1
|
Nielsen MH, Nielsen PR, Bzorek M, Eriksen JO, Wehkamp U, Lindahl LM, Woetmann A, Ødum N, Litman T, Gjerdrum LMR. Stage-related increase in PIM2 expression in mycosis fungoides. APMIS 2024; 132:564-570. [PMID: 38757234 DOI: 10.1111/apm.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
The oncogene PIM2 is upregulated in several malignancies but has never been investigated in mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma (CTCL). PIM2 is a well-known oncogene and is regulated by cell signaling pathways like the JAK/STAT- and NF-kB-pathway, key regulators in the pathogenesis of CTCL. The aim of this study was to examine the role of PIM2 in MF. PIM2 gene expression was measured in 81 formalin-fixed paraffin-embedded skin biopsies from patients with MF and 46 control biopsies from healthy skin (HS) and benign inflammatory skin disease (BID). Validation of PIM2 protein expression was performed on selected biopsies with immunohistochemical staining. We found a significant difference in gene expression levels between both early stage MF and HS (p < 0.0001), and BID (p < 0.0001). In addition, the PIM2 gene expression was higher in advanced-stage MF compared to early stage disease (p = 0.0001). No significant difference in gene expression levels was found between patients with and without disease progression. In conclusion, we found PIM2 expression is significantly increased in MF compared to controls, and in advanced-stage MF compared to early stage MF. These findings could potentially have diagnostic value in discriminating early stage MF from BID.
Collapse
Affiliation(s)
- Mie Holm Nielsen
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Pia Rude Nielsen
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Ulrike Wehkamp
- Department of Dermatology, University Hospital, Kiel, Schleswig-Holstein, Germany
| | | | - Anders Woetmann
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Rosen AL, Lint MA, Voelker DH, Gilbert NM, Tomera CP, Santiago-Borges J, Wallace MA, Hannan TJ, Burnham CAD, Hultgren SJ, Kau AL. Secretory leukocyte protease inhibitor protects against severe urinary tract infection in mice. mBio 2024; 15:e0255423. [PMID: 38270443 PMCID: PMC10865866 DOI: 10.1128/mbio.02554-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes, and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial, and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a preclinical model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC-infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with a history of recent or recurrent UTI, suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI promotes clearance of UPEC in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.IMPORTANCEAnnually, millions of people suffer from urinary tract infections (UTIs) and more than $3 billion are spent on work absences and treatment of these patients. While the early response to UTI is known to be important in combating urinary pathogens, knowledge of host factors that help curb infection is still limited. Here, we use a preclinical model of UTI to study secretory leukocyte protease inhibitor (SLPI), an antimicrobial protein, to determine how it protects the bladder against infection. We find that SLPI is increased during UTI, accelerates the clearance of bacteriuria, and upregulates genes and pathways needed to fight an infection while preventing prolonged bladder inflammation. In a small clinical study, we show SLPI is readily detectable in human urine and is associated with the presence of a uropathogen in patients without a previous history of UTI, suggesting SLPI may play an important role in protecting from bacterial cystitis.
Collapse
Affiliation(s)
- Anne L. Rosen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael A. Lint
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dayne H. Voelker
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole M. Gilbert
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher P. Tomera
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesús Santiago-Borges
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas J. Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carey-Ann D. Burnham
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Rosen AL, Lint MA, Voelker DH, Gilbert NM, Tomera CP, Santiago-Borges J, Wallace MA, Hannan TJ, Burnham CAD, Hultgren SJ, Kau AL. Secretory Leukocyte Protease Inhibitor Protects Against Severe Urinary Tract Infection in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561753. [PMID: 37873489 PMCID: PMC10592744 DOI: 10.1101/2023.10.10.561753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a mouse model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with history of recent or recurrent UTI (rUTI), suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI protects against acute UTI in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.
Collapse
Affiliation(s)
- Anne L. Rosen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Michael A. Lint
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Dayne H. Voelker
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Nicole M. Gilbert
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Christopher P. Tomera
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Jesús Santiago-Borges
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Thomas J. Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Carey-Ann D. Burnham
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Li L, Xu Q, Tang C. RGS proteins and their roles in cancer: friend or foe? Cancer Cell Int 2023; 23:81. [PMID: 37118788 PMCID: PMC10148553 DOI: 10.1186/s12935-023-02932-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
As negative modulators of G-protein-coupled receptors (GPCRs) signaling, regulators of G protein signaling (RGS) proteins facilitate various downstream cellular signalings through regulating kinds of heterotrimeric G proteins by stimulating the guanosine triphosphatase (GTPase) activity of G-protein α (Gα) subunits. The expression of RGS proteins is dynamically and precisely mediated by several different mechanisms including epigenetic regulation, transcriptional regulation -and post-translational regulation. Emerging evidence has shown that RGS proteins act as important mediators in controlling essential cellular processes including cell proliferation, survival -and death via regulating downstream cellular signaling activities, indicating that RGS proteins are fundamentally involved in sustaining normal physiological functions and dysregulation of RGS proteins (such as aberrant expression of RGS proteins) is closely associated with pathologies of many diseases such as cancer. In this review, we summarize the molecular mechanisms governing the expression of RGS proteins, and further discuss the relationship of RGS proteins and cancer.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
5
|
Coronaviral PLpro proteases and the immunomodulatory roles of conjugated versus free Interferon Stimulated Gene product-15 (ISG15). Semin Cell Dev Biol 2022; 132:16-26. [PMID: 35764457 PMCID: PMC9233553 DOI: 10.1016/j.semcdb.2022.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.
Collapse
|
6
|
An Expanded Interplay Network between NF-κB p65 (RelA) and E2F1 Transcription Factors: Roles in Physiology and Pathology. Cancers (Basel) 2022; 14:cancers14205047. [PMID: 36291831 PMCID: PMC9600032 DOI: 10.3390/cancers14205047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription Factors (TFs) are the main regulators of gene expression, controlling among others cell homeostasis, identity, and fate. TFs may either act synergistically or antagonistically on nearby regulatory elements and their interplay may activate or repress gene expression. The family of NF-κB TFs is among the most important TFs in the regulation of inflammation, immunity, and stress-like responses, while they also control cell growth and survival, and are involved in inflammatory diseases and cancer. The family of E2F TFs are major regulators of cell cycle progression in most cell types. Several studies have suggested the interplay between these two TFs in the regulation of numerous genes controlling several biological processes. In the present study, we compared the genomic binding landscape of NF-κB RelA/p65 subunit and E2F1 TFs, based on high throughput ChIP-seq and RNA-seq data in different cell types. We confirmed that RelA/p65 has a binding profile with a high preference for distal enhancers bearing active chromatin marks which is distinct to that of E2F1, which mostly generates promoter-specific binding. Moreover, the RelA/p65 subunit and E2F1 cistromes have limited overlap and tend to bind chromatin that is in an active state even prior to immunogenic stimulation. Finally, we found that a fraction of the E2F1 cistrome is recruited by NF-κΒ near pro-inflammatory genes following LPS stimulation in immune cell types.
Collapse
|
7
|
Julson JR, Marayati R, Beierle EA, Stafman LL. The Role of PIM Kinases in Pediatric Solid Tumors. Cancers (Basel) 2022; 14:3565. [PMID: 35892829 PMCID: PMC9332273 DOI: 10.3390/cancers14153565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
PIM kinases have been identified as potential therapeutic targets in several malignancies. Here, we provide an in-depth review of PIM kinases, including their structure, expression, activity, regulation, and role in pediatric carcinogenesis. Also included is a brief summary of the currently available pharmaceutical agents targeting PIM kinases and existing clinical trials.
Collapse
Affiliation(s)
- Janet Rae Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Elizabeth Ann Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Laura Lee Stafman
- Division of Pediatric Surgery, Department of Surgery, Vanderbilt University, Nashville, TN 37240, USA;
| |
Collapse
|
8
|
Wang Z, Li T, Gong Z, Xie J. Role of ISG15 post-translational modification in immunity against Mycobacterium tuberculosis infection. Cell Signal 2022; 94:110329. [PMID: 35390466 DOI: 10.1016/j.cellsig.2022.110329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
ISG15 encoded by a type I interferon (IFN) inducible gene mediates an important cellular process called ISGylation. ISGylation emerges as a powerful host tactic against intracellular pathogens like Mycobacterium tuberculosis (Mtb). However, the exact role of ISGylation in immunity remains elusive. To shed light on how ISGylation, which is both interesting and complex, participates in immunity against Mtb, this manuscript summarized the current knowledge about the structural characteristics and targets of ISG15 and how ISGylation cross-talks with other host post-translational modifications to exert its effect.
Collapse
Affiliation(s)
- Zilu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tongxin Li
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, central laboratory Chongqing, 400030, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Mirzalieva O, Juncker M, Schwartzenburg J, Desai S. ISG15 and ISGylation in Human Diseases. Cells 2022; 11:cells11030538. [PMID: 35159348 PMCID: PMC8834048 DOI: 10.3390/cells11030538] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Type I Interferons (IFNs) induce the expression of >500 genes, which are collectively called ISGs (IFN-stimulated genes). One of the earliest ISGs induced by IFNs is ISG15 (Interferon-Stimulated Gene 15). Free ISG15 protein synthesized from the ISG15 gene is post-translationally conjugated to cellular proteins and is also secreted by cells into the extracellular milieu. ISG15 comprises two ubiquitin-like domains (UBL1 and UBL2), each of which bears a striking similarity to ubiquitin, accounting for its earlier name ubiquitin cross-reactive protein (UCRP). Like ubiquitin, ISG15 harbors a characteristic β-grasp fold in both UBL domains. UBL2 domain has a conserved C-terminal Gly-Gly motif through which cellular proteins are appended via an enzymatic cascade similar to ubiquitylation called ISGylation. ISG15 protein is minimally expressed under physiological conditions. However, its IFN-dependent expression is aberrantly elevated or compromised in various human diseases, including multiple types of cancer, neurodegenerative disorders (Ataxia Telangiectasia and Amyotrophic Lateral Sclerosis), inflammatory diseases (Mendelian Susceptibility to Mycobacterial Disease (MSMD), bacteriopathy and viropathy), and in the lumbar spinal cords of veterans exposed to Traumatic Brain Injury (TBI). ISG15 and ISGylation have both inhibitory and/or stimulatory roles in the etiology and pathogenesis of human diseases. Thus, ISG15 is considered a “double-edged sword” for human diseases in which its expression is elevated. Because of the roles of ISG15 and ISGylation in cancer cell proliferation, migration, and metastasis, conferring anti-cancer drug sensitivity to tumor cells, and its elevated expression in cancer, neurodegenerative disorders, and veterans exposed to TBI, both ISG15 and ISGylation are now considered diagnostic/prognostic biomarkers and therapeutic targets for these ailments. In the current review, we shall cover the exciting journey of ISG15, spanning three decades from the bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Shyamal Desai
- Correspondence: ; Tel.: +1-504-568-4388; Fax: +1-504-568-2093
| |
Collapse
|
10
|
Roupakia E, Chavdoula E, Karpathiou G, Vatsellas G, Chatzopoulos D, Mela A, Gillette JM, Kriegsmann K, Kriegsmann M, Batistatou A, Goussia A, Marcu KB, Karteris E, Klinakis A, Kolettas E. Canonical NF-κB Promotes Lung Epithelial Cell Tumour Growth by Downregulating the Metastasis Suppressor CD82 and Enhancing Epithelial-to-Mesenchymal Cell Transition. Cancers (Basel) 2021; 13:cancers13174302. [PMID: 34503110 PMCID: PMC8428346 DOI: 10.3390/cancers13174302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Canonical NF-κB signalling pathway acts as a tumour promoter in several types of cancer including non-small cell lung cancer (NSCLC), but the mechanism(s) by which it contributes to NSCLC is still under investigation. We show here that NF-κB RelA/p65 is required for the tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq transcriptome profile analysis identified the metastasis suppressor CD82/KAI1/TSPAN27 as a canonical NF-κB target. Loss of CD82 correlated with malignancy. RelA/p65 stimulates cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling, thus, identifying a mechanism mediating NF-κB RelA/p65 lung tumour promoting function. Abstract Background: The development of non-small cell lung cancer (NSCLC) involves the progressive accumulation of genetic and epigenetic changes. These include somatic oncogenic KRAS and EGFR mutations and inactivating TP53 tumour suppressor mutations, leading to activation of canonical NF-κB. However, the mechanism(s) by which canonical NF-κB contributes to NSCLC is still under investigation. Methods: Human NSCLC cells were used to knock-down RelA/p65 (RelA/p65KD) and investigate its impact on cell growth, and its mechanism of action by employing RNA-seq analysis, qPCR, immunoblotting, immunohistochemistry, immunofluorescence and functional assays. Results: RelA/p65KD reduced the proliferation and tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq analysis identified canonical NF-κB targets mediating its tumour promoting function. RelA/p65KD resulted in the upregulation of the metastasis suppressor CD82/KAI1/TSPAN27 and downregulation of the proto-oncogene ROS1, and LGR6 involved in Wnt/β-catenin signalling. Immunohistochemical and bioinformatics analysis of human NSCLC samples showed that CD82 loss correlated with malignancy. RelA/p65KD suppressed cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling involving the mitogenic ERK, Akt1 and Rac1 proteins. Conclusions: Canonical NF-κB signalling promotes NSCLC, in part, by downregulating the metastasis suppressor CD82/KAI1 which inhibits cell migration, EMT and tumour growth.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, University Campus, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
| | - Evangelia Chavdoula
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Georgia Karpathiou
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Giannis Vatsellas
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Dimitrios Chatzopoulos
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Angeliki Mela
- Department of Pathology and Cell Biology Columbia University Medical Center, Irving Comprehensive Cancer Research Center, Columbia University, New York, NY 10032, USA;
| | - Jennifer M. Gillette
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Katharina Kriegsmann
- Department of Internal Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Anna Batistatou
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Anna Goussia
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Kenneth B. Marcu
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
- Department of Biochemistry and Cell Biology, Microbiology and Pathology, Stony Brook University, New York, NY 11794, USA
| | - Emmanouil Karteris
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, London UB8 PH, UK;
| | - Apostolos Klinakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, University Campus, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
- Correspondence: ; Tel.: +30-26510-07578; Fax: +30-26510-07863
| |
Collapse
|
11
|
Kao YH, Igarashi N, Abduweli Uyghurturk D, Li Z, Zhang Y, Ohshima H, MacDougall M, Takano Y, Den Besten P, Nakano Y. Fluoride Alters Signaling Pathways Associated with the Initiation of Dentin Mineralization in Enamel Fluorosis Susceptible Mice. Biol Trace Elem Res 2021; 199:3021-3034. [PMID: 33113116 DOI: 10.1007/s12011-020-02434-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
Fluoride can alter the formation of mineralized tissues, including enamel, dentin, and bone. Dentin fluorosis occurs in tandem with enamel fluorosis. However, the pathogenesis of dentin fluorosis and its mechanisms are poorly understood. In this study, we report the effects of fluoride on the initiation of dentin matrix formation and odontoblast function. Mice from two enamel fluorosis susceptible strains (A/J and C57BL/6J) were given either 0 or 50 ppm fluoride in drinking water for 4 weeks. In both mouse strains, there was no overall change in dentin thickness, but fluoride treatment resulted in a significant increase in the thickness of the predentin layer. The lightly mineralized layer (LL), which lies at the border between predentin and fully mineralized dentin and is associated with dentin phosphoprotein (DPP), was absent in fluoride exposed mice. Consistent with a possible reduction of DPP, fluoride-treated mice showed reduced immunostaining for dentin sialoprotein (DSP). Fluoride reduced RUNX2, the transcription regulator of dentin sialophosphoprotein (DSPP), that is cleaved to form both DPP and DSP. In fluoride-treated mouse odontoblasts, the effect of fluoride was further seen in the upstream of RUNX2 as the reduced nuclear translocation of β-catenin and phosphorylated p65/NFκB. In vitro, MD10-F2 pre-odontoblast cells showed inhibition of the Dspp mRNA level in the presence of 10 μM fluoride, and qPCR analysis showed a significantly downregulated level of mRNAs for RUNX2, β-catenin, and Wnt10b. These findings indicate that in mice, systemic exposure to excess fluoride resulted in reduced Wnt/β-catenin signaling in differentiating odontoblasts to downregulate DSPP production via RUNX2.
Collapse
Affiliation(s)
- Yu-Hsing Kao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Nanase Igarashi
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Dawud Abduweli Uyghurturk
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Zhu Li
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Yan Zhang
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mary MacDougall
- Faculty of Dentistry, The University of British Columbia, Vancouver, Canada
| | - Yoshiro Takano
- Biostructural Science, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
| | - Pamela Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA.
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
12
|
Lertsooksawat W, Wongnoppavich A, Chairatvit K. Up-regulation of interferon-stimulated gene 15 and its conjugation machinery, UbE1L and UbcH8 expression by tumor necrosis factor-α through p38 MAPK and JNK signaling pathways in human lung carcinoma. Mol Cell Biochem 2019; 462:51-59. [PMID: 31428903 DOI: 10.1007/s11010-019-03609-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/10/2019] [Indexed: 11/30/2022]
Abstract
Interferon-stimulated gene 15 (ISG15) is a member of the family of ubiquitin-like proteins. Similar to ubiquitin, conjugation of ISG15 to cellular proteins requires cascade reactions catalyzed by at least 2 enzymes, UbE1L and UbcH8. Expression of ISG15 and its conjugates is up-regulated in many cancer cells, yet the underlying mechanism of up-regulation is still unclear. In this study, we showed that TNF-α, similar to the response by IFN-β, could directly induce expression of ISG15 and its conjugation machinery, UbE1L and UbcH8, in human lung carcinoma, A549. The early response of their expression was effectively blocked by specific inhibitors of p38 MAPK (SB202190) and JNK (SP600125), but not by B18R, a soluble type-I IFN receptor. In addition, luciferase reporter assay together with serial deletions and site-directed mutagenesis identified a putative C/EBPβ binding element in the ISG15 promoter, which is necessary to the response by TNF-α. Taken together, expression of ISG15 and ISG15 conjugation machinery in cancer cells is directly up-regulated by TNF-α via p38 MAPK and JNK pathways through the activation of C/EBPβ binding element in the ISG15 promoter. This study provides a new insight toward understanding the molecular mechanism of ISG15 system and inflammatory response in cancer progression.
Collapse
Affiliation(s)
- Wannee Lertsooksawat
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.,Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
13
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
14
|
Pouyfung P, Choonate S, Wongnoppavich A, Rongnoparut P, Chairatvit K. Anti-proliferative effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) isolated from Vernonia cinerea on oral squamous cell carcinoma through inhibition of STAT3 and STAT2 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:238-246. [PMID: 30599904 DOI: 10.1016/j.phymed.2018.09.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The high mortality rate of oral cancers has stimulated the search for effective herbal medicines and their pharmacological targets. Vernonia cinerea, a perennial tropical herb, is wildly used as a traditional folk medicine for treatment of intestinal diseases and various skin diseases in addition to possessing anti-cancer activity. However, the effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) as a major sesquiterpene lactone compound found in V. cinerea and the underlying mechanism of its action on oral cancer cells remains unknown. PURPOSE To investigate the anti-cancer activity of 8αTGH extracted from V. cinerea and the underlying mechanism of its action in oral cancer cells. METHODS The anti-proliferative effect of 8αTGH on oral squamous cell carcinoma (HSC4) and lung carcinoma (A549) was determined using the SRB colorimetric method. The molecular mechanism of 8αTGH was explored using kinase inhibitors, followed by Western blotting or RT-qPCR. Flow cytometry and Western blotting were used to assess cell cycle arrest. RESULTS 8αTGH inhibited cancer cell growth more effectively on HSC4 than A549 and was much less effective on tested normal oral cells. 8αTGH inhibited STAT3 phosphorylation on both cancer cells. Notably, 8αTGH was able to suppress the constantly activated STAT2 found only in HSC4. The STAT2 inhibition by 8αTGH consequently caused down-regulation of ISG15 and ISG15 conjugates. As a result, decreased expression of CDK1/2 and Cyclin B1 was detected leading to G2/M cell cycle arrest. CONCLUSION 8αTGH isolated from V. cinerea preferentially inhibits the proliferation of oral cancer cells by causing G2/M cell cycle arrest via inhibition of both STAT3 and STAT2 phosphorylation. The results provide molecular bases for developing 8αTGH as a drug candidate or a complementary treatment of oral cancer.
Collapse
Affiliation(s)
- Phisit Pouyfung
- Department of Biochemistry, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Sirinthip Choonate
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Ratchathevi, Bangkok 10400, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornpimol Rongnoparut
- Department of Biochemistry, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Ratchathevi, Bangkok 10400, Thailand.
| |
Collapse
|
15
|
Liu W, Xiang Y, Zhang W, Jia P, Yi M, Jia K. Expression pattern, antiviral role and regulation analysis of interferon-stimulated gene 15 in black seabream, Acanthopagrus schlegelii. FISH & SHELLFISH IMMUNOLOGY 2018; 82:60-67. [PMID: 30041052 DOI: 10.1016/j.fsi.2018.07.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 05/04/2023]
Abstract
Interferon stimulated gene 15 (ISG15) is an IFN inducible ubiquitin-like protein and plays a critical role in immune response against viral infection. In this study, an ISG15 gene (AsISG15) was cloned and characterized from the marine fish black seabream, Acanthopagrus schlegelii. The full-length cDNA of AsISG15 was 1302 bp and encoded 155 amino acids containing two ubiquitin-like motifs and a LRGG conjugation domain. Multiple alignment and phylogenetic tree showed that AsISG15 shared 31-70% amino acid identity with other known ISG15s and had a closer evolutionary relationship with teleost ISG15s. In vitro, AsISG15 expression was inducible by poly I:C, LPS and red spotted nervous necrosis virus (RGNNV) in cultured black seabream brain cells. In vivo, AsISG15 was ubiquitously expressed in all examined tissues with higher expression levels in eye and gill, and the expression was significantly up-regulated in most tissues post RGNNV infection, especially in liver, spleen and kidney. The testing of antiviral activity showed that silencing AsISG15 significantly increased RGNNV replication in RGNNV infected AsS cells, and the LRGG domain was crucial for the anti-RGNNV activity of AsISG15. By promoter-driven luciferase reporter assay, we demonstrated that two IFN-stimulated response elements within the promoter region of AsISG15 and the promoter-proximal intron were essential for AsISG15 expression. Furthermore, our results showed that the gamma-IFN activation sequence located in the intron was required for the intron mediated enhancement for AsISG15 expression. Our results would provide insights for understanding the underlying regulation mechanism of ISG15 in teleost.
Collapse
Affiliation(s)
- Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China; School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yangxi Xiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China; School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wanwan Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China; School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China; School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China; School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China; School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
16
|
Wang LY, Fan YC, Zhao J, Ji XF, Wang K. Increased BATF expression is associated with the severity of liver damage in patients with chronic hepatitis B. Clin Exp Med 2018; 18:263-272. [PMID: 29164410 DOI: 10.1007/s10238-017-0480-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/12/2017] [Indexed: 12/29/2022]
Abstract
T helper (Th) 17 cells have a critical role in the pathogenesis of chronic hepatitis B virus (HBV) infection, and basic leucine zipper transcription factor, ATF-like (BATF) is a newly identified transcriptional factor regulating the differentiation of Th17 cells. However, its precise role in patients with chronic hepatitis B remains unclear. Sixty chronic hepatitis B (CHB) patients, twenty-two acute-on-chronic hepatitis B liver failure (ACHBLF) patients and seventeen healthy controls were included in our study. Both peripheral and intrahepatic expressions of BATF were analyzed by flow cytometry, quantitative real-time polymerase chain reaction and immunohistochemical staining. Peripheral BATF mRNA and protein expression levels were higher in CHB patients than those in healthy controls. Particularly in ACHBLF patients, the BATF mRNA and protein levels were further increased over those in CHB patients. Intrahepatic BATF-positive infiltrating cells were enriched in portal area of CHB patients, and more positive cells were found in patients with higher inflammation grade. Peripheral BATF expression was positively correlated with serum parameters of liver injury and plasma HBV DNA load. Furthermore, a positive correlation was found between the frequency of BATF-positive CD3+ T cells and the increased Th17 response in chronic HBV-infected patients. BATF over-expression might augment Th17 cell response and relate to the disease progression of CHB.
Collapse
Affiliation(s)
- Li-Yuan Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Jing Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiang-Fen Ji
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China.
| |
Collapse
|
17
|
Control of translational activation by PIM kinase in activated B-cell diffuse large B-cell lymphoma confers sensitivity to inhibition by PIM447. Oncotarget 2018; 7:63362-63373. [PMID: 27556513 PMCID: PMC5325370 DOI: 10.18632/oncotarget.11457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/05/2016] [Indexed: 12/12/2022] Open
Abstract
The PIM family kinases promote growth and survival of tumor cells and are expressed in a wide variety of human cancers. Their potential as therapeutic targets, however, is complicated by overlapping activities with multiple other pathways and remains poorly defined in most clinical scenarios. Here we explore activity of the new pan-PIM inhibitor PIM447 in a variety of lymphoid-derived tumors. We find strong activity in cell lines derived from the activated B-cell subtype of diffuse large B-cell lymphoma (ABC-DLBCL). Sensitive lines show lost activation of the mTORC1 signaling complex and subsequent lost activation of cap-dependent protein translation. In addition, we characterize recurrent PIM1 protein-coding mutations found in DLBCL clinical samples and find most preserve the wild-type protein's ability to protect cells from apoptosis but do not bypass activity of PIM447. Pan-PIM inhibition therefore may have an important role to play in the therapy of selected ABC-DLBCL cases.
Collapse
|
18
|
Brunen D, García-Barchino MJ, Malani D, Jagalur Basheer N, Lieftink C, Beijersbergen RL, Murumägi A, Porkka K, Wolf M, Zwaan CM, Fornerod M, Kallioniemi O, Martínez-Climent JÁ, Bernards R. Intrinsic resistance to PIM kinase inhibition in AML through p38α-mediated feedback activation of mTOR signaling. Oncotarget 2018; 7:37407-37419. [PMID: 27270648 PMCID: PMC5122321 DOI: 10.18632/oncotarget.9822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Although conventional therapies for acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) are effective in inducing remission, many patients relapse upon treatment. Hence, there is an urgent need for novel therapies. PIM kinases are often overexpressed in AML and DLBCL and are therefore an attractive therapeutic target. However, in vitro experiments have demonstrated that intrinsic resistance to PIM inhibition is common. It is therefore likely that only a minority of patients will benefit from single agent PIM inhibitor treatment. In this study, we performed an shRNA-based genetic screen to identify kinases whose suppression is synergistic with PIM inhibition. Here, we report that suppression of p38α (MAPK14) is synthetic lethal with the PIM kinase inhibitor AZD1208. PIM inhibition elevates reactive oxygen species (ROS) levels, which subsequently activates p38α and downstream AKT/mTOR signaling. We found that p38α inhibitors sensitize hematological tumor cell lines to AZD1208 treatment in vitro and in vivo. These results were validated in ex vivo patient-derived AML cells. Our findings provide mechanistic and translational evidence supporting the rationale to test a combination of p38α and PIM inhibitors in clinical trials for AML and DLBCL.
Collapse
Affiliation(s)
- Diede Brunen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Disha Malani
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Noorjahan Jagalur Basheer
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maarten Fornerod
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Thelin EP, Hall CE, Gupta K, Carpenter KLH, Chandran S, Hutchinson PJ, Patani R, Helmy A. Elucidating Pro-Inflammatory Cytokine Responses after Traumatic Brain Injury in a Human Stem Cell Model. J Neurotrauma 2018; 35:341-352. [PMID: 28978285 PMCID: PMC5784793 DOI: 10.1089/neu.2017.5155] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytokine mediated inflammation likely plays an important role in secondary pathology after traumatic brain injury (TBI). The aim of this study was to elucidate secondary cytokine responses in an in vitro enriched (>80%) human stem cell-derived neuronal model. We exposed neuronal cultures to pre-determined and clinically relevant pathophysiological levels of tumor necrosis factor-α (TNF), interleukin-6 (IL-6) and interleukin-1β (IL-1β), shown to be present in the inflammatory aftermath of TBI. Data from this reductionist human model were then compared with our in vivo data. Human embryonic stem cell (hESC)-derived neurons were exposed to recombinant TNF (1-10,000 pg/mL), IL-1β (1-10,000 pg/mL), and IL-6 (0.1-1000 ng/mL). After 1, 24, and 72 h, culture supernatant was sampled and analyzed using a human cytokine/chemokine 42-plex Milliplex kit on the Luminex platform. The culture secretome revealed both a dose- and/or time-dependent release of cytokines. The IL-6 and TNF exposure each resulted in significantly increased levels of >10 cytokines over time, while IL-1β increased the level of C-X-C motif chemokine 10 (CXCL10/IP10) alone. Importantly, these patterns are consistent with our in vivo (human) TBI data, thus validating our human stem cell-derived neuronal platform as a clinically useful reductionist model. Our data cumulatively suggest that IL-6 and TNF have direct actions, while the action of IL-1β on human neurons likely occurs indirectly through inflammatory cells. The hESC-derived neurons provide a valuable platform to model cytokine mediated inflammation and can provide important insights into the mechanisms of neuroinflammation after TBI.
Collapse
Affiliation(s)
- Eric Peter Thelin
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
- 2 Department of Clinical Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Claire E Hall
- 3 Department of Molecular Neuroscience, Institute of Neurology, University College London , London, United Kingdom
| | - Kunal Gupta
- 4 Department of Neurological Surgery, Oregon Health & Science University , Portland, Oregon
| | - Keri L H Carpenter
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
- 5 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Siddharthan Chandran
- 6 Centre for Clinical Brain Sciences, University of Edinburgh , Edinburgh, United Kingdom
| | - Peter J Hutchinson
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
- 5 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Rickie Patani
- 3 Department of Molecular Neuroscience, Institute of Neurology, University College London , London, United Kingdom
- 7 The Francis Crick Institute , London, United Kingdom
| | - Adel Helmy
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
20
|
Santio NM, Koskinen PJ. PIM kinases: From survival factors to regulators of cell motility. Int J Biochem Cell Biol 2017; 93:74-85. [DOI: 10.1016/j.biocel.2017.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023]
|
21
|
Alqinyah M, Hooks SB. Regulating the regulators: Epigenetic, transcriptional, and post-translational regulation of RGS proteins. Cell Signal 2017; 42:77-87. [PMID: 29042285 DOI: 10.1016/j.cellsig.2017.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Regulators of G protein signaling (RGS) are a family of proteins classically known to accelerate the intrinsic GTPase activity of G proteins, which results in accelerated inactivation of heterotrimeric G proteins and inhibition of G protein coupled receptor signaling. RGS proteins play major roles in essential cellular processes, and dysregulation of RGS protein expression is implicated in multiple diseases, including cancer, cardiovascular and neurodegenerative diseases. The expression of RGS proteins is highly dynamic and is regulated by epigenetic, transcriptional and post-translational mechanisms. This review summarizes studies that report dysregulation of RGS protein expression in disease states, and presents examples of drugs that regulate RGS protein expression. Additionally, this review discusses, in detail, the transcriptional and post-transcriptional mechanisms regulating RGS protein expression, and further assesses the therapeutic potential of targeting these mechanisms. Understanding the molecular mechanisms controlling the expression of RGS proteins is essential for the development of therapeutics that indirectly modulate G protein signaling by regulating expression of RGS proteins.
Collapse
Affiliation(s)
- Mohammed Alqinyah
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Shelley B Hooks
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
22
|
Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:283-298. [PMID: 28197919 DOI: 10.1007/978-3-319-50044-7_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modifications play an important role in regulating protein activity by altering their functions. Sumoylation is a highly dynamic process which is tightly regulated by a fine balance between conjugating and deconjugating enzyme activities. It affects intracellular localization and their interaction with their binding partners, thereby changing gene expression. Consequently, these changes in turn affect signaling mechanisms that regulate many cellular functions, such as cell growth, proliferation, apoptosis , DNA repair , and cell survival. It is becoming apparent that deregulation in the SUMO pathway contributes to oncogenic transformation by affecting sumoylation/desumoylation of many oncoproteins and tumor suppressors. Loss of balance between sumoylation and desumoylation has been reported in a number of studies in a variety of disease types including cancer. This chapter summarizes the mechanisms and functions of the deregulated SUMO pathway affecting oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Hee June Choi
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
23
|
Villarroya-Beltri C, Guerra S, Sánchez-Madrid F. ISGylation - a key to lock the cell gates for preventing the spread of threats. J Cell Sci 2017; 130:2961-2969. [PMID: 28842471 DOI: 10.1242/jcs.205468] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interferon stimulated gene 15 (ISG15) is an ubiquitin-like protein whose expression and conjugation to targets (ISGylation) is induced by infection, interferon (IFN)-α and -β, ischemia, DNA damage and aging. Attention has historically focused on the antiviral effects of ISGylation, which blocks the entry, replication or release of different intracellular pathogens. However, recently, new functions of ISGylation have emerged that implicate it in multiple cellular processes, such as DNA repair, autophagy, protein translation and exosome secretion. In this Review, we discuss the induction and conjugation of ISG15, as well as the functions of ISGylation in the prevention of infections and in cancer progression. We also offer a novel perspective with regard to the latest findings on this pathway, with special attention to the role of ISGylation in the inhibition of exosome secretion, which is mediated by fusion of multivesicular bodies with lysosomes. Finally, we propose that under conditions of stress or infection, ISGylation acts as a defense mechanism to inhibit normal protein translation by modifying protein kinase R (PKR, also known as EIF2AK2), while any newly synthesized proteins are being tagged and thus marked as potentially dangerous. Then, the endosomal system is re-directed towards protein degradation at the lysosome, to effectively 'lock' the cell gates and thus prevent the spread of pathogens, prions and deleterious aggregates through exosomes.
Collapse
Affiliation(s)
- Carolina Villarroya-Beltri
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.,Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Susana Guerra
- Preventive Medicine Department, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain .,Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
Nair JR, Caserta J, Belko K, Howell T, Fetterley G, Baldino C, Lee KP. Novel inhibition of PIM2 kinase has significant anti-tumor efficacy in multiple myeloma. Leukemia 2017; 31:1715-1726. [PMID: 28008178 PMCID: PMC5537056 DOI: 10.1038/leu.2016.379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
Abstract
The PIM kinase family (PIM1, 2 and 3) have a central role in integrating growth and survival signals, and are expressed in a wide range of solid and hematological malignancies. We now confirm that PIM2 is overexpressed in multiple myeloma (MM) patients, and within MM group it is overexpressed in the high-risk MF subset (activation of proto-oncogenes MAF/MAFB). This is consistent with our finding of PIM2's role in key signaling pathways (IL-6, CD28 activation) that confer chemotherapy resistance in MM cells. These studies have identified a novel PIM2-selective non-ATP competitive inhibitor (JP11646) that has a 4 to 760-fold greater suppression of MM proliferation and viability than ATP-competitive PIM inhibitors. This increased efficacy is due not only to the inhibition of PIM2 kinase activity, but also to a novel mechanism involving specific downregulation of PIM2 mRNA and protein expression not seen with the ATP competitive inhibitors. Treatment with JP11646 in xenogeneic myeloma murine models demonstrated significant reduction in tumor burden and increased median survival. Altogether our findings suggest the existence of previously unrecognized feedback loop(s) where PIM2 kinase activity regulates PIM2 gene expression in malignant cells, and that JP11646 represents a novel class of PIM2 inhibitors that interdicts this feedback.
Collapse
Affiliation(s)
- Jayakumar R. Nair
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Justin Caserta
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
- Boston Biomedical, Inc., Cambridge, MA 02139
| | - Krista Belko
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Tyger Howell
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Gerald Fetterley
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Carmen Baldino
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
25
|
Przanowski P, Loska S, Cysewski D, Dabrowski M, Kaminska B. ISG'ylation increases stability of numerous proteins including Stat1, which prevents premature termination of immune response in LPS-stimulated microglia. Neurochem Int 2017; 112:227-233. [PMID: 28774718 DOI: 10.1016/j.neuint.2017.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/19/2017] [Accepted: 07/29/2017] [Indexed: 01/26/2023]
Abstract
Microglia are myeloid cells in the central nervous system which maintain homeostasis and contribute to repair, but instigate neuroinflammation when are activated by infection, trauma or neurological diseases. Initiation of acute inflammatory responses could be mimicked in vitro by stimulation of microglial cultures with lipopolysaccharide (LPS). We have previously demonstrated Stat-dependent induction of the Uba7 mRNA expression in LPS stimulated microglia. Uba7 is an E1 enzyme crucial for posttranslational protein modifications. ISG'ylation is a process in which ISG15 is covalently attached to lysines of target proteins via the sequential action of three enzymes: the E1-activating enzyme UbE1L (UBA7), the E2-conjugating enzyme UBCH8, and E3 ligase HERC5. Here we use quantitative labeled-free mass spectrometry and gene silencing to determine the role of ISG'ylation in LPS-stimulated microglia. We found the increased mRNA levels of Isg15, Uba7, Ube2l6, Herc6 and profound ISG'ylation in inflammatory microglia. Silencing of Uba7 in BV2 microglial cells results in a profound decrease in the level of hundreds proteins as measured by mass spectrometry. There is statistically significant intersection of Uba7-dependent proteins in LPS-stimulated microglia and three datasets of ISG'ylated proteins reported in earlier studies. Stat1, a main activator of Uba7 expression, was modified by ISG15 after LPS stimulation. The level of both total and phospho-Stat1 is decreased after Uba7 knockdown leading to premature termination of immune responses as evidenced by the reduction of iNos and Ccl5 expression. Our results suggest that increased ISG'ylation in LPS-stimulated microglia supports stability of proteins, including Stat1, which prevents termination of immune responses during inflammation.
Collapse
Affiliation(s)
- Piotr Przanowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| | - Stefan Loska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| | - Dominik Cysewski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Warsaw, Poland.
| | - Michal Dabrowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
26
|
Expression of PIM kinases in Reed-Sternberg cells fosters immune privilege and tumor cell survival in Hodgkin lymphoma. Blood 2017; 130:1418-1429. [PMID: 28698206 DOI: 10.1182/blood-2017-01-760702] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/02/2017] [Indexed: 12/26/2022] Open
Abstract
Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% (P = .0002). Furthermore, SEL24-B489 decreased the expression of multiple molecules engaged in developing the immunosuppressive microenvironment, including galectin-1 and PD-L1/2. In coculture experiments, T cells incubated with SEL24-B489-treated RS cells exhibited higher expression of activation markers than T cells coincubated with control RS cells. Taken together, our data indicate that PIM kinases in cHL exhibit pleiotropic effects, orchestrating tumor immune escape and supporting RS cell survival. Inhibition of PIM kinases decreases RS cell viability and disrupts signaling circuits that link these cells with their niches. Thus, PIM kinases are promising therapeutic targets in cHL.
Collapse
|
27
|
β2-Adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury. Proc Natl Acad Sci U S A 2016; 113:15126-15131. [PMID: 27956622 DOI: 10.1073/pnas.1611023114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Following cardiac injury, early immune cell responses are essential for initiating cardiac remodeling and tissue repair. We previously demonstrated the importance of β2-adrenergic receptors (β2ARs) in the regulation of immune cell localization following acute cardiac injury, with deficient leukocyte infiltration into the damaged heart. The purpose of this study was to investigate the mechanism by which immune cell-expressed β2ARs regulate leukocyte recruitment to the heart following acute cardiac injury. Chemokine receptor 2 (CCR2) expression and responsiveness to C-C motif chemokine ligand 2 (CCL2)-mediated migration were abolished in β2AR knockout (KO) bone marrow (BM), both of which were rescued by β2AR reexpression. Chimeric mice lacking immune cell-specific CCR2 expression, as well as wild-type mice administered a CCR2 antagonist, recapitulated the loss of monocyte/macrophage and neutrophil recruitment to the heart following myocardial infarction (MI) observed in mice with immune cell-specific β2AR deletion. Converse to β2AR ablation, β2AR stimulation increased CCR2 expression and migratory responsiveness to CCL2 in BM. Mechanistically, G protein-dependent β2AR signaling was dispensable for these effects, whereas β-arrestin2-biased β2AR signaling was required for the regulation of CCR2 expression. Additionally, activator protein 1 (AP-1) was shown to be essential in mediating CCR2 expression in response to β2AR stimulation in both murine BM and human monocytes. Finally, reconstitution of β2ARKO BM with rescued expression of a β-arrestin-biased β2AR in vivo restored BM CCR2 expression as well as cardiac leukocyte infiltration following MI. These results demonstrate the critical role of β-arrestin2/AP-1-dependent β2AR signaling in the regulation of CCR2 expression and recruitment of leukocytes to the heart following injury.
Collapse
|
28
|
Targeting the Pim kinases in multiple myeloma. Blood Cancer J 2015; 5:e325. [PMID: 26186558 PMCID: PMC4526774 DOI: 10.1038/bcj.2015.46] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. Novel treatment strategies to improve survival are urgently required. The Pims are a small family of serine/threonine kinases with increased expression across the hematological malignancies. Pim-2 shows highest expression in MM and constitutes a promising therapeutic target. It is upregulated by the bone marrow microenvironment to mediate proliferation and promote MM survival. Pim-2 also has a key role in the bone destruction typically seen in MM. Additional putative roles of the Pim kinases in MM include trafficking of malignant cells, promoting oncogenic signaling in the hypoxic bone marrow microenvironment and mediating resistance to therapy. A number of Pim inhibitors are now under development with lead compounds entering the clinic. The ATP-competitive Pim inhibitor LGH447 has recently been reported to have single agent activity in MM. It is anticipated that Pim inhibition will be of clinical benefit in combination with standard treatments and/or with novel drugs targeting other survival pathways in MM.
Collapse
|
29
|
Seppola M, Mikkelsen H, Johansen A, Steiro K, Myrnes B, Nilsen IW. Ultrapure LPS induces inflammatory and antibacterial responses attenuated in vitro by exogenous sera in Atlantic cod and Atlantic salmon. FISH & SHELLFISH IMMUNOLOGY 2015; 44:66-78. [PMID: 25655332 DOI: 10.1016/j.fsi.2015.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/12/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
Phagocyte recognition of lipopolysaccharide (LPS) is an early key event for triggering the host innate immune response necessary for clearance of invading bacteria. The ability of fishes to recognise LPS has been questioned as contradictory results have been presented. We show here that monocyte/macrophage cultures from Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar) respond with an increased expression of inflammatory and antibacterial genes to both crude and ultrapure Escherichia coli LPS. Crude LPS produces higher induction than the ultrapure LPS type in both species in vitro as well as in vivo in cod injected with LPS. Crude LPS gave, in contrast to ultrapure LPS, an additional weak up-regulation of antiviral genes in salmon macrophages, most likely because of contaminants in the LPS preparation. Increased levels of chicken (c)-type lysozyme transcripts and enzyme activity were measured in salmon macrophages following ultrapure LPS stimulation demonstrating not only increased transcription but also translation. Simultaneous use and even pre-treatment with bovine sera suppressed the LPS-induced expression thereby reflecting the presence of transcription inhibitory components in sera. Together, these findings show that both cod and salmon recognise LPS per se and that the observed induction is highly dependent on the absence of sera.
Collapse
Affiliation(s)
- Marit Seppola
- Norwegian College of Fishery Science, The Arctic University of Norway, P.O. Box 6050, 9037 Tromsø, Norway.
| | - Helene Mikkelsen
- The Northern Norway Regional Health Authority, P.O. Box 6426, 9294 Tromsø, Norway
| | | | | | | | | |
Collapse
|
30
|
Long A, Giroux V, Whelan KA, Hamilton KE, Tétreault MP, Tanaka K, Lee JS, Klein-Szanto AJ, Nakagawa H, Rustgi AK. WNT10A promotes an invasive and self-renewing phenotype in esophageal squamous cell carcinoma. Carcinogenesis 2015; 36:598-606. [PMID: 25795715 DOI: 10.1093/carcin/bgv025] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/13/2015] [Indexed: 11/14/2022] Open
Abstract
Esophageal cells overexpressing epidermal growth factor receptor (EGFR) and TP53 mutation can invade into the extracellular matrix when grown in 3D-organotypic cultures (OTC) and mimic early invasion in esophageal squamous cell carcinoma (ESCC). We have performed laser capture microdissection with RNA microarray analysis on the invasive and non-invasive tumor cells of p53(R175H)-overexpressing OTC samples to determine candidate genes facilitating tumor invasion. WNT10A was found to be >4-fold upregulated in the invasive front. Since WNT10A is also prominently upregulated during placode promotion in hair follicle development, a process that requires epithelial cells to thicken and elongate, in order to allow downward growth, we hypothesized that WNT10A may be important in mediating a similar mechanism of tumor cell invasion in ESCC. We have found that WNT10A expression is significantly upregulated in human ESCC, when compared with normal adjacent tissue. Furthermore, high WNT10A expression levels correlate with poor survival. Interestingly, we observe that WNT10A is expressed early in embryogenesis, but is reduced dramatically postnatally. We demonstrate that overexpression of WNT10a promotes migration and invasion, and proliferation of transformed esophageal cells. Lastly, we show that WNT10A overexpression induces a greater CD44(High)/CD24(Low) population, which are putative markers of cancer stem cells, and increases self-renewal capability. Taken together, we propose that WNT10A acts as an oncofetal factor that is highly expressed and may promote proper development of the esophagus. During tumorigenesis, it is aberrantly overexpressed in order to promote ESCC migration and invasion, and may be linked to self-renewal of a subset of ESCC cells.
Collapse
Affiliation(s)
- Apple Long
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Véronique Giroux
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kelly A Whelan
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Marie-Pier Tétreault
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Koji Tanaka
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and
| | | | - Hiroshi Nakagawa
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
31
|
Henkes LE, Pru JK, Ashley RL, Anthony RV, Veeramachaneni DNR, Gates KC, Hansen TR. Embryo mortality in Isg15-/- mice is exacerbated by environmental stress. Biol Reprod 2014; 92:36. [PMID: 25505199 DOI: 10.1095/biolreprod.114.122002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The interferon-stimulated gene 15 (Isg15) encodes a ubiquitin-like protein that is induced in the endometrium by pregnancy in mice, humans, and ruminants. Because ISG15 is a component of the innate immune system, we hypothesized that development of the embryo, fetus, and postnatal pup may be impaired in mice lacking Isg15 (Isg15(-/-)) and that this development would be further impaired in response to environmental insults such as hypoxia. The number of implantation sites, resorption sites, dead embryos, and the changes in overall gross morphology of the uterus were evaluated in Isg15(-/-) mice on Days 7.5 and 12.5 postcoitum (dpc). Postnatal development also was monitored from birth to 12 wk of age. On 7.5 dpc, the number of implantation sites and serum progesterone concentrations were similar. However, embryo mortality increased (P < 0.05) in Isg15(-/-) dams by 12.5 dpc, resulting in smaller litter sizes (4.26 ± 0.21 embryos; n = 83 litters) compared to Isg15(+/+) females (7.78 ± 0.29 pups; n = 47 litters). Embryo mortality in Isg15(-/-) mice was further exacerbated to 70% when dams were stressed through housing under hypoxic conditions (PB = 445 mmHg; 6.5-12.5 dpc). Transmission electron microscopy revealed lesions in antimesometrial decidua as well as trophoblast cells adjacent to decidual cells on 7.5 dpc. ISG15 was localized to mesometrial decidua on 7.5 dpc. By 12.5 dpc, ISG15 was intensely localized to the labyrinth of the placenta. By 7.5 dpc, uterine natural killer cell migration into the mesometrial pole was diminished by 65% and was less prevalent in Isg15(-/-) compared to Isg15(+/+) deciduum. Postnatal growth rate of offspring that survived to birth from Isg15(-/-) and Isg15(+/+) dams was not different. Embryo mortality occurs in pregnant Isg15(-/-) mice, is exacerbated by environmental insults like maternal hypoxia, and might result from impaired early decidualization, vascular development, and formation of the labyrinth.
Collapse
Affiliation(s)
- Luiz E Henkes
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Ryan L Ashley
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Russell V Anthony
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - D N Rao Veeramachaneni
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Katherine C Gates
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
32
|
Care MA, Cocco M, Laye JP, Barnes N, Huang Y, Wang M, Barrans S, Du M, Jack A, Westhead DR, Doody GM, Tooze RM. SPIB and BATF provide alternate determinants of IRF4 occupancy in diffuse large B-cell lymphoma linked to disease heterogeneity. Nucleic Acids Res 2014; 42:7591-610. [PMID: 24875472 PMCID: PMC4081075 DOI: 10.1093/nar/gku451] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 01/31/2023] Open
Abstract
Interferon regulatory factor 4 (IRF4) is central to the transcriptional network of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL), an aggressive lymphoma subgroup defined by gene expression profiling. Since cofactor association modifies transcriptional regulatory input by IRF4, we assessed genome occupancy by IRF4 and endogenous cofactors in ABC-DLBCL cell lines. IRF4 partners with SPIB, PU.1 and BATF genome-wide, but SPIB provides the dominant IRF4 partner in this context. Upon SPIB knockdown IRF4 occupancy is depleted and neither PU.1 nor BATF acutely compensates. Integration with ENCODE data from lymphoblastoid cell line GM12878, demonstrates that IRF4 adopts either SPIB- or BATF-centric genome-wide distributions in related states of post-germinal centre B-cell transformation. In primary DLBCL high-SPIB and low-BATF or the reciprocal low-SPIB and high-BATF mRNA expression links to differential gene expression profiles across nine data sets, identifying distinct associations with SPIB occupancy, signatures of B-cell differentiation stage and potential pathogenetic mechanisms. In a population-based patient cohort, SPIBhigh/BATFlow-ABC-DLBCL is enriched for mutation of MYD88, and SPIBhigh/BATFlow-ABC-DLBCL with MYD88-L265P mutation identifies a small subgroup of patients among this otherwise aggressive disease subgroup with distinct favourable outcome. We conclude that differential expression of IRF4 cofactors SPIB and BATF identifies biologically and clinically significant heterogeneity among ABC-DLBCL.
Collapse
Affiliation(s)
- Matthew A Care
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Mario Cocco
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Jon P Laye
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Nicholas Barnes
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Yuanxue Huang
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ming Wang
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ming Du
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew Jack
- Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - David R Westhead
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Gina M Doody
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Reuben M Tooze
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
33
|
Gong S, Li J, Ma L, Li K, Zhang L, Wang G, Liu Y, Ji X, Liu X, Chen P, Ouyang R, Zhang S, Zhou Z, Wang CY, Xiang X, Yang Y. Blockade of dopamine D1-like receptor signalling protects mice against OVA-induced acute asthma by inhibiting B-cell activating transcription factor signalling and Th17 function. FEBS J 2013; 280:6262-73. [PMID: 24112622 DOI: 10.1111/febs.12549] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/07/2013] [Accepted: 09/24/2013] [Indexed: 01/21/2023]
Abstract
Previous studies have consistently demonstrated that dopamine D1-like receptor (D1-like-R) signalling is implicated in the pathogenesis of experimental autoimmune encephalomyelitis and type I diabetes. Given that allergic asthma shares certain disease aetiology similarities with autoimmune diseases, we conducted studies in OVA-induced mice aiming to address the impact of D1-like-R signalling on the pathogenesis of allergic asthma. It was noted that blockade of D1-like-R signalling provided protection for mice against OVA-induced acute asthma. Particularly, treatment of OVA-induced mice with SCH23390, a D1-like-R antagonist, significantly attenuated inflammatory infiltration in the airways along with repressed goblet cell hyperplasia and mucus production, as well as airway resistance. By contrast, administration of SKF83959, a D1-like-R agonist, displayed the opposite effect. Blockade of D1-like-R signalling impaired Th17 function, as manifested by a significant reduction of Th17 cells in the spleen and bronchoalveolar lavage fluid. Mechanistic studies revealed that D1-like-R signalling enhances B-cell activating transcription factor activity, which then transcribes the expression of RORγt, a Th17 transcription factor; accordingly, D1-like-R signalling regulates Th17 differentiation to promote the development of allergic asthma. Taken together, the data obtained in the present suggest that blockade of D1-like-R signalling could be an effective therapeutic strategy for the prevention and treatment of allergic asthma in clinical practice.
Collapse
Affiliation(s)
- Subo Gong
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
IKKα/CHUK regulates extracellular matrix remodeling independent of its kinase activity to facilitate articular chondrocyte differentiation. PLoS One 2013; 8:e73024. [PMID: 24023802 PMCID: PMC3759388 DOI: 10.1371/journal.pone.0073024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022] Open
Abstract
Background The non-canonical NF-κB activating kinase IKKα, encoded by CHUK (conserved-helix-loop-helix-ubiquitous-kinase), has been reported to modulate pro- or anti- inflammatory responses, cellular survival and cellular differentiation. Here, we have investigated the mechanism of action of IKKα as a novel effector of human and murine chondrocyte extracellular matrix (ECM) homeostasis and differentiation towards hypertrophy. Methodology/Principal Findings IKKα expression was ablated in primary human osteoarthritic (OA) chondrocytes and in immature murine articular chondrocytes (iMACs) derived from IKKαf/f:CreERT2 mice by retroviral-mediated stable shRNA transduction and Cre recombinase-dependent Lox P site recombination, respectively. MMP-10 was identified as a major target of IKKα in chondrocytes by mRNA profiling, quantitative RT-PCR analysis, immunohistochemistry and immunoblotting. ECM integrity, as assessed by type II collagen (COL2) deposition and the lack of MMP-dependent COL2 degradation products, was enhanced by IKKα ablation in mice. MMP-13 and total collagenase activities were significantly reduced, while TIMP-3 (tissue inhibitor of metalloproteinase-3) protein levels were enhanced in IKKα-deficient chondrocytes. IKKα deficiency suppressed chondrocyte differentiation, as shown by the quantitative inhibition of.Alizarin red staining and the reduced expression of multiple chondrocyte differentiation effectors, including Runx2, Col10a1 and Vegfa,. Importantly, the differentiation of IKKα-deficient chondrocytes was rescued by a kinase-dead IKKα protein mutant. Conclusions/Significance IKKα acts independent of its kinase activity to help drive chondrocyte differentiation towards a hypertrophic-like state. IKKα positively modulates ECM remodeling via multiple downstream targets (including MMP-10 and TIMP-3 at the mRNA and post-transcriptional levels, respectively) to maintain maximal MMP-13 activity, which is required for ECM remodeling leading to chondrocyte differentiation. Chondrocytes are the unique cell component in articular cartilage, which are quiescent and maintain ECM integrity during tissue homeostasis. In OA, chondrocytes reacquire the capacity to proliferate and differentiate and their activation results in pronounced cartilage degeneration. Τηυσ, our findings are also of potential relevance for defining the onset and/or progression of OA disease.
Collapse
|
35
|
Massa PE, Paniccia A, Monegal A, de Marco A, Rescigno M. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood 2013; 122:705-14. [PMID: 23736700 DOI: 10.1182/blood-2012-12-474098] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Escape from immune detection favors both tumor survival and progression, and new approaches to circumvent this are essential to combat cancers. Nonvirulent, tumor-tropic bacteria, such as Salmonella typhimurium, can unmask a tumor by transforming it into a site of inflammation; however, the nonspecific invasiveness of Salmonella leads to off-target effects diluting its therapeutic efficacy and making its use in human patients inherently risky. Here, we demonstrate that Salmonella tumor specificity can be significantly improved via a surface-expressed single-domain antibody directed to a tumor-associated antigen (CD20). Antibody-dependent bacterial targeting specifies the infection of CD20+ lymphoma cells in vitro and in vivo, while significantly diminishing nonspecific cell invasion. Indeed, CD20-targeted Salmonella was less generally invasive, even in organs that normally serve as physiological reservoirs. Furthermore, tumor-specific Salmonella engineered to carry the herpes simplex virus thymidine kinase prodrug-converting enzyme effectively treats human lymphoma xenografts when coadministered intratumorally or intravenously with ganciclovir in mice lacking a functional adaptive immune system. Therefore, tumor-targeted Salmonella could prove effective even in those patients displaying a debilitated immune system, which is often the case with late-stage cancers. Altogether, antibody-displaying Salmonella vectors can mediate a tumor-specific response and rejection with few detectable adverse effects while specifically delivering cytotoxic payloads.
Collapse
Affiliation(s)
- Paul E Massa
- European Institute of Oncology, Department of Experimental Oncology, Italian Foundation for Cancer Research-Institute for Molecular Oncology, European Institute of Oncology Campus, Milan, Italy
| | | | | | | | | |
Collapse
|
36
|
Lau R, Niu MY, Pratt MAC. cIAP2 represses IKKα/β-mediated activation of MDM2 to prevent p53 degradation. Cell Cycle 2012; 11:4009-19. [PMID: 23032264 DOI: 10.4161/cc.22223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellular inhibitor of apoptosis proteins (cIAP1 and cIAP2) function to prevent apoptosis and are often overexpressed in various cancers. However, mutations in cIAP1/2 can activate the alternative NFκB pathway through IκBα-kinase-α (IKKα) and are associated with hematopoetic malignancies. In the current study, we found that knockdown of cIAP2 in human mammary epithelial cells resulted in activation of MDM2 through increased SUMOylation and profound reduction of the pool of MDM2 not phosphorylated at Ser166. cIAP2 siRNA markedly decreased p53 levels, which were rescued by addition of the MDM2 inhibitor, Nutlin3a. An IAP antagonist, which induces cIAP degradation, transiently increased MDM2 mRNA. Simultaneous transfection of siRNA for cIAP2 and IKKα reduced MDM2 protein, while expression of a kinase-dead IKKβ strongly increased non-Ser166 P-MDM2. Inhibition of either IKKα or -β partially rescued p53 levels, while concomitant IKKα/β inhibition fully rescued p53 after cIAP2 knockdown. Surprisingly, IKKα knockdown alone increased SUMO-MDM2, suggesting that in the absence of activation, IKKα can prevent MDM2 SUMOylation. cIAP2 knockdown disrupted the interaction between the MDM2 SUMO ligase, PIAS1 and IKKα. Partial knockdown of cIAP2 cooperated with (V12) H-ras-transfected mammary epithelial cells to enhance colony formation. In summary, our data identify a novel role for cIAP2 in maintaining wild-type p53 levels by preventing both an NFκB-mediated increase and IKKα/-β-dependent transcriptional and post-translational modifications of MDM2. Thus, mutations or reductions in cIAP2 could contribute to cancer promotion, in part, through downregulation of p53.
Collapse
Affiliation(s)
- Rosanna Lau
- Breast Cancer Research Lab, University of Ottawa Department of Cellular and Molecular Medicine, Ottawa, ON, Canada
| | | | | |
Collapse
|
37
|
Chairatvit K, Wongnoppavich A, Choonate S. Up-regulation of interferon-stimulated gene15 and its conjugates by tumor necrosis factor-α via type I interferon-dependent and -independent pathways. Mol Cell Biochem 2012; 368:195-201. [PMID: 22729740 DOI: 10.1007/s11010-012-1360-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/07/2012] [Indexed: 01/08/2023]
Abstract
Interferon-stimulated gene15 (ISG15) is the first characterized ubiquitin-like protein, which is strongly induced by type I interferons (IFN-α/β), bacterial endotoxin, and cellular stress. Up-regulation of ISG15 is observed in several cancer cell types and is associated with cancer progression. As many cytokines can influence all stages of tumorigenesis, the elevated expression of ISG15 system may be regulated in cancer cells by inflammatory cytokines. In this study, we showed that TNF-α, but not TGF-β and IL-6, up-regulates levels of both ISG15 and its conjugates in human lung carcinoma A549 and human squamous carcinoma HSC4 cell lines. Induction of ISG15 and its conjugates by TNF-α was dose-dependent and required mediation of p38 MAP kinase and Jak1 through up-regulation of endogenous type I interferon expression. SB202190 (p38 MAPK inhibitor) and Jak1 inhibitor suppressed TNF-α-induced expression of ISG15 and its conjugates. However, only SB202190 inhibited the expression of type I interferons by TNF-α. Although B18R, a soluble type I interferon receptor, totally abolished the effect of exogenous IFN-β, it was unable to inhibit completely the TNF-α-induced ISG15 production. In addition, the initiation of ISG15 induction by TNF-α was detected earlier than that of IFN-β induction. Taken together, TNF-α elicits the induction of ISG15 and ISG15 conjugates not only via the autocrine stimulation of type I interferon expression, but also through a type I interferon-independent pathway. These data provide a possible link between inflammatory response and cancer progression.
Collapse
|
38
|
Jeon YJ, Jo MG, Yoo HM, Hong SH, Park JM, Ka SH, Oh KH, Seol JH, Jung YK, Chung CH. Chemosensitivity is controlled by p63 modification with ubiquitin-like protein ISG15. J Clin Invest 2012; 122:2622-36. [PMID: 22706304 DOI: 10.1172/jci61762] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/09/2012] [Indexed: 12/19/2022] Open
Abstract
Identification of the cellular mechanisms that mediate cancer cell chemosensitivity is important for developing new cancer treatment strategies. Several chemotherapeutic drugs increase levels of the posttranslational modifier ISG15, which suggests that ISGylation could suppress oncogenesis. However, how ISGylation of specific target proteins controls tumorigenesis is unknown. Here, we identified proteins that are ISGylated in response to chemotherapy. Treatment of a human mammary epithelial cell line with doxorubicin resulted in ISGylation of the p53 family protein p63. An alternative splice variant of p63, ΔNp63α, suppressed the transactivity of other p53 family members, and its expression was abnormally elevated in various human epithelial tumors, suggestive of an oncogenic role for this variant. We showed that ISGylation played an essential role in the downregulation of ΔNp63α. Anticancer drugs, including doxorubicin, induced ΔNp63α ISGylation and caspase-2 activation, leading to cleavage of ISGylated ΔNp63α in the nucleus and subsequent release of its inhibitory domain to the cytoplasm. ISGylation ablated the ability of ΔNp63α to promote anchorage-independent cell growth and tumor formation in vivo as well to suppress the transactivities of proapoptotic p53 family members. These findings establish ISG15 as a tumor suppressor via its conjugation to ΔNp63α and provide a molecular rationale for therapeutic use of doxorubicin against ΔNp63α-mediated cancers.
Collapse
Affiliation(s)
- Young Joo Jeon
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
He XH, Li B, Yang S, Lu N, Zhang X, Zou SM, Li YX, Song YW, Zheng S, Dong M, Zhou SY, Yang JL, Liu P, Zhang CG, Qin Y, Feng FY, Shi YK. R-CHOP regimen can significantly decrease the risk of disease relapse and progression in patients with non-germinal center B-cell subtype diffuse large B-cell lymphoma. CHINESE JOURNAL OF CANCER 2012; 31:306-14. [PMID: 22640627 PMCID: PMC3777489 DOI: 10.5732/cjc.011.10420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/05/2012] [Accepted: 03/14/2012] [Indexed: 02/01/2023]
Abstract
To further explore the role of rituximab when added to the CHOP-like regimen in the treatment of immunohistochemically defined non-germinal center B-cell subtype (non-GCB) diffuse large B-cell lymphoma(DLBCL), 159 newly diagnosed DLBCL patients were studied retrospectively based on the immunohistochemical evaluation of CD10, Bcl-6, MUM-1, and Bcl-2. Altogether, 110 patients underwent the CHOP-like regimen, and rituximab was added for the other 49 patients. Cox regression analysis showed that compared with the CHOP-like regimen, the rituximab-based regimen(R-CHOP regimen) significantly decreased the risk of disease relapse and progression in CD10-negative patients (P=0.001), Bcl-6-negative patients (P=0.01), and MUM-1-positive patients (P=0.003). The risk of disease relapse in patients with non-GCB subtype (P=0.002) also decreased. In contrast, patients with the opposite immunohistochemical marker expression profile and GCB subtype did not benefit from treatment with the R-CHOP regimen. In addition, non-GCB subtype patients had a significantly higher expression rate of Bcl-2 than GCB subtype patients (P=0.042). Although univariate analysis found that both Bcl-2-positive and -negative patients had significantly higher event-free survival rates with the R-CHOP regimen, only Bcl-2 positivity (P=0.004) maintained significance in the Cox regression analysis. We conclude that the addition of rituximab can significantly improve the prognosis of patients with non-GCB subtype DLBCL, which is closely related to the expression of CD10, Bcl-6, MUM-1, and Bcl-2.
Collapse
Affiliation(s)
| | - Bo Li
- Department of Medical Oncology,
| | | | | | | | | | - Ye-Xiong Li
- Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China.
| | - Yong-Wen Song
- Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China.
| | | | | | | | | | | | | | - Yan Qin
- Department of Medical Oncology,
| | | | | |
Collapse
|
40
|
Durrani Z, Weir W, Pillai S, Kinnaird J, Shiels B. Modulation of activation-associated host cell gene expression by the apicomplexan parasite Theileria annulata. Cell Microbiol 2012; 14:1434-54. [PMID: 22533473 PMCID: PMC3532605 DOI: 10.1111/j.1462-5822.2012.01809.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/29/2012] [Accepted: 04/19/2012] [Indexed: 12/29/2022]
Abstract
Infection of bovine leucocytes by Theileria annulata results in establishment of transformed, infected cells. Infection of the host cell is known to promote constitutive activation of pro-inflammatory transcription factors that have the potential to be beneficial or detrimental. In this study we have compared the effect of LPS activation on uninfected bovine leucocytes (BL20 cells) and their Theileria-infected counterpart (TBL20). Gene expression profiles representing activated uninfected BL20 relative to TBL20 cells were also compared. The results show that while prolonged stimulation with LPS induces cell death and activation of NF-κB in BL20 cells, the viability of Theileria-infected cells was unaffected. Analysis of gene expression networks provided evidence that the parasite establishes tight control over pathways associated with cellular activation by modulating reception of extrinsic stimuli and by significantly altering the expression outcome of genes targeted by infection-activated transcription factors. Pathway analysis of the data set identified novel candidate genes involved in manipulation of cellular functions associated with the infected transformed cell. The data indicate that the T. annulata parasite can irreversibly reconfigure host cell gene expression networks associated with development of inflammatory disease and cancer to generate an outcome that is beneficial to survival and propagation of the infected leucocyte.
Collapse
Affiliation(s)
- Zeeshan Durrani
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, Scotland, UK
| | | | | | | | | |
Collapse
|
41
|
Kach J, Sethakorn N, Dulin NO. A finer tuning of G-protein signaling through regulated control of RGS proteins. Am J Physiol Heart Circ Physiol 2012; 303:H19-35. [PMID: 22542620 DOI: 10.1152/ajpheart.00764.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Jacob Kach
- Department of Medicine, University of Chicago, Illinois, 60637, USA
| | | | | |
Collapse
|
42
|
Mattiussi M, Tilman G, Lenglez S, Decottignies A. Human telomerase represses ROS-dependent cellular responses to Tumor Necrosis Factor-α without affecting NF-κB activation. Cell Signal 2012; 24:708-17. [DOI: 10.1016/j.cellsig.2011.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/20/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
|
43
|
Abstract
The PIM genes represent a family of proto-oncogenes that encode three different serine/threonine protein kinases (PIM1, PIM2 and PIM3) with essential roles in the regulation of signal transduction cascades, which promote cell survival, proliferation and drug resistance. PIM kinases are overexpressed in several hematopoietic tumors and support in vitro and in vivo malignant cell growth and survival, through cell cycle regulation and inhibition of apoptosis. PIM kinases do not have an identified regulatory domain, which means that these proteins are constitutively active once transcribed. They appear to be critical downstream effectors of important oncoproteins and, when overexpressed, can mediate drug resistance to available agents, such as rapamycin. Recent crystallography studies reveal that, unlike other kinases, they possess a hinge region, which creates a unique binding pocket for ATP, offering a target for an increasing number of potent small-molecule PIM kinase inhibitors. Preclinical studies in models of various hematologic cancers indicate that these novel agents show promising activity and some of them are currently being evaluated in a clinical setting. In this review, we profile the PIM kinases as targets for therapeutics in hematologic malignancies.
Collapse
Affiliation(s)
- Yesid Alvarado
- Department of Hematology/Oncology, Cancer Therapy & Research Center, The University of Texas Health Science Center San Antonio, 7979 Wurzbach Road, MC8232, San Antonio, 78229, TX, USA
| | | | | |
Collapse
|
44
|
Shu ST, Dirksen WP, Lanigan LG, Martin CK, Thudi NK, Werbeck JL, Fernandez SA, Hildreth BE, Rosol TJ. Effects of parathyroid hormone-related protein and macrophage inflammatory protein-1α in Jurkat T-cells on tumor formation in vivo and expression of apoptosis regulatory genes in vitro. Leuk Lymphoma 2012; 53:688-98. [PMID: 21942940 DOI: 10.3109/10428194.2011.626883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) have been implicated in the pathogenesis of adult T-cell leukemia/lymphoma, but their effects on T-cells have not been well studied. Here we analyzed the functions of PTHrP and MIP-1α on T-cell growth and death both in vitro and in vivo by overexpressing either factor in human Jurkat T-cells. PTHrP or MIP-1α did not affect Jurkat cell growth in vitro, but PTHrP increased their sensitivity to apoptosis. Importantly, PTHrP and MIP-1α decreased both tumor incidence and growth in vivo. To investigate possible mechanisms, polymerase chain reaction (PCR) arrays and real-time reverse transcription (RT)-PCR assays were performed. Both PTHrP and MIP-1α increased the expression of several factors including signal transducer and activator of transcription 4, tumor necrosis factor α, receptor activator of nuclear factor κB ligand and death-associated protein kinase 1, and decreased the expression of inhibitor of DNA binding 1, interferon γ and CD40 ligand in Jurkat cells. In addition, MIP-1α also increased the expression of transcription factor AP-2α and PTHrP increased expression of the vitamin D3 receptor. These data demonstrate that PTHrP and MIP-1α exert a profound antitumor effect presumably by increasing the sensitivity to apoptotic signals through modulation of transcription and apoptosis factors in T-cells.
Collapse
Affiliation(s)
- Sherry T Shu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Forshell LP, Li Y, Forshell TZP, Rudelius M, Nilsson L, Keller U, Nilsson J. The direct Myc target Pim3 cooperates with other Pim kinases in supporting viability of Myc-induced B-cell lymphomas. Oncotarget 2011; 2:448-60. [PMID: 21646687 PMCID: PMC3248204 DOI: 10.18632/oncotarget.283] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Pim kinases are weak oncogenes. However, when co-expressed with a strong oncogene, such as c-Myc, Pim kinases potentiate the oncogenic effect resulting in an acceleration of tumorigenesis. In this study we show that the least studied Pim kinase, Pim-3, is encoded by a gene directly regulated by c-Myc via binding to one of the conserved E-boxes within the Pim3 gene. Accordingly, lymphomas arising in Myc-transgenic mice and Burkitt lymphoma cell lines exhibit elevated levels of Pim-3. Interestingly, inhibition of Pim kinases by a novel pan-Pim kinase inhibitor, Pimi, in Myc-induced lymphoma results in cell death that appears independent of caspases. The data indicate that Pim kinase inhibition could be a viable treatment strategy in certain human lymphomas that rely on Pim-3 kinase expression.
Collapse
|
46
|
Reiter M, Kirchner B, Müller H, Holzhauer C, Mann W, Pfaffl MW. Quantification noise in single cell experiments. Nucleic Acids Res 2011; 39:e124. [PMID: 21745823 PMCID: PMC3185419 DOI: 10.1093/nar/gkr505] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In quantitative single-cell studies, the critical part is the low amount of nucleic acids present and the resulting experimental variations. In addition biological data obtained from heterogeneous tissue are not reflecting the expression behaviour of every single-cell. These variations can be derived from natural biological variance or can be introduced externally. Both have negative effects on the quantification result. The aim of this study is to make quantitative single-cell studies more transparent and reliable in order to fulfil the MIQE guidelines at the single-cell level. The technical variability introduced by RT, pre-amplification, evaporation, biological material and qPCR itself was evaluated by using RNA or DNA standards. Secondly, the biological expression variances of GAPDH, TNFα, IL-1β, TLR4 were measured by mRNA profiling experiment in single lymphocytes. The used quantification setup was sensitive enough to detect single standard copies and transcripts out of one solitary cell. Most variability was introduced by RT, followed by evaporation, and pre-amplification. The qPCR analysis and the biological matrix introduced only minor variability. Both conducted studies impressively demonstrate the heterogeneity of expression patterns in individual cells and showed clearly today's limitation in quantitative single-cell expression analysis.
Collapse
Affiliation(s)
- M Reiter
- BioEPS GmbH, Lise-Meitner-Strasse 30, 85354 Freising, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Inhibitor of κB kinase (IKK) gamma (IKKγ), also known as nuclear factor κB (NF-κB) essential modulator (NEMO), is a component of the IKK complex that is essential for the activation of the NF-κB pathway. The NF-κB pathway plays a major role in the regulation of the expression of genes that are involved in immune response, inflammation, cell adhesion, cell survival and development. As part of the IKK complex, IKKγ plays a regulatory role by linking the complex to upstream signalling molecules. IKKγ contains two coiled-coil regions, a leucine zipper domain and a highly conserved zinc finger domain. Mutations affecting IKKγ have been associated with X-linked hypohidrotic ectodermal dysplasia with immune deficiency (HED-ID), with the majority of these mutations affecting the C-terminal region of the protein where the zinc finger is located. The zinc finger of IKKγ is needed for NF-κB activation in a cell- and stimulus-specific manner. The major mechanism by which the zinc finger plays this role appears to be the recognition of polyubiquitinated upstream signalling intermediates. This assertion reinforces the current notion that ubiquitination plays a major role in mediating protein–protein interactions in the NF-κB signalling pathway. Because the zinc finger domain of IKKγ is very likely involved in mediating interactions with ubiquitinated proteins, investigations that look for upstream activators or inhibitors of the IKK complex that bind to and interact with the zinc finger of IKKγ are required to gain a better insight into the exact roles of this domain and into the pathogenesis of HED-ID.
Collapse
Affiliation(s)
- Amde Selassie Shifera
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
48
|
Abstract
Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation.
Collapse
|
49
|
Tan BK, Chen J, Adya R, Randeva HS. Phosphoprotein enriched in diabetes gene product (Ped/pea-15) is increased in omental adipose tissue of women with the polycystic ovary syndrome: ex vivo regulation of ped/pea-15 by glucose, insulin and metformin. Diabetes Obes Metab 2011; 13:181-4. [PMID: 21199270 DOI: 10.1111/j.1463-1326.2010.01329.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polycystic ovary syndrome (PCOS), the commonest endocrine disorder in women, is characterized by an altered steroid milieu and is associated with insulin resistance and type 2 diabetes mellitus (T2DM). Phosphoprotein enriched in diabetes gene product (Ped/pea-15) regulates glucose metabolism and is increased in T2DM. Our novel data indicate that Ped/pea-15 mRNA expression and protein levels are significantly increased in omental adipose tissue (AT) from PCOS women compared to matched controls (p < 0.01); Ped/pea-15 levels in subcutaneous AT were not significantly different. Furthermore, Ped/pea-15 mRNA expression and protein levels were higher in omental compared to subcutaneous AT in PCOS subjects (p < 0.01); however, in control subjects, this was not significant. Glucose was predictive of omental AT Ped/pea-15 mRNA expression (p = 0.045). Importantly, glucose and insulin increased whereas metformin significantly decreased Ped/pea-15 levels in human omental AT explants. Our findings should serve to promote further research on Ped/pea-15 biology.
Collapse
|
50
|
Yang J, Li X, Hanidu A, Htut TM, Sellati R, Wang L, Jiang H, Li J. Proviral integration site 2 is required for interleukin-6 expression induced by interleukin-1, tumour necrosis factor-α and lipopolysaccharide. Immunology 2011; 131:174-82. [PMID: 20465571 DOI: 10.1111/j.1365-2567.2010.03286.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PIM (proviral integration site) kinases are a distinct class of serine/threonine-specific kinases consisting of PIM1, PIM2 and PIM3. PIM2 is known to function in apoptosis pathways. Expression of PIM2 is highly induced by pro-inflammatory stimuli but the role of PIM2 in the expression of pro-inflammatory cytokines is unclear. In this study, we showed that over-expression of PIM2 in HeLa cells as well as in human umbilical vein endothelial cells enhanced interleukin-1β (IL-1β) -induced and tumour necrosis factor-α-induced IL-6 expression, whereas over-expression of a kinase-dead PIM2 mutant had the opposite effect. Studies with small interfering RNA specific to PIM2 further confirmed that IL-6 expression in HeLa cells requires PIM2. To investigate the function of PIM2 further, we generated PIM2-deficient mice. It was found that IL-6 production was significantly decreased from PIM2-deficient spleen cells after stimulation with lipopolysaccharide. Taken together, we demonstrated an important function of PIM2 in controlling the expression of the pro-inflammatory cytokine IL-6. PIM2 inhibitors may be beneficial for IL-6-mediated diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Jianfei Yang
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT 06877, USA.
| | | | | | | | | | | | | | | |
Collapse
|