1
|
Krakowian D, Lesiak M, Auguściak-Duma A, Witecka J, Kusz D, Sieroń AL, Gawron K. Analysis of the TID-I and TID-L Splice Variants' Expression Profile under In Vitro Differentiation of Human Mesenchymal Bone Marrow Cells into Osteoblasts. Cells 2024; 13:1021. [PMID: 38920651 PMCID: PMC11201664 DOI: 10.3390/cells13121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Bone formation is a complex process regulated by a variety of pathways that are not yet fully understood. One of the proteins involved in multiple osteogenic pathways is TID (DNAJA3). The aim of this work was to study the association of TID with osteogenesis. Therefore, the expression profiles of the TID splice variants (TID-L, TID-I) and their protein products were analyzed during the proliferation and differentiation of bone marrow mesenchymal stromal cells (B-MSCs) into osteoblasts. As the reference, the hFOB1.19 cell line was used. The phenotype of B-MSCs was confirmed by the presence of CD73, CD90, and CD105 surface antigens on ~97% of cells. The osteoblast phenotype was confirmed by increased alkaline phosphatase activity, calcium deposition, and expression of ALPL and SPP1. The effect of silencing the TID gene on the expression of ALPL and SPP1 was also investigated. The TID proteins and the expression of TID splice variants were detected. After differentiation, the expression of TID-L and TID-I increased 5-fold and 3.7-fold, respectively, while their silencing resulted in increased expression of SPP1. Three days after transfection, the expression of SPP1 increased 7.6-fold and 5.6-fold in B-MSCs and differentiating cells, respectively. Our preliminary study demonstrated that the expression of TID-L and TID-I changes under differentiation of B-MSCs into osteoblasts and may influence the expression of SPP1. However, for better understanding the functional association of these results with the relevant osteogenic pathways, further studies are needed.
Collapse
Affiliation(s)
- Daniel Krakowian
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
- Toxicology Research Group, Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, 43-200 Pszczyna, Poland
| | - Marta Lesiak
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Auguściak-Duma
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Witecka
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| | - Damian Kusz
- Department of Orthopaedics and Traumatology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksander L. Sieroń
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
2
|
Sayson SL, Fan JN, Ku CL, Lo JF, Chou SH. DNAJA3 regulates B cell development and immune function. Biomed J 2024; 47:100628. [PMID: 37487907 PMCID: PMC10966173 DOI: 10.1016/j.bj.2023.100628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND DnaJ homolog subfamily A member 3 (DNAJA3), also known as the tumorous imaginal disc (Tid1), is shown to be crucial in T cell development. DNAJA3 functions as a tumor suppressor implicated in lymphocyte development and survival. However, the role of DNAJA3 in B cell development and immune function remains unknown. In this study, we utilized a mouse model of B cell-specific DNAJA3 knockout (CD19-Cre/+; DNAJA3flx/flx) to investigate the physiological function of DNAJA3 in B cell development and immune function. METHODS We characterized B cell populations in various developmental stages and examined mitochondrial content and function between control and DNAJA3 KO using flow cytometry analysis. DNAJA3 and OXPHOS protein complexes in sorted B cells between mice groups were compared using immunoblot techniques. The activity of B cell blastogenesis in splenocytes was measured by performing CFSE and MTT assays. Furthermore, immunoglobulin production was detected using the ELISA method. RESULTS DNAJA3 deficiency decreases from pro B cells to immature B cells. The overall B220+ population in the bone marrow and secondary immune organs also decreased. B cell subpopulations B1 (B1b) and B2 significantly decrease. The B cell blastogenesis activity and immunoglobulin production decreased in DNAJA3 KO mice. Mechanistically, DNAJA3 deficiency significantly increases dysfunctional mitochondria activity and decreases mitochondrial mass, membrane potential, and mitochondria respiratory complex proteins. These factors could have influenced B cell differentiation during development, differentiation to antibody-secreting cells, and immune activation. CONCLUSION Overall, our study provides supportive evidence for the role of DNAJA3 in B cell development and function.
Collapse
Affiliation(s)
- Stephanie L Sayson
- Department of Life Science, Fu-Jen Catholic University, New Taipei, Taiwan; Institute of Applied Science & Engineering, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Jia-Ning Fan
- Department of Life Science, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Chien-Liang Ku
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jeng-Fan Lo
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, New Taipei, Taiwan; Institute of Applied Science & Engineering, Fu-Jen Catholic University, New Taipei, Taiwan.
| |
Collapse
|
3
|
DNAJA3 Interacts with PEDV S1 Protein and Inhibits Virus Replication by Affecting Virus Adsorption to Host Cells. Viruses 2022; 14:v14112413. [PMID: 36366511 PMCID: PMC9696540 DOI: 10.3390/v14112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes huge economic losses to the pig industry worldwide. DNAJA3, a member of the Hsp40 family proteins, is known to play an important role in the replication of several viruses. However, it remains unknown if it interacts with PEDV. We found that DNAJA3 interacted with PEDV S1, initially with yeast two-hybrid screening and later with Co-IP, GST pull-down, and confocal imaging. Further experiments showed the functional relationship between DNAJA3 and PEDV in the infected IPEC-J2 cells. DNAJA3 overexpression significantly inhibited PEDV replication while its knockdown had the opposite effect, suggesting that it is a negative regulator of PEDV replication. In addition, DNAJA3 expression could be downregulated by PEDV infection possibly as the viral strategy to evade the suppressive role of DNAJA3. By gene silencing and overexpression, we were able to show that DNAJA3 inhibited PEDV adsorption to IPEC-J2 cells but did not affect virus invasion. In conclusion, our study provides clear evidence that DNAJA3 mediates PEDV adsorption to host cells and plays an antiviral role in IPEC-J2 cells.
Collapse
|
4
|
Banerjee S, Chaturvedi R, Singh A, Kushwaha HR. Putting human Tid-1 in context: an insight into its role in the cell and in different disease states. Cell Commun Signal 2022; 20:109. [PMID: 35854300 PMCID: PMC9297570 DOI: 10.1186/s12964-022-00912-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumorous imaginal disc 1 (hTid-1) or DnaJ homolog subfamily A member 3 (DNAJA3), is a part of the heat shock protein (Hsp) 40 family and is predominantly found to reside in the mitochondria. hTid-1 has two mRNA splicing variants, hTid-1S and hTid-1L of 40 and 43 kDa respectively in the cytosol which are later processed upon import into the mitochondrial matrix. hTid-1 protein is a part of the DnaJ family of proteins which are co-chaperones and specificity factors for DnaK proteins of the Hsp70 family, and bind to Hsp70, thereby activating its ATPase activity. hTid-1 has been found to be critical for a lot of important cellular processes such as proliferation, differentiation, growth, survival, senescence, apoptosis, and movement and plays key roles in the embryo and skeletal muscle development.
Main body hTid-1 participates in several protein–protein interactions in the cell, which mediate different processes such as proteasomal degradation and autophagy of the interacting protein partners. hTid-1 also functions as a co-chaperone and participates in interactions with several different viral oncoproteins. hTid-1 also plays a critical role in different human diseases such as different cancers, cardiomyopathies, and neurodegenerative disorders. Conclusion This review article is the first of its kind presenting consolidated information on the research findings of hTid-1 to date. This review suggests that the current knowledge of the role of hTid-1 in disorders like cancers, cardiomyopathies, and neurodegenerative diseases can be correlated with the findings of its protein–protein interactions that can provide a deep insight into the pathways by which hTid-1 affects disease pathogenesis and it can be stated that hTid-1 may serve as an important therapeutic target for these disorders. Graphical Abstract ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00912-5.
Collapse
Affiliation(s)
- Sagarika Banerjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India. .,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Li R, Sun N, Chen X, Li X, Zhao J, Cheng W, Hua H, Fukatsu M, Mori H, Takahashi H, Ohkawara H, Fukami M, Okamoto M, Hamazaki Y, Zheng K, Yang J, Ikezoe T. JAK2V617F Mutation Promoted IL-6 Production and Glycolysis via Mediating PKM1 Stabilization in Macrophages. Front Immunol 2021; 11:589048. [PMID: 33628203 PMCID: PMC7897702 DOI: 10.3389/fimmu.2020.589048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
A substitution mutation of valine to phenylalanine at codon encoding position 617 of the Janus kinase 2 (JAK2) gene (JAK2V617F) has been detected in myeloid cells of some individuals with higher levels of proinflammatory cytokine production such as interleukin (IL)-6. However, the mechanisms by which JAK2V617F mutation mediating those cytokines remain unclear. We, therefore, established JAK2V617F-expressing murine macrophages (JAK2V617F macrophages) and found that the levels of p-STAT3 were markedly elevated in JAK2V617F macrophages in association with an increase in IL-6 production. However, inhibition of STAT3 by C188-9 significantly decreased the production of IL-6. Furthermore, the JAK2V617F mutation endowed macrophages with an elevated glycolytic phenotype in parallel with aberrant expression of PKM1. Interestingly, silencing of PKM1 inactivated STAT3 in parallel with reduced IL-6 production. In contrast, ectopic expression of PKM1 elevated IL-6 production via STAT3 activation. Importantly, the JAK2V617F mutation contributed to PKM1 protein stabilization via blockade of lysosomal-dependent degradation via chaperone-mediated autophagy (CMA), indicating that the JAK2V617F mutation could protect PKM1 from CMA-mediated degradation, leading to activation of STAT3 and promoting IL-6 production.
Collapse
Affiliation(s)
- Rongqing Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Na Sun
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Xin Chen
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xueqin Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jie Zhao
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Wanpeng Cheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hui Hua
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Masahiko Fukatsu
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hirotaka Mori
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Ohkawara
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Miwa Fukami
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Masatoshi Okamoto
- Department of Hematology, YUASA Foundation Jusendo General Hospital, Koriyama, Japan
| | - Yoichi Hamazaki
- Department of Hematology, Iwaki City Medical Center, Iwaki, Japan
| | - Kuiyang Zheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Takayuki Ikezoe
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
6
|
Khan MR, Khan MS, Ahmed A, Malik A, Qamar W. Optimization of expression and purification of mitochondrial HSP 40 (Tid1-L) chaperone: Role of mortalin and tid1 in the reactivation and amyloid inhibition of proteins. Saudi J Biol Sci 2020; 27:3099-3105. [PMID: 33100870 PMCID: PMC7569118 DOI: 10.1016/j.sjbs.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022] Open
Abstract
Stimulation of complex chaperone activity may be a viable means of therapy for neurodegenerative diseases. These chaperons execute reactivation of thermally and chemically aggregated protein substrates by cooperating with their partner co-chaperons. We optimized the expression and purification conditions of Tid1-L chaperone. Expression of Tid1-L in E. coli resulted in the formation of inclusion bodies which was further purified to soluble active form using 8 M urea and Ni-NTA column. Also, we investigated the events of the reactivation and disaggregation using aggregated G6PDH, luciferase and insulin as substrates. Incubation of aggregated/denatured enzymes with mortalin but not with Tid1 and/or Mge1 resulted in the initiation of the disaggregation reaction albeit very insignificantly. Under the same conditions coincubating the samples with chaperon and its assisted partners Tid1-L and nucleotide exchange factor Mge1 led to (40%) increase in enzyme activity of G6PDH. Similarly, luciferase activity was synergistically enhanced in the presence of mortlain/Tid1-L/Mge1 chaperones machinery. Chaperone-dependent disaggregation of thermally aggregated insulin showed that addition of Hsp70 and Hsp40 chaperones resulted in fast-track of renaissance reaction and inhibition of amyloid. The present study results conclude the quality of cell-control involves interaction of chaperon Hsp70 and its co-chaperones leading to complex formation with chemically/thermally aggregated substrate eventually causing its reactivation and disaggregation.
Collapse
Affiliation(s)
- Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Anwar Ahmed
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wajhul Qamar
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Li Z, Liu Z, Wang YN, Kang YJ, Wang JF, Shi HN, Huang JQ, Jiang L. Effects of heat stress on serum Cortisol, alkaline phosphatase activity and heat shock protein 40 and 90β mRNA expression in rainbow trout Oncorhynchus mykiss. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Niu G, Zhang H, Liu D, Chen L, Belani C, Wang HG, Cheng H. Tid1, the Mammalian Homologue of Drosophila Tumor Suppressor Tid56, Mediates Macroautophagy by Interacting with Beclin1-containing Autophagy Protein Complex. J Biol Chem 2015; 290:18102-18110. [PMID: 26055714 DOI: 10.1074/jbc.m115.665950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental functions of molecular chaperone proteins is to selectively conjugate cellular proteins, targeting them directly to lysosome. Some of chaperones, such as the stress-induced Hsp70, also play important roles in autophagosome-forming macroautophagy under various stress conditions. However, the role of their co-chaperones in autophagy regulation has not been well defined. We here show that Tid1, a DnaJ co-chaperone for Hsp70 and the mammalian homologue of the Drosophila tumor suppressor Tid56, is a key mediator of macroautophagy pathway. Ectopic expression of Tid1 induces autophagy by forming LC3+ autophagosome foci, whereas silencing Tid1 leads to drastic impairment of autophagy as induced by nutrient deprivation or rapamycin. In contrast, Hsp70 is dispensable for a role in nutrient deprivation-induced autophagy. The murine Tid1 can be replaced with human Tid1 in murine fibroblast cells for induction of autophagy. We further show that Tid1 increases autophagy flux by interacting with the Beclin1-PI3 kinase class III protein complex in response to autophagy inducing signal and that Tid1 is an essential mediator that connects IκB kinases to the Beclin1-containing autophagy protein complex. Together, these results reveal a crucial role of Tid1 as an evolutionarily conserved and essential mediator of canonical macroautophagy.
Collapse
Affiliation(s)
- Ge Niu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Huan Zhang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dan Liu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Li Chen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Chandra Belani
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hong-Gang Wang
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hua Cheng
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
9
|
Essential role of TID1 in maintaining mitochondrial membrane potential homogeneity and mitochondrial DNA integrity. Mol Cell Biol 2014; 34:1427-37. [PMID: 24492964 DOI: 10.1128/mcb.01021-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tumorous imaginal disc 1 (TID1) protein localizes mainly to the mitochondrial compartment, wherein its function remains largely unknown. Here we report that TID1 regulates the steady-state homogeneity of the mitochondrial membrane potential (Δψ) and maintains the integrity of mitochondrial DNA (mtDNA). Silencing of TID1 with RNA interference leads to changes in the distribution of Δψ along the mitochondrial network, characterized by an increase in Δψ in focal regions. This effect can be rescued by ectopic expression of a TID1 construct with an intact J domain. Chronic treatment with a low dose of oligomycin, an inhibitor of F1Fo ATP synthase, decreases the cellular ATP content and phenocopies TID1 loss of function, indicating a connection between the disruption of mitochondrial bioenergetics and hyperpolarization. Prolonged silencing of TID1 or low-dose oligomycin treatment leads to the loss of mtDNA and the consequent inhibition of oxygen consumption. Biochemical and colocalization data indicate that complex I aggregation underlies the focal accumulation of Δψ in TID1-silenced cells. Given that TID1 is proposed to function as a cochaperone, these data show that TID1 prevents complex I aggregation and support the existence of a TID1-mediated stress response to ATP synthase inhibition.
Collapse
|
10
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
11
|
GAPDH in anesthesia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 985:269-91. [PMID: 22851453 DOI: 10.1007/978-94-007-4716-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Thus far, two independent laboratories have shown that inhaled anesthetics directly affect GAPDH structure and function. Additionally, it has been demonstrated that GAPDH normally regulates the function of GABA (type A) receptor. In light of these literature observations and some less direct findings, there is a discussion on the putative role of GAPDH in anesthesia. The binding site of inhaled anesthetics is described from literature reports on model proteins, such as human serum albumin and apoferritin. In addition to the expected hydrophobic residues that occupy the binding cavity, there are hydrophilic residues at or in very close proximity to the site of anesthetic binding. A putative binding site in the bacterial analog of the human GABA (type A) receptor is also described. Additionally, GAPDH may also play a role in anesthetic preconditioning, a phenomenon that confers protection of cells and tissues to future challenges by noxious stimuli. The central thesis regarding this paradigm is that inhaled anesthetics evoke an intra-molecular protein dehydration that is recognized by the cell, eliciting a very specific burst of chaperone gene expression. The chaperones that are implicated are associated with conferring protection against dehydration-induced protein aggregation.
Collapse
|
12
|
Choi JH, Choi DK, Sohn KC, Kwak SS, Suk J, Lim JS, Shin I, Kim SW, Lee JH, Joe CO. Absence of a human DnaJ protein hTid-1S correlates with aberrant actin cytoskeleton organization in lesional psoriatic skin. J Biol Chem 2012; 287:25954-63. [PMID: 22692211 DOI: 10.1074/jbc.m111.313809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biochemical mechanism by which the human tumorous imaginal disc1(S) (hTid-1(S)) interferes with actin cytoskeleton organization in keratinocytes of human skin epidermis was investigated. We found that hTid-1, specifically hTid-1(S), interacts with MK5, a p38-regulated/activated protein kinase, and inhibits the protein kinase activity of MK5 that phosphorylates heat shock protein HSP27 in cultured HeLa cells. Thus, hTid-1(S) expression inhibits the phosphorylation of HSP27 known to play important roles in F-actin polymerization and actin cytoskeleton organization. The interplay between MK5/HSP27 signaling and hTid-1(S) expression was supported by the inhibition of HSP27 phosphorylation and MK5 activity in HeLa cells in response to hypoxia during which hTid-1(S) expression was down-regulated. We also found that overexpression of hTid-1(S) results in the inhibition of HSP27 phosphorylation, F-actin polymerization, and actin cytoskeleton organization in transduced HaCaT keratinocytes. This study further proposes that the loss of hTid-1(S) expression in the basal layer of skin epidermis correlates with the enhanced HSP27 phosphorylation, keratinocyte hyperproliferation, and excess actin cytoskeleton organization in lesional psoriatic skin.
Collapse
Affiliation(s)
- Ji Hye Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zouein FA, Duhé RJ, Booz GW. JAKs go nuclear: emerging role of nuclear JAK1 and JAK2 in gene expression and cell growth. Growth Factors 2011; 29:245-52. [PMID: 21892841 PMCID: PMC3595105 DOI: 10.3109/08977194.2011.614949] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The four Janus kinases (JAKs) comprise a family of intracellular, nonreceptor tyrosine kinases that first gained attention as signaling mediators of the type I and type II cytokine receptors. Subsequently, the JAKs were found to be involved in signaling downstream of the insulin receptor, a number of receptor tyrosine kinases, and certain G-protein coupled receptors. Although a number of cytoplasmic targets for the JAKs have been identified, their predominant action was found to be the phosphorylation and activation of the signal transducers and activators of transcription (STAT) factors. Through the STATs, the JAKs activate gene expression linked to cellular stress, proliferation, and differentiation. The JAKs are especially important in hematopoiesis, inflammation, and immunity, and aberrant JAK activity has been implicated in a number of disorders including rheumatoid arthritis, psoriasis, polycythemia vera, and myeloproliferative diseases. Although once thought to reside strictly in the cytoplasm, recent evidence shows that JAK1 and JAK2 are present in the nucleus of certain cells often under conditions associated with high rates of cell growth. Nuclear JAKs have now been shown to affect gene expression by activating other transcription factors besides the STATs and exerting epigenetic actions, for example, by phosphorylating histone H3. The latter action derepresses global gene expression and has been implicated in leukemogenesis. Nuclear JAKs may have a role as well in stem cell biology. Here we describe recent developments in understanding the noncanonical nuclear actions of JAK1 and JAK2.
Collapse
Affiliation(s)
- Fouad A. Zouein
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- The Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Roy J. Duhé
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- University of Mississippi Cancer Institute, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- The Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
14
|
Proft J, Faraji J, Robbins JC, Zucchi FCR, Zhao X, Metz GA, Braun JEA. Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson's disease. PLoS One 2011; 6:e26045. [PMID: 22016808 PMCID: PMC3189242 DOI: 10.1371/journal.pone.0026045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/16/2011] [Indexed: 01/06/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes.We assessed sensory and motor function of control and PD rats and then evaluated the brain region-specific expression levels of select J proteins by Western analysis. Surprisingly, we observed a widespread 26 kDa breakdown product of the J protein, TID1, (tumorous imaginal discs, mtHsp40 or DnaJ3) in a 6-hydroxydopamine (6-OHDA) rat model of PD in which food handling, gait symmetry and sensory performance were impaired. Greater behavioral deficits were associated with lower TID1 expression. Furthermore, direct application of either 6-OHDA or MPP+ (1-methyl-4-phenylpyridinum) to CAD (CNS-derived catecholinaminergic neuronal cell line) cell cultures, reduced TID1 expression levels.Our results suggest that changes in cellular TID1 are a factor in the pathogenesis of PD by impeding functional and structural compensation and exaggerating neurodegenerative processes. In contrast, no changes were observed in CSPα, Hsp40, Hsp70, Hsc70 and PrP(C) levels and no activation of caspase3 was observed. This study links TID1 to PD and provides a new target for therapeutics that halts the PD progression.
Collapse
Affiliation(s)
- Juliane Proft
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
- Neuroscience Research Centre, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
| | - Jerrah C. Robbins
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Fabiola C. R. Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Xiaoxi Zhao
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Gerlinde A. Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Janice E. A. Braun
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| |
Collapse
|
15
|
Lee E, Kim K, Park T. Genome-wide search for genetic modulators in gene regulatory pathways: weighted window-based peak identification algorithm. Genomics 2011; 97:386-93. [PMID: 21419843 DOI: 10.1016/j.ygeno.2011.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/01/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
Genome-wide gene expression and genotype data have been integratively analyzed in expression quantitative trait loci (eQTL) studies to elucidate the genetics of gene transcription. Most eQTL analyses have focused on identifying polymorphic genetic variants that influence the expression levels of individual genes, and such analyses may have limitations in explaining gene regulatory pathways that are likely to involve multiple genes and their genetic and/or non-genetic modulators. We have developed a novel two-step method for identifying potential genetic modulators of transcription processes for multiple genes in a biological pathway. We proposed a new weighted window-based peak identification algorithm to improve the detection of genetic modulators for individual genes and employed a Poisson-based test to search for master genetic modulators of multiple genes. Here, we have illustrated this two-step approach by analyzing the gene expression data in the Centre d'Etude du Polymorphisme Humain (CEPH) lymphoblast cells and single nucleotide polymorphism chip data.
Collapse
Affiliation(s)
- Eunjee Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Republic of Korea.
| | | | | |
Collapse
|
16
|
Abstract
The c-Met receptor tyrosine kinase (MetR) is frequently overexpressed and constitutively phosphorylated in a number of human malignancies. Activation of the receptor by its ligand, hepatocyte growth factor (HGF), leads to increased cell proliferation, motility, survival and disruption of adherens junctions. In this study, we show that hTid-1, a DNAJ/Hsp40 chaperone, represents a novel modulator of the MetR signaling pathway. hTid-1 is a co-chaperone of the Hsp70 family of proteins, and has been shown to regulate a number of cellular signaling proteins including several involved in tumorigenic and apoptotic pathways. In this study we demonstrate that hTid-1 binds to unphosphorylated MetR and becomes dissociated from the receptor upon HGF stimulation. Overexpression of the short form of hTid-1 (hTid-1(S)) in 786-0 renal clear cell carcinomas (RCCs) enhances MetR kinase activity leading to an increase in HGF-mediated cell migration with no discernible effect on cell proliferation. By contrast, knockdown of hTid-1 markedly impairs both the onset and amplitude of MetR phosphorylation in response to HGF without altering receptor protein levels. hTid-1-depleted cells display defective migratory properties, coincident with inhibition of ERK/MAP kinase and STAT3 pathways. Taken together, our findings denote hTid-1(S) as an essential regulatory component of MetR signaling. We propose that the binding of hTid-1(S) to MetR may stabilize the receptor in a ligand-competent state and this stabilizing function may influence conformational changes that take place during the catalytic cycle that promote kinase activation. Given the prevalence of HGF/MetR pathway activation in human cancers, targeted inhibition of hTid-1 may be a useful therapeutic in the management of MetR-dependent malignancies.
Collapse
|
17
|
Yang IV, Alper S, Lackford B, Rutledge H, Warg LA, Burch LH, Schwartz DA. Novel regulators of the systemic response to lipopolysaccharide. Am J Respir Cell Mol Biol 2010; 45:393-402. [PMID: 21131441 DOI: 10.1165/rcmb.2010-0342oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our understanding of the role that host genetic factors play in the initiation and severity of infections caused by gram-negative bacteria is incomplete. To identify novel regulators of the host response to lipopolysaccharide (LPS), 11 inbred murine strains were challenged with LPS systemically. In addition to two strains lacking functional TLR4 (C3H/HeJ and C57BL/6J(TLR4-/-)), three murine strains with functional TLR4 (C57BL/6J, 129/SvImJ, and NZW/LacJ) were found to be relatively resistant to systemic LPS challenge; the other six strains were classified as sensitive. RNA from lung, liver, and spleen tissue was profiled on oligonucleotide microarrays to determine if unique transcripts differentiate susceptible and resistant strains. Gene expression analysis identified the Hedgehog signaling pathway and a number of transcription factors (TFs) involved in the response to LPS. RNA interference-mediated inhibition of six TFs (C/EBP, Cdx-2, E2F1, Hoxa4, Nhlh1, and Tead2) was found to diminish IL-6 and TNF-α production by murine macrophages. Mouse lines with targeted mutations were used to verify the involvement of two novel genes in innate immunity. Compared with wild-type control mice, mice deficient in the E2F1 transcription factor were found to have a reduced inflammatory response to systemic LPS, and mice heterozygote for Ptch, a gene involved in Hedgehog signaling, were found to be more responsive to systemic LPS. Our analysis of gene expression data identified novel pathways and transcription factors that regulate the host response to systemic LPS. Our results provide potential sepsis biomarkers and therapeutic targets that should be further investigated in human populations.
Collapse
Affiliation(s)
- Ivana V Yang
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Gomez AM, Van Den Broeck J, Vrolix K, Janssen SP, Lemmens MAM, Van Der Esch E, Duimel H, Frederik P, Molenaar PC, Martínez-Martínez P, De Baets MH, Losen M. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity 2010; 43:353-70. [PMID: 20380584 DOI: 10.3109/08916930903555943] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder caused by autoantibodies that are either directed to the muscle nicotinic acetylcholine receptor (AChR) or to the muscle-specific tyrosine kinase (MuSK). These autoantibodies define two distinct subforms of the disease-AChR-MG and MuSK-MG. Both AChR and MuSK are expressed on the postsynaptic membrane of the neuromuscular junction (NMJ), which is a highly specialized region of the muscle dedicated to receive and process signals from the motor nerve. Autoantibody binding to proteins of the postsynaptic membrane leads to impaired neuromuscular transmission and muscle weakness. Pro-inflammatory antibodies of the human IgG1 and IgG3 subclass modulate the AChR, cause complement activation, and attract lymphocytes; together acting to decrease levels of the AChR and AChR-associated proteins and to reduce postsynaptic folding. In patients with anti-MuSK antibodies, there is no evidence of loss of junctional folds and no apparent loss of AChR density. Anti-MuSK antibodies are predominantly of the IgG4 isotype, which functionally differs from other IgG subclasses in its anti-inflammatory activity. Moreover, IgG4 undergoes a posttranslational modification termed Fab arm exchange that prevents cross-linking of antigens. These findings suggest that MuSK-MG may be different in etiological and pathological mechanisms from AChR-MG. The effector functions of IgG subclasses on synapse structure and function are discussed in this review.
Collapse
Affiliation(s)
- Alejandro M Gomez
- Neuroimmunology Group, Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dhennin-Duthille I, Nyga R, Yahiaoui S, Gouilleux-Gruart V, Régnier A, Lassoued K, Gouilleux F. The tumor suppressor hTid1 inhibits STAT5b activity via functional interaction. J Biol Chem 2010; 286:5034-42. [PMID: 21106534 DOI: 10.1074/jbc.m110.155903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT5a and -5b (signal transducers and activators of transcription 5a and 5b) proteins play an essential role in hematopoietic cell proliferation and survival and are frequently constitutively active in hematologic neoplasms and solid tumors. Because STAT5a and STAT5b differ mainly in the carboxyl-terminal transactivation domain, we sought to identify new proteins that bind specifically to this domain by using a bacterial two-hybrid screening. We isolated hTid1, a human DnaJ protein that acts as a tumor suppressor in various solid tumors. hTid1 interacts specifically with STAT5b but not with STAT5a in hematopoietic cell lines. This interaction involves the cysteine-rich region of the hTid1 DnaJ domain. We also demonstrated that hTid1 negatively regulates the expression and transcriptional activity of STAT5b and suppresses the growth of hematopoietic cells transformed by an oncogenic form of STAT5b. Our findings define hTid1 as a novel partner and negative regulator of STAT5b.
Collapse
Affiliation(s)
- Isabelle Dhennin-Duthille
- INSERM, U925, Université de Picardie Jules Verne, UFR de Médecine, 3 Rue des Louvels, 80036 Amiens, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Kurzik-Dumke U, Hörner M, Nicotra MR, Koslowski M, Natali PG. In vivo evidence of htid suppressive activity on ErbB-2 in breast cancers over expressing the receptor. J Transl Med 2010; 8:58. [PMID: 20565727 PMCID: PMC2909173 DOI: 10.1186/1479-5876-8-58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/17/2010] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Htid encoded proteins are physiological partners of a wide spectrum of molecules relevant to neoplastic transformation. One of the molecular ligands of the cytosolic hTid-L and hTid-I forms is the ErbB-2 receptor variably over expressed in diverse solid tumors. Altered ErbB-2 signalling is associated with an unfavourable prognosis in about 30% of human breast malignancies. METHODS We evaluated htid and HER-2 expression by quantitative real time PCR in tumors of different TNMG status and by immunohistochemistry in a cohort of breast tumors of the Luminal A, B, HER-2 and triple negative subtype. RESULTS The RT-PCR analysis revealed that aberrant expression of all three htid forms correlates with malignant transformation. Furthermore, elevated hTid-L expression can be associated with less aggressive tumors. The immunohistochemical testing revealed that tumors of the luminal A subtype are characterized by a high level of htid (81%). In contrast htid expression is significantly lower in tumors of the Luminal B (20%) and HER-2 (18%) subtype over expressing the receptor and in the triple negative (40%) more aggressive malignancies. A statistically significant inverse correlation between htid and ErbB-2 expression was found in human breast (p < 0,0001) and non-mammary tumors (p < 0,007), and in transgenic mice carrying the rat HER-2/neu oncogene. CONCLUSIONS Our findings provide in vivo evidence that htid is a tissue independent and evolutionarily conserved suppressor of ErbB-2.
Collapse
Affiliation(s)
- Ursula Kurzik-Dumke
- Institute of Medical Microbiology and Hygiene, Comparative Tumor Biology Group, University Medical Center, Johannes Gutenberg University, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
| | - Manuela Hörner
- Institute of Medical Microbiology and Hygiene, Comparative Tumor Biology Group, University Medical Center, Johannes Gutenberg University, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
| | | | - Michael Koslowski
- Experimental and Translational Oncology III, University Medical Center, Johannes Gutenberg University, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
| | - Pier G Natali
- Immunology Laboratory, "Regina Elena" National Cancer Institute, Via delle Messi d'Oro 156, 0158 Rome and CIMBO Laboratories, "G.d'Annunzio" University, Chieti, Italy
| |
Collapse
|
21
|
Abstract
Hedgehog (HH) signalling is involved in the development of numerous embryonic tissues. In humans,germline mutations in hedgehog pathway components cause congenital malformations and somatic mutations are associated with cancers. The basic framework of the HH pathway was elucidated in the fruitfly, Drosophila melanogaster, and this pathway is largely conserved in vertebrates, although some important differences have been noted. The current paradigm of the "canonical" pathway views HH signalling as a series of repressive interactions which culminates in GLI-mediated transcriptional regulation of a variety of cellular processes. Definitions of "non-canonical" signalling stem from examples where the response to HH morphogen deviates from this paradigm and, according to current reports, three general scenarios of noncanonical HH signalling can be defined: (1) Signalling that involves HH pathway components but which is independent of GLI-mediated transcription; (2) Direct interaction of HH signalling components with components of other molecular pathways; and (3) "Non-contiguous" or "atypical" interaction of core HH pathway components with one another. Currently, the evidence supporting non-canonical HH signalling is not conclusive. However, Sonic hedgehog (SHH) has been shown to regulate cell migration and axon guidance in several contexts, and some of these processes are independent of downstream components of the HH pathway, and presumably the transcriptional response to morphogen. Furthermore, biochemical studies have shown that the HH receptor, PTCH1, can directly interact both with Cyclin B1 and caspases, to inhibit cell proliferation and to promote apoptosis, respectively, and that these functions are inhibited in the presence of morphogen. Genetic analysis of orthologues of the HH pathway in nematode worms further supports the notion that PTCH1-related molecules can function independently of other components of the canonical HH pathway, and the phenotypes of mice with point mutations in the Ptch1 gene offer clues as to the processes that non-canonical HH signalling might regulate. While none of these evidences are conclusive,collectively they point to the existence of added complexity in the HH pathway in the form of non-canonical pathways. A major difficulty in studying this problem is that canonical and non-canonical pathways are likely to act in parallel, and so in many situations it will not be possible to implicate non-canonical responses in certain cellular processes simply by excluding a role for the canonical pathway-directed analyses of non-canonical HH signalling are therefore necessary. The aim of this review is to present the cumulative evidence supporting non-canonical HH signalling, with the hope of promoting further enquiry into this area.
Collapse
|
22
|
Mitra A, Shevde LA, Samant RS. Multi-faceted role of HSP40 in cancer. Clin Exp Metastasis 2009; 26:559-67. [PMID: 19340594 DOI: 10.1007/s10585-009-9255-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/12/2009] [Indexed: 12/25/2022]
Abstract
HSP40 (DNAJ) is an understudied family of co-chaperones. The human genome codes for over 41 members of HSP40 family that reside at distinct intracellular locations. Despite their large numbers, little is known about their physiologic roles. Recent research has revealed involvement of some of the DNAJ family members in various types of cancers. In this article we summarize the information about the involvement of human DNAJ family members in various aspects of cancer biology. Furthermore we discuss the potential role of the J domain of DNAJ proteins in cancer biology.
Collapse
Affiliation(s)
- Aparna Mitra
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | | |
Collapse
|
23
|
Linnoila J, Wang Y, Yao Y, Wang ZZ. A mammalian homolog of Drosophila tumorous imaginal discs, Tid1, mediates agrin signaling at the neuromuscular junction. Neuron 2009; 60:625-41. [PMID: 19038220 DOI: 10.1016/j.neuron.2008.09.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 05/14/2008] [Accepted: 09/12/2008] [Indexed: 11/29/2022]
Abstract
Motoneuron-derived agrin clusters nicotinic acetylcholine receptors (AChRs) in mammalian muscle cells. We used two-hybrid screens to identify a protein, tumorous imaginal discs (Tid1), that binds to the cytoplasmic domain of muscle-specific kinase (MuSK), a major component of the agrin receptor. Like MuSK, Tid1 colocalizes with AChRs at developing, adult, and denervated motor endplates. Knockdown of Tid1 by short hairpin RNA (shRNA) in skeletal muscle fibers dispersed synaptic AChR clusters and impaired neuromuscular transmission. In cultured myotubes, Tid1 knockdown inhibited AChR clustering, as well as agrin-induced activation of the Rac and Rho small GTPases and tyrosine phosphorylation of the AChR, without affecting MuSK activation. Tid1 knockdown also decreased Dok-7-induced clustering of AChRs. Overexpression of the N-terminal half of Tid1 induced agrin- and MuSK-independent phosphorylation and clustering of AChRs. These results demonstrate that Tid1 is an essential component of the agrin signaling pathway, crucial for synaptic development.
Collapse
Affiliation(s)
- Jenny Linnoila
- Molecular Pharmacology Graduate Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
24
|
Lai HS, Lin WH, Hsu WM, Chen CN, Chang KJ, Lee PH. Variations in Interferon Gamma Receptor Gene Expression during Liver Regeneration after Partial Hepatectomy in Rats. Am Surg 2009. [DOI: 10.1177/000313480907500111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-mediated immunity, which includes interferon gamma (IFN-γ) expression, is activated during the process of liver regeneration; however, the genetic pathway of this activation is still unclear. The present study evaluated variations in the interferon gamma receptor (IFN-γR) gene and its mRNA expression during liver regeneration after partial hepatectomy (PH). Male Wistar rats weighing approximately 200 g were subjected to PH (70 or 40%). IFN-γR gene expression in the remnant liver was measured by cDNA microarray, and mRNA expression was verified by real-time quantitative reverse transcription-polymerase chain reaction (Q-PCR) preoperatively and at 2, 4, 6,12, 24, and 72 hours and 7 days postoperatively. The ratio of remnant liver weight to body weight increased markedly after 70 per cent PH and more gradually after 40 per cent PH. It reached near 90 per cent of the preoperative level at 72 hours after PH in both groups. The scanned spots of the genomic survey on the cDNA microarray chips were uneven and increased irregularly in number and density after PH. IFN-γR gene expression increased markedly in a single peak pattern, up to more than double the preoperative level, at 6 hours after 70 per cent PH. The curve in the 40 per cent PH group was flat and peaked at only 1.6 times the preoperative level. The variations in IFN-γR-related mRNA expression were verified by Q-PCR. Elevations in IFN-γR gene and mRNA expression were shown during the early stage of liver regeneration after PH. The genetic pathway of IFN-γ/IFN-γR expression is activated during liver regeneration.
Collapse
Affiliation(s)
- Hong-Shiee Lai
- From the Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Hsi Lin
- From the Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Ming Hsu
- From the Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiung-Nien Chen
- From the Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - King-Jen Chang
- From the Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Huang Lee
- From the Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
25
|
Kurzik-Dumke U, Czaja J. Htid-1, the human homolog of the Drosophila melanogaster l(2)tid tumor suppressor, defines a novel physiological role of APC. Cell Signal 2007; 19:1973-85. [PMID: 17588722 DOI: 10.1016/j.cellsig.2007.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/17/2007] [Accepted: 05/18/2007] [Indexed: 12/21/2022]
Abstract
Htid-1, the human counterpart of the Drosophila tumor suppressor gene lethal(2)tumorous imaginal discs (l(2)tid) encodes three splice forms translated into three cytosolic - Tid50, Tid48 and Tid46 - and three mitochondrial - Tid43, Tid40 and Tid38 - proteins. Here we provide evidence for the association of the endogenous Tid50/Tid48 proteins with the adenomatous polyposis coli (APC) tumor suppressor in normal colon epithelium, colorectal cancer cells and mouse NIH3T3 fibroblasts. Using the Glutathione S-transferase binding assay we show that the N-terminal region including the Armadillo domain (ARM) of APC is sufficient to bind the Tid molecules. Using immunoprecipitation and confocal microscopy we show that the two molecular partners complex at defined areas of the cells with further proteins such as Hsp70, Hsc70, Actin, Dvl and Axin. Our data implicate that the formation of the complex is not associated with APC's involvement in beta-Catenin degradation. Furthermore, though it is linked to Actin it is neither associated with regulation of Actin cytoskeleton due to APC's binding to Asef nor to Tid's binding to Ras-GAP. We suggest that the novel complex acts in maintaining APC's availability for its distinct roles in the Wnt signaling important for the cell to take the right decision, either to switch the cascade OFF or ON, thus, to regulate the onset of proliferation of the cells.
Collapse
Affiliation(s)
- Ursula Kurzik-Dumke
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumor Biology, Johannes Gutenberg University, Obere Zahlbacher Strasse 63, 55131 Mainz, Germany.
| | | |
Collapse
|
26
|
Chen SC, Guh JY, Chen HC, Yang YL, Huang JS, Chuang LY. Advanced glycation end-product-induced mitogenesis is dependent on Janus kinase 2-induced heat shock protein 70 in normal rat kidney interstitial fibroblast cells. Transl Res 2007; 149:274-81. [PMID: 17466927 DOI: 10.1016/j.trsl.2006.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 08/16/2006] [Accepted: 08/19/2006] [Indexed: 01/22/2023]
Abstract
Kidney interstitial fibroblast proliferation is important in the pathogenesis of diabetic renal fibrosis. In this regard, advanced glycation end-product (AGE)-induced proliferation in normal rat kidney interstitial fibroblast (NRK-49F) cells is dependent on the Janus kinase 2 (JAK2) signal transducers and activators of transcription (STAT) pathway. Heat shock protein (Hsp) is a molecular target of JAK/STAT. Thus, the role of Hsp70 in AGE-induced mitogenesis in NRK-49F cells was studied. The AGE dose (100-200 microg/mL) and time (16-72 h) dependently increased Hsp70 protein expression. AGE-induced Hsp70 was attenuated by AG-490 (a JAK2 inhibitor) and N-acetylcysteine. AGE also increased tyrosine phosphorylation of Hsp70, cyclin E, and cyclin D1 (to a lesser extent) while increasing Hsp70 protein interactions with STAT1, STAT3, STAT5b, cyclin D1, and cyclin E. AGE-induced tyrosine phosphorylation of Hsp70 and cyclin E (but not cyclin D1) was attenuated by AG-490. AGE-induced mitogenesis, cyclin D1, and cyclin E were attenuated by Hsp70 antisense oligodeoxynucleotide and 2-aminopurine (an Hsp70 inhibitor). AGE-induced Hsp70 and mitogenesis were also attenuated by N-acetylcysteine. It was concluded that AGE-induced Hsp70 protein expression and tyrosine phosphorylation are dependent on JAK2 in NRK-49F cells. AGE increased protein-protein interactions among Hsp70, STAT1, STAT3, STAT5b, cyclin D1, and cyclin E. Moreover, AGE-induced mitogenesis is dependent on Hsp70 and oxidative stress.
Collapse
Affiliation(s)
- San-Cher Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Traicoff JL, Chung JY, Braunschweig T, Mazo I, Shu Y, Ramesh A, D'Amico MW, Galperin MM, Knezevic V, Hewitt SM. Expression of EIF3-p48/INT6, TID1 and Patched in cancer, a profiling of multiple tumor types and correlation of expression. J Biomed Sci 2007; 14:395-405. [PMID: 17385060 DOI: 10.1007/s11373-007-9149-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022] Open
Abstract
Alterations in eIF3-p48/INT6 gene expression have been implicated in murine and human mammary carcinogenesis. We examined levels of INT6 protein in human tumors and determined that breast and colon tumors clustered into distinct groups based on levels of INT6 expression and clinicopathological variables. We performed multiplex tissue immunoblotting of breast, colon, lung, and ovarian tumor tissues and found that INT6 protein levels positively correlated with those of TID1, Patched, p53, c-Jun, and phosphorylated-c-Jun proteins in a tissue-specific manner. INT6 and TID1 showed significant positive correlation in all tissue types tested. These findings were confirmed by immunohistochemical staining of INT6 and TID1. Further evidence supporting a cooperative role for INT6 and TID1 is the presence of endogenous INT6 and TID1 proteins as complexes. We detected co-immunoprecipitation between INT6 and TID1, as well as between INT6 and Patched. These findings suggest potential integrated roles for INT6, TID1, and Patched proteins in cell growth, development, and tumorigenesis. Additionally, these data suggest that the combination of INT6, TID1, and Patched protein levels may be useful biomarkers for the development of diagnostic assays.
Collapse
|
28
|
Wakabayashi Y, Mao JH, Brown K, Girardi M, Balmain A. Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature 2007; 445:761-765. [PMID: 17230190 DOI: 10.1038/nature05489] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/27/2006] [Indexed: 11/09/2022]
Abstract
Mice of the C57BL/6 strain are resistant to the development of skin squamous carcinomas (SCCs) induced by an activated Ras oncogene, whereas FVB/N mice are highly susceptible. The genetic basis of this difference in phenotype is unknown. Here we show that susceptibility to SCC is under the control of a carboxy-terminal polymorphism in the mouse Ptch gene. F1 hybrids between C57BL/6 and FVB/N strains ((B6FVB)F1) are resistant to Ras-induced SCCs, but resistance can be overcome either by elimination of the C57BL/6 Ptch allele (Ptch(B6)) or by overexpression of the FVB/N Ptch allele (Ptch(FVB)) in the epidermis of K5Hras-transgenic (B6FVB)F1 hybrid mice. The human Patched (PTCH) gene is a classical tumour suppressor gene for basal cell carcinomas and medulloblastomas, the loss of which causes increased signalling through the Sonic Hedgehog (SHH) pathway. SCCs that develop in PtchB6+/- mice do not lose the wild-type Ptch gene or show evidence of increased SHH signalling. Although Ptch(FVB) overexpression can promote SCC formation, continued expression is not required for tumour maintenance, suggesting a role at an early stage of tumour cell lineage commitment. The Ptch polymorphism affects Hras-induced apoptosis, and binding to Tid1, the mouse homologue of the Drosophila l(2)tid tumour suppressor gene. We propose that Ptch occupies a critical niche in determining basal or squamous cell lineage, and that both tumour types can arise from the same target cell depending on carcinogen exposure and host genetic background.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line
- Cell Transformation, Neoplastic
- Crosses, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Genes, ras
- HSP40 Heat-Shock Proteins/metabolism
- Humans
- Kruppel-Like Transcription Factors/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Patched Receptors
- Patched-1 Receptor
- Polymorphism, Genetic/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Zinc Finger Protein Gli2
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Yuichi Wakabayashi
- Cancer Research Institute, University of California at San Francisco, 2340 Sutter Street, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
29
|
Sohn SY, Kim SB, Kim J, Ahn BY. Negative regulation of hepatitis B virus replication by cellular Hsp40/DnaJ proteins through destabilization of viral core and X proteins. J Gen Virol 2006; 87:1883-1891. [PMID: 16760390 DOI: 10.1099/vir.0.81684-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The hepatitis B virus core protein consists of an amino-terminal capsid-assembly domain and a carboxyl-terminal RNA-binding domain. By using the yeast two-hybrid system, two Hsp40/DnaJ chaperone-family proteins, Hdj1 and hTid1, that interact with the carboxyl-terminal region (aa 94-185) of the core protein were identified. Hdj1 is the prototype member of the family and hTid1 is the human homologue of the Drosophila tumour-suppressor protein Tid56. Binding of the viral core protein with the Hsp40 proteins was confirmed by affinity chromatography and immunoprecipitation of transiently expressed proteins. Moreover, in a sucrose gradient, the precursor form of hTid1 co-sedimented with capsid-like particles composed of the full-length core protein. Unlike the general perception of the role of the cellular chaperone proteins in assisting viral protein folding and thus enhancing virus replication, ectopic expression of Hdj1 and hTid1 suppressed replication of HBV in transfected human hepatoma cells. Conversely, RNA interference-mediated knock-down of hTid1 resulted in increased HBV replication. It was found that both Hsp40 proteins specifically accelerated degradation of the viral core and HBx proteins. Our results suggest that the cellular chaperones, through destabilization of viral proteins, exert inhibitory functions on virus replication and hence may play suppressive roles in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sook-Young Sohn
- School of Life Sciences and Biotechnology, Korea University, Anamdong 5-1, Sungbuk, Seoul 136-701, Korea
| | - Sun-Bum Kim
- School of Life Sciences and Biotechnology, Korea University, Anamdong 5-1, Sungbuk, Seoul 136-701, Korea
| | - Joon Kim
- School of Life Sciences and Biotechnology, Korea University, Anamdong 5-1, Sungbuk, Seoul 136-701, Korea
| | - Byung-Yoon Ahn
- School of Life Sciences and Biotechnology, Korea University, Anamdong 5-1, Sungbuk, Seoul 136-701, Korea
| |
Collapse
|
30
|
Leon C, Nandan D, Lopez M, Moeenrezakhanlou A, Reiner NE. Annexin V associates with the IFN-gamma receptor and regulates IFN-gamma signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:5934-42. [PMID: 16670301 DOI: 10.4049/jimmunol.176.10.5934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many of the biological activities of IFN-gamma are mediated through the IFN-gammaR3-linked Jak-Stat1alpha pathway. However, regulation of IFN-gamma signaling is not fully understood, and not all responses to IFN-gamma are Stat1alpha dependent. To identify novel elements involved in IFN-gamma cell regulation, the cytoplasmic domain of the R2 subunit of the human IFN-gammaR was used as bait in a yeast two-hybrid screen of a human monocyte cDNA library. This identified annexin A5 (AxV) as a putative IFN-gammaR binding protein. The interaction was confirmed in pull-down experiments in which a GST-R2 cytoplasmic domain fusion protein was incubated with macrophage lysates. Furthermore, immunoprecipitation using anti-IFN-gammaR2 Abs showed that AxV interacted with IFN-gammaR2 to form a stable complex following incubation of cells with IFN-gamma. In 293T cells with reduced expression of AxV, brought about by small interfering RNA targeting, activation of Jak2 and Stat1alpha in response to IFN-gamma was enhanced. Inhibition of cell proliferation, a hallmark of the IFN-gamma response, also was potentiated in HeLa cells treated with small interfering RNA directed at AxV. Taken together, these results suggest that through an inducible association with the R2 subunit of the IFN-gammaR, AxV modulates cellular responses to IFN-gamma by modulating signaling through the Jak-Stat1 pathway.
Collapse
Affiliation(s)
- Carlos Leon
- Department of Medicine, Division of Infectious Diseases, Faculties of Medicine and Science, University of British Columbia, 2733 Heather Street, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
31
|
Lu B, Garrido N, Spelbrink JN, Suzuki CK. Tid1 Isoforms Are Mitochondrial DnaJ-like Chaperones with Unique Carboxyl Termini That Determine Cytosolic Fate. J Biol Chem 2006; 281:13150-13158. [PMID: 16531398 DOI: 10.1074/jbc.m509179200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tid1 is a human homolog of bacterial DnaJ and the Drosophila tumor suppressor Tid56 that has two alternatively spliced isoforms, Tid1-long and -short (Tid1-L and -S), which differ only at their carboxyl termini. Although Tid1 proteins localize overwhelmingly to mitochondria, published data demonstrate principally nonmitochondrial protein interactions and activities. This study was undertaken to determine whether Tid1 proteins function as mitochondrial DnaJ-like chaperones and to resolve the paradox of how proteins targeted primarily to mitochondria function in nonmitochondrial pathways. Here we demonstrate that Tid1 isoforms exhibit a conserved mitochondrial DnaJ-like function substituting for the yeast mitochondrial DnaJ-like protein Mdj1p. Like Mdj1p, Tid1 localizes to human mitochondrial nucleoids, which are large protein complexes bound to mitochondrial DNA. Unlike other DnaJs, Tid1-L and -S form heterocomplexes; both unassembled and complexed Tid1 are observed in human cells. Results demonstrate that Tid1-L has a longer residency time in the cytosol prior to mitochondrial import as compared with Tid1-S; Tid1-L is also significantly more stable in the cytosol than Tid1-S, which is rapidly degraded. The longer cytosolic residency time and the half-life of Tid1-L are explained by its interaction with cytosolic Hsc70 and potential protein substrates such as the STAT1 and STAT3 transcription factors. We show that the unique carboxyl terminus of Tid1-L is required for interaction with Hsc70 and STAT1 and -3. We propose that the association of Tid1 with chaperones and/or protein substrates in the cytosol provides a mechanism for the alternate fates and functions of Tid1 in mitochondrial and nonmitochondrial pathways.
Collapse
Affiliation(s)
- Bin Lu
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, New Jersey 07103
| | - Nuria Garrido
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, FIN-33014 Tampere, Finland
| | - Johannes N Spelbrink
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, FIN-33014 Tampere, Finland
| | - Carolyn K Suzuki
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, New Jersey 07103.
| |
Collapse
|
32
|
Torregroza I, Evans T. Tid1 is a Smad-binding protein that can modulate Smad7 activity in developing embryos. Biochem J 2006; 393:311-20. [PMID: 16156721 PMCID: PMC1383690 DOI: 10.1042/bj20050785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a search for binding partners to Smad8, we identified the chicken homologue of the mammalian Tid1 protein (cTid1), which is a regulator of apoptosis related to the Drosophila tumour suppressor Tid56. The cTid1 coding sequence is highly conserved with mammalian Tid1, including the DnaJ domain that interacts with Hsp70 (heat-shock protein 70). The cTid1 gene is widely expressed with transcripts enriched in the developing blood islands of the embryonic-yolk sac. We show that cTid1 can bind to other members of the Smad family and that highest binding activity occurs with the negative regulatory Smad7, through the conserved MH2 domain. This interaction can have functional relevance in vivo, since co-expression of Tid1 blocks the dorsalizing and BMP (bone morphogenetic protein)-dependent regulatory activity of Smad7 in developing Xenopus embryos. The finding that these proteins can interact suggests the potential for linking two important cell survival/apoptosis pathways.
Collapse
Affiliation(s)
- Ingrid Torregroza
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Todd Evans
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Wang L, Tam JP, Liu DX. Biochemical and functional characterization of Epstein-Barr virus-encoded BARF1 protein: interaction with human hTid1 protein facilitates its maturation and secretion. Oncogene 2006; 25:4320-31. [PMID: 16518412 DOI: 10.1038/sj.onc.1209458] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
EBV BARF1 gene encodes a secretory protein with transforming and mitogenic activities. In this report, the post-translational modification, folding, maturation and secretion of BARF1 are systematically studied by site-directed mutagenesis and overexpression of the protein in mammalian cells using the vaccinia/T7 system. The protein was shown to be post-translationally modified by N-linked glycosylation on the asparagine 95 residue. This modification was confirmed to be essential for the maturation and secretion of the protein. Analysis of the four cysteine residues by site-directed mutagenesis demonstrated that cysteine 146 and 201 were essential for proper folding and secretion of the protein. To search for human proteins involved in the maturation process of the protein, a yeast two-hybrid screening was carried out using the BARF1 sequence from amino acids 21-221 (BARF1Delta) as bait, leading to the identification of human hTid1 protein as a potential interacting protein. This interaction was subsequently confirmed by coimmunoprecipitation and dual immunofluorescent labeling of cells coexpressing BARF1 and hTid1, and the interaction domain in hTid1 was mapped to amino acids 149-320. Interestingly, coexpression of BARF1 with hTid1 demonstrated that hTid1 could promote secretion of BARF1, suggesting that hTid1 may act as a chaperone to facilitate the folding, processing and maturation of BARF1.
Collapse
Affiliation(s)
- L Wang
- School of Biological Sciences, Nanyang Technological University, Proteos, Singapore
| | | | | |
Collapse
|
34
|
Bae MK, Jeong JW, Kim SH, Kim SY, Kang HJ, Kim DM, Bae SK, Yun I, Trentin GA, Rozakis-Adcock M, Kim KW. Tid-1 interacts with the von Hippel-Lindau protein and modulates angiogenesis by destabilization of HIF-1alpha. Cancer Res 2005; 65:2520-5. [PMID: 15805242 DOI: 10.1158/0008-5472.can-03-2735] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The von Hippel-Lindau protein (pVHL) is a major tumor suppressor protein and also associated with the inhibition of angiogenesis via HIF-1alpha ubiquitination and proteasomal degradation. To further elucidate the biological activity of pVHL in angiogenesis, pVHL-interacting proteins were screened using the yeast two-hybrid system. We found that a mouse homologue of the long form of Drosophila tumor suppressor l(2)tid, Tid-1(L), directly interacts with pVHL in vitro and in vivo. Furthermore, Tid-1(L) protein; enhanced the interaction between HIF-1alpha and pVHL, leading to the destabilization of HIF-1alpha protein; therefore, Tid-1(L) protein decreased vascular endothelial growth factor expression and inhibited angiogenesis in vivo and in vitro. These findings propose that Tid-1(L) may play a critical role in pVHL-mediated tumor suppression by modulating the pVHL-dependent HIF-1alpha stability.
Collapse
Affiliation(s)
- Moon-Kyoung Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu HY, MacDonald JIS, Hryciw T, Li C, Meakin SO. Human Tumorous Imaginal Disc 1 (TID1) Associates with Trk Receptor Tyrosine Kinases and Regulates Neurite Outgrowth in nnr5-TrkA Cells. J Biol Chem 2005; 280:19461-71. [PMID: 15753086 DOI: 10.1074/jbc.m500313200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human tumorous imaginal disc 1 (TID1) proteins including TID1(L) and TID1(S), members of the DnaJ domain protein family, are involved in multiple intracellular signaling pathways such as apoptosis induction, cell proliferation, and survival. Here we report that TID1 associates with the Trk receptor tyrosine kinases and regulates nerve growth factor (NGF)-induced neurite outgrowth in PC12-derived nnr5 cells. Binding assays and transfection studies showed that the carboxyl-terminal end of TID1 (residues 224-429) bound to Trk at the activation loop (Tyr(P)(683)-Tyr(684)(P)(684) in rat TrkA) and that TID1 was tyrosine phosphorylated by Trk both in yeast and in transfected cells. Moreover endogenous TID1 was also tyrosine phosphorylated by and co-immunoprecipitated with Trk in neurotrophin-stimulated primary rat hippocampal neurons. Overexpression studies showed that both TID1(L) and TID1(S) significantly facilitated NGF-induced neurite outgrowth in TrkA-expressing nnr5 cells possibly through a mechanism involving increased activation of mitogen-activated protein kinase. Consistently knockdown of endogenous TID1, mediated with specific short hairpin RNA, significantly reduced NGF-induced neurite growth in nnr5-TrkA cells. These data provide the first evidence that TID1 is a novel intracellular adaptor that interacts with the Trk receptor tyrosine kinases in an activity-dependent manner to facilitate Trk-dependent intracellular signaling.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Cell Biology Group, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
36
|
Trentin GA, He Y, Wu DC, Tang D, Rozakis-Adcock M. Identification of a hTid-1 mutation which sensitizes gliomas to apoptosis. FEBS Lett 2005; 578:323-30. [PMID: 15589840 DOI: 10.1016/j.febslet.2004.11.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 11/05/2004] [Accepted: 11/09/2004] [Indexed: 01/13/2023]
Abstract
Human Tid-1 (hTid-1) is a DnaJ chaperone protein with homology to the Drosophila tumor suppressor Tid56. We report the first case of a tumor-associated mutation at the human TID1 locus, which was identified in the SF767 glioma cell line giving rise to aberrantly high levels of a hTid-1(L) mutant variant. In this study, we set out to determine whether this change in hTid-1 status influences the response of glioma cells to adenoviral (Ad)-mediated delivery of the two major isoforms of TID1, hTid-1(L) and hTid-1(S). Ad-hTid-1(S) induced apoptosis in hTid-1 mutant SF767 cells, while causing growth arrest in wild-type hTid-1-expressing U373 and U87 cells. By contrast, Ad-hTid-1(L) infection had no apparent effect on glioma cell growth. The apoptosis induced by hTid-1(S) was accompanied by mitochondrial cytochrome C release and caspase activation and blocked by stable overexpression of Bcl-X(L). Our findings suggest that the status of hTid-1 in gliomas may contribute to their susceptibility to cell death triggers.
Collapse
Affiliation(s)
- G A Trentin
- Faculty of Health Sciences, McMaster University, Hamilton, Ont., Canada L8N 3Z5
| | | | | | | | | |
Collapse
|
37
|
Cheng H, Cenciarelli C, Nelkin G, Tsan R, Fan D, Cheng-Mayer C, Fidler IJ. Molecular mechanism of hTid-1, the human homolog of Drosophila tumor suppressor l(2)Tid, in the regulation of NF-kappaB activity and suppression of tumor growth. Mol Cell Biol 2005; 25:44-59. [PMID: 15601829 PMCID: PMC538758 DOI: 10.1128/mcb.25.1.44-59.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 05/03/2004] [Accepted: 09/30/2004] [Indexed: 11/20/2022] Open
Abstract
hTid-1, a human homolog of the Drosophila tumor suppressor l(2)Tid and a novel DnaJ protein, regulates the activity of nuclear factor kappaB (NF-kappaB), but its mechanism is not established. We report here that hTid-1 strongly associated with the cytoplasmic protein complex of NF-kappaB-IkappaB through direct interaction with IkappaBalpha/beta and the IKKalpha/beta subunits of the IkappaB kinase complex. These interactions resulted in suppression of the IKK activity in a J-domain-dependent fashion and led to the cytoplasmic retention and enhanced stability of IkappaB. Overexpression of hTid-1 by using recombinant baculovirus or adenovirus led to inhibition of cell proliferation and induction of apoptosis of human osteosarcoma cells regardless of the p53 expression status. Adherent cultured cells transduced with Ad.hTid-1 detached from the dish surface. Morphological changes consistent with apoptosis and cell death were evident 48 h after Ad.EGFP-hTid-1 transduction. In contrast, cells transduced with Ad.EGFP or Ad.EGFP-hTd-1DeltaN100, a mutant that has the N-terminal J domain deletion and that lost suppressive activity on IKK, continued to proliferate. Similar data were obtained with A375 human melanoma cells. Ad.EGFP or Ad.EGFP-hTd-1DeltaN100 ex vivo-transduced A375 cells injected subcutaneously into nude mice produced growing tumors, whereas Ad.EGFP-hTid-1-transduced cells did not. Collectively, the data suggest that hTid-1 represses the activity of NF-kappaB through physical and functional interactions with the IKK complex and IkappaB and, in doing so, it modulates cell growth and death.
Collapse
Affiliation(s)
- Hua Cheng
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Tarunina M, Alger L, Chu G, Munger K, Gudkov A, Jat PS. Functional genetic screen for genes involved in senescence: role of Tid1, a homologue of the Drosophila tumor suppressor l(2)tid, in senescence and cell survival. Mol Cell Biol 2004; 24:10792-801. [PMID: 15572682 PMCID: PMC533960 DOI: 10.1128/mcb.24.24.10792-10801.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We performed a genetic suppressor element screen to identify genes whose inhibition bypasses cellular senescence. A normalized library of fragmented cDNAs was used to select for elements that promote immortalization of rat embryo fibroblasts. Fragments isolated by the screen include those with homology to genes that function in intracellular signaling, cellular adhesion and contact, protein degradation, and apoptosis. They include mouse Tid1, a homologue of the Drosophila tumor suppressor gene l(2)tid, recently implicated in modulation of apoptosis as well as gamma interferon and NF-kappaB signaling. We show that GSE-Tid1 enhances immortalization by human papillomavirus E7 and simian virus 40 T antigen and cooperates with activated ras for transformation. Expression of Tid1 is upregulated upon cellular senescence in rat and mouse embryo fibroblasts and premature senescence of REF52 cells triggered by activated ras. In accordance with this, spontaneous immortalization of rat embryo fibroblasts is suppressed upon ectopic expression of Tid1. Modulation of endogenous Tid1 activity by GSE-Tid1 or Tid1-specific RNA interference alleviates the suppression of tumor necrosis factor alpha-induced NF-kappaB activity by Tid1. We also show that NF-kappaB sequence-specific binding is strongly downregulated upon senescence in rat embryo fibroblasts. We therefore propose that Tid1 contributes to senescence by acting as a repressor of NF-kappaB signaling.
Collapse
Affiliation(s)
- Marina Tarunina
- Ludwig Institute for Cancer Research, 91 Riding House St., London W1W 7BS, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Schaaf CP, Benzing J, Schmitt T, Erz DHR, Tewes M, Bartram CR, Janssen JWG. Novel interaction partners of the TPR/MET tyrosine kinase. FASEB J 2004; 19:267-9. [PMID: 15546961 DOI: 10.1096/fj.04-1558fje] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A large variety of biological processes is mediated by stimulation of the receptor tyrosine kinase MET. Screening a mouse embryo cDNA library, we were able to identify several novel, putative intracellular TPR/MET-substrates: SNAPIN, DCOHM, VAV-1, Sorting nexin 2, Death associated protein kinase 3, SMC-1, Centromeric protein C, and hTID-1. Interactions as identified by yeast two-hybrid analysis were validated in vitro and in vivo by mammalian two-hybrid studies, a far-western assay and coimmunoprecipitation. Participation in apoptosis-regulating mechanisms through interaction with DAPK-3 and cell cycle control via binding to nuclear proteins such as CENPC and SMC-1 are possible new aspects of intracellular MET signaling.
Collapse
Affiliation(s)
- Christian P Schaaf
- Institute of Human Genetics, University Clinics of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Kim SW, Chao TH, Xiang R, Lo JF, Campbell MJ, Fearns C, Lee JD. Tid1, the Human Homologue of a Drosophila Tumor Suppressor, Reduces the Malignant Activity of ErbB-2 in Carcinoma Cells. Cancer Res 2004; 64:7732-9. [PMID: 15520177 DOI: 10.1158/0008-5472.can-04-1323] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ErbB-2/HER-2 receptor tyrosine kinase is overexpressed in a wide range of solid human tumors. The ErbB-2 gene product is a transmembrane glycoprotein belonging to the epidermal growth factor receptor family, and its cytoplasmic domain is responsible for sending the mitogenic signals into cells. We discovered that this domain of ErbB-2 interacts with Tid1 protein, the human counterpart of the Drosophila tumor suppressor Tid56, whose null mutation causes lethal tumorigenesis during the larval stage. Tid1 also is known as a cochaperone of heat shock protein 70 (HSP70) and binds to HSP70 through its conserved DnaJ domain. We found that increased expression of Tid1 in human mammary carcinomas overexpressing ErbB-2 suppresses the expression level of ErbB-2 and attenuates the resultant ErbB-2-dependent oncogenic extracellular signal-regulated kinase 1/2 and big mitogen-activated protein kinase 1 signaling pathways leading to programmed cell death (PCD). A functional DnaJ domain of Tid1 also is required for its inhibition of ErbB-2 expression and the consequent PCD of carcinoma cells resulting from increased Tid1 expression. Importantly, ErbB-2-dependent tumor progression in animals is inhibited by increased expression of Tid1 in tumor cells. Collectively, these results suggest that Tid1 modulates the uncontrolled proliferation of ErbB-2-overexpressing carcinoma cells by reducing ErbB-2 expression and as a result suppresses the ErbB-2-dependent cancerous signaling and tumor progression. Moreover, the cochaperonic and regulatory functions of Tid1 on HSP70 most likely play an essential role in this antitumor function of Tid1 in carcinoma cells.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Edwards KM, Münger K. Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 2004; 23:8419-31. [PMID: 15156195 DOI: 10.1038/sj.onc.1207732] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human homologue of the Drosophila tumor suppressor lethal (2) tumorous imaginal discs (l(2)tid) gene, hTID1, encodes two proteins derived from alternate mRNA splicing. The splice variants TidL and TidS were previously reported from protein overexpression and dominant-negative mutant protein studies to exhibit opposing biological activities in response to exogenous cytotoxic stimuli. TidL was found to promote apoptosis while TidS suppressed it. To elucidate the physiological function of hTID1, we depleted hTID1 proteins using the technique of RNA interference (RNAi). Here, we show that cells essentially lacking expression of hTID1 proteins are protected from cell death in response to multiple stimuli, including cisplatin, tumor necrosis factor alpha/cycloheximide and mitomycin C. We also generated stable cell populations depleted of hTID1 proteins by RNAi using DNA vectors. In addition to apoptosis resistance, stable hTID1 knockdown cells exhibited an enhanced ability for anchorage-independent growth, as measured by an increase in soft-agar colony formation. These results suggest that hTID1 functions as an important cell death regulator and raise the interesting possibility that hTID1 could exert tumor suppressor activity.
Collapse
Affiliation(s)
- Kirsten M Edwards
- Department of Pathology, Harvard Medical School, NRB 0958, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
42
|
Lo JF, Hayashi M, Woo-Kim S, Tian B, Huang JF, Fearns C, Takayama S, Zapata JM, Yang Y, Lee JD. Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor l(2)tid, is critical for early embryonic development and cell survival. Mol Cell Biol 2004; 24:2226-36. [PMID: 14993262 PMCID: PMC355836 DOI: 10.1128/mcb.24.6.2226-2236.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tid1 is the mammalian counterpart of the Drosophila tumor suppressor Tid56 and is also a DnaJ protein containing a conserved J domain through which it interacts with the heat shock protein 70 (Hsp70) family of chaperone proteins. We generated a Tid1 conditional mutation in mice, and the subsequent global removal of the Tid1 protein was achieved by crossing these conditional knockout mice with general deletor mice. No Tid1(-/-) embryos were detected as early as embryonic day 7.5 (E7.5). Nonetheless, Tid1-deficient blastocysts were viable, hatched, formed an inner cell mass and trophectoderm, and implanted (E4.5), suggesting that the homozygous mutant embryos die between E4.5 and E7.5. To assess the function of Tid1 in embryonic cells, mouse embryonic fibroblasts with the homologous Tid1 floxed allele were produced. Tid1 removal in these cells led to massive cell death. The death of Tid1-deficient cells could be rescued by ectopic expression of wild-type Tid1 but not by expression of the Tid1 protein that had a mutated J domain and was thus incapable of binding to Hsp70. We propose that Tid1 is critical for early mammalian development, most likely for its function in sustaining embryonic-cell survival, which requires its association with Hsp70.
Collapse
Affiliation(s)
- Jeng-Fan Lo
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Goodwin BL, Solomonson LP, Eichler DC. Argininosuccinate synthase expression is required to maintain nitric oxide production and cell viability in aortic endothelial cells. J Biol Chem 2004; 279:18353-60. [PMID: 14970240 DOI: 10.1074/jbc.m308160200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although cellular levels of arginine greatly exceed the apparent K(m) for endothelial nitric-oxide synthase, current evidence suggests that the bulk of this arginine may not be available for nitric oxide (NO) production. We propose that arginine regeneration, that is the recycling of citrulline back to arginine, defines the essential source of arginine for NO production. To support this proposal, RNA interference analysis was used to selectively reduce the expression of argininosuccinate synthase (AS), because the only known metabolic role for AS in endothelial cells is in the regeneration of l-arginine from l-citrulline. Western blot analysis demonstrated a significant and dose-dependent reduction of AS protein as a result of AS small interfering RNA treatment with a corresponding diminished capacity to produce basal or stimulated levels of NO, despite saturating levels of arginine in the medium. Unanticipated, however, was the finding that the viability of AS small interfering RNA-treated endothelial cells was significantly decreased when compared with control cells. Trypan blue exclusion analysis suggested that the loss of viability was not because of necrosis. Two indicators, reduced expression of Bcl-2 and an increase in caspase activity, which correlated directly with reduced expression of AS, suggested that the loss of viability was because of apoptosis. The exposure of cells to an NO donor prevented apoptosis associated with reduced AS expression. Overall, these results demonstrate the essential role of AS for endothelial NO production and cell viability.
Collapse
Affiliation(s)
- Bonnie L Goodwin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33647, USA
| | | | | |
Collapse
|
44
|
Canamasas I, Debes A, Natali PG, Kurzik-Dumke U. Understanding human cancer using Drosophila: Tid47, a cytosolic product of the DnaJ-like tumor suppressor gene l2Tid, is a novel molecular partner of patched related to skin cancer. J Biol Chem 2003; 278:30952-60. [PMID: 12783860 DOI: 10.1074/jbc.m304225200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recessive mutations of the Drosophila gene lethal(2)-tumorous imaginal discs (l(2)tid) cause neoplastic growth of the anlagen of the adult organs, the imaginal discs. Here we report that the three proteins encoded by this evolutionarily conserved gene, Tid50, Tid47, and Tid40, identified as members of the DnaJ cochaperone family, are destined for different cellular compartments, build complexes with many proteins in a developmental stage-specific manner, and are likely to be involved in different cellular processes. We show that the cytosolic Tid47 molecule is a novel component of the Hedgehog (Hh)-Patched (Ptc) signaling regulating cell/tissue polarity and spatial patterning during development and is associated with human tumors such as basal cell carcinoma (BCC) and medulloblastoma. We provide functional evidence for its direct in vivo interaction with the Hh-bound Ptc receptor during signal transmission. Because loss of l(2)tid causes neoplastic transformation of Hh-responsive cells, we suggest that Tid47 may at least act as a guardian of the Hh signaling gradient by regulating Ptc homeostasis in the tissue. Finally, we show that the expression of htid-1, the human counterpart of l(2)tid, is altered in human BCCs. We demonstrate that in BCCs loss of htid expression correlates with loss of differentiation capacity of the neoplastic cells similar to that found in the Drosophila tumor model.
Collapse
Affiliation(s)
- Itziar Canamasas
- Institute of Genetics, Laboratory for Comparative Tumor Biology, Johannes Gutenberg University, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
45
|
Syken J, Macian F, Agarwal S, Rao A, Münger K. TID1, a mammalian homologue of the drosophila tumor suppressor lethal(2) tumorous imaginal discs, regulates activation-induced cell death in Th2 cells. Oncogene 2003; 22:4636-41. [PMID: 12879007 DOI: 10.1038/sj.onc.1206569] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously described two human DnaJ proteins, hTid-1L and hTid-1S, which are derived from alternative splicing of the TID1 gene, the human homologue of the Drosophila tumor suppressor lethal(2) tumorous imaginal discs, and showed that hTid-1L promoted while hTid-1S antagonized apoptosis. There are two subsets of helper T cells, Th1 and Th2, of which Th2 cells are significantly less prone to apoptosis induced by stimulation through the T-cell receptor. This apoptotic process is known as activation-induced cell death (AICD). The molecular basis for the differential susceptibility of Th1 and Th2 cells to AICD is not known. Here we show that the antiapoptotic variant, Tid-1S, is selectively induced in murine Th2 cells following activation. Expression of a dominant-negative mutant of hTid-1S in a Th2 cell line strikingly enhanced activation of caspase 3 in response to CD3 stimulation, and caused the cells to become sensitive to AICD. Hence, the accumulation of Tid-1S in Th2 cells following activation represents a novel mechanism that may contribute to the induction of apoptosis resistance during the activation of Th2 cells.
Collapse
Affiliation(s)
- Josh Syken
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, D2/544A, Boston, MA 02115-5701, USA
| | | | | | | | | |
Collapse
|
46
|
Williams KD, Helin AB, Posluszny J, Roberts SP, Feder ME. Effect of heat shock, pretreatment and hsp70 copy number on wing development in Drosophila melanogaster. Mol Ecol 2003; 12:1165-77. [PMID: 12694280 DOI: 10.1046/j.1365-294x.2003.01771.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Naturally occurring heat shock (HS) during pupation induces abnormal wing development in Drosophila; we examined factors affecting the severity of this induction. The proportion of HS-surviving adults with abnormal wings varied with HS duration and intensity, and with the pupal age or stage at HS administration. Pretreatment (PT), mild hyperthermia delivered before HS, usually protected development against HS. Gradual heating resembling natural thermal regimes also protected wing development against thermal disruption. Because of the roles of the wings in flight and courtship and in view of natural thermal regimes that Drosophila experience, both HS-induction of wing abnormalities and its abatement by PT may have marked effects on Drosophila fitness in nature. Because PT is associated with expression of heat-inducible molecular chaperones such as Hsp70 in Drosophila, we compared thermal disruption of wing development among hsp70 mutants as well as among strains naturally varying in Hsp70 levels. Contrary to expectations, lines or strains with increased Hsp70 levels were no more resistant to HS-disruption of wing development than counterparts with lower Hsp70 levels. In fact, wing development was more resistant to HS in hsp70 deletion strains than control strains. We suggest that, while high Hsp70 levels may aid cells in surviving hyperthermia, high levels may also overly stimulate or inhibit numerous signalling pathways involved in cell proliferation, maturation and programmed death, resulting in developmental failure.
Collapse
Affiliation(s)
- Karen D Williams
- Department of Organismal Biology and Anatomy, Committee on Evolutionary Biology, and The College, University of Chicago, 1027 East 57th Street, Chicago IL 60637, USA
| | | | | | | | | |
Collapse
|
47
|
Krause CD, Mei E, Xie J, Jia Y, Bopp MA, Hochstrasser RM, Pestka S. Seeing the light: preassembly and ligand-induced changes of the interferon gamma receptor complex in cells. Mol Cell Proteomics 2002; 1:805-15. [PMID: 12438563 DOI: 10.1074/mcp.m200065-mcp200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our experiments were designed to test the hypothesis that the cell surface interferon gamma receptor chains are preassembled rather than associated by ligand and to assess the molecular changes on ligand binding. To accomplish this, we used fluorescence resonance energy transfer, a powerful spectroscopic technique that has been used to determine molecular interactions and distances between the donor and acceptor. However, current commercial instruments do not provide sufficient sensitivity or the full spectra to provide decisive results of interactions between proteins labeled with blue and green fluorescent proteins in living cells. In our experiments, we used the blue fluorescent protein and green fluorescent protein pair, attached a monochrometer and charge-coupled device camera to a modified confocal microscope, reduced background fluorescence with the use of two-photon excitation, and focused on regions of single cells to provide clear spectra of fluorescence resonance energy transfer. In contrast to the prevailing view, the results demonstrate that the receptor chains are preassociated and that the intracellular domains move apart on binding the ligand interferon gamma. Application of this technology should lead to new rapid methods for high throughput screening and delineation of the interactome of cells.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Cheng H, Cenciarelli C, Tao M, Parks WP, Cheng-Mayer C. HTLV-1 Tax-associated hTid-1, a human DnaJ protein, is a repressor of Ikappa B kinase beta subunit. J Biol Chem 2002; 277:20605-20610. [PMID: 11927590 DOI: 10.1074/jbc.m201204200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
hTid-1, a human DnaJ protein, is a novel cellular target for HTLV-1 Tax. Here, we show that hTid-1 represses NF-kappaB activity induced by Tax as well as other activators such as tumor necrosis factor alpha (TNFalpha) and Bcl10. hTid-1 specifically suppresses serine phosphorylation of IkappaBalpha by activated IkappaB kinase beta (IKKbeta), but the activities of other serine kinases including p38, ERK2, and JNK1 are not affected. The suppressive activity of hTid-1 on IKKbeta requires a functional J domain that mediates association with heat shock proteins and results in prolonging the half-life of the NF-kappaB inhibitors IkappaBalpha and IkappaBbeta. Collectively, our data suggest that hTid-1, in association with heat shock proteins, exerts a negative regulatory effect on the NF-kappaB activity induced by various extracellular and intracellular activators including HTLV-1 Tax.
Collapse
Affiliation(s)
- Hua Cheng
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|