1
|
Tayama Y, Sugihara K, Sanoh S, Miyake K, Kitamura S, Ohta S. Xanthine oxidase and aldehyde oxidase contribute to allopurinol metabolism in rats. J Pharm Health Care Sci 2022; 8:31. [PMID: 36476607 PMCID: PMC9730672 DOI: 10.1186/s40780-022-00262-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Allopurinol is used to treat hyperuricemia and gout. It is metabolized to oxypurinol by xanthine oxidase (XO), and aldehyde oxidase (AO). Allopurinol and oxypurinol are potent XO inhibitors that reduce the plasma uric acid levels. Although oxypurinol levels show large inter-individual variations, high concentrations of oxypurinol can cause various adverse effects. Therefore, it is important to understand allopurinol metabolism by XO and AO. In this study we aimed to estimate the role of AO and XO in allopurinol metabolism by pre-administering Crl:CD and Jcl:SD rats, which have known strain differences in AO activity, with XO inhibitor febuxostat. METHODS Allopurinol (30 or 100 mg/kg) was administered to Crl:CD and Jcl:SD rats with low and high AO activity, respectively, after pretreatment with or without febuxostat. The serum concentrations of allopurinol and oxypurinol were measured, and the area under the concentration-time curve (AUC) was calculated from the 48 h serum concentration-time profile. In vivo metabolic activity was measured as the ratio AUCoxypurinol /AUCallopurinol. RESULTS Although no strain-specific differences were observed in the AUCoxypurinol/AUCallopurinol ratio in the allopurinol (30 mg/kg)-treated group, the ratio in Jcl:SD rats was higher than that in Crl:CD rats after febuxostat pretreatment. Contrastingly, the AUC ratio of allopurinol (100 mg/kg) was approximately 2-fold higher in Jcl:SD rats than that in Crl:CD rats. These findings showed that Jcl:SD rats had higher intrinsic AO activity than Crl:CD rats did. However, febuxostat pretreatment substantially decreased the activity, as measured by the AUC ratio using allopurinol (100 mg/kg), to 46 and 63% in Crl:CD rats and Jcl:SD rats, respectively, compared to the control group without febuxostat pretreatment. CONCLUSIONS We elucidated the role of XO and AO in allopurinol metabolism in Crl:CD and Jcl:SD rats. Notably, AO can exert a proportionately greater impact on allopurinol metabolism at high allopurinol concentrations. AO's impact on allopurinol metabolism is meaningful enough that individual differences in AO may explain allopurinol toxicity events. Considering the inter-individual differences in AO activity, these findings can aid to dose adjustment of allopurinol to avoid potential adverse effects.
Collapse
Affiliation(s)
- Yoshitaka Tayama
- grid.412153.00000 0004 1762 0863Faculty of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-shi, Hiroshima, 737-0112 Japan
| | - Kazumi Sugihara
- grid.412153.00000 0004 1762 0863Faculty of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-shi, Hiroshima, 737-0112 Japan
| | - Seigo Sanoh
- grid.412857.d0000 0004 1763 1087School of Pharmaceutical Health Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, 640-8156 Japan
| | - Katsushi Miyake
- grid.412153.00000 0004 1762 0863Faculty of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-shi, Hiroshima, 737-0112 Japan
| | - Shigeyuki Kitamura
- grid.444657.00000 0004 0606 9754Nihon Pharmaceutical University, Komuro 10281, Inamachi, Kitaadachi-gun, Saitama, 362-0806 Japan
| | - Shigeru Ohta
- grid.412857.d0000 0004 1763 1087School of Pharmaceutical Health Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, 640-8156 Japan
| |
Collapse
|
2
|
Zhang Y, Zhang J, Li D, Sun H, Lu R, Yin S, Guo X, Gao S. Aldehyde oxidases mediate plant toxicant susceptibility and fecundity in the red flour beetle, Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:656-666. [PMID: 35168693 DOI: 10.1017/s0007485322000049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aldehyde oxidases (AOXs) are a group of metabolic enzymes that play critical roles in the degradation of xenobiotics and chemicals. However, the physiological function of this enzyme in insects remains poorly understood. In this study, three TcAOX genes (TcAOX1, TcAOX2, TcAOX3) were identified and characterized from Tribolium castaneum genome. Spatiotemporal expression profiling showed that TcAOX1 expression was most highly expressed at the early pupal stage and was predominantly expressed in the antennae of adults, indicating that TcAOX1 was involved in the degradation of chemical signals; TcAOX2 expression was most highly expressed at the late pupal stage and was mainly expressed in the fat body, epidermis of larvae and adults, respectively; and TcAOX3 expression was in all stages and was primarily expressed in the head of adults. Moreover, the transcripts of TcAOX2 and TcAOX3 were significantly induced after exposure to plant oil, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to this plant toxicant, suggesting that these two genes are associated with plant toxicant detoxification. Intriguingly, knockdown of the TcAOX1 led to reductions in female egg-laying but unchanged the hatchability and the development of genital organs, suggesting that this gene may mediate fecundity by effecting the inactivation of chemical signals in T. castaneum. Overall, these results shed new light on the function of AOX genes in insects, and could facilitate the development of research on pest control management.
Collapse
Affiliation(s)
- Yonglei Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiahao Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Dongyu Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Se Yin
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Xinlong Guo
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
3
|
Wellaway CR, Baldwin IR, Bamborough P, Barker D, Bartholomew MA, Chung CW, Dümpelfeld B, Evans JP, Fazakerley NJ, Homes P, Keeling SP, Lewell XQ, McNab FW, Morley J, Needham D, Neu M, van Oosterhout AJM, Pal A, Reinhard FBM, Rianjongdee F, Robertson CM, Rowland P, Shah RR, Sherriff EB, Sloan LA, Teague S, Thomas DA, Wellaway N, Wojno-Picon J, Woolven JM, Coe DM. Investigation of Janus Kinase (JAK) Inhibitors for Lung Delivery and the Importance of Aldehyde Oxidase Metabolism. J Med Chem 2021; 65:633-664. [PMID: 34928601 DOI: 10.1021/acs.jmedchem.1c01765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Janus family of tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) play an essential role in the receptor signaling of cytokines that have been implicated in the pathogenesis of severe asthma, and there is emerging interest in the development of small-molecule-inhaled JAK inhibitors as treatments. Here, we describe the optimization of a quinazoline series of JAK inhibitors and the results of mouse lung pharmacokinetic (PK) studies where only low concentrations of parent compound were observed. Subsequent investigations revealed that the low exposure was due to metabolism by aldehyde oxidase (AO), so we sought to identify quinazolines that were not metabolized by AO. We found that specific substituents at the quinazoline 2-position prevented AO metabolism and this was rationalized through computational docking studies in the AO binding site, but they compromised kinome selectivity. Results presented here highlight that AO metabolism is a potential issue in the lung.
Collapse
Affiliation(s)
- Christopher R Wellaway
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian R Baldwin
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Daniel Barker
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Michelle A Bartholomew
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-Wa Chung
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Birgit Dümpelfeld
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - John P Evans
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Neal J Fazakerley
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Homes
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Steven P Keeling
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Xiao Q Lewell
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Finlay W McNab
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Joanne Morley
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Deborah Needham
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Margarete Neu
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Anshu Pal
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Francesco Rianjongdee
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Craig M Robertson
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Rowland
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rishi R Shah
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Emma B Sherriff
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lisa A Sloan
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Simon Teague
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Daniel A Thomas
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Natalie Wellaway
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Justyna Wojno-Picon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - James M Woolven
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Diane M Coe
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
4
|
Zhang J, Duan Z, Wang X, Li F, Chen J, Lai X, Qu L, Sun C, Xu G. Screening and validation of candidate genes involved in the regulation of egg yolk deposition in chicken. Poult Sci 2021; 100:101077. [PMID: 33857910 PMCID: PMC8054188 DOI: 10.1016/j.psj.2021.101077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 11/06/2020] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
Eggs with the same total weight may have considerable differences in yolk weight. Eggs with a high percentage of yolk have a higher nutritional value, more flavor, and are more desirable to consumers. However, a large yolk proportion means more dry matter in the eggs, which reduces the feed efficiency. The elucidation of the genetic factors of yolk quantity in eggs is of scientific and practical significance. Through RNA sequencing, we explored the transcriptome of ovarian tissue from 12 Wenchang chickens, including 6 chickens that laid eggs with a high yolk percentage (32%) and 6 that laid low yolk percentage eggs (25%). We identified a total of 362 differentially expressed genes (P-value < 0.01, log2 fold change < −1, log2 fold change > 1), of which 220 were upregulated and 142 were downregulated in high yolk percentage hens. According to the Gene Ontology terms annotation and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the differentially expressed genes were associated with the regulation of various cell functions, cell differentiation and development, neuroactive ligand–receptor interactions, and calcium and ubiquitin-mediated proteolysis signaling pathways. To further filter for genes that were directly involved in yolk accumulation, the chicken quantitative trait loci database, genes within 100 kb upstream and downstream of the yolk weight trait SNP, and intersection genes in protein–protein interaction network diagrams were used to detect genes that overlapped with the differentially expressed genes. We found 7 candidate genes in total, MNR2, AOX1, ANTXRL, GRAMD1C, EEF2, COMP, and JUND, which affect female reproductive performance and the growth and development of follicles, supporting cell transport, cell proliferation, and differentiation. All candidate genes and several randomly selected genes were verified by quantitative real time PCR, and the results were consistent with the RNA sequencing. In conclusion, investigating the molecular mechanisms of high yolk percentage traits will allow breeding strategies to be optimized to alter the percentage of yolk in chicken eggs.
Collapse
Affiliation(s)
- Junnan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhongyi Duan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fengning Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiajing Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xingfu Lai
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liang Qu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Terao M, Garattini E, Romão MJ, Leimkühler S. Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. J Biol Chem 2020; 295:5377-5389. [PMID: 32144208 PMCID: PMC7170512 DOI: 10.1074/jbc.rev119.007741] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Maria João Romão
- UCIBIO-Applied Biomolecular Sciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
6
|
Beedle MT, Stevison F, Zhong G, Topping T, Hogarth C, Isoherranen N, Griswold MD. Sources of all-trans retinal oxidation independent of the aldehyde dehydrogenase 1A isozymes exist in the postnatal testis†. Biol Reprod 2020; 100:547-560. [PMID: 30247516 DOI: 10.1093/biolre/ioy200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Despite the essential role of the active metabolite of vitamin A, all-trans retinoic acid (atRA) in spermatogenesis, the enzymes, and cellular populations responsible for its synthesis in the postnatal testis remain largely unknown. The aldehyde dehydrogenase 1A (ALDH1A) family of enzymes residing within Sertoli cells is responsible for the synthesis of atRA, driving the first round of spermatogenesis. Those studies also revealed that the atRA required to drive subsequent rounds of spermatogenesis is possibly derived from the ALDH1A enzymes residing within the meiotic and post-meiotic germ cells. Three ALDH1A isozymes (ALDH1A1, ALDH1A2, and ALDH1A3) are present in the testis. Although, ALDH1A1 is expressed in adult Sertoli cells and is suggested to contribute to the atRA required for the pre-meiotic transitions, ALDH1A2 is proposed to be the essential isomer involved in testicular atRA biosynthesis. In this report, we first examine the requirement for ALDH1A2 via the generation and analysis of a conditional Aldh1a2 germ cell knockout and a tamoxifen-induced Aldh1a2 knockout model. We then utilized the pan-ALDH1A inhibitor (WIN 18446) to test the collective contribution of the ALDH1A enzymes to atRA biosynthesis following the first round of spermatogenesis. Collectively, our data provide the first in vivo evidence demonstrating that animals severely deficient in ALDH1A2 postnatally proceed normally through spermatogenesis. Our studies with a pan-ALDH1A inhibitor (WIN 18446) also suggest that an alternative source of atRA biosynthesis independent of the ALDH1A enzymes becomes available to maintain atRA levels for several spermatogenic cycles following an initial atRA injection.
Collapse
Affiliation(s)
- My-Thanh Beedle
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Faith Stevison
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Guo Zhong
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Traci Topping
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cathryn Hogarth
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Michael D Griswold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Manevski N, King L, Pitt WR, Lecomte F, Toselli F. Metabolism by Aldehyde Oxidase: Drug Design and Complementary Approaches to Challenges in Drug Discovery. J Med Chem 2019; 62:10955-10994. [PMID: 31385704 DOI: 10.1021/acs.jmedchem.9b00875] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldehyde oxidase (AO) catalyzes oxidations of azaheterocycles and aldehydes, amide hydrolysis, and diverse reductions. AO substrates are rare among marketed drugs, and many candidates failed due to poor pharmacokinetics, interspecies differences, and adverse effects. As most issues arise from complex and poorly understood AO biology, an effective solution is to stop or decrease AO metabolism. This perspective focuses on rational drug design approaches to modulate AO-mediated metabolism in drug discovery. AO biological aspects are also covered, as they are complementary to chemical design and important when selecting the experimental system for risk assessment. The authors' recommendation is an early consideration of AO-mediated metabolism supported by computational and in vitro experimental methods but not an automatic avoidance of AO structural flags, many of which are versatile and valuable building blocks. Preferably, consideration of AO-mediated metabolism should be part of the multiparametric drug optimization process, with the goal to improve overall drug-like properties.
Collapse
Affiliation(s)
- Nenad Manevski
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Lloyd King
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - William R Pitt
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Fabien Lecomte
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Francesca Toselli
- UCB BioPharma , Chemin du Foriest 1 , 1420 Braine-l'Alleud , Belgium
| |
Collapse
|
8
|
Inhibition of vertebrate aldehyde oxidase as a therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis. Eur J Med Chem 2019; 187:111948. [PMID: 31877540 DOI: 10.1016/j.ejmech.2019.111948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The aldehyde oxidases (AOXs) are a small sub-family of cytosolic molybdo-flavoenzymes, which are structurally conserved proteins and broadly distributed from plants to animals. AOXs play multiple roles in both physiological and pathological processes and AOX inhibition is of increasing significance in the development of novel drugs and therapeutic strategies. This review provides an overview of the evolution and the action mechanism of AOX and the role of each domain. The review provides an update of the polymorphisms in the human AOX. This review also summarises the physiology of AOX in different organs and its role in drug metabolism. The inhibition of AOX is a promising therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis.
Collapse
|
9
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
10
|
Adusumalli S, Jamwal R, Obach RS, Ryder TF, Leggio L, Akhlaghi F. Role of Molybdenum-Containing Enzymes in the Biotransformation of the Novel Ghrelin Receptor Inverse Agonist PF-5190457: A Reverse Translational Bed-to-Bench Approach. Drug Metab Dispos 2019; 47:874-882. [PMID: 31182423 PMCID: PMC6636241 DOI: 10.1124/dmd.119.087015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022] Open
Abstract
(R)-2-(2-methylimidazo[2,1-b]thiazol-6-yl)-1-(2-(5-(6-methylpyrimidin-4-yl)-2,3-dihydro-1H-inden-1-yl)-2,7-diazaspiro[3.5]nonan-7-yl)ethan-1-one (PF-5190457) was identified as a potent and selective inverse agonist of the ghrelin receptor [growth hormone secretagogue receptor 1a (GHS-R1a)]. The present translational bed-to-bench work characterizes the biotransformation of this compound in vivo and then further explores in vitro metabolism in fractions of human liver and primary hepatocytes. Following oral administration of PF-5190457 in a phase 1b clinical study, hydroxyl metabolites of the compound were observed, including one that had not been observed in previously performed human liver microsomal incubations. PF-6870961 was biosynthesized using liver cytosol, and the site of hydroxylation was shown to be on the pyrimidine using nuclear magnetic resonance spectroscopy. The aldehyde oxidase (AO) inhibitor raloxifene and the xanthine oxidase inhibitor febuxostat inhibited the formation of PF-6870961 in human liver cytosol, suggesting both enzymes were involved in the metabolism of the drug. However, greater inhibition was observed with raloxifene, indicating AO is a dominant enzyme in the biotransformation. The intrinsic clearance of the drug in human liver cytosol was estimated to be 0.002 ml/min per milligram protein. This study provides important novel information at three levels: 1) it provides additional new information on the recently developed novel compound PF-5190457, the first GHS-R1a blocker that has moved to development in humans; 2) it provides an example of a reverse translational approach where a discovery in humans was brought back, validated, and further investigated at the bench level; and 3) it demonstrates the importance of considering the molybdenum-containing oxidases during the development of new drug entities. SIGNIFICANCE STATEMENT: PF-5190457 is a novel ghrelin receptor inverse agonist that is currently undergoing clinical development for treatment of alcohol use disorder. PF-6870961, a major hydroxyl metabolite of the compound, was observed in human plasma, but was absent in human liver microsomal incubations. PF-6870961 was biosynthesized using liver cytosol, and the site of hydroxylation on the pyrimidine ring was characterized. Inhibitors of aldehyde oxidase and xanthine oxidase inhibited the formation of PF-6870961 in human liver cytosol, suggesting both enzymes were involved in the metabolism of the drug. This information is important for patient selection in subsequent clinical studies.
Collapse
Affiliation(s)
- Sravani Adusumalli
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., R.J., F.A.); Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Groton, Connecticut (R.S.O., T.F.R.); Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, Bethesda, Maryland (L.L.); Medication Development Program, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland (L.L.); and Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island (L.L.)
| | - Rohitash Jamwal
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., R.J., F.A.); Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Groton, Connecticut (R.S.O., T.F.R.); Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, Bethesda, Maryland (L.L.); Medication Development Program, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland (L.L.); and Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island (L.L.)
| | - R Scott Obach
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., R.J., F.A.); Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Groton, Connecticut (R.S.O., T.F.R.); Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, Bethesda, Maryland (L.L.); Medication Development Program, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland (L.L.); and Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island (L.L.)
| | - Tim F Ryder
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., R.J., F.A.); Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Groton, Connecticut (R.S.O., T.F.R.); Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, Bethesda, Maryland (L.L.); Medication Development Program, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland (L.L.); and Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island (L.L.)
| | - Lorenzo Leggio
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., R.J., F.A.); Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Groton, Connecticut (R.S.O., T.F.R.); Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, Bethesda, Maryland (L.L.); Medication Development Program, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland (L.L.); and Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island (L.L.)
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., R.J., F.A.); Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Groton, Connecticut (R.S.O., T.F.R.); Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, Bethesda, Maryland (L.L.); Medication Development Program, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland (L.L.); and Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island (L.L.)
| |
Collapse
|
11
|
Mota C, Coelho C, Leimkühler S, Garattini E, Terao M, Santos-Silva T, Romão MJ. Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Apenova N, Peng H, Hecker M, Brinkmann M. A rapid and sensitive fluorometric method for determination of aldehyde oxidase activity. Toxicol Appl Pharmacol 2018; 341:30-37. [DOI: 10.1016/j.taap.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
13
|
Direct comparison of the four aldehyde oxidase enzymes present in mouse gives insight into their substrate specificities. PLoS One 2018; 13:e0191819. [PMID: 29370288 PMCID: PMC5784979 DOI: 10.1371/journal.pone.0191819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Mammalian aldehyde oxidases (AOXs) are molybdo-flavoenzymes which are present in many tissues in various mammalian species, including humans and rodents. Different species contain a different number of AOX isoforms. In particular, the reasons why mammals other than humans express a multiplicity of tissue-specific AOX enzymes is unknown. In mouse, the isoforms mAOX1, mAOX3, mAOX4 and mAOX2 are present. We previously established a codon-optimized heterologous expression systems for the mAOX1-4 isoforms in Escherichia coli that gives yield to sufficient amounts of active protein for kinetic characterizations and sets the basis in this study for site-directed mutagenesis and structure-function studies. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes on a larger number of substrates has never been performed. Here, thirty different structurally related aromatic, aliphatic and N-heterocyclic compounds were used as substrates, and the kinetic parameters of all four mAOX enzymes were directly compared. The results show that especially mAOX4 displays a higher substrate selectivity, while no major differences between mAOX1, mAOX2 and mAOX3 were identified. Generally, mAOX1 was the enzyme with the highest catalytic turnover for most substrates. To understand the factors that contribute to the substrate specificity of mAOX4, site-directed mutagenesis was applied to substitute amino acids in the substrate-binding funnel by the ones present in mAOX1, mAOX3, and mAOX2. An increase in activity was obtained by the amino acid exchange M1088V in the active site identified to be specific for mAOX4, to the amino acid identified in mAOX3.
Collapse
|
14
|
Kücükgöze G, Terao M, Garattini E, Leimkühler S. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse. Drug Metab Dispos 2017; 45:947-955. [PMID: 28526768 DOI: 10.1124/dmd.117.075937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/15/2017] [Indexed: 02/13/2025] Open
Abstract
Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N1-methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino)cinnamaldehyde (p-DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p-DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N1-methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is not metabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different KM and kcat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30% of superoxide radicals with the same substrate.
Collapse
Affiliation(s)
- Gökhan Kücükgöze
- Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany (G.K., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.)
| | - Mineko Terao
- Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany (G.K., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.)
| | - Enrico Garattini
- Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany (G.K., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.)
| | - Silke Leimkühler
- Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany (G.K., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.)
| |
Collapse
|
15
|
Terao M, Barzago MM, Kurosaki M, Fratelli M, Bolis M, Borsotti A, Bigini P, Micotti E, Carli M, Invernizzi RW, Bagnati R, Passoni A, Pastorelli R, Brunelli L, Toschi I, Cesari V, Sanoh S, Garattini E. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity. Sci Rep 2016; 6:30343. [PMID: 27456060 PMCID: PMC4960552 DOI: 10.1038/srep30343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Andrea Borsotti
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Paolo Bigini
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Edoardo Micotti
- Laboratory of Neurodegenerative diseases, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mirjana Carli
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberto William Invernizzi
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Renzo Bagnati
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Alice Passoni
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Valentina Cesari
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Seigo Sanoh
- Graduate School of Biochemical and Health Sciences, Hiroshima University, Hiroshima Japan
| | - Enrico Garattini
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| |
Collapse
|
16
|
Structure and function of mammalian aldehyde oxidases. Arch Toxicol 2016; 90:753-80. [DOI: 10.1007/s00204-016-1683-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
|
17
|
Maia LB, Pereira V, Mira L, Moura JJG. Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. Biochemistry 2015; 54:685-710. [PMID: 25537183 DOI: 10.1021/bi500987w] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitrite is presently considered a NO "storage form" that can be made available, through its one-electron reduction, to maintain NO formation under hypoxia/anoxia. The molybdoenzymes xanthine oxidase/dehydrogenase (XO/XD) and aldehyde oxidase (AO) are two of the most promising mammalian nitrite reductases, and in this work, we characterized NO formation by rat and human XO/XD and AO. This is the first characterization of human enzymes, and our results support the employment of rat liver enzymes as suitable models of the human counterparts. A comprehensive kinetic characterization of the effect of pH on XO and AO-catalyzed nitrite reduction showed that the enzyme's specificity constant for nitrite increase 8-fold, while the Km(NO2(-)) decrease 6-fold, when the pH decreases from 7.4 to 6.3. These results demonstrate that the ability of XO/AO to trigger NO formation would be greatly enhanced under the acidic conditions characteristic of ischemia. The dioxygen inhibition was quantified, and the Ki(O2) values found (24.3-48.8 μM) suggest that in vivo NO formation would be fine-tuned by dioxygen availability. The potential in vivo relative physiological relevance of XO/XD/AO-dependent pathways of NO formation was evaluated using HepG2 and HMEC cell lines subjected to hypoxia. NO formation by the cells was found to be pH-, nitrite-, and dioxygen-dependent, and the relative contribution of XO/XD plus AO was found to be as high as 50%. Collectively, our results supported the possibility that XO/XD and AO can contribute to NO generation under hypoxia inside a living human cell. Furthermore, the molecular mechanism of XO/AO-catalyzed nitrite reduction was revised.
Collapse
Affiliation(s)
- Luisa B Maia
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
19
|
Kurosaki M, Bolis M, Fratelli M, Barzago MM, Pattini L, Perretta G, Terao M, Garattini E. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cell Mol Life Sci 2013; 70:1807-30. [PMID: 23263164 PMCID: PMC11113236 DOI: 10.1007/s00018-012-1229-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXβ and successive pseudogenization of AOXα. AOXβ is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXβ and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.
Collapse
Affiliation(s)
- Mami Kurosaki
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Linda Pattini
- Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Gemma Perretta
- Istututo di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche, via Anguillarese 301, 00123 Rome, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
20
|
Garattini E, Terao M. Aldehyde oxidase and its importance in novel drug discovery: present and future challenges. Expert Opin Drug Discov 2013; 8:641-54. [DOI: 10.1517/17460441.2013.788497] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Coelho C, Mahro M, Trincão J, Carvalho ATP, Ramos MJ, Terao M, Garattini E, Leimkühler S, Romão MJ. The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity. J Biol Chem 2012; 287:40690-702. [PMID: 23019336 DOI: 10.1074/jbc.m112.390419] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aldehyde oxidases have pharmacological relevance, and AOX3 is the major drug-metabolizing enzyme in rodents. RESULTS The crystal structure of mouse AOX3 with kinetics and molecular docking studies provides insights into its enzymatic characteristics. CONCLUSION Differences in substrate and inhibitor specificities can be rationalized by comparing the AOX3 and xanthine oxidase structures. SIGNIFICANCE The first aldehyde oxidase structure represents a major advance for drug design and mechanistic studies. Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.
Collapse
Affiliation(s)
- Catarina Coelho
- Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S. The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos 2012; 40:856-64. [PMID: 22279051 PMCID: PMC4738704 DOI: 10.1124/dmd.111.043828] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/25/2012] [Indexed: 01/08/2023] Open
Abstract
Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N(1)-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 μg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs.
Collapse
Affiliation(s)
- Tobias Hartmann
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Mineko Terao
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Enrico Garattini
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Christian Teutloff
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Joshua F. Alfaro
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Jeffrey P. Jones
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany (T.H., S.L.); Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy (M.T., E.G.); Institute for Experimental Physics, Free University of Berlin, Berlin, Germany (C.T.); and Department of Chemistry, Washington State University, Pullman, Washington (J.F.A., J.P.J.)
| |
Collapse
|
23
|
Garattini E, Terao M. The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 2012; 8:487-503. [DOI: 10.1517/17425255.2012.663352] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S. The Impact of Single Nucleotide Polymorphisms on Human Aldehyde Oxidase. Drug Metab Dispos 2012. [DOI: 10.1124/dmd.111.043828 10.1124/dmd.112.043828err] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Garattini E, Terao M. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev 2011; 43:374-86. [DOI: 10.3109/03602532.2011.560606] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Tayama Y, Sugihara K, Sanoh S, Miyake K, Morita S, Kitamura S, Ohta S. Effect of Tea Beverages on Aldehyde Oxidase Activity. Drug Metab Pharmacokinet 2011; 26:94-101. [DOI: 10.2133/dmpk.dmpk-10-nt-078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Abstract
Aldehyde oxidases (EC 1.2.3.1) are a small group of structurally conserved cytosolic proteins represented in both the animal and plant kingdoms. In vertebrates, aldehyde oxidases constitute the small sub-family of molybdo-flavoenzymes, along with the evolutionarily and structurally related protein, xanthine oxidoreductase. These enzymes require a molybdo-pterin cofactor (molybdenum cofactor, MoCo) and flavin adenine dinucleotide for their catalytic activity. Aldehyde oxidases have broad substrate specificity and catalyse the hydroxylation of N-heterocycles and the oxidation of aldehydes to the corresponding acid. In humans, a single aldehyde oxidase gene (AOX1) and two pseudogenes clustering on a short stretch of chromosome 2q are known. In other mammals, a variable number of structurally conserved aldehyde oxidase genes has been described. Four genes (Aox1, Aox3, Aox4 and Aox3l1), coding for an equivalent number of catalytically active enzymes, are present in the mouse and rat genomes. Although human AOX1 and its homologous proteins are best known as drug metabolising enzymes, the physiological substrate(s) and function(s) are as yet unknown. The present paper provides an update of the available information on the evolutionary history, tissue- and cell-specific distribution and function of mammalian aldehyde oxidases.
Collapse
Affiliation(s)
- Enrico Garattini
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy.
| | | | | |
Collapse
|
28
|
Liu P, Liang S, Wang BJ, Guo RC. Construction of expression system of rabbit aldehyde oxidase cDNA for the clarification of species differences. Eur J Drug Metab Pharmacokinet 2009; 34:205-11. [DOI: 10.1007/bf03191175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Itoh K, Adachi M, Sato J, Shouji K, Fukiya K, Fujii K, Tanaka Y. Effects of Selenium Deficiency on Aldehyde Oxidase 1 in Rats. Biol Pharm Bull 2009; 32:190-4. [DOI: 10.1248/bpb.32.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kunio Itoh
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Mayuko Adachi
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Jun Sato
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Kanako Shouji
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Kensuke Fukiya
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Keiko Fujii
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Yorihisa Tanaka
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| |
Collapse
|
30
|
Role of the molybdoflavoenzyme aldehyde oxidase homolog 2 in the biosynthesis of retinoic acid: generation and characterization of a knockout mouse. Mol Cell Biol 2008; 29:357-77. [PMID: 18981221 DOI: 10.1128/mcb.01385-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mouse aldehyde oxidase AOH2 (aldehyde oxidase homolog 2) is a molybdoflavoenzyme. Harderian glands are the richest source of AOH2, although the protein is detectable also in sebaceous glands, epidermis, and other keratinized epithelia. The levels of AOH2 in the Harderian gland and skin are controlled by genetic background, being maximal in CD1 and C57BL/6 and minimal in DBA/2, CBA, and 129/Sv strains. Testosterone is a negative regulator of AOH2 in Harderian glands. Purified AOH2 oxidizes retinaldehyde into retinoic acid, while it is devoid of pyridoxal-oxidizing activity. Aoh2(-/-) mice, the first aldehyde oxidase knockout animals ever generated, are viable and fertile. The data obtained for this knockout model indicate a significant role of AOH2 in the local synthesis and biodisposition of endogenous retinoids in the Harderian gland and skin. The Harderian gland's transcriptome of knockout mice demonstrates overall downregulation of direct retinoid-dependent genes as well as perturbations in pathways controlling lipid homeostasis and cellular secretion, particularly in sexually immature animals. The skin of knockout mice is characterized by thickening of the epidermis in basal conditions and after UV light exposure. This has correlates in the corresponding transcriptome, which shows enrichment and overall upregulation of genes involved in hypertrophic responses.
Collapse
|
31
|
Esposito T, Dominguez P, Varriale B. Hormonal regulation and characterisation of the aldehyde oxidase-like gene of hamster Harderian gland. J Steroid Biochem Mol Biol 2008; 112:157-63. [PMID: 18848890 DOI: 10.1016/j.jsbmb.2008.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 07/01/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
The HG is a compound tubulo-alveolar gland located in the orbital cavity of the majority of vertebrates. In the golden hamster it shows a clear cut sexual dimorphism in both morphological and biochemical parameters such as cell types, protein pattern, lipid metabolism, porphyrin content, steroid hormone receptor expression. In a previous study we found that in primary culture of male hamster Harderian gland (HG), androgens (A) increase the MHG07 (male Harderian gland) expression and this effect is abrogated by both flutamide and cycloheximide. The present study represents a deeper analysis on MHG07 regulation by other members of steroid/thyroid hormone superfamily. Estrogens (E) impair the stimulatory effect of A and after the addition of a pure anti-estrogen, ICI 164,384, the negative effect of E is abrogated. Dexamethasone (Dex), used alone or in combination with A negatively affect the MHG07 expression. Also T(3) increases the expression of MHG07 mRNA. Progesterone (P) does not affect the expression of MHG07 mRNA. The use of cycloheximide abrogates the effect of steroids, suggesting that the latter act through their own receptors. Dose-response experiments show that low steroid concentrations (10(-12)M) are sufficient to affect the MHG07 expression. It is argued that the expression of MHG07 is under a highly coordinate relationship between androgen, estrogen, glucocorticoid, retinoic acid and thyroid hormones.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Experimental Medicine, Faculty of Medicine, II University of Naples, Naples, Italy
| | | | | |
Collapse
|
32
|
Zemke AC, Snyder JC, Brockway BL, Drake JA, Reynolds SD, Kaminski N, Stripp BR. Molecular staging of epithelial maturation using secretory cell-specific genes as markers. Am J Respir Cell Mol Biol 2008; 40:340-8. [PMID: 18757308 DOI: 10.1165/rcmb.2007-0380oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bronchiolar Clara cells undergo phenotypic changes during development and in disease. These changes are poorly described due to a paucity of molecular markers. We used chemical and transgenic approaches to ablate Clara cells, allowing identification of their unique gene expression profile. Flavin monooxygenase 3 (Fmo3), paraoxonase 1 (Pon1), aldehyde oxidase 3 (Aox3), and claudin 10 (Cldn10) were identified as novel Clara cell markers. New and existing Clara cell marker genes were categorized into three classes based on their unique developmental expression pattern. Cldn10 was uniformly expressed in the epithelium at Embryonic Day (E)14.5 and became restricted to secretory cells at E18.5. This transition was defined by induction of CCSP. Maturation of secretory cells was associated with progressive increases in the expression of Fmo3, Pon1, Aox3, and Cyp2f2 between late embryonic and postnatal periods. Messenger RNA abundance of all categories of genes was dramatically decreased after naphthalene-induced airway injury, and displayed a sequence of temporal induction during repair that suggested sequential secretory cell maturation. We have defined a broader repertoire of Clara cell-specific genes that allows staging of epithelial maturation during development and repair.
Collapse
Affiliation(s)
- Anna C Zemke
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, 2075 MSRBII, 106 Research Drive, DUMC Box 103000, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kitamura S, Nitta K, Tayama Y, Tanoue C, Sugihara K, Inoue T, Horie T, Ohta S. Aldehyde oxidase-catalyzed metabolism of N1-methylnicotinamide in vivo and in vitro in chimeric mice with humanized liver. Drug Metab Dispos 2008; 36:1202-5. [PMID: 18332084 DOI: 10.1124/dmd.107.019075] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Aldehyde oxidase-mediated oxidation of N(1)-methylnicotinamide to N(1)-methyl-2-pyridine-5-carboxamide (2-PY) and N(1)-methyl-4-pyridone-5-carboxamide (4-PY) in chimeric mice constructed by transplanting human hepatocytes into urokinase-type plasminogen activator-transgenic severe combined immunodeficient mice was examined in vivo and in vitro. The activity in liver cytosol of chimeric mice with a high replacement index was approximately 4-fold higher than that in control mice. Furthermore, the oxidation products in control mice were 2-PY and 4-PY, whereas, in chimeric mice, the major product was 2-PY, as in humans. The aldehyde oxidase in chimeric mouse liver was confirmed to be of human type by immunoblotting analysis. The ratio of pyridones (2-PY/4-PY) excreted in the urine of chimeric mice was closer to that of humans than to that of control mice. Thus, the aldehyde oxidase in chimeric mice has human-type functional characteristics.
Collapse
Affiliation(s)
- Shigeyuki Kitamura
- Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sorouraddin MH, Fooladi E, Naseri A, Rashidi MR. A novel spectrophotometric method for determination of kinetic constants of aldehyde oxidase using multivariate calibration method. ACTA ACUST UNITED AC 2008; 70:999-1005. [DOI: 10.1016/j.jbbm.2007.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
35
|
Kundu TK, Hille R, Velayutham M, Zweier JL. Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch Biochem Biophys 2007; 460:113-21. [PMID: 17353002 PMCID: PMC4073616 DOI: 10.1016/j.abb.2006.12.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/27/2006] [Accepted: 12/29/2006] [Indexed: 01/02/2023]
Abstract
Aldehyde oxidase, a molybdoflavoenzyme that plays an important role in aldehyde biotransformation, requires oxygen as substrate and produces reduced oxygen species. However, little information is available regarding its importance in cellular redox stress. Therefore, studies were undertaken to characterize its superoxide and hydrogen peroxide production. Aldehyde oxidase was purified to >98% purity and exhibited a single band at approximately 290 kDa on native polyacrylamide gradient gel electrophoresis. Superoxide generation was measured and quantitated by cytochrome c reduction and EPR spin trapping with p-dimethyl aminocinnamaldehyde as reducing substrate. Prominent superoxide generation was observed with an initial rate of 295 nmol min(-1) mg(-1). Electrochemical measurements of oxygen consumption and hydrogen peroxide formation yielded values of 650 and 355 nmol min(-1) mg(-1). In view of the ubiquitous distribution of aldehydes in tissues, aldehyde oxidase can be an important basal source of superoxide that would be enhanced in disease settings where cellular aldehyde levels are increased.
Collapse
Affiliation(s)
- Tapan Kumar Kundu
- Center for Biomedical EPR Spectroscopy and Imaging, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Russ Hille
- Center for Biomedical EPR Spectroscopy and Imaging, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
36
|
Tayama Y, Miyake K, Sugihara K, Kitamura S, Kobayashi M, Morita S, Ohta S, Kihira K. Developmental Changes of Aldehyde Oxidase Activity in Young Japanese Children. Clin Pharmacol Ther 2007; 81:567-72. [PMID: 17375106 DOI: 10.1038/sj.clpt.6100078] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aldehyde oxidase (AO) plays an important role in metabolizing many drugs, so AO activity in individual patients may be a useful parameter for dose adjustment to avoid severe toxicity. In this study, we investigated the developmental changes of AO activity in 101 children. Urine was collected in the morning, and AO activity was assessed in terms of the ratio of pyridone formation from N(1)-methylnicotinamide, an AO substrate. Significant correlations were found between AO activity and various growth indices (age, body weight, body surface area, and liver volume). Age showed the moderate correlation (r(2)=0.506). AO activity rapidly increased with increase of the subjects' age up to about 1 year. These findings suggest that the AO activity begins to increase soon after birth. Because AO activity is immature in children below 1 year of age, dose adjustment based on individual AO activity should be made for such patients.
Collapse
Affiliation(s)
- Y Tayama
- Graduate School of Biomedical Sciences, Faculty of Pharmaceutical Science, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hoshino K, Itoh K, Masubuchi A, Adachi M, Asakawa T, Watanabe N, Kosaka T, Tanaka Y. Cloning, Expression, and Characterization of Male Cynomolgus Monkey Liver Aldehyde Oxidase. Biol Pharm Bull 2007; 30:1191-8. [PMID: 17603152 DOI: 10.1248/bpb.30.1191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the properties of monkey liver aldehyde oxidase directed toward the clarification of species differences. The aldehyde oxidase preparation purified from male cynomolgus monkey liver cytosol showed a major 150 kDa Coomassie brilliant blue (CBB)-stained band together with a minor 130 kDa band using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both bands were identified as being aldehyde oxidase by a database search of the MS data obtained with nano-liquid chromatography, quardrupole time of flight, mass spectrometry (nano-LC Q/TOF MS). Based on the sequence coverage, the 130 kDa protein was presumed to be deficient in 20-30 kDa mass from the N-terminus. Full male cynomolgus monkey aldehyde oxidase cDNA was cloned and sequenced with the four degenerate primers designed by considering the peptide sequences containing the amino acids specific for monkey aldehyde oxidase. The deduced amino acid sequences had 96% amino acid identity with those of human enzyme. The aldehyde oxidase expressed in Escherichia coli also exhibited two immunoreactive bands on SDS-PAGE/Western blot analysis. Further, the biphasic pattern was observed for Eadie-Hofstee plots of the (S)-enantiospecific 2-oxidation activity of RS-8359 with the expressed and cytosolic monkey liver aldehyde oxidase. The results suggested that two forms of aldehyde oxidase in monkey were the expression products by a single gene. In contrast, the similarly expressed rat aldehyde oxidase showed only one immunoreactive protein and monophasic pattern. The biphasic phenomenon could be caused by the existence of two aldehyde oxidase isoforms or two active sites in a single enzyme or some other reasons. Further studies on the problems of the biphasic pattern and species differences in aldehyde oxidase are needed.
Collapse
Affiliation(s)
- Kouichi Hoshino
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University, Komatsushima, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mendel RR, Bittner F. Cell biology of molybdenum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:621-35. [PMID: 16784786 DOI: 10.1016/j.bbamcr.2006.03.013] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/13/2006] [Accepted: 03/18/2006] [Indexed: 11/17/2022]
Abstract
The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by enzymes catalyzing diverse key reactions in the global carbon, sulfur and nitrogen metabolism. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes. In eukaryotes, the most prominent Mo-enzymes are (1) sulfite oxidase, which catalyzes the final step in the degradation of sulfur-containing amino acids and is involved in detoxifying excess sulfite, (2) xanthine dehydrogenase, which is involved in purine catabolism and reactive oxygen production, (3) aldehyde oxidase, which oxidizes a variety of aldehydes and is essential for the biosynthesis of the phytohormone abscisic acid, and in autotrophic organisms also (4) nitrate reductase, which catalyzes the key step in inorganic nitrogen assimilation. All Mo-enzymes, except plant sulfite oxidase, need at least one more redox active center, many of them involving iron in electron transfer. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron as well as copper in an indispensable way. Moco as released after synthesis is likely to be distributed to the apoproteins of Mo-enzymes by putative Moco-carrier proteins. Xanthine dehydrogenase and aldehyde oxidase, but not sulfite oxidase and nitrate reductase, require the post-translational sulfuration of their Mo-site for becoming active. This final maturation step is catalyzed by a Moco-sulfurase enzyme, which mobilizes sulfur from l-cysteine in a pyridoxal phosphate-dependent manner as typical for cysteine desulfurases.
Collapse
Affiliation(s)
- Ralf R Mendel
- Department of Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany.
| | | |
Collapse
|
39
|
Terao M, Kurosaki M, Barzago MM, Varasano E, Boldetti A, Bastone A, Fratelli M, Garattini E. Avian and Canine Aldehyde Oxidases. J Biol Chem 2006; 281:19748-61. [PMID: 16672219 DOI: 10.1074/jbc.m600850200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldehyde oxidases are molybdo-flavoenzymes structurally related to xanthine oxidoreductase. They catalyze the oxidation of aldehydes or N-heterocycles of physiological, pharmacological, and toxicological relevance. Rodents are characterized by four aldehyde oxidases as follows: AOX1 and aldehyde oxidase homologs 1-3 (AOH1, AOH2, and AOH3). Humans synthesize a single functional aldehyde oxidase, AOX1. Here we define the structure and the characteristics of the aldehyde oxidase genes and proteins in chicken and dog. The avian genome contains two aldehyde oxidase genes, AOX1 and AOH, mapping to chromosome 7. AOX1 and AOH are structurally very similar and code for proteins whose sequence was deduced from the corresponding cDNAs. AOX1 is the ortholog of the same gene in mammals, whereas AOH represents the likely ancestor of rodent AOH1, AOH2, and AOH3. The dog genome is endowed with two structurally conserved and active aldehyde oxidases clustering on chromosome 37. Cloning of the corresponding cDNAs and tissue distribution studies demonstrate that they are the orthologs of rodent AOH2 and AOH3. The vestiges of dog AOX1 and AOH1 are recognizable upstream of AOH2 and AOH3 on the same chromosome. Comparison of the complement and the structure of the aldehyde oxidase and xanthine oxidoreductase genes in vertebrates and other animal species indicates that they evolved through a series of duplication and inactivation events. Purification of the chicken AOX1 protein to homogeneity from kidney demonstrates that the enzyme possesses retinaldehyde oxidase activity. Unlike humans and most other mammals, dog and chicken are devoid of liver aldehyde oxidase activity.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche Mario Negri, via Eritrea 62, 20157 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Holzmuller P, Hide M, Sereno D, Lemesre JL. Leishmania infantum amastigotes resistant to nitric oxide cytotoxicity: Impact on in vitro parasite developmental cycle and metabolic enzyme activities. INFECTION GENETICS AND EVOLUTION 2006; 6:187-97. [PMID: 15905133 DOI: 10.1016/j.meegid.2005.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) has been demonstrated to be the principal effector molecule mediating intracellular killing of Leishmania. The free radical characteristic of NO prevented direct induction of resistance in Leishmania wild-type parasites. Starting from the previous observation that antimony-resistant amastigotes of Leishmania infantum were not affected by NO-induced apoptotic death, we used a continuous NO pressure protocol and succeeded in inducing NO resistance in amastigote forms of L. infantum. Two clones resistant to 50 microM (LiNOR50) and 100 microM (LiNOR100) of the NO donor DETA/NONOate, derived from parental clone weakly resistant to trivalent antimony (LiSbIIIR4), were selected and analysed. Both clones were also resistant to other NO donors, particularly SNAP. In the absence of potassium antimonyl tartrate, all clones (LiSbIIIR4, LiNOR50 and LiNOR100) lost their antimony resistance almost totally. Interestingly, the parasitic developmental life cycle of NO-resistant mutants was dramatically disturbed. NO-resistant amastigotes differentiated more rapidly into promastigotes than the wild-type ones. Nevertheless, NO-resistant amastigotes produce a maximal number of parasites 1.5-2 times lower than the wild-type whereas, after differentiation, NO-resistant promastigotes produced more cells than the wild-type. We showed that this last phenomenon could be a consequence of the overexpression of parasitic enzymes involved in both glycolysis and respiration processes. NO-resistant amastigotes overexpressed three enzymes: cis-aconitase, glyceraldehyde-3-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The two first enzymes are NO molecular targets which could be directly involved in NO resistance and the third one could interfere in modifying Leishmania metabolism.
Collapse
Affiliation(s)
- Philippe Holzmuller
- UR 008 Pathogénie des Trypanosomatidés, IRD (Institut de Recherche pour le Développement), B.P. 64501, 911 avenue Agropolis, 34394 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
41
|
Sugihara K, Tayama Y, Shimomiya K, Yoshimoto D, Ohta S, Kitamura S. Estimation of aldehyde oxidase activity in vivo from conversion ratio of N1-methylnicotinamide to pyridones, and intraspecies variation of the enzyme activity in rats. Drug Metab Dispos 2006; 34:208-12. [PMID: 16299165 DOI: 10.1124/dmd.105.006544] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The in vivo conversion ratio of N1-methylnicotinamide (NMN) to N1-methyl-2-pyridone-5-carboxamide (2-PY) and N1-methyl-4-pyridone-3-carboxamide (4-PY) as a parameter for the estimation of aldehyde oxidase level in rats was examined. NMN and its pyridones (2-PY and 4-PY) are usually detected in the urine of rats. When we measured the ratio of the amount of pyridones to the total amount of NMN and pyridones (RP value) in the urine of rats, marked intraspecies variations were observed. The variation in RP value among strains was closely related to the differences of liver aldehyde oxidase activity measured with NMN as a substrate. RP values after administration of NMN to different strains of rats confirmed the existence of strain differences of aldehyde oxidase activity in vivo. We demonstrated that measurements of NMN and its pyridones usually excreted in the urine can be used to predict the in vivo level of aldehyde oxidase.
Collapse
Affiliation(s)
- Kazumi Sugihara
- Division of Medicinal Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Kitamura S, Sugihara K, Ohta S. Drug-Metabolizing Ability of Molybdenum Hydroxylases. Drug Metab Pharmacokinet 2006; 21:83-98. [PMID: 16702728 DOI: 10.2133/dmpk.21.83] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molybdenum hydroxylases, which include aldehyde oxidase and xanthine oxidoreductase, are involved in the metabolism of some medicines in humans. They exhibit oxidase activity towards various heterocyclic compounds and aldehydes. The liver cytosol of various mammals also exhibits a significant reductase activity toward nitro, sulfoxide, N-oxide and other moieties, catalyzed by aldehyde oxidase. There is considerable variability of aldehyde oxidase activity in liver cytosol of mammals: humans show the highest activity, rats and mice show low activity, and dogs have no detectable activity. On the other hand, xanthine oxidoreductase activity is present widely among species. Interindividual variation of aldehyde oxidase activity is present in humans. Drug-drug interactions associated with aldehyde oxidase and xanthine oxidoreductase are of potential clinical significance. Drug metabolizing ability of molybdenum hydroxylases and the variation of the activity are described in this review.
Collapse
Affiliation(s)
- Shigeyuki Kitamura
- Graduate School of Biomedical Sciences, Hiroshima University, Kasumi, Japan.
| | | | | |
Collapse
|
43
|
Rivera SP, Choi HH, Chapman B, Whitekus MJ, Terao M, Garattini E, Hankinson O. Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes. Toxicology 2005; 207:401-9. [PMID: 15664268 DOI: 10.1016/j.tox.2004.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 10/04/2004] [Accepted: 10/24/2004] [Indexed: 10/26/2022]
Abstract
Aldehyde oxidases are a family of highly related molybdo-flavoenzymes acting upon a variety of compounds of industrial and medical importance. We have identified aldehyde oxidase 1 (AOX1) as a 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) inducible gene in the mouse hepatoma cell line Hepa-1. AOX1 mRNA levels were not increased by dioxin in mutant derivatives of the Hepa-1 cell line lacking either functional aryl hydrocarbon receptor (AHR) or aryl hydrocarbon receptor nuclear translocator (ARNT) proteins, thus demonstrating that transcriptional induction of AOX1 in response to dioxin occurs through the AHR pathway. Dioxin induction of AOX1 mRNA was also observed in mouse liver. In addition, levels of AOX1 protein as well as those of aldehyde oxidase homologue 1 (AOH1), a recently identified homolog of AOX1, were elevated in mouse liver in response to dioxin. Employing an aldehyde oxidase specific substrate, AOX1/AOH1 activity was shown to be induced by dioxin in mouse liver. This activity was inhibited by a known inhibitor of aldehyde oxidases, and eliminated by including tungstate in the mouse diet, which is known to lead to inactivation of molybdoflavoenzymes, thus confirming that the enzymatic activity was attributable to AOX1/AOH1. Our observations thus identify two additional xenobiotic metabolizing enzymes induced by dioxin.
Collapse
MESH Headings
- Aldehyde Oxidoreductases/antagonists & inhibitors
- Aldehyde Oxidoreductases/biosynthesis
- Aldehyde Oxidoreductases/genetics
- Animals
- Aryl Hydrocarbon Receptor Nuclear Translocator
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Cell Line, Tumor
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Diet
- Drug Therapy, Combination
- Environmental Pollutants/administration & dosage
- Environmental Pollutants/toxicity
- Enzyme Induction
- Enzyme Inhibitors/administration & dosage
- Gene Expression Regulation, Enzymologic/drug effects
- Injections, Intraperitoneal
- Liver/drug effects
- Liver/enzymology
- Mice
- Mice, Inbred C57BL
- Mitochondrial Proteins
- Oxidoreductases/antagonists & inhibitors
- Oxidoreductases/biosynthesis
- Oxidoreductases/genetics
- Plant Proteins
- Polychlorinated Dibenzodioxins/administration & dosage
- Polychlorinated Dibenzodioxins/toxicity
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/genetics
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Tungsten Compounds/administration & dosage
Collapse
Affiliation(s)
- Steven P Rivera
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California, 650 Charles E. Young Dr., Factor Bldg. 13-230, Los Angeles, CA 90095-1732, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kurosaki M, Terao M, Barzago MM, Bastone A, Bernardinello D, Salmona M, Garattini E. The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase homologue 3, a novel member of the molybdo-flavoenzyme family with selective expression in the olfactory mucosa. J Biol Chem 2004; 279:50482-98. [PMID: 15383531 DOI: 10.1074/jbc.m408734200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian molybdo-flavoenzymes are oxidases requiring FAD and molybdopterin (molybdenum cofactor) for their catalytic activity. This family of proteins was thought to consist of four members, xanthine oxidoreductase, aldehyde oxidase 1 (AOX1), and the aldehyde oxidase homologues 1 and 2 (AOH1 and AOH2, respectively). Whereas the first two enzymes are present in humans and various other mammalian species, the last two proteins have been described only in mice. Here, we report on the identification, in both mice and rats, of a novel molybdo-flavoenzyme, AOH3. In addition, we have cloned the cDNAs coding for rat AOH1 and AOH2, demonstrating that this animal species has the same complement of molybdo-flavoproteins as the mouse. The AOH3 cDNA is characterized by remarkable similarity to AOX1, AOH1, AOH2, and xanthine oxidoreductase cDNAs. Mouse AOH3 is selectively expressed in Bowman's glands of the olfactory mucosa, although small amounts of the corresponding mRNA are present also in the skin. In the former location, two alternatively spliced forms of the AOH3 transcript with different 3'-untranslated regions were identified. The general properties of AOH3 were determined by purification of mouse AOH3 from the olfactory mucosa. The enzyme possesses aldehyde oxidase activity and oxidizes, albeit with low efficiency, exogenous substrates that are recognized by AOH1 and AOX1. The Aoh3 gene maps to mouse chromosome 1 band c1 and rat chromosome 7 in close proximity to the Aox1, Aoh1, and Aoh2 loci and has an exon/intron structure almost identical to that of the other molybdo-flavoenzyme genes in the two species.
Collapse
Affiliation(s)
- Mami Kurosaki
- Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Vila R, Kurosaki M, Barzago MM, Kolek M, Bastone A, Colombo L, Salmona M, Terao M, Garattini E. Regulation and biochemistry of mouse molybdo-flavoenzymes. The DBA/2 mouse is selectively deficient in the expression of aldehyde oxidase homologues 1 and 2 and represents a unique source for the purification and characterization of aldehyde oxidase. J Biol Chem 2003; 279:8668-83. [PMID: 14665639 DOI: 10.1074/jbc.m308137200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse molybdo-flavoenzymes consist of xanthine oxidoreductase, aldehyde oxidase (AOX1), and two recently identified proteins, AOH1 and AOH2 (aldehyde oxidase homologues 1 and 2). Here we demonstrate that CD-1, C57BL/6, 129/Sv, and other mouse strains synthesize high levels of AOH1 in the liver and AOH2 in the skin. By contrast, the DBA/2 and CBA strains are unique, having a selective deficit in the expression of the AOH1 and AOH2 genes. DBA/2 animals synthesize trace amounts of a catalytically active AOH1 protein. However, relative to CD-1 animals, an over 2 log reduction in the steady-state levels of liver AOH1 mRNA, protein, and enzymatic activity is observed in basal conditions and following administration of testosterone. The DBA/2 mouse represents a unique opportunity to purify AOX1 and compare its enzymatic characteristics to those of the AOH1 protein. The spectroscopy and biochemistry of AOX1 are very similar to those of AOH1 except for a differential sensitivity to the non-competitive inhibitory effect of norharmane. AOX1 and AOH1 oxidize an overlapping set of aldehydes and heterocycles. For most compounds, the substrate efficiency (V(max)/K(m)) of AOX1 is superior to that of AOH1. Alkylic alcohols and acetaldehyde, the toxic metabolite of ethanol, are poor substrates of both enzymes. Consistent with this, the levels of acetaldehyde in the livers of ethanol administered CD-1 and DBA/2 mice are similar, indicating that neither enzyme is involved in the in vivo biotransformation of acetaldehyde.
Collapse
Affiliation(s)
- Ruth Vila
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche, "Mario Negri," via Eritrea, 62, Milano 20157, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Garattini E, Mendel R, Romão MJ, Wright R, Terao M. Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem J 2003; 372:15-32. [PMID: 12578558 PMCID: PMC1223366 DOI: 10.1042/bj20030121] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 02/04/2003] [Accepted: 02/10/2003] [Indexed: 12/11/2022]
Abstract
The molybdo-flavoenzymes are structurally related proteins that require a molybdopterin cofactor and FAD for their catalytic activity. In mammals, four enzymes are known: xanthine oxidoreductase, aldehyde oxidase and two recently described mouse proteins known as aldehyde oxidase homologue 1 and aldehyde oxidase homologue 2. The present review article summarizes current knowledge on the structure, enzymology, genetics, regulation and pathophysiology of mammalian molybdo-flavoenzymes. Molybdo-flavoenzymes are structurally complex oxidoreductases with an equally complex mechanism of catalysis. Our knowledge has greatly increased due to the recent crystallization of two xanthine oxidoreductases and the determination of the amino acid sequences of many members of the family. The evolution of molybdo-flavoenzymes can now be traced, given the availability of the structures of the corresponding genes in many organisms. The genes coding for molybdo-flavoenzymes are expressed in a cell-specific fashion and are controlled by endogenous and exogenous stimuli. The recent cloning of the genes involved in the biosynthesis of the molybdenum cofactor has increased our knowledge on the assembly of the apo-forms of molybdo-flavoproteins into the corresponding holo-forms. Xanthine oxidoreductase is the key enzyme in the catabolism of purines, although recent data suggest that the physiological function of this enzyme is more complex than previously assumed. The enzyme has been implicated in such diverse pathological situations as organ ischaemia, inflammation and infection. At present, very little is known about the pathophysiological relevance of aldehyde oxidase, aldehyde oxidase homologue 1 and aldehyde oxidase homologue 2, which do not as yet have an accepted endogenous substrate.
Collapse
Affiliation(s)
- Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, via Eritrea 62, 20157 Milan, Italy.
| | | | | | | | | |
Collapse
|
47
|
Pisano C, Kollar P, Gianní M, Kalac Y, Giordano V, Ferrara FF, Tancredi R, Devoto A, Rinaldi A, Rambaldi A, Penco S, Marzi M, Moretti G, Vesci L, Tinti O, Carminati P, Terao M, Garattini E. Bis-indols: a novel class of molecules enhancing the cytodifferentiating properties of retinoids in myeloid leukemia cells. Blood 2002; 100:3719-30. [PMID: 12393712 DOI: 10.1182/blood-2002-03-0720] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhancing the pharmacologic activity of all-trans retinoic acid (ATRA) is potentially useful in the management of acute promyelocytic leukemia (APL) and other types of myeloid leukemia. In this report, we identify a novel class of experimental agents selectively potentiating the cytodifferentiating activity of ATRA and synthetic retinoic acid receptor alpha agonists in APL and other myeloid leukemia cell lines. These agents have a bis-indolic structure (BISINDS), and ST1346 is the prototypical compound of the series. Gene-profiling experiments and determination of the level of expression of myeloid-associated markers indicate that ST1346 stimulates many aspects of the granulocytic maturation process set in motion by ATRA. Stimulation of the cytodifferentiating activity of ATRA by ST1346 enhances the efficacy of the retinoid in vivo, as demonstrated in the APL model of the severe combined immunodeficiency (SCID) mouse receiving transplants of NB4 cells. Although the molecular mechanisms underlying the ATRA-potentiating action of ST1346 and congeners have not been completely clarified, bis-indols are not ligands and do not exert any direct effect on the ATRA-dependent transactivation of nuclear receptors. However, ST1346 inhibits the down-regulation of cyclic adenosine monophosphate (cAMP)-dependent CREB transcriptional complexes and enhances the level of expression of signal transducers and activators of transcription-1 (STAT1), 2 putative molecular determinants of the differentiation process activated by ATRA in APL cells. More importantly, ST1346 relieves the down-regulation of Jun N-terminal kinases (JNK) afforded by ATRA. In addition, a specific JNK inhibitor blocks the enhancing effect of ST1346 on ATRA-induced maturation of NB4 cells. This demonstrates an important role for the mitogen-activated protein kinase in the molecular mechanisms underlying the pharmacologic activity of the bis-indol.
Collapse
Affiliation(s)
- Claudio Pisano
- Istituto di Ricerche Farmacologiche Mario Negri, Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hashimoto Y, Niikura T, Ito Y, Kita Y, Terashita K, Nishimoto I. Neurotoxic mechanisms by Alzheimer's disease-linked N141I mutant presenilin 2. J Pharmacol Exp Ther 2002; 300:736-45. [PMID: 11861776 DOI: 10.1124/jpet.300.3.736] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it has been established that oxidative stress mediates cytotoxicity by familial Alzheimer's disease (FAD)-linked mutants of presenilin (PS)1 and that pertussis toxin inhibits cytotoxicity by FAD-linked N141I-PS2, it has not been determined whether oxidative stress is involved in cytotoxicity by N141I-PS2 or which pertussis toxin-sensitive proteins mediate the cytotoxicity. Here we report that low expression of N141I-PS2 caused neuronal cell death, whereas low expression of wild-type PS2 did not. Cytotoxicities by low and high expression of N141I-PS2 occurred through dissimilar mechanisms: the former cytotoxicity was blocked by a cell-permeable caspase inhibitor, and the latter was not. Since both mechanisms were sensitive to a cell-permeable antioxidant, we examined potential sources of reactive oxygen species in each mechanism, and found that the caspase inhibitor-sensitive neurotoxicity by N141I-PS2 was likely through NADPH oxidase and the caspase inhibitor-resistant neurotoxicity by N141I-PS2 through xanthine oxidase. Pertussis toxin greatly suppressed both toxic mechanisms by N141I-PS2, and only Galpha(o), a neuron-enriched pertussis toxin-sensitive G protein, was involved in both mechanisms. We therefore conclude that N141I-PS2 is capable of triggering multiple neurotoxic mechanisms, which can be inhibited by the combination of clinically usable inhibitors of NADPH oxidase and xanthine oxidase. This study thus provides a novel insight into the therapeutic intervention of PS2 mutant-associated FAD.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo Japan
| | | | | | | | | | | |
Collapse
|
49
|
Terao M, Kurosaki M, Marini M, Vanoni MA, Saltini G, Bonetto V, Bastone A, Federico C, Saccone S, Fanelli R, Salmona M, Garattini E. Purification of the aldehyde oxidase homolog 1 (AOH1) protein and cloning of the AOH1 and aldehyde oxidase homolog 2 (AOH2) genes. Identification of a novel molybdo-flavoprotein gene cluster on mouse chromosome 1. J Biol Chem 2001; 276:46347-63. [PMID: 11562361 DOI: 10.1074/jbc.m105744200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning of the AOH1 and AOH2 genes, which encode two novel mammalian molybdo-flavoproteins. We have purified the AOH1 protein to homogeneity in its catalytically active form from mouse liver. Twenty tryptic peptides, identified or directly sequenced by mass spectrometry, confirm the primary structure of the polypeptide deduced from the AOH1 gene. The enzyme contains one molecule of FAD, one atom of molybdenum, and four atoms of iron per subunit and shows spectroscopic features similar to those of the prototypic molybdo-flavoprotein xanthine oxidoreductase. The AOH1 and AOH2 genes are 98 and 60 kilobases long, respectively, and consist of 35 coding exons. The AOH1 gene has the potential to transcribe an extra leader non-coding exon, which is located downstream of exon 26, and is transcribed in the opposite orientation relative to all the other exons. AOH1 and AOH2 map to chromosome 1 in close proximity to each other and to the aldehyde oxidase gene, forming a molybdo-flavoenzyme gene cluster. Conservation in the position of exon/intron junctions among the mouse AOH1, AOH2, aldehyde oxidase, and xanthine oxidoreductase loci indicates that these genes are derived from the duplication of an ancestral precursor.
Collapse
Affiliation(s)
- M Terao
- Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche "Mario Negri," via Eritrea, 62, Milano 20157, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dailly Y, Mat-Jan F, Clark DP. Novel alcohol dehydrogenase activity in a mutant of Salmonella able to use ethanol as sole carbon source. FEMS Microbiol Lett 2001; 201:41-5. [PMID: 11445165 DOI: 10.1111/j.1574-6968.2001.tb10730.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We selected a mutant of Salmonella enterica serovar Typhimurium that is capable of growing in air on ethanol as sole carbon and energy source. This adhI mutant expressed high levels of a novel alcohol dehydrogenase (AdhI) that uses ethanol, 1-propanol and 2-propanol as substrates. The fermentative AdhE alcohol dehydrogenase was not expressed aerobically in the adhI mutant. Anaerobically, both the novel AdhI enzyme and the AdhE were expressed simultaneously in the adhI mutant. However, the adhI mutant showed no alteration in the composition of the fermentation products. In addition we found that both the parental Salmonella and its alcohol using adhI mutant expressed substantial levels of a dye-linked aldehyde dehydrogenase that is presumably responsible for conversion of acetaldehyde to acetate. This contrasts with the situation in Escherichia coli where mutants able to grow on ethanol express high aerobic levels of the AdhE enzyme, which performs both the alcohol dehydrogenase and aldehyde dehydrogenase reactions.
Collapse
Affiliation(s)
- Y Dailly
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | | | | |
Collapse
|