheware A, Peñaloza HF, Lee JS. The matricellular protein thrombospondin-1 in lung inflammation and injury. Am J Physiol Cell Physiol 2022; 323:C857-C865. [PMID: 35912991 PMCID: PMC9467471 DOI: 10.1152/ajpcell.00182.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Matricellular proteins comprise a diverse group of molecular entities secreted into the extracellular space. They interact with the extracellular matrix (ECM), integrins, and other cell-surface receptors, and can alter matrix strength, cell attachment to the matrix, and cell-cell adhesion. A founding member of this group is thrombospondin-1 (TSP-1), a high molecular-mass homotrimeric glycoprotein. Given the importance of the matrix and ECM remodeling in the lung following injury, TSP-1 has been implicated in a number of lung pathologies. This review examines the role of TSP-1 as a damage controller in the context of lung inflammation, injury resolution, and repair in noninfectious and infectious models. This review also discusses the potential role of TSP-1 in human diseases as it relates to lung inflammation and injury.
Collapse
Affiliation(s)
- Mohammadreza Tabary
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Atish Gheware
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Heparan Sulfated Glypican-4 Is Released from Astrocytes by Proteolytic Shedding and GPI-Anchor Cleavage Mechanisms. eNeuro 2021; 8:ENEURO.0069-21.2021. [PMID: 34301723 PMCID: PMC8387153 DOI: 10.1523/eneuro.0069-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide neurons with diffusible factors that promote synapse formation and maturation. In particular, glypican-4/GPC4 released from astrocytes promotes the maturation of excitatory synapses. Unlike other secreted factors, GPC4 contains the C-terminal GPI-anchorage signal. However, the mechanism by which membrane-tethered GPC4 is released from astrocytes is unknown. Using mouse primary astrocyte cultures and a quantitative luciferase-based release assay, we show that GPC4 is expressed on the astrocyte surface via a GPI-anchorage. Soluble GPC4 is robustly released from the astrocytes largely by proteolytic shedding and, to a lesser extent, by GPI-anchor cleavage, but not by vesicular release. Pharmacological, overexpression, and loss of function screens showed that ADAM9 in part mediates the release of GPC4 from astrocytes. The released GPC4 contains the heparan sulfate side chain, suggesting that these release mechanisms provide the active form that promotes synapse maturation and function. Overall, our studies identified the release mechanisms and the major releasing enzyme of GPC4 in astrocytes and will provide insights into understanding how astrocytes regulate synapse formation and maturation.
Collapse
|
3
|
Morandi V, Petrik J, Lawler J. Endothelial Cell Behavior Is Determined by Receptor Clustering Induced by Thrombospondin-1. Front Cell Dev Biol 2021; 9:664696. [PMID: 33869231 PMCID: PMC8044760 DOI: 10.3389/fcell.2021.664696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
The thrombospondins (TSPs) are a family of multimeric extracellular matrix proteins that dynamically regulate cellular behavior and response to stimuli. In so doing, the TSPs directly and indirectly affect biological processes such as embryonic development, wound healing, immune response, angiogenesis, and cancer progression. Many of the direct effects of Thrombospondin 1 (TSP-1) result from the engagement of a wide range of cell surface receptors including syndecans, low density lipoprotein receptor-related protein 1 (LRP1), CD36, integrins, and CD47. Different or even opposing outcomes of TSP-1 actions in certain pathologic contexts may occur, depending on the structural/functional domain involved. To expedite response to external stimuli, these receptors, along with vascular endothelial growth factor receptor 2 (VEGFR2) and Src family kinases, are present in specific membrane microdomains, such as lipid rafts or tetraspanin-enriched microdomains. The molecular organization of these membrane microdomains and their constituents is modulated by TSP-1. In this review, we will describe how the presence of TSP-1 at the plasma membrane affects endothelial cell signal transduction and angiogenesis.
Collapse
Affiliation(s)
| | - Jim Petrik
- University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Semba S, Kitamura N, Tsuda M, Goto K, Kurono S, Ohmiya Y, Kurokawa T, Gong JP, Yasuda K, Tanaka S. Synthetic poly(2-acrylamido-2-methylpropanesulfonic acid) gel induces chondrogenic differentiation of ATDC5 cells via a novel protein reservoir function. J Biomed Mater Res A 2020; 109:354-364. [PMID: 32496623 DOI: 10.1002/jbm.a.37028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that a synthetic negatively charged poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) gel induced chondrogenic differentiation of ATDC5 cells. In this study, we clarified the underlying molecular mechanism, in particular, focusing on the events that occurred at the interface between the gel and the cells. Gene expression profiling revealed that the expression of extracellular components was enhanced in the ATDC5 cells that were cultured on the PAMPS gel, suggesting that extracellular proteins secreted from the ATDC5 cells might be adsorbed in the PAMPS gel, thereby contributing to the induction of chondrogenic differentiation. Therefore, we created "Treated-PAMPS gel," which adsorbed various proteins secreted from the cultured ATDC5 cells during 7 days. Proteomic analysis identified 27 proteins, including extracellular matrix proteins such as Types I, III, and V collagens and thrombospondin (THBS) in the Treated-PAMPS gel. The Treated-PAMPS gel preferentially induced expression of chondrogenic markers, namely, aggrecan and Type II collagen, in the ATDC5 cells compared with the untreated PAMPS gel. Addition of recombinant THBS1 to the ATDC5 cells significantly enhanced the PAMPS-induced chondrogenic differentiation, whereas knockdown of THBS1 completely abolished this response. In conclusion, we demonstrated that the PAMPS gel has the potential to induce chondrogenic differentiation through novel reservoir functions, and the adsorbed THBS plays a significant role in the induction.
Collapse
Affiliation(s)
- Shingo Semba
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuto Kitamura
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Keiko Goto
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sadamu Kurono
- Laboratory of Molecular Signature Analysis, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Takayuki Kurokawa
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazunori Yasuda
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Zhang K, Li M, Yin L, Fu G, Liu Z. Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review). Int J Mol Med 2020; 45:1275-1293. [PMID: 32323748 PMCID: PMC7138268 DOI: 10.3892/ijmm.2020.4507] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombospondin (TSP)-1 and TSP-2 are matricellular proteins in the extracellular matrix (ECM), which serve a significant role in the pathological processes of various cardiovascular diseases (CVDs). The multiple effects of TSP-1 and TSP-2 are due to their ability to interact with various ligands, such as structural components of the ECM, cytokines, cellular receptors, growth factors, proteases and other stromal cell proteins. TSP-1 and TSP-2 regulate the structure and activity of the aforementioned ligands by interacting directly or indirectly with them, thereby regulating the activity of different types of cells in response to environmental stimuli. The pathological processes of numerous CVDs are associated with the degradation and remodeling of ECM components, and with cell migration, dysfunction and apoptosis, which may be regulated by TSP-1 and TSP-2 through different mechanisms. Therefore, investigating the role of TSP-1 and TSP-2 in different CVDs and the potential signaling pathways they are associated with may provide a new perspective on potential therapies for the treatment of CVDs. In the present review, the current understanding of the roles TSP-1 and TSP-2 serve in various CVDs were summarized. In addition, the interacting ligands and the potential pathways associated with these thrombospondins in CVDs are also discussed.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Miaomiao Li
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
6
|
Buda V, Andor M, Petrescu L, Cristescu C, Baibata DE, Voicu M, Munteanu M, Citu I, Muntean C, Cretu O, Tomescu MC. Perindopril Induces TSP-1 Expression in Hypertensive Patients with Endothelial Dysfunction in Chronic Treatment. Int J Mol Sci 2017; 18:ijms18020348. [PMID: 28178210 PMCID: PMC5343883 DOI: 10.3390/ijms18020348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a potent endogenous inhibitor of both physiological and pathological angiogenesis, widely studied as a target in drug development for treating cancer. Several studies performed in the cardiovascular field on TSP-1 are contradictory, the role of TSP-1 in the physiopathology of cardiovascular disorders (CVDs) being, for the moment, incompletely understood and may be due to the presence of several domains in its structure which can stimulate many cellular receptors. It has been reported to inhibit NO-mediated signaling and to act on the angiogenesis, tissue perfusion, endothelial cell proliferation, and homeostasis, so we aimed to quantify the effect Perindopril has on TSP-1 plasma levels in hypertensive patients with endothelial dysfunction in comparison with other antihypertensive drugs, such as beta blockers, calcium channel blockers, and diuretics, in a chronic treatment. As a conclusion, patients under treatment with Perindopril had increased plasma levels of TSP-1 compared with other hypertensive patients and with the control group. The results of this study confirms the pleiotropic properties of Perindopril: anti-proliferative, anti-inflammatory, with effects showed by quantifying a single biomarker: TSP-1.
Collapse
Affiliation(s)
- Valentina Buda
- Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Minodora Andor
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Lucian Petrescu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Carmen Cristescu
- Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Dana Emilia Baibata
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Mirela Voicu
- Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Melania Munteanu
- Faculty of Pharmacy, VasileGoldis Western University, 86 LiviuRebreanu, 310045 Arad, Romania.
| | - Ioana Citu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Calin Muntean
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Octavian Cretu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Mirela Cleopatra Tomescu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| |
Collapse
|
7
|
Gesslbauer B, Derler R, Handwerker C, Seles E, Kungl AJ. Exploring the glycosaminoglycan-protein interaction network by glycan-mediated pull-down proteomics. Electrophoresis 2016; 37:1437-47. [PMID: 26970331 DOI: 10.1002/elps.201600043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/13/2023]
Abstract
Glycosaminoglycans (GAGs) are linear, highly sulfated polysaccharides expressed by almost all animal cells. They occur as soluble molecules, or form proteoglycans by being O-linked to different core proteins on the cell surface and in the extracellular matrix. Due to their ability to interact with diverse proteins and to modulate their biologic functions, GAGs are main drivers of mammalian biology. However, to the present day, the human GAG binding proteome has only been insufficiently explored. The aim of this study was therefore to investigate the human GAG binding proteome of different sources by using the major GAG classes as ligands, and to explore the GAG-binding selectivity of the human plasma proteome. For this purpose, proteins were pulled down from immobilized low molecular weight heparin, heparan sulfate, and dermatan sulfate under different conditions and were identified by nano-LC/MS². Four hundred and fifty eight human GAG binding proteins have been identified, whereas plasma proteins showed clear differences in their GAG-binding specificity/selectivity and affinity. We were able to differentiate between proteins that bound to all three glycan ligands and proteins that showed selective binding to one or two glycan ligands. Moreover, step-gradient salt elution revealed different binding affinities toward different GAG ligands. On top of proteins with well-known GAG-binding properties we have identified formerly unknown GAG binders. Functional annotation of the identified GAG-binding proteins showed clusters of proteins that are involved in a variety of biological processes. The method described here is well suited for identifying GAG-binding proteins and for comparing human subproteomes with respect to binding to different GAG classes.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | | | - Elisabeth Seles
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Andreas J Kungl
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria.,ProtAffin Biotechnologie AG, Graz, Austria
| |
Collapse
|
8
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
9
|
Resovi A, Pinessi D, Chiorino G, Taraboletti G. Current understanding of the thrombospondin-1 interactome. Matrix Biol 2014; 37:83-91. [PMID: 24476925 DOI: 10.1016/j.matbio.2014.01.012] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 12/24/2022]
Abstract
The multifaceted action of thrombospondin-1 (TSP-1) depends on its ability to physically interact with different ligands, including structural components of the extracellular matrix, other matricellular proteins, cell receptors, growth factors, cytokines and proteases. Through this network, TSP-1 regulates the ligand activity, availability and structure, ultimately tuning the cell response to environmental stimuli in a context-dependent manner, contributing to physiological and pathological processes. Complete mapping of the TSP-1 interactome is needed to understand its diverse functions and to lay the basis for the rational design of TSP-1-based therapeutic approaches. So far, large-scale approaches to identify TSP-1 ligands have been rarely used, but many interactions have been identified in small-scale studies in defined biological systems. This review, based on information from protein interaction databases and the literature, illustrates current knowledge of the TSP-1 interactome map.
Collapse
Affiliation(s)
- Andrea Resovi
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 24126 Bergamo, Italy
| | - Denise Pinessi
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 24126 Bergamo, Italy
| | - Giovanna Chiorino
- Fondo Edo ed Elvo Tempia Valenta, Laboratory of Cancer Genomics, 13900 Biella, Italy
| | - Giulia Taraboletti
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 24126 Bergamo, Italy.
| |
Collapse
|
10
|
van Wijk XMR, van Kuppevelt TH. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 2013; 17:443-62. [PMID: 24146040 DOI: 10.1007/s10456-013-9401-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/15/2013] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS), a long linear polysaccharide of alternating disaccharide residues, interacts with a wide variety of proteins, including many angiogenic factors. The involvement of HS in signaling of pro-angiogenic factors (e.g. vascular endothelial growth factor and fibroblast growth factor 2), as well as interaction with anti-angiogenic factors (e.g. endostatin), warrants its role as an important modifier of (tumor) angiogenesis. This review summarizes our current understanding of the role of HS in angiogenic growth factor signaling, and discusses therapeutic strategies to target HS and modulate angiogenesis.
Collapse
Affiliation(s)
- Xander M R van Wijk
- Department of Biochemistry (280), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
11
|
Krishna SM, Golledge J. The role of thrombospondin-1 in cardiovascular health and pathology. Int J Cardiol 2013; 168:692-706. [DOI: 10.1016/j.ijcard.2013.04.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 03/09/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
12
|
Miller TW, Kaur S, Ivins-O’Keefe K, Roberts DD. Thrombospondin-1 is a CD47-dependent endogenous inhibitor of hydrogen sulfide signaling in T cell activation. Matrix Biol 2013; 32:316-24. [PMID: 23499828 PMCID: PMC3706541 DOI: 10.1016/j.matbio.2013.02.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 02/15/2013] [Accepted: 02/28/2013] [Indexed: 01/17/2023]
Abstract
Thrombospondin-1 is a potent suppressor of T cell activation via its receptor CD47. However, the precise mechanism for this inhibition remains unclear. Because H2S is an endogenous potentiator of T cell activation and is necessary for full T cell activation, we hypothesized that thrombospondin-1 signaling through CD47 inhibits T cell activation by antagonizing H2S signaling. Primary T cells from thrombospondin-1 null mice were more sensitive to H2S-dependent activation assessed by proliferation and induction of interleukin-2 and CD69 mRNAs. Exogenous thrombospondin-1 inhibited H2S responses in wild type and thrombospondin-1 null T cells but enhanced the same responses in CD47 null T cells. Fibronectin, which shares integrin and glycosaminoglycan binding properties with thrombospondin-1 but not CD47 binding, did not inhibit H2S signaling. A CD47-binding peptide derived from thrombospondin-1 inhibited H2S-induced activation, whereas two other functional sequences from thrombospondin-1 enhanced H2S signaling. Therefore, engaging CD47 is necessary and sufficient for thrombospondin-1 to inhibit H2S-dependent T cell activation. H2S stimulated T cell activation by potentiating MEK-dependent ERK phosphorylation, and thrombospondin-1 inhibited this signaling in a CD47-dependent manner. Thrombospondin-1 also limited activation-dependent T cell expression of the H2S biosynthetic enzymes cystathionine β-synthase and cystathionine γ-lyase, thereby limiting the autocrine role of H2S in T cell activation. Thus, thrombospondin-1 signaling through CD47 is the first identified endogenous inhibitor of H2S signaling and constitutes a novel mechanism that negatively regulates T cell activation.
Collapse
Affiliation(s)
| | | | - Kelly Ivins-O’Keefe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD, 20892
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD, 20892
| |
Collapse
|
13
|
Gustafsson E, Almonte-Becerril M, Bloch W, Costell M. Perlecan maintains microvessel integrity in vivo and modulates their formation in vitro. PLoS One 2013; 8:e53715. [PMID: 23320101 PMCID: PMC3540034 DOI: 10.1371/journal.pone.0053715] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/05/2012] [Indexed: 12/27/2022] Open
Abstract
Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs) during vasculogenesis. In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs) in the absence of perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E) 12.5. At later stages of development 40% of mutant embryos showed dilated microvessels in brain and skin, which ruptured and led to severe bleedings. Surprisingly, teratomas derived from perlecan-null ES cells showed efficient contribution of perlecan-deficient endothelial cells to an apparently normal tumor vasculature. However, in perlecan-deficient EBs the area occupied by an endothelial network and the number of vessel branches were significantly diminished. Addition of FGF-2 but not VEGF(165) rescued the in vitro deficiency of the mutant ES cells. Furthermore, in the absence of perlecan in the EB matrix lower levels of FGFs are bound, stored and available for cell surface presentation. Altogether these findings suggest that perlecan supports the maintenance of brain and skin subendothelial BMs and promotes vasculo- and angiogenesis by modulating FGF-2 function.
Collapse
Affiliation(s)
- Erika Gustafsson
- Department of Experimental Pathology, Lund University, Lund, Sweden
| | - Maylin Almonte-Becerril
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México Distrito Federal, México
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Cologne, Germany
| | - Mercedes Costell
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action. Pharmaceuticals (Basel) 2010; 3:1241-1278. [PMID: 27713299 PMCID: PMC4034032 DOI: 10.3390/ph3041241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents.
Collapse
|
15
|
Cain SA, McGovern A, Small E, Ward LJ, Baldock C, Shuttleworth A, Kielty CM. Defining elastic fiber interactions by molecular fishing: an affinity purification and mass spectrometry approach. Mol Cell Proteomics 2009; 8:2715-32. [PMID: 19755719 PMCID: PMC2816023 DOI: 10.1074/mcp.m900008-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deciphering interacting networks of the extracellular matrix is a major challenge. We describe an affinity purification and mass spectrometry strategy that has provided new insights into the molecular interactions of elastic fibers, essential extracellular assemblies that provide elastic recoil in dynamic tissues. Using cell culture models, we defined primary and secondary elastic fiber interaction networks by identifying molecular interactions with the elastic fiber molecules fibrillin-1, MAGP-1, fibulin-5, and lysyl oxidase. The sensitivity and validity of our method was confirmed by identification of known interactions with the bait proteins. Our study revealed novel extracellular protein interactions with elastic fiber molecules and delineated secondary interacting networks with fibronectin and heparan sulfate-associated molecules. This strategy is a novel approach to define the macromolecular interactions that sustain complex extracellular matrix assemblies and to gain insights into how they are integrated into their surrounding matrix.
Collapse
Affiliation(s)
- Stuart A Cain
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M139PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kim HE, Kim HW, Jang JH. Identification and characterization of a novel heparin-binding peptide for promoting osteoblast adhesion and proliferation by screening an Escherichia coli cell surface display peptide library. J Pept Sci 2009; 15:43-7. [PMID: 19048606 DOI: 10.1002/psc.1098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Heparin/heparan sulfate (HS) plays a key role in cellular adhesion. In this study, we utilized a 12-mer random Escherichia coli cell surface display library to identify the sequence, which binds to heparin. Isolated insert analysis revealed a novel heparin-binding peptide sequence, VRRSKHGARKDR, designated as HBP12. Our analysis of the sequence alignment of heparin-binding motifs known as the Cardin-Weintraub consensus (BBXB, where B is a basic residue) indicates that the HBP12 peptide sequence contains two consecutive heparin-binding motifs (i.e. RRSK and RKDR). SPR-based BIAcore technology demonstrated that the HBP12 peptide binds to heparin with high affinity (KD = 191 nM). The HBP12 peptide is found to bind the cell surface HS expressed by osteoblastic MC3T3 cells and promote HS-dependent cell adhesion. Moreover, the surface-immobilized HBP12 peptide on titanium substrates shows significant increases in the osteoblastic MC3T3-E1 cell adhesion and proliferation.
Collapse
Affiliation(s)
- Hyoun-Ee Kim
- School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
17
|
Osada-Oka M, Ikeda T, Akiba S, Sato T. Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1α-dependent expression of thrombospondin-1. J Cell Biochem 2008; 104:1918-26. [DOI: 10.1002/jcb.21759] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Abstract
Thrombospondin-1 is a secreted protein that modulates vascular cell behavior via several cell surface receptors. In vitro, nanomolar concentrations of thrombospondin-1 are required to alter endothelial and vascular smooth muscle cell adhesion, proliferation, motility, and survival. Yet, much lower levels of thrombospondin-1 are clearly functional in vivo. This discrepancy was explained with the discovery that the potency of thrombospondin-1 increases more than 100-fold in the presence of physiological levels of nitric oxide (NO). Thrombospondin-1 binding to CD47 inhibits NO signaling by preventing cGMP synthesis and activation of its target cGMP-dependent protein kinase. This potent antagonism of NO signaling allows thrombospondin-1 to acutely constrict blood vessels, accelerate platelet aggregation, and if sustained, inhibit angiogenic responses. Acute antagonism of NO signaling by thrombospondin-1 is important for hemostasis but becomes detrimental for tissue survival of ischemic injuries. New therapeutic approaches targeting thrombospondin-1 or CD47 can improve recovery from ischemic injuries and overcome a deficit in NO-responsiveness in aging. (Part of a Multi-author Review).
Collapse
Affiliation(s)
- J. S. Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 2A33, 10 Center Dr MSC1500, Bethesda, Maryland 20892 USA
| | - W. A. Frazier
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 USA
| | - D. D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 2A33, 10 Center Dr MSC1500, Bethesda, Maryland 20892 USA
| |
Collapse
|
19
|
|
20
|
Shipp EL, Hsieh-Wilson LC. Profiling the Sulfation Specificities of Glycosaminoglycan Interactions with Growth Factors and Chemotactic Proteins Using Microarrays. ACTA ACUST UNITED AC 2007; 14:195-208. [PMID: 17317573 DOI: 10.1016/j.chembiol.2006.12.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 12/13/2006] [Accepted: 12/28/2006] [Indexed: 12/24/2022]
Abstract
We report a carbohydrate microarray-based approach for the rapid, facile analysis of glycosaminoglycan-protein interactions. The key structural determinants responsible for protein binding, such as sulfate groups that participate in the interactions, were elucidated. Specificities were also readily compared across protein families or functional classes, and comparisons among glycosaminoglycan subclasses provided a more comprehensive understanding of protein specificity. To validate the approach, we showed that fibroblast growth factor family members have distinct sulfation preferences. We also demonstrated that heparan sulfate and chondroitin sulfate interact in a sulfation-dependent manner with various axon guidance proteins, including slit2, netrin1, ephrinA1, ephrinA5, and semaphorin5B. We anticipate that these microarrays will accelerate the discovery of glycosaminoglycan-binding proteins and provide a deeper understanding of their roles in regulating diverse biological processes.
Collapse
Affiliation(s)
- Eric L Shipp
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
21
|
Gao R, Brigstock DR. Connective tissue growth factor (CCN2) in rat pancreatic stellate cell function: integrin alpha5beta1 as a novel CCN2 receptor. Gastroenterology 2005; 129:1019-30. [PMID: 16143139 DOI: 10.1053/j.gastro.2005.06.067] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 06/02/2005] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Pancreatic stellate cells (PSCs) are proposed to play a key role in the development of pancreatic fibrosis. The aim of this study was to evaluate the production by rat activated PSCs of the fibrogenic protein, connective tissue growth factor (CCN2), and to determine the effects of CCN2 on PSC function. METHODS CCN2 production was evaluated by immunoprecipitation and promoter activity assays. Expression of integrin alpha5beta1 was examined by immunoprecipitation and Western blot. Binding between CCN2 and integrin alpha5beta1 was determined in cell-free systems. CCN2 was assessed for its stimulation of PSC adhesion, migration, proliferation, DNA synthesis, and collagen I synthesis. RESULTS CCN2 was produced by activated PSCs, and its levels were enhanced by transforming growth factor beta1 treatment. CCN2 promoter activity was stimulated by transforming growth factor beta1, platelet-derived growth factor, alcohol, or acetaldehyde. CCN2 stimulated integrin alpha5beta1-dependent adhesion, migration, and collagen I synthesis in PSCs. Integrin alpha5beta1 production by PSCs was verified by immunoprecipitation, while direct binding between integrin alpha5beta1 and CCN2 was confirmed in cell-free binding assays. Cell surface heparan sulfate proteoglycans functioned as a partner of integrin alpha5beta1 in regulating adhesion of PSCs to CCN2. PSC proliferation and DNA synthesis were enhanced by CCN2. CONCLUSIONS PSCs synthesize CCN2 during activation and after stimulation by profibrogenic molecules. CCN2 regulates PSC function via cell surface integrin alpha5beta1 and heparan sulfate proteoglycan receptors. These data support a role for CCN2 in PSC-mediated fibrogenesis and highlight CCN2 and its receptors as potential novel therapeutic targets.
Collapse
Affiliation(s)
- Runping Gao
- Center for Cell and Vascular Biology, Children's Research Institute, Columbus, Ohio 43205, USA
| | | |
Collapse
|
22
|
Primo L, Ferrandi C, Roca C, Marchiò S, di Blasio L, Alessio M, Bussolino F. Identification of CD36 molecular features required for its in vitro angiostatic activity. FASEB J 2005; 19:1713-5. [PMID: 16037098 DOI: 10.1096/fj.05-3697fje] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thrombospondin-1 (TSP-1), a natural inhibitor of angiogenesis, acts directly on endothelial cells (EC) via CD36 to inhibit their migration and morphogenesis induced by basic fibroblast growth factor. Here we show that CD36 triggered by TSP-1 inhibits in vitro angiogenesis stimulated by vascular endothelial growth factor-A (VEGF-A). To demonstrate that the TSP-1 inhibitory signal was mediated by CD36, we transduced CD36 in CD36-deficient endothelial cells. Both TSP-1 and the agonist anti-CD36 mAb SMO, which mimics TSP-1 activity, reduced the VEGF-A165-induced migration and sprouting of CD36-ECs. To address the mechanisms by which CD36 may exert its angiostatic function, we investigated the functional components of the C-terminal cytoplasmic tail by site-directed mutagenesis. Our results indicate that C464, R467, and K469 of CD36 are required for the inhibitory activity of TSP-1. In contrast, point mutation of C466 did not alter TSP-1 ability to inhibit EC migration and sprouting. Moreover, we show that activation of CD36 by TSP-1 down-modulates the VEGF receptor-2 (VEGFR-2) and p38 mitogen-associated protein kinase phosphorylation induced by VEGF-A165, and this effect was specifically abolished by point mutation at C464. These results identify specific amino acids of the C-terminal cytoplasmic tail of CD36 crucial for the in vitro angiostatic activity of TSP-1 and extend our knowledge of regulation of VEGFR-2-mediated biological activities on ECs.
Collapse
Affiliation(s)
- Luca Primo
- Institute for Cancer Research and Treatment, Candiolo, and School of Medicine, University of Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Whitelock JM, Iozzo RV. Heparan Sulfate: A Complex Polymer Charged with Biological Activity. Chem Rev 2005; 105:2745-64. [PMID: 16011323 DOI: 10.1021/cr010213m] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|
24
|
Elzie CA, Murphy-Ullrich JE. The N-terminus of thrombospondin: the domain stands apart. Int J Biochem Cell Biol 2004; 36:1090-101. [PMID: 15094124 DOI: 10.1016/j.biocel.2003.12.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 12/18/2003] [Accepted: 12/22/2003] [Indexed: 10/26/2022]
Abstract
Thrombospondin 1 (TSP1) was first recognized as a thrombin-sensitive protein associated with platelet membranes. It is secreted by numerous cell types and its expression is predominant in areas of active tissue remodeling. Thrombospondins 1 and 2 are large, trimeric, matricellular proteins, composed of multiple structural motifs which interact with a diverse array of receptors and molecules. Thrombospondin's capacity to bind multiple receptors renders it multifunctional. The functions of its isolated domains can be overlapping or contradictory. In this review, we focus on the N-terminus of the molecule, first recognized for its strong heparin binding properties and characterized by its susceptibility to proteolytic cleavage from the stalk region of thrombospondin. The N-terminus, called the heparin binding domain (HBD), interacts with a variety of macromolecules including heparan sulfate proteoglycans at the membrane and in the matrix, LDL receptor-related protein (LRP), sulfated glycolipids, calreticulin, and integrins. The HBD mediates endocytosis of thrombospondin. It functions both as a soluble and an insoluble modulator of cell adhesion and motility. In contrast to thrombospondin, the HBD has pro-angiogenic activity. We propose that the HBD of thrombospondins 1 and 2 are found primarily in the cellular microenvironment in conditions of cellular injury, stress and tissue remodeling and that the HBD conveys multiple signals involved in cellular adaptation to injury.
Collapse
Affiliation(s)
- Carrie Ann Elzie
- Department of Pathology, Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, VH 668, 1530 3rd Avenue South, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
25
|
Jang JH, Hwang JH, Chung CP, Choung PH. Identification and Kinetics Analysis of a Novel Heparin-binding Site (KEDK) in Human Tenascin-C. J Biol Chem 2004; 279:25562-6. [PMID: 15069070 DOI: 10.1074/jbc.m403170200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between tenascin-C (TN-C), a multi-subunit extracellular matrix protein, and heparin was examined using a surface plasmon resonance-based technique on a Biacore system. The aims of the present study were to examine the affinity of fibronectin type III repeats of TN-C fragments (TNIII) for heparin, to investigate the role of the TNIII4 domains in the binding of TN-C to heparin, and to delineate a sequence of amino acids within the TNIII4 domain, which mediates cooperative heparin binding. At a physiological salt concentration, and pH 7.4, TNIII3-5 binds to heparin with high affinity (K(D) = 30 nm). However, a major heparin-binding site in TNIII5 produces a modest affinity binding at a K(D) near 4 microm, and a second site in TNIII4 enhances the binding by several orders of magnitude, although it was far too weak to produce an observable binding of TNIII4 by itself. Moreover, mutagenesis of the KEDK sequence in the TNIII4 domain resulted in the significant reduction of heparin-binding affinity. In addition, residues in the KEDK sequences are conserved in TN-C throughout mammalian evolution. Thus the structure-based sequence alignment, mutagenesis, and sequence conservation data together reveal a KEDK sequence in TNIII4 suggestive of a minor heparin-binding site. Finally, we demonstrate that TNIII4 contains binding sites for heparin sulfate proteoglycan and enhances the heparin sulfate proteoglycan-dependent human gingival fibroblast adhesion to TNIII5, thus providing the biological significance of heparin-binding site of TNIII4. These results suggest that the heparin-binding sites may traverse TNIII4-5 and thus require KEDK in TNIII4 for optimal heparin-binding.
Collapse
Affiliation(s)
- Jun-Hyeog Jang
- Intellectual Biointerface Engineering Center, Seoul National University College of Dentistry, Seoul 110-749, Korea.
| | | | | | | |
Collapse
|
26
|
Gao R, Brigstock DR. Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 2003; 279:8848-55. [PMID: 14684735 DOI: 10.1074/jbc.m313204200] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Connective tissue growth factor (CCN2, also known as CTGF) is a matricellular protein that appears to play an important role in hepatic stellate cell (HSC)-mediated fibrogenesis. After signal peptide cleavage, the full-length CCN2 molecule comprises four structural modules (CCN2(1-4)) and is susceptible to proteolysis by HSC yielding isoforms comprising essentially modules 3 and 4 (CCN2(3-4)) or module 4 alone (CCN2(4)). In this study we show that rat activated HSC are capable of adhesion to all three CCN2 isoforms via the binding of module 4 to integrin alpha(v)beta(3), a process that is dependent on interactions between module 4 and cell surface heparan sulfate proteoglycans (HSPGs). These findings are based on several lines of evidence. First, integrin alpha(v)beta(3) was detected in HSC lysates by immunoprecipitation and Western blot, and CCN2(4)-mediated HSC adhesion was blocked by anti-integrin alpha(v)beta(3) antibody. Second, as assessed by immunoprecipitation and solid phase binding assay, CCN2(4) bound directly to integrin alpha(v)beta(3) in cell-free systems. Third, destruction or inhibition of synthesis of cell surface HSPGs with, respectively, heparinase or sodium chlorate abrogated HSC adhesion to CCN2(4). Fourth, prior occupancy of heparin-binding sites on CCN2(4) with soluble heparin completely blocked HSC adhesion. These findings indicate that integrin alpha(v)beta(3) functions as a co-receptor with HSPGs for CCN2(4)-mediated HSC adhesion. Furthermore, by peptide mapping and site-directed mutagenesis we demonstrated that the sequence IRTPKISKPIKFELSG within CCN2(4) is a unique binding domain for integrin alpha(v)beta(3) that is sufficient to mediate integrin alpha(v)beta(3)- and HSPG-dependent HSC adhesion. These findings offer the possibility of developing novel antifibrotic therapies that target the integrin-binding domain.
Collapse
Affiliation(s)
- Runping Gao
- Departments of Surgery, The Ohio State University, Columbus, Ohio 43212, USA
| | | |
Collapse
|
27
|
Orr AW, Elzie CA, Kucik DF, Murphy-Ullrich JE. Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 2003; 116:2917-27. [PMID: 12808019 DOI: 10.1242/jcs.00600] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The matricellular extracellular matrix protein thrombospondin-1 (TSP1) stimulates focal adhesion disassembly through a sequence (known as the hep I peptide) in its heparin-binding domain. This mediates signaling through a receptor co-complex involving calreticulin and low-density lipoprotein (LDL) receptor-related protein (LRP). We postulate that this transition to an intermediate adhesive state enhances cellular responses to dynamic environmental conditions. Since cell adhesion dynamics affect cell motility, we asked whether TSP1/hep I-induced intermediate adhesion alters cell migration. Using both transwell and Dunn chamber assays, we demonstrate that TSP1 and hep I gradients stimulate endothelial cell chemotaxis. Treatment with focal adhesion-labilizing concentrations of TSP1/hep I in the absence of a gradient enhances endothelial cell random migration, or chemokinesis, associated with an increase in cells migrating, migration speed, and total cellular displacement. Calreticulin-null and LRP-null fibroblasts do not migrate in response to TSP1/hep I, nor do endothelial cells treated with the LRP inhibitor receptor-associated protein (RAP). Furthermore, TSP1/hep I-induced focal adhesion disassembly is associated with reduced chemotaxis to basic fibroblast growth factor (bFGF) but enhanced chemotaxis to acidic (a)FGF, suggesting differential modulation of growth factor-induced migration. Thus, TSP1/hep I stimulation of intermediate adhesion regulates the migratory phenotype of endothelial cells and fibroblasts, suggesting a role for TSP1 in remodeling responses.
Collapse
Affiliation(s)
- A Wayne Orr
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
28
|
Decker S, van Valen F, Vischer P. Adhesion of osteosarcoma cells to the 70-kDa core region of thrombospondin-1 is mediated by the alpha 4 beta 1 integrin. Biochem Biophys Res Commun 2002; 293:86-92. [PMID: 12054567 DOI: 10.1016/s0006-291x(02)00180-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thrombospondin-1 (TSP-1) is an extracellular glycoprotein that is involved in a variety of physiological processes such as tumor cell adhesion, invasion, and metastasis. It has been hypothesized that TSP-1 provides an adhesive matrix for osteosarcoma cells. Here we present data showing that TSP-1 can promote cell substrate adhesion to U2OS and SAOS cells through the alpha 4 beta 1 integrin. The dose-dependent adhesion to TSP-1 was inhibited by anti-integrin antibodies directed against the alpha 4 or beta 1 subunit, but not by control antibodies against other integrins. To localize the potential alpha 4 beta 1-binding site within the TSP-1 molecule, the protein was subjected to limited proteolysis with chymotrypsin in the absence of calcium. The stable 70-kDa core fragment produced under these conditions promoted alpha 4 beta 1-dependent osteosarcoma cell adhesion in a manner similar to that of the intact protein. Moreover adhesion experiments with neutralizing antibodies revealed that the adhesion was totally dependent on the alpha 4 beta 1 interaction. Further blocking experiments with potential inhibitory peptides revealed that the alpha 4 beta 1-mediated adhesion was not influenced by peptides containing the RGD sequence. Attachment to the 70-kDa fragment was strongly inhibited by the CS-1 peptide, which represents the most active recognition domain for alpha 4 beta 1 integrin in fibronectin. The present data provide evidence that TSP-1 contains an alpha 4 beta 1 integrin-binding site within the 70-kDa core region.
Collapse
Affiliation(s)
- Stephan Decker
- Department of Paediatric Haematology and Oncology, University of Münster, Domagkstrasse 3, D-48149 Münster, Germany
| | | | | |
Collapse
|
29
|
Knox S, Merry C, Stringer S, Melrose J, Whitelock J. Not all perlecans are created equal: interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J Biol Chem 2002; 277:14657-65. [PMID: 11847221 DOI: 10.1074/jbc.m111826200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human basement membrane heparan sulfate proteoglycan (HSPG) perlecan binds and activates fibroblast growth factor (FGF)-2 through its heparan sulfate (HS) chains. Here we show that perlecans immunopurified from three cellular sources possess different HS structures and subsequently different FGF-2 binding and activating capabilities. Perlecan isolated from human umbilical arterial endothelial cells (HUAEC) and a continuous endothelial cell line (C11 STH) bound similar amounts of FGF-2 either alone or complexed with FGFRalpha1-IIIc or FGFR3alpha-IIIc. Both perlecans stimulated the growth of BaF3 cell lines expressing FGFR1b/c; however, only HUAEC perlecan stimulated those cells expressing FGFR3c, suggesting that the source of perlecan confers FGF and FGFR binding specificity. Despite these differences in FGF-2 activation, the level of 2-O- and 6-O-sulfation was similar for both perlecans. Interestingly, perlecan isolated from a colon carcinoma cell line that was capable of binding FGF-2 was incapable of activating any BaF3 cell line unless the HS was removed from the protein core. The HS chains also exhibited greater bioactivity after digestion with heparinase III. Collectively, these data clearly demonstrate that the bioactivity of HS decorating a single PG is dependent on its cell source and that subtle changes in structure including secondary interactions have a profound effect on biological activity.
Collapse
Affiliation(s)
- Sarah Knox
- Commonwealth Scientific Industrial Research Organization (CSIRO) Molecular Science, North Ryde 2113, Australia
| | | | | | | | | |
Collapse
|
30
|
Li P, Rossman TG. Genes upregulated in lead-resistant glioma cells reveal possible targets for lead-induced developmental neurotoxicity. Toxicol Sci 2001; 64:90-9. [PMID: 11606805 DOI: 10.1093/toxsci/64.1.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Identifying genes upregulated in lead-resistant cells should give insight into lead toxicity and cellular protective mechanisms and may also result in identification of proteins that may be useful as biomarkers. Glial cells are thought to protect neurons against heavy metals. Rat glioma C6 cells share many properties of normal glial cells. To identify and analyze genes upregulated in a lead-resistant variant, PbR11, suppression subtractive hybridization (SSH) between mRNAs of wild-type and PbR11 cells was performed. Sequencing and database searches identified three genes, thrombospondin-1, heparin sulfate 6-sulfotransferase, and neuropilin-1, which play important roles in angiogenesis and axon growth during development. Two genes, HSP90 and UBA3, are involved in the ubiquitin-proteosome system. One gene was identified as that of a rat endogenous retrovirus and another, 2C9, is a transcript expressed in fos-transformed cells. PbR11 also overexpresses c-fos. Expression of these genes and effects of short-term lead exposure (24 h, up to 600 microM) on their expression in C6 cells was examined. The rat endogenous retrovirus and 2C9 are expressed only in PbR11 cells, and show no expression, either constitutive or lead-induced, in wild-type C6 cells. HSP90 is expressed at low level constitutively in C6 cells, but can be induced in a dose-dependent manner by lead. In contrast, thrombospondin-1 is repressed in a dose-dependent manner by lead. The other genes (HS6ST, neuropilin, and UBA3) show low constitutive expression and are neither upregulated nor downregulated by exposure to lead. We suggest that neuropilin-1, heparin sulfate 6-sulfotransferase, and thrombospondin-1 may be important targets for lead-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- P Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | | |
Collapse
|
31
|
Franco CR, Rocha HA, Trindade ES, Santos IA, Leite EL, Veiga SS, Nader HB, Dietrich CP. Heparan sulfate and control of cell division: adhesion and proliferation of mutant CHO-745 cells lacking xylosyl transferase. Braz J Med Biol Res 2001; 34:971-5. [PMID: 11471034 DOI: 10.1590/s0100-879x2001000800001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the role of cell surface glycosaminoglycans in cell division: adhesion and proliferation of Chinese hamster ovary (CHO) cells. We used both wild-type (CHO-K1) cells and a mutant (CHO-745) which is deficient in the synthesis of proteoglycans due to lack of activity of xylosyl transferase. Using different amounts of wild-type and mutant cells, little adhesion was observed in the presence of laminin and type I collagen. However, when fibronectin or vitronectin was used as substrate, there was an enhancement in the adhesion of wild-type and mutant cells. Only CHO-K1 cells showed a time-dependent adhesion on type IV collagen. These results suggest that the two cell lines present different adhesive profiles. Several lines of experimental evidence suggest that heparan sulfate proteoglycans play a role in cell adhesion as positive modulators of cell proliferation and as key participants in the process of cell division. Proliferation and cell cycle assays clearly demonstrate that a decrease in the amount of glycosaminoglycans does not inhibit the proliferation of mutant CHO-745 cells when compared to the wild type CHO-K1, in agreement with the findings that both CHO-K1 and CHO-745 cells take 8 h to enter the S phase.
Collapse
Affiliation(s)
- C R Franco
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua 3 de Maio 100, 04044-020 São Paulo SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Netelenbos T, Dräger AM, van het Hof B, Kessler FL, Delouis C, Huijgens PC, van den Born J, van Dijk W. Differences in sulfation patterns of heparan sulfate derived from human bone marrow and umbilical vein endothelial cells. Exp Hematol 2001; 29:884-93. [PMID: 11438211 DOI: 10.1016/s0301-472x(01)00653-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Heparan sulfates (HS), the polysaccharide side chains of HS proteoglycans, differ in structure and composition of sulfated domains among various tissue types, resulting in selective protein binding. HS proteoglycans on bone marrow endothelial cells (BMEC) could contribute to tissue specificity of the bone marrow endothelium and play a role in the presentation of chemokines such as stromal cell-derived factor-1 (SDF-1) and adhesion of hematopoietic progenitor cells after stem cell transplantations. We characterized differences in HS structure and SDF-1 binding between BMEC and human umbilical vein endothelial cells (HUVEC). MATERIALS AND METHODS Expression of HS proteoglycans on human bone marrow microvessels was investigated by immunohistochemical staining. Comparison of three human BMEC cell lines with HUVEC and an HUVEC cell line was studied by flow cytometry using antibodies against different epitopes of the HS polysaccharide chain. HS proteoglycans were biochemically characterized after isolation from metabolically labeled cultures of the BMEC cell line 4LHBMEC and HUVEC. Binding of radiolabeled SDF-1 to 4LHBMEC and HUVEC and competition with heparins were investigated. RESULTS Bone marrow microvessels constitutively expressed HS proteoglycans. Flow cytometric experiments showed differences in HS chain composition between BMEC and HUVEC. Biochemical characterization revealed more O-sulfation of the N-sulfated domains present in cell-associated HS glycosaminoglycans in 4LHBMEC compared to HUVEC. Binding experiments showed that 4LHBMEC bound more 125[I]-SDF-1 per cell than HUVEC. This could be inhibited largely by heparin and O-sulfated heparin and to a lesser extent by N-sulfated heparin. CONCLUSIONS Cellular HS from BMEC differs in composition from HUVEC. We postulate that the presence of highly sulfated domains in the HS chains from BMEC contributes to tissue specificity of bone marrow endothelium in which HS may be involved in SDF-1 presentation and adhesion of hematopoietic progenitor cells.
Collapse
Affiliation(s)
- T Netelenbos
- Department of Hematology, University Hospital Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Karumanchi SA, Jha V, Ramchandran R, Karihaloo A, Tsiokas L, Chan B, Dhanabal M, Hanai JI, Venkataraman G, Shriver Z, Keiser N, Kalluri R, Zeng H, Mukhopadhyay D, Chen RL, Lander AD, Hagihara K, Yamaguchi Y, Sasisekharan R, Cantley L, Sukhatme VP. Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 2001; 7:811-22. [PMID: 11336704 DOI: 10.1016/s1097-2765(01)00225-8] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endostatin, a collagen XVIII fragment, is a potent anti-angiogenic protein. We sought to identify its endothelial cell surface receptor(s). Alkaline phosphatase- tagged endostatin bound endothelial cells revealing two binding affinities. Expression cloning identified glypican, a cell surface proteoglycan as the lower-affinity receptor. Biochemical and genetic studies indicated that glypicans' heparan sulfate glycosaminoglycans were critical for endostatin binding. Furthermore, endostatin selected a specific octasulfated hexasaccharide from a sequence in heparin. We have also demonstrated a role for endostatin in renal tubular cell branching morphogenesis and show that glypicans serve as low-affinity receptors for endostatin in these cells, as in endothelial cells. Finally, antisense experiments suggest the critical importance of glypicans in mediating endostatin activities.
Collapse
Affiliation(s)
- S A Karumanchi
- Department of Medicine and the Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen CC, Chen N, Lau LF. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 2001; 276:10443-52. [PMID: 11120741 DOI: 10.1074/jbc.m008087200] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The angiogenic inducers cysteine-rich angiogenic protein 61 (Cyr61) and connective tissue growth factor (CTGF) are structurally related, extracellular matrix-associated heparin-binding proteins. Both can stimulate chemotaxis and promote proliferation in endothelial cells and fibroblasts in culture and induce neovascularization in vivo. Encoded by inducible immediate early genes, Cyr61 and CTGF are synthesized upon growth factor stimulation in cultured fibroblasts and during cutaneous wound healing in dermal fibroblasts. Recently, we have shown that adhesion of primary human fibroblasts to immobilized Cyr61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans (HSPGs) (Chen, N., Chen, C.-C., and Lau, L.F. (2000) J. Biol. Chem. 275, 24953-24961), providing the first demonstration of an absolute requirement for HSPGs in integrin-mediated cell attachment. We show in this study that CTGF also mediates fibroblast adhesion through the same mechanism and demonstrate that fibroblasts adhesion to immobilized Cyr61 or CTGF induces distinct adhesive signaling responses consistent with their biological activities. Compared with fibroblast adhesion to fibronectin, laminin, or type I collagen, cell adhesion to Cyr61 or CTGF induces 1) more extensive and prolonged formation of filopodia and lamellipodia, concomitant with formation of integrin alpha(6)beta(1)-containing focal complexes localized at leading edges of pseudopods; 2) activation of intracellular signaling molecules including focal adhesion kinase, paxillin, and Rac with similar rapid kinetics; 3) sustained activation of p42/p44 MAPKs lasting for at least 9 h; and 4) prolonged gene expression changes including up-regulation of MMP-1 (collagenase-1) and MMP-3 (stromelysin-1) mRNAs and proteins sustained for at least 24 h. Together, these results establish Cyr61 and CTGF as bona fide adhesive substrates with specific signaling capabilities, provide a molecular basis for their activities in fibroblasts through integrin alpha(6)beta(1) and HSPG-mediated signaling during attachment and indicate that these proteins may function in matrix remodeling through the activation of metalloproteinases during angiogenesis and wound healing.
Collapse
Affiliation(s)
- C C Chen
- Department of Molecular Genetics, University of Illinois at Chicago College of Medicine, 60607-7170, USA
| | | | | |
Collapse
|