1
|
Wang B, Li S, Yang Y, Luo J. Numb family proteins play roles in Desmin and Vimentin localization at the Z-disc. J Muscle Res Cell Motil 2025; 46:9-22. [PMID: 39674848 DOI: 10.1007/s10974-024-09687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Desmin and Vimentin are major intermediate filaments at the Z-disc and play significant roles in sarcomere architecture and signaling transduction. Abnormal expression of sarcomeric Desmin and Vimentin (SDV) results in severe dysfunctions of striated muscles. In this study, it was found that paired Numb family proteins (NFPs), including Numb and its homolog Numblike, determined the range for the recruitment of SDV to the primitive Z-disc. Notably, NFPs were identified as SDV associated proteins and bound to the head, rod, and tail domains of SDV in a splicing-variant-dependent manner. Last, the construction and consolidation of the Z-disc was completed through the gradual adjustment of the position of SDV by clockwise/anticlockwise rotation of paired NFPs to 90° in the same direction. Conditional knockout of NFPs altered the arrangement and accumulated the expression level of SDV. This study further enriches the functions of NFPs in sarcomere assembly and maintenance through cooperation with SDV.
Collapse
Affiliation(s)
- Baolei Wang
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China.
| | - Shujuan Li
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, Henan, China
| | - Yan Yang
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinfeng Luo
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
2
|
Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs 2024; 38:95-119. [PMID: 37917377 PMCID: PMC10789850 DOI: 10.1007/s40259-023-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Nevertheless, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vectors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, providing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.
Collapse
Affiliation(s)
- Sylwia Szwec
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zuzanna Kapłucha
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
3
|
West G, Sedighi S, Agnetti G, Taimen P. Intermediate filaments in the heart: The dynamic duo of desmin and lamins orchestrates mechanical force transmission. Curr Opin Cell Biol 2023; 85:102280. [PMID: 37972529 DOI: 10.1016/j.ceb.2023.102280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
The intermediate filament (IF) cytoskeleton supports cellular structural integrity, particularly in response to mechanical stress. The most abundant IF proteins in mature cardiomyocytes are desmin and lamins. The desmin network tethers the contractile apparatus and organelles to the nuclear envelope and the sarcolemma, while lamins, as components of the nuclear lamina, provide structural stability to the nucleus and the genome. Mutations in desmin or A-type lamins typically result in cardiomyopathies and recent studies emphasized the synergistic roles of desmin and lamins in the maintenance of nuclear integrity in cardiac myocytes. Here we explore the emerging roles of the interdependent relationship between desmin and lamins in providing resilience to nuclear structure while transducing extracellular mechanical cues into the nucleus.
Collapse
Affiliation(s)
- Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland
| | - Sogol Sedighi
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | - Giulio Agnetti
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA; DIBINEM - University of Bologna, 40123, Bologna, Italy.
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland; Department of Pathology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
4
|
Castañón MJ, Wiche G. Identifying Plectin Isoform Functions through Animal Models. Cells 2021; 10:cells10092453. [PMID: 34572100 PMCID: PMC8468861 DOI: 10.3390/cells10092453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Plectin, a high-molecular-weight cytoskeletal linker protein, binds with high affinity to intermediate filaments of all types and connects them to junctional complexes, organelles, and inner membrane systems. In addition, it interacts with actomyosin structures and microtubules. As a multifunctional protein, plectin has been implicated in several multisystemic diseases, the most common of which is epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). A great part of our knowledge about plectin’s functional diversity has been gained through the analysis of a unique collection of transgenic mice that includes a full (null) knockout (KO), several tissue-restricted and isoform-specific KOs, three double KOs, and two knock-in lines. The key molecular features and pathological phenotypes of these mice will be discussed in this review. In summary, the analysis of the different genetic models indicated that a functional plectin is required for the proper function of striated and simple epithelia, cardiac and skeletal muscle, the neuromuscular junction, and the vascular endothelium, recapitulating the symptoms of humans carrying plectin mutations. The plectin-null line showed severe skin and muscle phenotypes reflecting the importance of plectin for hemidesmosome and sarcomere integrity; whereas the ablation of individual isoforms caused a specific phenotype in myofibers, basal keratinocytes, or neurons. Tissue-restricted ablation of plectin rendered the targeted cells less resilient to mechanical stress. Studies based on animal models other than the mouse, such as zebrafish and C. elegans, will be discussed as well.
Collapse
|
5
|
Wang D, Deng L, Xu X, Ji Y, Jiao Z. Elevated SYNC Expression Is Associated with Gastric Tumorigenesis and Infiltration of M2-Polarized Macrophages in the Gastric Tumor Immune Microenvironment. Genet Test Mol Biomarkers 2021; 25:236-246. [PMID: 33734892 DOI: 10.1089/gtmb.2020.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: To assess the expression and epigenetic regulation of Syncoilin, intermediate filament protein (SYNC) in gastric cancer tissues, and to determine its associations with clinicopathological features; immune infiltration of macrophages in tumors; and patient survival. Materials and Methods: Clinicopathological features, expression profiles, and methylation data of the SYNC gene were obtained from multi-institutional real-world public datasets. A total of 1601 samples from patients with gastric cancer were examined. The associations between clinicopathological features and SYNC expression levels were assessed by the chi-square test; survival was assessed using the Kaplan-Meier analysis. The infiltration levels of M1, 2-polarized tumor-associated macrophages (TAMs) in a gastric tumor immune microenvironment were quantified using deconvolution, and the correlation between SYNC expression level and M1, 2-polarized macrophages' infiltration was examined using the Pearson correlation test. SYNC gene methylation data were analyzed to investigate epigenetic control of its expression. Results: SYNC expression was elevated in gastric cancer tissues (p < 0.01), and was associated with a poorer overall survival (p < 0.01) and poorer postprogression survival (p = 0.01). Higher SYNC levels were significantly associated with more aggressive clinicopathological features in gastric cancer patients (p < 0.05). SYNC was also associated with the infiltration of M2-polarized TAMs in the gastric tumor immune microenvironment (p < 0.001). Hypomethylation was shown to be associated with SYNC's upregulation (p < 0.05). Conclusion: SYNC is highly expressed in gastric cancer tissues and has the potential to be a therapeutic target and to serve as a prognostic marker.
Collapse
Affiliation(s)
- Dazhi Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pharmacy, Center for Precision Cancer Medicine, Clinical Oncology Pharmacist Training Bases (National Health Commission), Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lihua Deng
- Department of Oncology, Center for Precision Cancer Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiaona Xu
- Department of Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yinghui Ji
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zheng Jiao
- Department of Pharmacy, Center for Precision Cancer Medicine, Clinical Oncology Pharmacist Training Bases (National Health Commission), Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Rodríguez MA, Liu JX, Parkkonen K, Li Z, Pedrosa Domellöf F. The Cytoskeleton in the Extraocular Muscles of Desmin Knockout Mice. Invest Ophthalmol Vis Sci 2019; 59:4847-4855. [PMID: 30347079 DOI: 10.1167/iovs.18-24508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effect of absence of desmin on the extraocular muscles (EOMs) with focus on the structure and composition of the cytoskeleton. Methods The distribution of synemin, syncoilin, plectin, nestin, and dystrophin was evaluated on cross and longitudinal sections of EOMs and limb muscles from 1-year-old desmin knockout mice (desmin-/-) by immunofluorescence. General morphology was evaluated with hematoxylin and eosin while mitochondrial content and distribution were evaluated by succinate dehydrogenase (SDH) and modified Gomori trichrome stainings. Results The muscle fibers of the EOMs in desmin-/- mice were remarkably well preserved in contrast to those in the severely affected soleus and the slightly affected gastrocnemius muscles. There were no signs of muscular pathology in the EOMs and all cytoskeletal proteins studied showed a correct location at sarcolemma and Z-discs. However, an increase of SDH staining and mitochondrial aggregates under the sarcolemma was detected. Conclusions The structure of the EOMs was well preserved in the absence of desmin. We suggest that desmin is not necessary for correct synemin, syncoilin, plectin, and dystrophin location on the cytoskeleton of EOMs. However, it is needed to maintain an appropriate mitochondrial distribution in both EOMs and limb muscles.
Collapse
Affiliation(s)
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Kimmo Parkkonen
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
7
|
Gawor M, Prószyński TJ. The molecular cross talk of the dystrophin-glycoprotein complex. Ann N Y Acad Sci 2017; 1412:62-72. [DOI: 10.1111/nyas.13500] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Marta Gawor
- Laboratory of Synaptogenesis; Nencki Institute of Experimental Biology; Polish Academy of Sciences Warsaw Poland
| | - Tomasz J. Prószyński
- Laboratory of Synaptogenesis; Nencki Institute of Experimental Biology; Polish Academy of Sciences Warsaw Poland
| |
Collapse
|
8
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
9
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|
11
|
Dave JM, Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation 2015; 21:333-44. [PMID: 24387004 DOI: 10.1111/micc.12111] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a multistep process that requires intricate changes in cell shape to generate new blood vessels. IF are a large family of proteins that play an important structural and functional role in forming and regulating the cytoskeleton. Vimentin, a major type III intermediate filament protein is expressed in endothelial and other mesenchymal cells. The structure of vimentin is conserved in mammals and shows dynamic expression profiles in various cell types and different developmental stages. Although initial studies with vimentin-deficient mice demonstrated a virtually normal phenotype, subsequent studies have revealed several defects in cell attachment, migration, signaling, neurite extension, and vascularization. Regulation of vimentin is highly complex and is driven by posttranslational modifications such as phosphorylation and cleavage by intracellular proteases. This review discusses various novel functions which are now known to be mediated by vimentin, summarizing structure, regulation and roles of vimentin in cell adhesion, migration, angiogenesis, neurite extension, and cancer. We specifically highlight a pathway involving growth factor-mediated calpain activation, vimentin cleavage, and MT1-MMP membrane translocation that is required for endothelial cell invasion in 3D environments. This pathway may also regulate the analogous processes of neurite extension and tumor cell invasion.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
12
|
Aguilar A, Wagstaff KM, Suárez-Sánchez R, Zinker S, Jans DA, Cisneros B. Nuclear localization of the dystrophin-associated protein α-dystrobrevin through importin α2/β1 is critical for interaction with the nuclear lamina/maintenance of nuclear integrity. FASEB J 2015; 29:1842-58. [PMID: 25636738 DOI: 10.1096/fj.14-257147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023]
Abstract
Although α-dystrobrevin (DB) is assembled into the dystrophin-associated protein complex, which is central to cytoskeletal organization, it has also been found in the nucleus. Here we delineate the nuclear import pathway responsible for nuclear targeting of α-DB for the first time, together with the importance of nuclear α-DB in determining nuclear morphology. We map key residues of the nuclear localization signal of α-DB within the zinc finger domain (ZZ) using various truncated versions of the protein, and site-directed mutagenesis. Pulldown, immunoprecipitation, and AlphaScreen assays showed that the importin (IMP) α2/β1 heterodimer interacts with high affinity with the ZZ domain of α-DB. In vitro nuclear import assays using antibodies to specific importins, as well as in vivo studies using siRNA or a dominant negative importin construct, confirmed the key role of IMPα2/β1 in α-DB nuclear translocation. Knockdown of α-DB expression perturbed cell cycle progression in C2C12 myoblasts, with decreased accumulation of cells in S phase and, significantly, altered localization of lamins A/C, B1, and B2 with accompanying gross nuclear morphology defects. Because α-DB interacts specifically with lamin B1 in vivo and in vitro, nuclear α-DB would appear to play a key role in nuclear shape maintenance through association with the nuclear lamina.
Collapse
Affiliation(s)
- Areli Aguilar
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Kylie M Wagstaff
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Rocío Suárez-Sánchez
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Samuel Zinker
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - David A Jans
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Bulmaro Cisneros
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| |
Collapse
|
13
|
Hnia K, Ramspacher C, Vermot J, Laporte J. Desmin in muscle and associated diseases: beyond the structural function. Cell Tissue Res 2014; 360:591-608. [PMID: 25358400 DOI: 10.1007/s00441-014-2016-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Desmin is a muscle-specific type III intermediate filament essential for proper muscular structure and function. In human, mutations affecting desmin expression or promoting its aggregation lead to skeletal (desmin-related myopathies), or cardiac (desmin-related cardiomyopathy) phenotypes, or both. Patient muscles display intracellular accumulations of misfolded proteins and desmin-positive insoluble granulofilamentous aggregates, leading to a large spectrum of molecular alterations. Increasing evidence shows that desmin function is not limited to the structural and mechanical integrity of cells. This novel perception is strongly supported by the finding that diseases featuring desmin aggregates cannot be easily associated with mechanical defects, but rather involve desmin filaments in a broader spectrum of functions, such as in organelle positioning and integrity and in signaling. Here, we review desmin functions and related diseases affecting striated muscles. We detail emergent cellular functions of desmin based on reported phenotypes in patients and animal models. We discuss known desmin protein partners and propose an overview of the way that this molecular network could serve as a signal transduction platform necessary for proper muscle function.
Collapse
Affiliation(s)
- Karim Hnia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,
| | | | | | | |
Collapse
|
14
|
Townsend D. Finding the sweet spot: assembly and glycosylation of the dystrophin-associated glycoprotein complex. Anat Rec (Hoboken) 2014; 297:1694-705. [PMID: 25125182 PMCID: PMC4135523 DOI: 10.1002/ar.22974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/27/2014] [Indexed: 01/12/2023]
Abstract
The dystrophin-associated glycoprotein complex (DGC) is a collection of glycoproteins that are essential for the normal function of striated muscle and many other tissues. Recent genetic studies have implicated the components of this complex in over a dozen forms of muscular dystrophy. Furthermore, disruption of the DGC has been implicated in many forms of acquired disease. This review aims to summarize the current state of knowledge regarding the processing and assembly of dystrophin-associated proteins with a focus primarily on the dystroglycan heterodimer and the sarcoglycan complex. These proteins form the transmembrane portion of the DGC and undergo a complex multi-step processing with proteolytic cleavage, differential assembly, and both N- and O-glycosylation. The enzymes responsible for this processing and a model describing the sequence and subcellular localization of these events are discussed.
Collapse
Affiliation(s)
- Dewayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
15
|
Strakova J, Dean JD, Sharpe KM, Meyers TA, Odom GL, Townsend D. Dystrobrevin increases dystrophin's binding to the dystrophin-glycoprotein complex and provides protection during cardiac stress. J Mol Cell Cardiol 2014; 76:106-15. [PMID: 25158611 DOI: 10.1016/j.yjmcc.2014.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 01/05/2023]
Abstract
Duchenne muscular dystrophy is a fatal progressive disease of both cardiac and skeletal muscle resulting from the mutations in the DMD gene and loss of the protein dystrophin. Alpha-dystrobrevin (α-DB) tightly associates with dystrophin but the significance of this interaction within cardiac myocytes is poorly understood. In the current study, the functional role of α-DB in cardiomyocytes and its implications for dystrophin function are examined. Cardiac stress testing demonstrated significant heart disease in α-DB null (adbn(-/-)) mice, which displayed mortality and lesion sizes that were equivalent to those seen in dystrophin-deficient mdx mice. Despite normal expression and subcellular localization of dystrophin in the adbn(-/-) heart, there is a significant decrease in the strength of dystrophin's interaction with the membrane-bound dystrophin-associated glycoprotein complex (DGC). A similar weakening of the dystrophin-membrane interface was observed in mice lacking the sarcoglycan complex. Cardiomyocytes from adbn(-/-) mice were smaller and responded less to adrenergic receptor induced hypertrophy. The basal decrease in size could not be attributed to aberrant Akt activation. In addition, the organization of the microtubule network was significantly altered in adbn(-/-) cardiac myocytes, while the total expression of tubulin was unchanged in adbn(-/-) hearts. These studies demonstrate that α-DB is a multifunctional protein that increases dystrophin's binding to the dystrophin-glycoprotein complex, and is critical for the full functionality of dystrophin.
Collapse
Affiliation(s)
- Jana Strakova
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jon D Dean
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Katharine M Sharpe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Tatyana A Meyers
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Guy L Odom
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Abstract
The function of muscle is to contract, which means to exert force on a substrate. The adaptations required for skeletal muscle differentiation, from a prototypic cell, involve specialization of housekeeping cytoskeletal contracting and supporting systems into crystalline arrays of proteins. Here I discuss the changes that all three cytoskeletal systems (microfilaments, intermediate filaments, and microtubules) undergo through myogenesis. I also discuss their interaction, through the membrane, to extracellular matrix and to other cells, where force will be exerted during contraction. The three cytoskeletal systems are necessary for the muscle cell and must exert complementary roles in the cell. Muscle is a responsive system, where structure and function are integrated: the structural adaptations it undergoes depend on force production. In this way, the muscle cytoskeleton is a portrait of its physiology. I review the cytoskeletal proteins and structures involved in muscle function and focus particularly on their role in myogenesis, the process by which this incredible muscle machine is made. Although the focus is on skeletal muscle, some of the discussion is applicable to cardiac and smooth muscle.
Collapse
|
17
|
Lee EJ, Malik A, Pokharel S, Ahmad S, Mir BA, Cho KH, Kim J, Kong JC, Lee DM, Chung KY, Kim SH, Choi I. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis. PLoS One 2014; 9:e92447. [PMID: 24647404 PMCID: PMC3960249 DOI: 10.1371/journal.pone.0092447] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The expression of myogenic regulatory factors (MRFs) consisting of MyoD, Myf5, myogenin (MyoG) and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd) in primary bovine muscle satellite cells (MSCs). RESULTS About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC) and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L), Protein lyl-1 (LYL1), various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle development and reveal the vital regulatory role of MyoG in retaining muscle cell differentiation.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adeel Malik
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Smritee Pokharel
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bilal Ahmad Mir
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kyung Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jihoe Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Joon Chan Kong
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Dong-Mok Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Ki Yong Chung
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, Pyeongchang, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Van Rossen E, Liu Z, Blijweert D, Eysackers N, Mannaerts I, Schroyen B, El Taghdouini A, Edwards B, Davies KE, Sokal E, Najimi M, Reynaert H, van Grunsven LA. Syncoilin is an intermediate filament protein in activated hepatic stellate cells. Histochem Cell Biol 2013; 141:85-99. [PMID: 24043511 DOI: 10.1007/s00418-013-1142-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 02/06/2023]
Abstract
Hepatic stellate cells (HSCs) play an important role in several (patho)physiologic conditions in the liver. In response to chronic injury, HSCs are activated and change from quiescent to myofibroblast-like cells with contractile properties. This shift in phenotype is accompanied by a change in expression of intermediate filament (IF) proteins. HSCs express a broad, but variable spectrum of IF proteins. In muscle, syncoilin was identified as an alpha-dystrobrevin binding protein with sequence homology to IF proteins. We investigated the expression of syncoilin in mouse and human HSCs. Syncoilin expression in isolated and cultured HSCs was studied by qPCR, Western blotting, and fluorescence immunocytochemistry. Syncoilin expression was also evaluated in other primary liver cell types and in in vivo-activated HSCs as well as total liver samples from fibrotic mice and cirrhotic patients. Syncoilin mRNA was present in human and mouse HSCs and was highly expressed in in vitro- and in vivo-activated HSCs. Syncoilin protein was strongly upregulated during in vitro activation of HSCs and undetectable in hepatocytes and liver sinusoidal endothelial cells. Syncoilin mRNA levels were elevated in both CCl4- and common bile duct ligation-treated mice. Syncoilin immunocytochemistry revealed filamentous staining in activated mouse HSCs that partially colocalized with α-smooth muscle actin, β-actin, desmin, and α-tubulin. We show that in the liver, syncoilin is predominantly expressed by activated HSCs and displays very low-expression levels in other liver cell types, making it a good marker of activated HSCs. During in vitro activation of mouse HSCs, syncoilin is able to form filamentous structures or at least to closely interact with existing cellular filaments.
Collapse
Affiliation(s)
- E Van Rossen
- Liver Cell Biology Lab, Department of Cell Biology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Baker LK, Gillis DC, Sharma S, Ambrus A, Herrmann H, Conover GM. Nebulin binding impedes mutant desmin filament assembly. Mol Biol Cell 2013; 24:1918-32. [PMID: 23615443 PMCID: PMC3681697 DOI: 10.1091/mbc.e12-11-0840] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although a clear picture of the in vitro assembly process is established for vimentin, the role of associated partner proteins and their effect on intermediate filament assembly has not been fully examined. This study finds delayed dynamics of desminopathy-linked mutant desmin in myocytes and hindered assembly when associated to nebulin. Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle.
Collapse
Affiliation(s)
- Laura K Baker
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lien CF, Mohanta SK, Frontczak-Baniewicz M, Swinny JD, Zablocka B, Górecki DC. Absence of glial α-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. J Biol Chem 2012; 287:41374-85. [PMID: 23043099 DOI: 10.1074/jbc.m112.400044] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction.
Collapse
Affiliation(s)
- Chun Fu Lien
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Fratini F, Macchia G, Torreri P, Matteucci A, Salzano AM, Crescenzi M, Macioce P, Petrucci TC, Ceccarini M. Phosphorylation on threonine 11 of β-dystrobrevin alters its interaction with kinesin heavy chain. FEBS J 2012; 279:4131-44. [PMID: 22978324 DOI: 10.1111/febs.12006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 11/30/2022]
Abstract
Dystrobrevin family members (α and β) are cytoplasmic components of the dystrophin-associated glycoprotein complex, a multimeric protein complex first isolated from skeletal muscle, which links the extracellular matrix to the actin cytoskeleton. Dystrobrevin shares high homology with the cysteine-rich and C-terminal domains of dystrophin and a common domain organization. The β-dystrobrevin isoform is restricted to nonmuscle tissues, serves as a scaffold for signaling complexes, and may participate in intracellular transport through its interaction with kinesin heavy chain. We have previously characterized the molecular determinants affecting the β-dystrobrevin-kinesin heavy chain interaction, among which is cAMP-dependent protein kinase [protein kinase A (PKA)] phosphorylation of β-dystrobrevin. In this study, we have identified β-dystrobrevin residues phosphorylated in vitro by PKA with pull-down assays, surface plasmon resonance measurements, and MS analysis. Among the identified phosphorylated residues, we demonstrated, by site-directed mutagenesis, that Thr11 is the regulatory site for the β-dystrobrevin-kinesin interaction. As dystrobrevin may function as a signaling scaffold for kinases/phosphatases, we also investigated whether β-dystrobrevin is phosphorylated in vitro by kinases other than PKA. Thr11 was phosphorylated by protein kinase C, suggesting that this represents a key residue modified by the activation of different signaling pathways.
Collapse
Affiliation(s)
- Federica Fratini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nicotinic acetylcholine receptor stability at the NMJ deficient in α-syntrophin in vivo. J Neurosci 2011; 31:15586-96. [PMID: 22031904 DOI: 10.1523/jneurosci.4038-11.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
α-Syntrophin (α-syn), a scaffold protein, links signaling molecules to the dystrophin-glycoprotein complex. Absence of α-syn from the DGC is known to lead to structurally aberrant neuromuscular junctions (NMJs) with few acetylcholine receptors (AChRs) clustered at synaptic sites. Using α-syn knock-out mice, we show that during the first postnatal week, α-syn is not required for synapse formation. However, at postnatal day 6 (P6)-P7, the structural integrity of the postsynaptic apparatus is altered, the turnover rate of AChRs increases significantly, and the number/density of AChRs is impaired. At the adult α-syn(-/-) NMJ, the turnover rate of AChRs is ∼ 4 times faster than wild-type synapses, and most removed receptors are targeted to degradation as few AChRs recycled to synaptic sites. Biochemical analyses show that in muscle cells of adult knock-out α-syn mice, total AChRs and scaffold protein rapsyn are significantly reduced, the 89 kDa and 75 kDa isoforms of tyrosine phosphorylated α-dystrobrevin (α-dbn) 1 (which are required for the maintenance and stability of AChR in α-dbn(-/-) synapses) are barely detectable. Electroporation of GFP-α-dbn1 in α-syn(-/-) muscle cells partially restored receptor density, turnover rate, and the structural integrity of the postsynaptic apparatus, whereas expression of rapsyn-GFP failed to rescue the α-syn(-/-) synaptic phenotype. These results demonstrate that α-syn is required for the maturation and stability of the postsynaptic apparatus and suggest that α-syn may act via α-dbn1.
Collapse
|
23
|
Nakamori M, Takahashi MP. The role of α-dystrobrevin in striated muscle. Int J Mol Sci 2011; 12:1660-71. [PMID: 21673914 PMCID: PMC3111625 DOI: 10.3390/ijms12031660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/29/2011] [Accepted: 02/23/2011] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies are a group of diseases that primarily affect striated muscle and are characterized by the progressive loss of muscle strength and integrity. Major forms of muscular dystrophies are caused by the abnormalities of the dystrophin glycoprotein complex (DGC) that plays crucial roles as a structural unit and scaffolds for signaling molecules at the sarcolemma. α-Dystrobrevin is a component of the DGC and directly associates with dystrophin. α-Dystrobrevin also binds to intermediate filaments as well as syntrophin, a modular adaptor protein thought to be involved in signaling. Although no muscular dystrophy has been associated within mutations of the α-dystrobrevin gene, emerging findings suggest potential significance of α-dystrobrevin in striated muscle. This review addresses the functional role of α-dystrobrevin in muscle as well as its possible implication for muscular dystrophy.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, D-4, Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mail:
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645 URMC, Rochester, NY 14642, USA
| | - Masanori P. Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, D-4, Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-6-6879-3571; Fax: +81-6-6879-3579
| |
Collapse
|
24
|
Clarke WT, Edwards B, McCullagh KJA, Kemp MW, Moorwood C, Sherman DL, Burgess M, Davies KE. Syncoilin modulates peripherin filament networks and is necessary for large-calibre motor neurons. J Cell Sci 2010; 123:2543-52. [PMID: 20587592 PMCID: PMC2908046 DOI: 10.1242/jcs.059113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2010] [Indexed: 11/20/2022] Open
Abstract
Syncoilin is an atypical type III intermediate filament (IF) protein, which is expressed in muscle and is associated with the dystrophin-associated protein complex. Here, we show that syncoilin is expressed in both the central and peripheral nervous systems. Isoform Sync1 is dominant in the brain, but isoform Sync2 is dominant in the spinal cord and sciatic nerve. Peripherin is a type III IF protein that has been shown to colocalise and interact with syncoilin. Our analyses suggest that syncoilin might function to modulate formation of peripherin filament networks through binding to peripherin isoforms. Peripherin is associated with the disease amyotrophic lateral sclerosis (ALS), thus establishing a link between syncoilin and ALS. A neuronal analysis of the syncoilin-null mouse (Sync(-/-)) revealed a reduced ability in accelerating treadmill and rotarod tests. This phenotype might be attributable to the impaired function of extensor digitorum longus muscle and type IIb fibres caused by a shift from large- to small-calibre motor axons in the ventral root.
Collapse
Affiliation(s)
- W. Thomas Clarke
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Ben Edwards
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Karl J. A. McCullagh
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Matthew W. Kemp
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Catherine Moorwood
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Diane L. Sherman
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh, EH9 1QH, UK
| | - Matthew Burgess
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Kay E. Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
25
|
Wakayama Y, Matsuzaki Y, Yamashita S, Inoue M, Jimi T, Hara H, Unaki A, Iijima S, Masaki H. Dysbindin, syncoilin, and beta-synemin mRNA levels in dystrophic muscles. Int J Neurosci 2010; 120:144-9. [PMID: 20199207 DOI: 10.3109/00207450903279717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Progressive muscular dystrophies are genetic diseases with various modes of transmission. Duchenne muscular dystrophy (DMD) is caused by the defect of dystrophin, and Fukuyama congenital muscular dystrophy (FCMD) is caused by an abnormal fukutin gene leading to the glycosylation defect of alpha-dystroglycan. Dystrobrevin is one member of the dystrophin glycoprotein complex and its binding partners include dysbindin, syncoilin, and beta-synemin (desmuslin). Dysbindin is reported to be upregulated at the protein level in mdx mouse muscles, and syncoilin protein is also reported to be upregulated in biopsied muscles with neuromuscular disorders. In the present study we measured mRNA levels of dysbindin, syncoilin, and beta-synemin in biopsied muscles with DMD and FCMD. Upregulation of human dysbindin mRNA was observed in DMD muscles in comparison with normal muscles (p < .05). The differences in human syncoilin and beta-synemin mRNA ratios between DMD and normal muscles were not statistically significant, although upregulation tendency of human syncoilin mRNA was noted in DMD muscles (.05 < p < .1). Furthermore, the differences of human dysbindin, syncoilin, and beta-synemin mRNA ratios between FCMD and normal muscles were not statistically significant. These data provide insight into the pathophysiology of these muscular dystrophies.
Collapse
Affiliation(s)
- Yoshihiro Wakayama
- Department of Neurology, Showa University Fujigaoka Hospital, Yokohama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
de Maat MFG, van de Velde CJH, Benard A, Putter H, Morreau H, van Krieken JHJM, Meershoek Klein-Kranenbarg E, de Graaf EJ, Tollenaar RAEM, Hoon DSB. Identification of a quantitative MINT locus methylation profile predicting local regional recurrence of rectal cancer. Clin Cancer Res 2010; 16:2811-8. [PMID: 20460484 DOI: 10.1158/1078-0432.ccr-09-2717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Risk assessment for locoregional disease recurrence would be highly valuable in preoperative treatment planning for patients undergoing primary rectal tumor resection. Epigenetic aberrations such as DNA methylation have been shown to be significant prognostic biomarkers of disease outcome. In this study, we evaluated the significance of a quantitative epigenetic multimarker panel analysis of primary tumors to predict local recurrence in rectal cancer patients from a retrospective multicenter clinical trial. EXPERIMENTAL DESIGN Primary tumors were studied from patients enrolled in the trial who underwent total mesorectal excision for rectal cancer (n=325). Methylation levels of seven methylated-in-tumor (MINT) loci were assessed by absolute quantitative assessment of methylated alleles. Unsupervised random forest clustering of quantitative MINT methylation data was used to show subclassification into groups with matching methylation profiles. RESULTS Variable importance parameters [Gini-Index (GI)] of the clustering algorithm indicated MINT3 and MINT17 (GI, 20.2 and 20.7, respectively) to be informative for patient grouping compared with the other MINT loci (highest GI, 12.2). When using this two-biomarker panel, four different patient clusters were identified. One cluster containing 73% (184 of 251) of the patients was at significantly increased risk of local recurrence (hazard ratio, 10.23; 95% confidence interval, 1.38-75.91) in multivariate analysis, corrected for standard prognostic factors of rectal cancer. This group showed a significantly higher local recurrence probability than patients receiving preoperative radiation (P<0.0001). CONCLUSION Quantitative epigenetic subclassification of rectal cancers has clinical utility in distinguishing tumors with increased risk for local recurrence and may help tailor treatment regimens for locoregional control.
Collapse
Affiliation(s)
- Michiel F G de Maat
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California 90404, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
α-Dystrobrevin distribution and association with other proteins in human promyelocytic NB4 cells treated for granulocytic differentiation. Mol Biol Rep 2010; 38:3001-11. [DOI: 10.1007/s11033-010-9965-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 01/15/2010] [Indexed: 01/26/2023]
|
28
|
Pawlikowski BT, Maimone MM. Formation of complex AChR aggregates in vitro requires alpha-dystrobrevin. Dev Neurobiol 2009; 69:326-38. [PMID: 19224566 DOI: 10.1002/dneu.20703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Efficient function at the neuromuscular junction requires high-density aggregates of acetylcholine receptors (AChRs) to be precisely aligned with the motor nerve terminal. A collaborative effort between the motor neuron and muscle intrinsic factors drives the formation and maintenance of these AChR aggregates. alpha-Dystrobrevin (alpha DB), a cytoplasmic protein found at the postsynaptic membrane, has been implicated in the regulation of AChR aggregate density and patterning. To investigate the contribution of alpha DB to the muscle intrinsic program regulating AChR aggregate development, we analyzed the formation of complex, pretzel-like AChR aggregates on primary muscle cell cultures derived from alpha DB knockout (alpha DB-KO) mice in the absence of nerve or agrin. In myotubes lacking alpha DB, complex AChR aggregates failed to form, whereas aggregates formed readily in wildtype myotubes. Five major isoforms of alpha DB are expressed in skeletal muscle: alpha DB1, alpha DB1(-), alpha DB2, alpha DB2(-), and alpha DB3. Expression of alpha DB1 or alpha DB1(-) in alpha DB-KO myotubes restored formation of complex AChR aggregates similar to those in wildtype myotubes. In contrast, individual expression of alpha DB2, alpha DB2(-), alpha DB3, or an alpha DB1 phosphorylation mutant resulted in the formation of few, if any, complex AChR aggregates. Collectively, these data suggest that alpha DB is a significant component of the muscle intrinsic program that mediates the formation of complex AChR aggregates and that alpha DB's tyrosine phosphorylation sites are of particular functional importance to this program. Although the muscle intrinsic program appears to influence synaptogenesis, the formation of complex mature AChR aggregates in alpha DB-KO mice (with the motor neuron present) suggests the motor neuron, not the muscle intrinsic program, is the major stimulus driving the maturation of AChRs from plaque to pretzel in vivo.
Collapse
Affiliation(s)
- Bradley T Pawlikowski
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| | | |
Collapse
|
29
|
Iijima S, Masaki H, Wakayama Y, Inoue M, Jimi T, Hara H, Unaki A, Oniki H, Nakano K, Hirayama Y, Kishimoto K. Immunohistochemical detection of dysbindin at the astroglial endfeet around the capillaries of mouse brain. J Mol Histol 2009; 40:117-21. [PMID: 19495999 DOI: 10.1007/s10735-009-9221-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/18/2009] [Indexed: 12/14/2022]
Abstract
Dysbindin was first identified by the yeast two hybrid assay as a binding partner of dystrobrevin which is a cytoplasmic member of dystrophin glycoprotein complex. Immunolocalization of dystrobrevin in the astrocyte endfeet and endothelial cells in the rat cerebellum was reported. Therefore, we were interested in the expression and localization of dystrobrevin binding protein dysbindin in the mouse brain capillary wall and its surrounding astroglial endfeet. We examined whether the dysbindin expression is present in astroglial endfeet and/or capillary endothelial cells at light and electron microscopic levels. Using brain samples from five normal mice (C57BL/6ScSn), we prepared the anti-dysbindin antibody stained brain samples with immunoperoxidase method at light microscopic level and with immunogold method at ultrastructural level. Immunohistochemistry showed that dysbindin was located in the brain capillary at light microscopic level. Immunogold electron microscopy revealed that dysbindin signal was observed at the inside surface of plasma membrane of glial endfeet which surrounded the brain capillary endothelial cells and pericytes.
Collapse
Affiliation(s)
- Shoji Iijima
- Department of Neurology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama 227-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kemp MW, Edwards B, Burgess M, Clarke WT, Nicholson G, Parry DAD, Davies KE. Syncoilin isoform organization and differential expression in murine striated muscle. J Struct Biol 2009; 165:196-203. [PMID: 19070665 DOI: 10.1016/j.jsb.2008.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 12/01/2022]
Abstract
Syncoilin is a 64kDa intermediate filament (IF) protein expressed in myocytes at the sarcolemma, perinucleus, myotendenous and neuromuscular junctions. Here we present a revised domain projection and structural analysis for the original isoform (sync-1) and introduce two novel syncoilin isoforms (sync-2 and sync-3) generated by exon splicing. On the basis of consensus identity we propose that syncoilin be reclassified as a type III IF protein. All three syncoilin isoforms lack a L1 domain, a significant departure from standard IF rod domain projections that is likely to impact significantly on their biological function. Our analyses indicate that syncoilin is unlikely to form classical intermediate filament structures by itself, and that the significant difference in C-terminal structure between the three isoforms indicates that they may play divergent roles in myocytes. We show that despite lacking an apparent structural role in striated muscle, syncoilin isoforms are differentially and strongly upregulated in response to cardiotoxin induced regeneration and denervation induced atrophy in the C57BL/6 mouse, possibly suggesting an atypical role for syncoilin in muscle.
Collapse
Affiliation(s)
- Matthew W Kemp
- MRC Functional Genomics Unit, Department of Anatomy, Physiology and Genetics, University of Oxford, South Parks Road, Oxford OX13QX, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Izmiryan A, Franco CA, Paulin D, Li Z, Xue Z. Synemin isoforms during mouse development: Multiplicity of partners in vascular and neuronal systems. Exp Cell Res 2009; 315:769-83. [DOI: 10.1016/j.yexcr.2008.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/21/2008] [Accepted: 12/07/2008] [Indexed: 11/25/2022]
|
32
|
Bunnell TM, Jaeger MA, Fitzsimons DP, Prins KW, Ervasti JM. Destabilization of the dystrophin-glycoprotein complex without functional deficits in alpha-dystrobrevin null muscle. PLoS One 2008; 3:e2604. [PMID: 18596960 PMCID: PMC2432020 DOI: 10.1371/journal.pone.0002604] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 06/03/2008] [Indexed: 11/20/2022] Open
Abstract
α-Dystrobrevin is a component of the dystrophin-glycoprotein complex (DGC) and is thought to have both structural and signaling roles in skeletal muscle. Mice deficient for α-dystrobrevin (adbn−/−) exhibit extensive myofiber degeneration and neuromuscular junction abnormalities. However, the biochemical stability of the DGC and the functional performance of adbn−/− muscle have not been characterized. Here we show that the biochemical association between dystrophin and β-dystroglycan is compromised in adbn−/− skeletal muscle, suggesting that α-dystrobrevin plays a structural role in stabilizing the DGC. However, despite muscle cell death and DGC destabilization, costamere organization and physiological performance is normal in adbn−/− skeletal muscle. Our results demonstrate that myofiber degeneration alone does not cause functional deficits and suggests that more complex pathological factors contribute to the development of muscle weakness in muscular dystrophy.
Collapse
Affiliation(s)
- Tina M. Bunnell
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michele A. Jaeger
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Daniel P. Fitzsimons
- Department of Physiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kurt W. Prins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeöld A, Fischer I, Paulin D, Schröder R, Wiche G. Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J Cell Biol 2008; 181:667-81. [PMID: 18490514 PMCID: PMC2386106 DOI: 10.1083/jcb.200711058] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 04/18/2008] [Indexed: 12/22/2022] Open
Abstract
Dysfunction of plectin, a 500-kD cytolinker protein, leads to skin blistering and muscular dystrophy. Using conditional gene targeting in mice, we show that plectin deficiency results in progressive degenerative alterations in striated muscle, including aggregation and partial loss of intermediate filament (IF) networks, detachment of the contractile apparatus from the sarcolemma, profound changes in myofiber costameric cytoarchitecture, and decreased mitochondrial number and function. Analysis of newly generated plectin isoform-specific knockout mouse models revealed that IF aggregates accumulate in distinct cytoplasmic compartments, depending on which isoform is missing. Our data show that two major plectin isoforms expressed in muscle, plectin 1d and 1f, integrate fibers by specifically targeting and linking desmin IFs to Z-disks and costameres, whereas plectin 1b establishes a linkage to mitochondria. Furthermore, disruption of Z-disk and costamere linkages leads to the pathological condition of epidermolysis bullosa with muscular dystrophy. Our findings establish plectin as the major organizer of desmin IFs in myofibers and provide new insights into plectin- and desmin-related muscular dystrophies.
Collapse
Affiliation(s)
- Patryk Konieczny
- Max F. Perutz Laboratories, Department of Molecular Cell Biology, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang J, Bang ML, Gokhin DS, Lu Y, Cui L, Li X, Gu Y, Dalton ND, Scimia MC, Peterson KL, Lieber RL, Chen J. Syncoilin is required for generating maximum isometric stress in skeletal muscle but dispensable for muscle cytoarchitecture. Am J Physiol Cell Physiol 2008; 294:C1175-82. [PMID: 18367591 PMCID: PMC2749034 DOI: 10.1152/ajpcell.00049.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Syncoilin is a striated muscle-specific intermediate filament-like protein, which is part of the dystrophin-associated protein complex (DPC) at the sarcolemma and provides a link between the extracellular matrix and the cytoskeleton through its interaction with alpha-dystrobrevin and desmin. Its upregulation in various neuromuscular diseases suggests that syncoilin may play a role in human myopathies. To study the functional role of syncoilin in cardiac and skeletal muscle in vivo, we generated syncoilin-deficient (syncoilin-/-) mice. Our detailed analysis of these mice up to 2 yr of age revealed that syncoilin is entirely dispensable for cardiac and skeletal muscle development and maintenance of cellular structure but is required for efficient lateral force transmission during skeletal muscle contraction. Notably, syncoilin-/- skeletal muscle generates less maximal isometric stress than wild-type (WT) muscle but is as equally susceptible to eccentric contraction-induced injury as WT muscle. This suggests that syncoilin may play a supportive role for desmin in the efficient coupling of mechanical stress between the myofibril and fiber exterior. It is possible that the reduction in isometric stress production may predispose the syncoilin skeletal muscle to a dystrophic condition.
Collapse
Affiliation(s)
- Jianlin Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0613, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
McCullagh KJA, Edwards B, Kemp MW, Giles LC, Burgess M, Davies KE. Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse. Mamm Genome 2008; 19:339-51. [PMID: 18594912 PMCID: PMC2515546 DOI: 10.1007/s00335-008-9120-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/28/2008] [Indexed: 11/28/2022]
Abstract
Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6-8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.
Collapse
Affiliation(s)
- Karl J. A. McCullagh
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Present Address: Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Ben Edwards
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Matthew W. Kemp
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Laura C. Giles
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Matthew Burgess
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Kay E. Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
36
|
Albrecht DE, Sherman DL, Brophy PJ, Froehner SC. The ABCA1 cholesterol transporter associates with one of two distinct dystrophin-based scaffolds in Schwann cells. Glia 2008; 56:611-8. [PMID: 18286648 PMCID: PMC4335170 DOI: 10.1002/glia.20636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytoskeletal scaffolding complexes help organize specialized membrane domains with unique functions on the surface of cells. In this study, we define the scaffolding potential of the Schwann cell dystrophin glycoprotein complex (DGC) by establishing the presence of four syntrophin isoforms, (alpha1, beta1, beta2, and gamma2), and one dystrobrevin isoform, (alpha-dystrobrevin-1), in the abaxonal membrane. Furthermore, we demonstrate the existence of two separate DGCs in Schwann cells that divide the abaxonal membrane into spatially distinct domains, the DRP2/periaxin rich plaques and the Cajal bands that contain Dp116, utrophin, alpha-dystrobrevin-1 and four syntrophin isoforms. Finally, we show that the two different DGCs can scaffold unique accessory molecules in distinct areas of the Schwann cell membrane. Specifically, the cholesterol transporter ABCA1, associates with the Dp116/syntrophin complex in Cajal bands and is excluded from the DRP2/periaxin rich plaques.
Collapse
Affiliation(s)
- Douglas E Albrecht
- Department of Physiology and Biophysics, University of Washington, 1959 NE Pacific St, Box 357290, Seattle WA 98195-7290, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
38
|
Abstract
Intermediate filaments (IFs) are found in most eukaryotic cells and are made up of various IF proteins. IFs are highly insoluble in conventional extraction buffers and are therefore commonly purified under denaturing condition. Purified IF proteins can be reassembled into filaments by dialysis. At least 65 IF proteins are found in humans, and the procedures for the purification of each subunit vary somewhat, although many basic steps are similar. To illustrate the isolation of IFs, a detailed protocol is described for purifying neurofilament proteins (NFL, NFM, and NFH subunits) from bovine spinal cord. These three proteins form the predominant IF network in mature neurons. An alternative method for the purification of NFL from a prokaryotic expression system is also included. The isolation of recombinant proteins from bacteria is quite straightforward and may therefore be the method of choice for producing and purifying IFs. Finally, there is a discussion of the purification methods of other IF proteins.
Collapse
|
39
|
Konieczny P, Wiche G. Muscular integrity--a matter of interlinking distinct structures via plectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:165-75. [PMID: 19181100 DOI: 10.1007/978-0-387-84847-1_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocytes are characterized by the presence of highly specialized cytoskeletal structures that are part of regularly spaced functional units distributed over long distances. In this chapter we discuss previously published evidence as well as novel data showing that the proper positioning and architecture of Z-disks and of sarcolemma-associated costameric structures are largely dependent on the cytolinker protein plectin and its associated intermediate filament (desmin) cytoskeleton. Deficiency in either plectin or desmin lead to muscular dystrophies of similar pathology. However, while in the absence of plectin, desmin networks collapse and form aggregates, when desmin is missing, plectin retains its typical localization. This suggests that plectin recruits and anchors desmin filaments to both Z-disks and costameres and thus is a key element for maintaining and reinforcing myocyte cytoarchitecture. We hypothesize that as an essential link of the Z-disk-costamere axis, plectin is likely to play also a crucial role in myofiber signaling.
Collapse
Affiliation(s)
- Patryk Konieczny
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
40
|
Adams ME, Tesch Y, Percival JM, Albrecht DE, Conhaim JI, Anderson K, Froehner SC. Differential targeting of nNOS and AQP4 to dystrophin-deficient sarcolemma by membrane-directed α-dystrobrevin. J Cell Sci 2008; 121:48-54. [DOI: 10.1242/jcs.020701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
α-Dystrobrevin associates with and is a homologue of dystrophin, the protein linked to Duchenne and Becker muscular dystrophies. We used a transgenic approach to restore α-dystrobrevin to the sarcolemma in mice that lack dystrophin (mdx mice) to study two interrelated functions: (1) the ability of α-dystrobrevin to rescue components of the dystrophin complex in the absence of dystrophin and (2) the ability of sarcolemmal α-dystrobrevin to ameliorate the dystrophic phenotype. We generated transgenic mice expressing α-dystrobrevin-2a linked to a palmitoylation signal sequence and bred them onto the α-dystrobrevin-null and mdx backgrounds. Expression of palmitoylated α-dystrobrevin prevented the muscular dystrophy observed in the α-dystrobrevin-null mice, demonstrating that the altered form of α-dystrobrevin was functional. On the mdx background, the palmitoylated form of α-dystrobrevin was expressed on the sarcolemma but did not significantly ameliorate the muscular dystrophy phenotype. Palmitoylated dystrobrevin restored α-syntrophin and aquaporin-4 (AQP4) to the mdx sarcolemma but was unable to recruit β-dystroglycan or the sarcoglycans. Despite restoration of sarcolemmal α-syntrophin, neuronal nitric oxide synthase (nNOS) was not localized to the sarcolemma, suggesting that nNOS requires both dystrophin and α-syntrophin for correct localization. Thus, although nNOS and AQP4 both require interaction with the PDZ domain of α-syntrophin for sarcolemmal association, their localization is regulated differentially.
Collapse
Affiliation(s)
- Marvin E. Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Yan Tesch
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Justin M. Percival
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Douglas E. Albrecht
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Jay I. Conhaim
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Kendra Anderson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Stanley C. Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
41
|
Ervasti JM, Sonnemann KJ. Biology of the striated muscle dystrophin-glycoprotein complex. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:191-225. [PMID: 18275889 DOI: 10.1016/s0074-7696(07)65005-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Since its first description in 1990, the dystrophin-glycoprotein complex has emerged as a critical nexus for human muscular dystrophies arising from defects in a variety of distinct genes. Studies in mammals widely support a primary role for the dystrophin-glycoprotein complex in mechanical stabilization of the plasma membrane in striated muscle and provide hints for secondary functions in organizing molecules involved in cellular signaling. Studies in model organisms confirm the importance of the dystrophin-glycoprotein complex for muscle cell viability and have provided new leads toward a full understanding of its secondary roles in muscle biology.
Collapse
Affiliation(s)
- James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
42
|
McCullagh KJA, Edwards B, Poon E, Lovering RM, Paulin D, Davies KE. Intermediate filament-like protein syncoilin in normal and myopathic striated muscle. Neuromuscul Disord 2007; 17:970-9. [PMID: 17629480 DOI: 10.1016/j.nmd.2007.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/28/2007] [Accepted: 06/06/2007] [Indexed: 11/19/2022]
Abstract
The intermediate filament-like protein syncoilin is a member of the dystrophin protein complex, and links the complex to the cytoskeleton through binding alpha-dystrobrevin and desmin in muscle. Here, we identify further sites of syncoilin location in normal muscle: at the perinuclear space, myotendinous junction, and enrichment in the sarcolemma and sarcoplasm of oxidative muscle fibers in mice. To understand the importance of the dystrophin protein complex-syncoilin-cytoskeletal link and its implication to disease, we analyzed syncoilin in mice null for alpha-dystrobrevin (adbn-/-) and desmin (des-/-). Syncoilin was upregulated in dystrophic muscles of adbn-/- mice, without alteration in its subcellular location. In des-/- mice, syncoilin was severely reduced in skeletal muscle; lost from sarcomeric Z-lines and neuromuscular junctions, and redistributed from the sub-sarcolemmal cytoskeleton to the cytoplasm. The data show that absence of alpha-dystrobrevin or desmin leads to dynamic changes in syncoilin that may compensate for, or participate in, different muscle myopathies.
Collapse
Affiliation(s)
- Karl J A McCullagh
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | | | |
Collapse
|
43
|
Frank D, Kuhn C, Katus HA, Frey N. Role of the sarcomeric Z-disc in the pathogenesis of cardiomyopathy. Future Cardiol 2007; 3:611-22. [DOI: 10.2217/14796678.3.6.611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Z-disc has traditionally been viewed as a structure required to maintain sarcomeric function and integrity. More recently, the sarcomeric Z-disc has also emerged as a nodal point in cardiomyocyte signaling and mechanotransduction. This notion is not only supported by several transgenic animal models, but also by the identification of mutations in various Z-disc proteins, resulting in dilated or hypertrophic cardiomyopathy in patients. This review will thus focus on the role of the sarcomeric Z-disc and its associated proteins in the pathogenesis of cardiomyopathy.
Collapse
Affiliation(s)
- Derk Frank
- University of Heidelberg, Department of Internal Medicine III, Germany
| | - Christian Kuhn
- University of Heidelberg, Department of Internal Medicine III, Germany
| | - Hugo A Katus
- University of Heidelberg, Department of Internal Medicine III, Germany
| | - Norbert Frey
- Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| |
Collapse
|
44
|
Ceccarini M, Grasso M, Veroni C, Gambara G, Artegiani B, Macchia G, Ramoni C, Torreri P, Mallozzi C, Petrucci TC, Macioce P. Association of Dystrobrevin and Regulatory Subunit of Protein Kinase A: A New Role for Dystrobrevin as a Scaffold for Signaling Proteins. J Mol Biol 2007; 371:1174-87. [PMID: 17610895 DOI: 10.1016/j.jmb.2007.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/15/2022]
Abstract
The dystrophin-related and -associated protein dystrobrevin is a component of the dystrophin-associated protein complex, which directly links the cytoskeleton to the extracellular matrix. It is now thought that this complex also serves as a dynamic scaffold for signaling proteins, and dystrobrevin may play a role in this context. Since dystrobrevin involvement in signaling pathways seems to be dependent on its interaction with other proteins, we sought new insights and performed a two-hybrid screen of a mouse brain cDNA library using beta-dystrobrevin, the isoform expressed in non-muscle tissues, as bait. Among the positive clones characterized after the screen, one encodes the regulatory subunit RIalpha of the cAMP-dependent protein kinase A (PKA). We confirmed the interaction by in vitro and in vivo association assays, and mapped the binding site of beta-dystrobrevin on RIalpha to the amino-terminal region encompassing the dimerization/docking domain of PKA regulatory subunit. We also found that the domain of interaction for RIalpha is contained in the amino-terminal region of beta-dystrobrevin. We obtained evidence that beta-dystrobrevin also interacts directly with RIIbeta, and that not only beta-dystrobrevin but also alpha-dystrobrevin interacts with PKA regulatory subunits. We show that both alpha and beta-dystrobrevin are specific phosphorylation substrates for PKA and that protein phosphatase 2A (PP2A) is associated with dystrobrevins. Our results suggest a new role for dystrobrevin as a scaffold protein that may play a role in different cellular processes involving PKA signaling.
Collapse
Affiliation(s)
- Marina Ceccarini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hanft LM, Bogan DJ, Mayer U, Kaufman SJ, Kornegay JN, Ervasti JM. Cytoplasmic gamma-actin expression in diverse animal models of muscular dystrophy. Neuromuscul Disord 2007; 17:569-74. [PMID: 17475492 PMCID: PMC1993539 DOI: 10.1016/j.nmd.2007.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/26/2007] [Accepted: 03/05/2007] [Indexed: 11/23/2022]
Abstract
We recently showed that cytoplasmic gamma-actin (gamma(cyto)-actin) is dramatically elevated in striated muscle of dystrophin-deficient mdx mice. Here, we demonstrate that gamma(cyto)-actin is markedly increased in golden retriever muscular dystrophy (GRMD), which better recapitulates the dystrophinopathy phenotype in humans. Gamma(cyto)-Actin was also elevated in muscle from alpha-sarcoglycan null mice, but not in several other dystrophic animal models, including mice deficient in beta-sarcoglycan, alpha-dystrobrevin, laminin-2, or alpha7 integrin. Muscle from mice lacking dystrophin and utrophin also expressed elevated gamma(cyto)-actin, which was not restored to normal by transgenic overexpression of alpha7 integrin. However, gamma(cyto)-actin was further elevated in skeletal muscle from GRMD animals treated with the glucocorticoid prednisone at doses shown to improve the dystrophic phenotype and muscle function. These data suggest that elevated gamma(cyto)-actin is part of a compensatory cytoskeletal remodeling program that may partially stabilize dystrophic muscle in some cases where the dystrophin-glycoprotein complex is compromised.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Physiology, University of Wisconsin, Madison, WI
| | - Daniel J. Bogan
- College of Veterinary Medicine and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Ulrike Mayer
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Stephen J. Kaufman
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL
| | - Joe N. Kornegay
- College of Veterinary Medicine and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | | |
Collapse
|
46
|
Oshima RG. Intermediate filaments: a historical perspective. Exp Cell Res 2007; 313:1981-94. [PMID: 17493611 PMCID: PMC1950476 DOI: 10.1016/j.yexcr.2007.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 01/08/2023]
Abstract
Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years.
Collapse
Affiliation(s)
- Robert G Oshima
- Oncodevelopmental Biology Program, Cancer Research Center, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 2007; 313:2063-76. [PMID: 17509566 DOI: 10.1016/j.yexcr.2007.03.033] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/20/2007] [Accepted: 03/29/2007] [Indexed: 12/17/2022]
Abstract
Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.
Collapse
Affiliation(s)
- Yassemi Capetanaki
- Cell Biology Division, Center of Basic Research, Biomedical Research Foundation Academy of Athens, Soranou Efessiou 4, 12965 Athens, Greece.
| | | | | | | | | |
Collapse
|
48
|
Rezniczek GA, Konieczny P, Nikolic B, Reipert S, Schneller D, Abrahamsberg C, Davies KE, Winder SJ, Wiche G. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol 2007; 176:965-77. [PMID: 17389230 PMCID: PMC2064082 DOI: 10.1083/jcb.200604179] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 02/16/2007] [Indexed: 11/22/2022] Open
Abstract
In skeletal muscle, the cytolinker plectin is prominently expressed at Z-disks and the sarcolemma. Alternative splicing of plectin transcripts gives rise to more than eight protein isoforms differing only in small N-terminal sequences (5-180 residues), four of which (plectins 1, 1b, 1d, and 1f) are found at substantial levels in muscle tissue. Using plectin isoform-specific antibodies and isoform expression constructs, we show the differential regulation of plectin isoforms during myotube differentiation and their localization to different compartments of muscle fibers, identifying plectins 1 and 1f as sarcolemma-associated isoforms, whereas plectin 1d localizes exclusively to Z-disks. Coimmunoprecipitation and in vitro binding assays using recombinant protein fragments revealed the direct binding of plectin to dystrophin (utrophin) and beta-dystroglycan, the key components of the dystrophin-glycoprotein complex. We propose a model in which plectin acts as a universal mediator of desmin intermediate filament anchorage at the sarcolemma and Z-disks. It also explains the plectin phenotype observed in dystrophic skeletal muscle of mdx mice and Duchenne muscular dystrophy patients.
Collapse
MESH Headings
- Animals
- Cell Compartmentation/physiology
- Cell Differentiation/physiology
- Cells, Cultured
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- Desmin/metabolism
- Dystroglycans/metabolism
- Humans
- Immunohistochemistry
- Intermediate Filaments/metabolism
- Intermediate Filaments/ultrastructure
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Models, Biological
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Plectin/immunology
- Plectin/metabolism
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- Rats
- Sarcolemma/metabolism
- Sarcolemma/pathology
- Sarcolemma/ultrastructure
- Utrophin/metabolism
Collapse
Affiliation(s)
- Günther A Rezniczek
- Max F. Perutz Laboratories, Department of Molecular Cell Biology, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rees MLJ, Lien CF, Górecki DC. Dystrobrevins in muscle and non-muscle tissues. Neuromuscul Disord 2007; 17:123-34. [PMID: 17251025 DOI: 10.1016/j.nmd.2006.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/26/2006] [Accepted: 11/20/2006] [Indexed: 01/23/2023]
Abstract
The alpha- and beta-dystrobrevins belong to the family of dystrophin-related and dystrophin-associated proteins. As constituents of the dystrophin-associated protein complex, alpha-dystrobrevin was believed to have a role predominantly in muscles and beta-dystrobrevin in non-muscle tissues. Recent reports described novel localisations and molecular characteristics of alpha-dystrobrevin isoforms in non-muscle tissues (developing and adult). While single and double knockout studies have revealed distinct functions of dystrobrevin in some tissues, these also suggested a strong compensatory mechanism, where dystrobrevins displaying overlapping tissue expression pattern and structure/function similarity can substitute each other. No human disease has been unequivocally associated within mutations of dystrobrevin genes. However, some significant exceptions to these overlapping expression patterns, mainly in the brain, suggest that dystrobrevin mutations might underlie some specific motor, behavioural or cognitive defects. Dystrobrevin binding partner DTNBP1 (dysbindin) is a probable susceptibility gene for schizophrenia and bipolar affective disorder in some populations. As dysbindin abnormality is linked to Hermansky-Pudlak syndrome, dystrobrevins and/or their binding partners may also be required for proper function of other non-muscle tissues.
Collapse
Affiliation(s)
- Melissa L J Rees
- Department of Molecular Medicine, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | | | | |
Collapse
|
50
|
Veroni C, Grasso M, Macchia G, Ramoni C, Ceccarini M, Petrucci TC, Macioce P. β-dystrobrevin, a kinesin-binding receptor, interacts with the extracellular matrix components pancortins. J Neurosci Res 2007; 85:2631-9. [PMID: 17265465 DOI: 10.1002/jnr.21186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dystrobrevins (alpha and beta) are components of the dystrophin-associated protein complex (DPC), which links the cytoskeleton to the extracellular matrix and serves as a scaffold for signaling proteins. The precise functions of the beta-dystrobrevin isoform, which is expressed in nonmuscle tissues, have not yet been determined. To gain further insights into the role of beta-dystrobrevin in brain, we performed a yeast two-hybrid screen and identified pancortin-2 as a novel beta-dystrobrevin-binding partner. Pancortins-1-4 are neuron-specific olfactomedin-related glycoproteins, highly expressed during brain development and widely distributed in the mature cerebral cortex of the mouse. Pancortins are important constituents of the extracellular matrix and are thought to play an essential role in neuronal differentiation. We characterized the interaction between pancortin-2 and beta-dystrobrevin by in vitro and in vivo association assays and mapped the binding site of pancortin-2 on beta-dystrobrevin to amino acids 202-236 of the beta-dystrobrevin molecule. We also found that the domain of interaction for beta-dystrobrevin is contained in the B part of pancortin-2, a central region that is common to all four pancortins. Our results indicate that beta-dystrobrevin could interact with all members of the pancortin family, implying that beta-dystrobrevin may be involved in brain development. We suggest that dystrobrevin, a motor protein receptor that binds kinesin heavy chain, might play a role in intracellular transport of pancortin to specific sites in the cell.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|