1
|
Nicolson S, Manning JA, Lim Y, Jiang X, Kolze E, Dayan S, Umargamwala R, Xu T, Sandow JJ, Webb AI, Kumar S, Denton D. The Drosophila ZNRF1/2 homologue, detour, interacts with HOPS complex and regulates autophagy. Commun Biol 2024; 7:183. [PMID: 38360932 PMCID: PMC10869362 DOI: 10.1038/s42003-024-05834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Autophagy, the process of elimination of cellular components by lysosomal degradation, is essential for animal development and homeostasis. Using the autophagy-dependent Drosophila larval midgut degradation model we identified an autophagy regulator, the RING domain ubiquitin ligase CG14435 (detour). Depletion of detour resulted in increased early-stage autophagic vesicles, premature tissue contraction, and overexpression of detour or mammalian homologues, ZNRF1 and ZNRF2, increased autophagic vesicle size. The ablation of ZNRF1 or ZNRF2 in mammalian cells increased basal autophagy. We identified detour interacting proteins including HOPS subunits, deep orange (dor/VPS18), Vacuolar protein sorting 16A (VPS16A), and light (lt/VPS41) and found that detour promotes their ubiquitination. The detour mutant accumulated autophagy-related proteins in young adults, displayed premature ageing, impaired motor function, and activation of innate immunity. Collectively, our findings suggest a role for detour in autophagy, likely through regulation of HOPS complex, with implications for healthy aging.
Collapse
Affiliation(s)
- Shannon Nicolson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Yoon Lim
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Erica Kolze
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5001, Australia
| | - Sonia Dayan
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Ruchi Umargamwala
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Tianqi Xu
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5001, Australia.
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
2
|
Bolandghamat S, Behnam‐Rassouli M. Iron role paradox in nerve degeneration and regeneration. Physiol Rep 2024; 12:e15908. [PMID: 38176709 PMCID: PMC10766496 DOI: 10.14814/phy2.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Iron accumulates in the neural tissue during peripheral nerve degeneration. Some studies have already been suggested that iron facilitates Wallerian degeneration (WD) events such as Schwann cell de-differentiation. On the other hand, intracellular iron levels remain elevated during nerve regeneration and gradually decrease. Iron enhances Schwann cell differentiation and axonal outgrowth. Therefore, there seems to be a paradox in the role of iron during nerve degeneration and regeneration. We explain this contradiction by suggesting that the increase in intracellular iron concentration during peripheral nerve degeneration is likely to prepare neural cells for the initiation of regeneration. Changes in iron levels are the result of changes in the expression of iron homeostasis proteins. In this review, we will first discuss the changes in the iron/iron homeostasis protein levels during peripheral nerve degeneration and regeneration and then explain how iron is related to nerve regeneration. This data may help better understand the mechanisms of peripheral nerve repair and find a solution to prevent or slow the progression of peripheral neuropathies.
Collapse
Affiliation(s)
- Samira Bolandghamat
- Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
| | | |
Collapse
|
3
|
El Heni H, Kemenesi-Gedei PB, Pálvölgyi L, Kozma-Szeredi ID, Kis G. Peripheral Branch Injury Induces Oxytocin Receptor Expression at the Central Axon Terminals of Primary Sensory Neurons. Int J Mol Sci 2023; 25:7. [PMID: 38203176 PMCID: PMC10779307 DOI: 10.3390/ijms25010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Considerable evidence suggests that oxytocin, as a regulatory nonapeptide, participates in modulatory mechanisms of nociception. Nonetheless, the role of this hypothalamic hormone and its receptor in the sensory pathway has yet to be fully explored. The present study performed immunohistochemistry, enzyme-linked immunosorbent assay, and RT-qPCR analysis to assess changes in the expression of the neuronal oxytocin receptor in female rats following tight ligation of the sciatic nerve after 1, 3, and 7 days of survival. Oxytocin receptor immunoreactivity was present in both dorsal root ganglia and lumbar spinal cord segments, but not accumulated at the site of the ligation of the peripheral nerve branch. We found a time-dependent change in the expression of oxytocin receptor mRNA in L5 dorsal root ganglion neurons, as well as an increase in the level of the receptor protein in the lumbar segment of the spinal cord. A peak in the expression was observed on day 3, which downturned slightly by day 7 after the nerve ligation. These results show that OTR expression is up-regulated in response to peripheral nerve lesions. We assume that the importance of OTR is to modify spinal presynaptic inputs of the sensory neurons upon injury-induced activation, thus to be targets of the descending oxytocinergic neurons from supraspinal levels. The findings of this study support the concept that oxytocin plays a role in somatosensory transmission.
Collapse
Affiliation(s)
- Heni El Heni
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Péter Bátor Kemenesi-Gedei
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Laura Pálvölgyi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Ivett Dorina Kozma-Szeredi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Gyöngyi Kis
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
4
|
Lin YS, Chang YC, Chao TL, Tsai YM, Jhuang SJ, Ho YH, Lai TY, Liu YL, Chen CY, Tsai CY, Hsueh YP, Chang SY, Chuang TH, Lee CY, Hsu LC. The Src-ZNRF1 axis controls TLR3 trafficking and interferon responses to limit lung barrier damage. J Exp Med 2023; 220:e20220727. [PMID: 37158982 PMCID: PMC10174191 DOI: 10.1084/jem.20220727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023] Open
Abstract
Type I interferons are important antiviral cytokines, but prolonged interferon production is detrimental to the host. The TLR3-driven immune response is crucial for mammalian antiviral immunity, and its intracellular localization determines induction of type I interferons; however, the mechanism terminating TLR3 signaling remains obscure. Here, we show that the E3 ubiquitin ligase ZNRF1 controls TLR3 sorting into multivesicular bodies/lysosomes to terminate signaling and type I interferon production. Mechanistically, c-Src kinase activated by TLR3 engagement phosphorylates ZNRF1 at tyrosine 103, which mediates K63-linked ubiquitination of TLR3 at lysine 813 and promotes TLR3 lysosomal trafficking and degradation. ZNRF1-deficient mice and cells are resistant to infection by encephalomyocarditis virus and SARS-CoV-2 because of enhanced type I interferon production. However, Znrf1-/- mice have exacerbated lung barrier damage triggered by antiviral immunity, leading to enhanced susceptibility to respiratory bacterial superinfections. Our study highlights the c-Src-ZNRF1 axis as a negative feedback mechanism controlling TLR3 trafficking and the termination of TLR3 signaling.
Collapse
Affiliation(s)
- You-Sheng Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chi Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Jhen Jhuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Hsin Ho
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Lai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yuan Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei City, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Murray MJ, Bradley E, Ng Y, Thomas O, Patel K, Angus C, Atkinson C, Reeves MB. In silico interrogation of the miRNAome of infected hematopoietic cells to predict processes important for human cytomegalovirus latent infection. J Biol Chem 2023; 299:104727. [PMID: 37080390 PMCID: PMC10206818 DOI: 10.1016/j.jbc.2023.104727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023] Open
Abstract
Human cytomegalovirus (HCMV) latency in CD34+ progenitor cells is the outcome of a complex and continued interaction of virus and host that is initiated during very early stages of infection and reflects pro- and anti-viral activity. We hypothesized that a key event during early infection could involve changes to host miRNAs, allowing for rapid modulation of the host proteome. Here, we identify 72 significantly upregulated miRNAs and three that were downregulated by 6hpi of infection of CD34+ cells which were then subject to multiple in silico analyses to identify potential genes and pathways important for viral infection. The analyses focused on the upregulated miRNAs and were used to predict potential gene hubs or common mRNA targets of multiple miRNAs. Constitutive deletion of one target, the transcriptional regulator JDP2, resulted in a defect in latent infection of myeloid cells; interestingly, transient knockdown in differentiated dendritic cells resulted in increased viral lytic IE gene expression, arguing for subtle differences in the role of JDP2 during latency establishment and reactivation of HCMV. Finally, in silico predictions identified clusters of genes with related functions (such as calcium signaling, ubiquitination, and chromatin modification), suggesting potential importance in latency and reactivation. Consistent with this hypothesis, we demonstrate that viral IE gene expression is sensitive to calcium channel inhibition in reactivating dendritic cells. In conclusion, we demonstrate HCMV alters the miRNAome rapidly upon infection and that in silico interrogation of these changes reveals new insight into mechanisms controlling viral gene expression during HCMV latency and, intriguingly, reactivation.
Collapse
Affiliation(s)
- M J Murray
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom.
| | - E Bradley
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - Y Ng
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - O Thomas
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - K Patel
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - C Angus
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - C Atkinson
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - M B Reeves
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom.
| |
Collapse
|
6
|
Smetanina MA, Korolenya VA, Kel AE, Sevostyanova KS, Gavrilov KA, Shevela AI, Filipenko ML. Epigenome-Wide Changes in the Cell Layers of the Vein Wall When Exposing the Venous Endothelium to Oscillatory Shear Stress. EPIGENOMES 2023; 7:epigenomes7010008. [PMID: 36975604 PMCID: PMC10048778 DOI: 10.3390/epigenomes7010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Epigenomic changes in the venous cells exerted by oscillatory shear stress towards the endothelium may result in consolidation of gene expression alterations upon vein wall remodeling during varicose transformation. We aimed to reveal such epigenome-wide methylation changes. Primary culture cells were obtained from non-varicose vein segments left after surgery of 3 patients by growing the cells in selective media after magnetic immunosorting. Endothelial cells were either exposed to oscillatory shear stress or left at the static condition. Then, other cell types were treated with preconditioned media from the adjacent layer's cells. DNA isolated from the harvested cells was subjected to epigenome-wide study using Illumina microarrays followed by data analysis with GenomeStudio (Illumina), Excel (Microsoft), and Genome Enhancer (geneXplain) software packages. Differential (hypo-/hyper-) methylation was revealed for each cell layer's DNA. The most targetable master regulators controlling the activity of certain transcription factors regulating the genes near the differentially methylated sites appeared to be the following: (1) HGS, PDGFB, and AR for endothelial cells; (2) HGS, CDH2, SPRY2, SMAD2, ZFYVE9, and P2RY1 for smooth muscle cells; and (3) WWOX, F8, IGF2R, NFKB1, RELA, SOCS1, and FXN for fibroblasts. Some of the identified master regulators may serve as promising druggable targets for treating varicose veins in the future.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Fundamental Medicine, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Valeria A Korolenya
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Alexander E Kel
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Research & Development, GeneXplain GmbH, D-38302 Wolfenbüttel, Germany
| | - Ksenia S Sevostyanova
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Laboratory of Invasive Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Surgical Diseases, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Konstantin A Gavrilov
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Surgical Diseases, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Andrey I Shevela
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Laboratory of Invasive Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Surgical Diseases, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Gu C, Yang J, Luo Y, Ran D, Tan X, Xiang P, Fei H, Lu Y, Guo W, Tu Y, Liu X, Wang H. ZNRF2 attenuates focal cerebral ischemia/reperfusion injury in rats by inhibiting mTORC1-mediated autophagy. Exp Neurol 2021; 342:113759. [PMID: 33992580 DOI: 10.1016/j.expneurol.2021.113759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Zinc and ring finger 2 (ZNRF2), an E3 ubiquitin ligase, plays a crucial role in many diseases. However, its role in cerebral ischemia/reperfusion injury (CIRI) still remains unknown. In this study, the function and molecular mechanism of ZNRF2 in CIRI in vivo and vitro was studied. ZNRF2 was found to be dramatically downregulated in CIRI. Overexpression of ZNRF2 could significantly reduce the neurological deficit, brain infarct volume and histopathological damage of cortex in middle cerebral artery occlusion/reperfusion. Concomitantly, overexpression of ZNRF2 increased the primary neuronal viability and decreased the neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation (OGD/R). Mechanistically, overexpression of ZNRF2 inhibited the over-induction of autophagy induced by OGD/R which was abolished by mTORC1 inhibitor rapamycin. It can be concluded that ZNRF2 plays a protective effect in CIRI and the underlying mechanism may be related to the inhibition of mTORC1-mediated autophagy.
Collapse
Affiliation(s)
- Chao Gu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Ying Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Dongzhi Ran
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaodan Tan
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Pu Xiang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China; Dianjiang People's Hospital of Chongqing, Dianjiang, Chongqing 408300, China
| | - Huizhi Fei
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Yi Lu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Wenjia Guo
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Yujun Tu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Shen CH, Chou CC, Lai TY, Hsu JE, Lin YS, Liu HY, Chen YK, Ho IL, Hsu PH, Chuang TH, Lee CY, Hsu LC. ZNRF1 Mediates Epidermal Growth Factor Receptor Ubiquitination to Control Receptor Lysosomal Trafficking and Degradation. Front Cell Dev Biol 2021; 9:642625. [PMID: 33996800 PMCID: PMC8118649 DOI: 10.3389/fcell.2021.642625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) is crucial for development, tissue homeostasis, and immunity. Dysregulation of EGFR signaling is associated with numerous diseases. EGFR ubiquitination and endosomal trafficking are key events that regulate the termination of EGFR signaling, but their underlying mechanisms remain obscure. Here, we reveal that ZNRF1, an E3 ubiquitin ligase, controls ligand-induced EGFR signaling via mediating receptor ubiquitination. Deletion of ZNRF1 inhibits endosome-to-lysosome sorting of EGFR, resulting in delayed receptor degradation and prolonged downstream signaling. We further demonstrate that ZNRF1 and Casitas B-lineage lymphoma (CBL), another E3 ubiquitin ligase responsible for EGFR ubiquitination, mediate ubiquitination at distinct lysine residues on EGFR. Furthermore, loss of ZNRF1 results in increased susceptibility to herpes simplex virus 1 (HSV-1) infection due to enhanced EGFR-dependent viral entry. Our findings identify ZNRF1 as a novel regulator of EGFR signaling, which together with CBL controls ligand-induced EGFR ubiquitination and lysosomal trafficking.
Collapse
Affiliation(s)
- Chia-Hsing Shen
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Chang Chou
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Lai
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Jer-En Hsu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - You-Sheng Lin
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Huai-Yu Liu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Yan-Kai Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Lin Ho
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Araki T. Regulatory Mechanism of Peripheral Nerve Myelination by Glutamate-Induced Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:23-31. [PMID: 31760635 DOI: 10.1007/978-981-32-9636-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Regulation of differentiation and proliferation of Schwann cells is an essential part of the regulation of peripheral nerve development, degeneration, and regeneration. ZNRF1, a ubiquitin ligase, is expressed in undifferentiated/repair Schwann cells, directs glutamine synthetase to proteasomal degradation, and thereby increase glutamate levels in Schwann cell environment. Glutamate elicits subcellular signaling in Schwann cells via mGluR2 to modulate Neuregulin-1/ErbB2/3 signaling and thereby promote undifferentiated phenotype of Schwann cell.
Collapse
Affiliation(s)
- Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
10
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
11
|
Sandercock DA, Barnett MW, Coe JE, Downing AC, Nirmal AJ, Di Giminiani P, Edwards SA, Freeman TC. Transcriptomics Analysis of Porcine Caudal Dorsal Root Ganglia in Tail Amputated Pigs Shows Long-Term Effects on Many Pain-Associated Genes. Front Vet Sci 2019; 6:314. [PMID: 31620455 PMCID: PMC6760028 DOI: 10.3389/fvets.2019.00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Tail amputation by tail docking or as an extreme consequence of tail biting in commercial pig production potentially has serious implications for animal welfare. Tail amputation causes peripheral nerve injury that might be associated with lasting chronic pain. The aim of this study was to investigate the short- and long-term effects of tail amputation in pigs on caudal DRG gene expression at different stages of development, particularly in relation to genes associated with nociception and pain. Microarrays were used to analyse whole DRG transcriptomes from tail amputated and sham-treated pigs 1, 8, and 16 weeks following tail treatment at either 3 or 63 days of age (8 pigs/treatment/age/time after treatment; n = 96). Tail amputation induced marked changes in gene expression (up and down) compared to sham-treated intact controls for all treatment ages and time points after tail treatment. Sustained changes in gene expression in tail amputated pigs were still evident 4 months after tail injury. Gene correlation network analysis revealed two co-expression clusters associated with amputation: Cluster A (759 down-regulated) and Cluster B (273 up-regulated) genes. Gene ontology (GO) enrichment analysis identified 124 genes in Cluster A and 61 genes in Cluster B associated with both “inflammatory pain” and “neuropathic pain.” In Cluster A, gene family members of ion channels e.g., voltage-gated potassium channels (VGPC) and receptors e.g., GABA receptors, were significantly down-regulated compared to shams, both of which are linked to increased peripheral nerve excitability after axotomy. Up-regulated gene families in Cluster B were linked to transcriptional regulation, inflammation, tissue remodeling, and regulatory neuropeptide activity. These findings, demonstrate that tail amputation causes sustained transcriptomic expression changes in caudal DRG cells involved in inflammatory and neuropathic pain pathways.
Collapse
Affiliation(s)
- Dale A Sandercock
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Coe
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Alison C Downing
- Edinburgh Genomics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierpaolo Di Giminiani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sandra A Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Araki T, Wakatsuki S. Regulation of neuronal/axonal degeneration by ZNRF1 ubiquitin ligase. Neurosci Res 2019; 139:21-25. [DOI: 10.1016/j.neures.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/24/2022]
|
13
|
Structural insights into the nanomolar affinity of RING E3 ligase ZNRF1 for Ube2N and its functional implications. Biochem J 2018; 475:1569-1582. [PMID: 29626159 PMCID: PMC5941314 DOI: 10.1042/bcj20170909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
RING (Really Interesting New Gene) domains in ubiquitin RING E3 ligases exclusively engage ubiquitin (Ub)-loaded E2s to facilitate ubiquitination of their substrates. Despite such specificity, all RINGs characterized till date bind unloaded E2s with dissociation constants (Kds) in the micromolar to the sub-millimolar range. Here, we show that the RING domain of E3 ligase ZNRF1, an essential E3 ligase implicated in diverse cellular pathways, binds Ube2N with a Kd of ∼50 nM. This high-affinity interaction is exclusive for Ube2N as ZNRF1 interacts with Ube2D2 with a Kd of ∼1 µM, alike few other E3s. The crystal structure of ZNRF1 C-terminal domain in complex with Ube2N coupled with mutational analyses reveals the molecular basis of this unusual affinity. We further demonstrate that the ubiquitination efficiency of ZNRF1 : E2 pairs correlates with their affinity. Intriguingly, as a consequence of its high E2 affinity, an excess of ZNRF1 inhibits Ube2N-mediated ubiquitination at concentrations ≥500 nM instead of showing enhanced ubiquitination. This suggests a novel mode of activity regulation of E3 ligases and emphasizes the importance of E3-E2 balance for the optimum activity. Based on our results, we propose that overexpression-based functional analyses on E3 ligases such as ZNRF1 must be approached with caution as enhanced cellular levels might result in aberrant modification activity.
Collapse
|
14
|
Chung JR, Choi JW, Fiorellini JP, Hwang KG, Park CJ. Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration. J Dent Anesth Pain Med 2017; 17:191-198. [PMID: 29090249 PMCID: PMC5647825 DOI: 10.17245/jdapm.2017.17.3.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/15/2022] Open
Abstract
Background For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Methods In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusions Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.
Collapse
Affiliation(s)
- Joo-Ryun Chung
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| | - Jong-Won Choi
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| | - Joseph P Fiorellini
- Department of Periodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Kyung-Gyun Hwang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| | - Chang-Joo Park
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
15
|
Lee CY, Lai TY, Tsai MK, Chang YC, Ho YH, Yu IS, Yeh TW, Chou CC, Lin YS, Lawrence T, Hsu LC. The ubiquitin ligase ZNRF1 promotes caveolin-1 ubiquitination and degradation to modulate inflammation. Nat Commun 2017; 8:15502. [PMID: 28593998 PMCID: PMC5472178 DOI: 10.1038/ncomms15502] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (CAV1), the major constituent of caveolae, plays a pivotal role in various cellular biological functions, including cancer and inflammation. The ubiquitin/proteasomal pathway is known to contribute to the regulation of CAV1 expression, but the ubiquitin ligase responsible for CAV1 protein stability remains unidentified. Here we reveal that E3 ubiquitin ligase ZNRF1 modulates CAV1 protein stability to regulate Toll-like receptor (TLR) 4-triggered immune responses. We demonstrate that ZNRF1 physically interacts with CAV1 in response to lipopolysaccharide and mediates ubiquitination and degradation of CAV1. The ZNRF1-CAV1 axis regulates Akt-GSK3β activity upon TLR4 activation, resulting in enhanced production of pro-inflammatory cytokines and inhibition of anti-inflammatory cytokine IL-10. Mice with deletion of ZNRF1 in their hematopoietic cells display increased resistance to endotoxic and polymicrobial septic shock due to attenuated inflammation. Our study defines ZNRF1 as a regulator of TLR4-induced inflammatory responses and reveals another mechanism for the regulation of TLR4 signalling through CAV1.
Collapse
Affiliation(s)
- Chih-Yuan Lee
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
- Department of Surgery, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Ting-Yu Lai
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Meng-Kun Tsai
- Department of Surgery, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Yung-Chi Chang
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Yu-Hsin Ho
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Tzu-Wen Yeh
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Chih-Chang Chou
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - You-Sheng Lin
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Toby Lawrence
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, 13288 Marseille, France
| | - Li-Chung Hsu
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| |
Collapse
|
16
|
Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon. Mol Cell 2016; 61:809-20. [PMID: 26990986 PMCID: PMC4889030 DOI: 10.1016/j.molcel.2016.02.032] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/01/2016] [Accepted: 02/26/2016] [Indexed: 11/21/2022]
Abstract
Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.
Collapse
|
17
|
Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3856262. [PMID: 27556032 PMCID: PMC4983313 DOI: 10.1155/2016/3856262] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration.
Collapse
|
18
|
Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells. Exp Neurol 2016; 278:127-42. [DOI: 10.1016/j.expneurol.2016.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
|
19
|
Fenrich K, Gordon T. Canadian Association of Neuroscience Review: Axonal Regeneration in the Peripheral and Central Nervous Systems – Current Issues and Advances. Can J Neurol Sci 2016; 31:142-56. [PMID: 15198438 DOI: 10.1017/s0317167100053798] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractInjured nerves regenerate their axons in the peripheral (PNS) but not the central nervous system (CNS). The contrasting capacities have been attributed to the growth permissive Schwann cells in the PNS and the growth inhibitory environment of the oligodendrocytes in the CNS. In the current review, we first contrast the robust regenerative response of injured PNS neurons with the weak response of the CNS neurons, and the capacity of Schwann cells and not the oligodendrocytes to support axonal regeneration. We then consider the factors that limit axonal regeneration in both the PNS and CNS. Limiting factors in the PNS include slow regeneration of axons across the injury site, progressive decline in the regenerative capacity of axotomized neurons (chronic axotomy) and progressive failure of denervated Schwann cells to support axonal regeneration (chronic denervation). In the CNS on the other hand, it is the poor regenerative response of neurons, the inhibitory proteins that are expressed by oligodendrocytes and act via a common receptor on CNS neurons, and the formation of the glial scar that prevent axonal regeneration in the CNS. Strategies to overcome these limitations in the PNS are considered in detail and contrasted with strategies in the CNS.
Collapse
Affiliation(s)
- Keith Fenrich
- Centre for Neuroscience, Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
20
|
Norcini M, Sideris A, Martin Hernandez LA, Zhang J, Blanck TJJ, Recio-Pinto E. An approach to identify microRNAs involved in neuropathic pain following a peripheral nerve injury. Front Neurosci 2014; 8:266. [PMID: 25221468 PMCID: PMC4148822 DOI: 10.3389/fnins.2014.00266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022] Open
Abstract
Peripheral nerve injury alters the expression of hundreds of proteins in dorsal root ganglia (DRG). Targeting some of these proteins has led to successful treatments for acute pain, but not for sustained post-operative neuropathic pain. The latter may require targeting multiple proteins. Since a single microRNA (miR) can affect the expression of multiple proteins, here, we describe an approach to identify chronic neuropathic pain-relevant miRs. We used two variants of the spared nerve injury (SNI): Sural-SNI and Tibial-SNI and found distinct pain phenotypes between the two. Both models induced strong mechanical allodynia, but only Sural-SNI rats maintained strong mechanical and cold allodynia, as previously reported. In contrast, we found that Tibial-SNI rats recovered from mechanical allodynia and never developed cold allodynia. Since both models involve nerve injury, we increased the probability of identifying differentially regulated miRs that correlated with the quality and magnitude of neuropathic pain and decreased the probability of detecting miRs that are solely involved in neuronal regeneration. We found seven such miRs in L3-L5 DRG. The expression of these miRs increased in Tibial-SNI. These miRs displayed a lower level of expression in Sural-SNI, with four having levels lower than those in sham animals. Bioinformatic analysis of how these miRs could affect the expression of some ion channels supports the view that, following a peripheral nerve injury, the increase of the seven miRs may contribute to the recovery from neuropathic pain while the decrease of four of them may contribute to the development of chronic neuropathic pain. The approach used resulted in the identification of a small number of potentially neuropathic pain relevant miRs. Additional studies are required to investigate whether manipulating the expression of the identified miRs in primary sensory neurons can prevent or ameliorate chronic neuropathic pain following peripheral nerve injuries.
Collapse
Affiliation(s)
- Monica Norcini
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA
| | - Alexandra Sideris
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA
| | | | - Jin Zhang
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA
| | - Thomas J J Blanck
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA ; Department of Neuroscience and Physiology, NYU Langone Medical Center New York, NY, USA
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA ; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center New York, NY, USA
| |
Collapse
|
21
|
Gunay H, Kucuk L, Erbas O, Atamaz FC, Kucuk U, Coskunol E. The effectiveness of tetanus toxin on sciatic nerve regeneration: a preliminary experimental study in rats. Microsurgery 2014; 34:384-9. [PMID: 24665036 DOI: 10.1002/micr.22249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
OBJECT The purpose was to investigate the effects of local tetanus toxin (TeTx) application on sciatic nerve regeneration following a rat model of transection injury. METHODS After both sciatic nerves were transected and repaired with three epineural sutures, 12 male Wistar albino rats were divided into two groups. 0.25 ml (2.5 flocculation units) TeTx was injected into a piece of absorbable gelatin sponge in TeTx group. In controls, 0.25 ml saline injected. Assessments were performed by using climbing degrees, compound muscle action potentials (CMAPs) and histological parameters (axon number and axonal diameter) 12th week. RESULTS CMAPs amplitudes were 11.6 ± 4.7 mV and 1.4 ± 1.3 mV in gastrocnemius and interdigital muscles in TeTx group (5.8 ± 2.4 mV and 0.2 ± 0.1 mV, P < 0.05). Climbing degrees were significantly different (61.6 ± 1.7 vs. 38.3 ± 2.6, P < 0.05). Total axon numbers were higher (1341.1 ± 57.3 vs. 877.5 ± 34.9, P < 0.05) and the mean axon diameter was smaller (4.2 ± 2.1 vs. 2.5 ± 1.9, P < 0.05) in the TeTx group. CONCLUSION This preliminary study firstly demonstrated the effectiveness of TeTx on nerve repair in experimental sciatic rat model based on functional, electromyographic and histological parameters.
Collapse
Affiliation(s)
- Huseyin Gunay
- Department of Orthopaedic Surgery, Medical Faculty of Ege University, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
22
|
D'Antonio M, Musner N, Scapin C, Ungaro D, Del Carro U, Ron D, Feltri ML, Wrabetz L. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. ACTA ACUST UNITED AC 2013; 210:821-38. [PMID: 23547100 PMCID: PMC3620355 DOI: 10.1084/jem.20122005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reduction of the CHOP target Gadd34 restores motor function in P0S63del mice with demyelinating neuropathy. P0 glycoprotein is an abundant product of terminal differentiation in myelinating Schwann cells. The mutant P0S63del causes Charcot-Marie-Tooth 1B neuropathy in humans, and a very similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum of Schwann cells, where it promotes unfolded protein stress and elicits an unfolded protein response (UPR) associated with translational attenuation. Ablation of Chop, a UPR mediator, from S63del mice completely rescues their motor deficit and reduces active demyelination by half. Here, we show that Gadd34 is a detrimental effector of CHOP that reactivates translation too aggressively in myelinating Schwann cells. Genetic or pharmacological limitation of Gadd34 function moderates translational reactivation, improves myelination in S63del nerves, and reduces accumulation of P0S63del in the ER. Resetting translational homeostasis may provide a therapeutic strategy in tissues impaired by misfolded proteins that are synthesized during terminal differentiation.
Collapse
Affiliation(s)
- Maurizio D'Antonio
- Division of Genetics and Cell Biology and 2 Division of Neuroscience, San Raffaele Scientific Institute, DIBIT, 20132 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Stem cell transplantation in noise induced hearing loss. Int J Pediatr Otorhinolaryngol 2013; 77:469-72. [PMID: 23333285 DOI: 10.1016/j.ijporl.2012.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate efficacy of bone marrow stem cell implantation in rehabilitation of noise induced hearing loss in rats. MATERIALS AND METHODS Hearing loss was induced in male rats by a continuous wide-band noise (8-16 kHz/120 dB/120 min). Ten microliter of stem cell containing solution was injected by a Hamilton syringe with 30 G needle through the round window membrane. Hearing status was examined by, distortion product otoacoustic emissions using DP-OAE. Animals were studied in 4 different groups: (1) Normal hearing animals, undergoing sham surgery (no injection done, only round window membrane ruptured and sealed). (2) Deaf animals, undergoing sham surgery. (3) Deaf animals undergoing surgery and injection of solvent (artificial perilymph). (4) Deaf animals undergoing surgery and injection of artificial perilymph containing BMSCs. RESULTS DP-Gram in rat with normal hearing undergoing sham surgery show that procedure has neither negative impact on normal cochlear nor on deaf cochleas. No significant difference (p=0.25) between ears excludes artificial perilymph as a confounding factor. There is no significant difference between ears in animals receiving BMSCs. CONCLUSIONS Implanted cells with normal histologic structures have no physiologic function and hearing rehabilitation. Further studies by monitoring the survival of these cells with histologic and appropriate biomarkers will help to investigate differentiation process of these cells.
Collapse
|
24
|
Li M, Guo W, Zhang P, Li H, Gu X, Yao D. Signal flow and pathways in response to early Wallerian degeneration after rat sciatic nerve injury. Neurosci Lett 2013; 536:56-63. [DOI: 10.1016/j.neulet.2013.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
25
|
Martin M, Benzina O, Szabo V, Végh AG, Lucas O, Cloitre T, Scamps F, Gergely C. Morphology and nanomechanics of sensory neurons growth cones following peripheral nerve injury. PLoS One 2013; 8:e56286. [PMID: 23418549 PMCID: PMC3571950 DOI: 10.1371/journal.pone.0056286] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/12/2013] [Indexed: 11/18/2022] Open
Abstract
A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins.
Collapse
Affiliation(s)
- Marta Martin
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
- CNRS, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
| | - Ouafa Benzina
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
- CNRS, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
- Laboratoire LVBPPE- Centre de Biotechnologie de Sfax- BP 1177, Sfax, Tunisie
| | - Vivien Szabo
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
- CNRS, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
| | - Attila-Gergely Végh
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Olivier Lucas
- INSERM U 1051 INM-Hôpital St Eloi, Montpellier, France
| | - Thierry Cloitre
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
- CNRS, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
| | - Frédérique Scamps
- INSERM U 1051 INM-Hôpital St Eloi, Montpellier, France
- * E-mail: (FS); (CG)
| | - Csilla Gergely
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
- CNRS, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
- * E-mail: (FS); (CG)
| |
Collapse
|
26
|
Hoang NS, Sar C, Valmier J, Sieso V, Scamps F. Electro-acupuncture on functional peripheral nerve regeneration in mice: a behavioural study. Altern Ther Health Med 2012; 12:141. [PMID: 22937957 PMCID: PMC3479081 DOI: 10.1186/1472-6882-12-141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/08/2012] [Indexed: 12/13/2022]
Abstract
Background The improvement of axonal regeneration is a major objective in the treatment of peripheral nerve injuries. The aim of this study was to evaluate the effects of electro-acupuncture on the functional recovery of sensorimotor responses following left sciatic nerve crush in mice. Methods Sciatic nerve crush was performed on seven week old female mice. Following the injury, the control group was untreated while the experimental group received an electro-acupuncture application to the injured limb under isoflurane anesthesia at acupoints GB 30 and GB 34. Mechanical and heat sensitivity tests were performed to evaluate sensory recovery. Gait analysis was performed to assess sensorimotor recovery. Results Our results show that normal sensory recovery is achieved within five to six weeks with a two-week period of pain preceding the recovery to normal sensitivity levels. While electro-acupuncture did not accelerate sensory recovery, it did alleviate pain-related behaviour but only when applied during this period. Application before the development of painful symptoms did not prevent their occurrence. The analysis of gait in relation to the sensory tests suggests that the electro-acupuncture specifically improved motor recovery. Conclusions This study demonstrates that electro-acupuncture exerts a positive influence on motor recovery and is efficient in the treatment of pain symptoms that develop during target re-innervation.
Collapse
|
27
|
Hoxhaj G, Najafov A, Toth R, Campbell DG, Prescott AR, MacKintosh C. ZNRF2 is released from membranes by growth factors and, together with ZNRF1, regulates the Na+/K+ATPase. J Cell Sci 2012; 125:4662-75. [PMID: 22797923 DOI: 10.1242/jcs.110296] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Here, we describe a phosphorylation-based reverse myristoyl switch for mammalian ZNRF2, and show that this E3 ubiquitin ligase and its sister protein ZNRF1 regulate the Na(+)/K(+) pump (Na(+)/K(+)ATPase). N-myristoylation localizes ZNRF1 and ZNRF2 to intracellular membranes and enhances their activity. However, when ZNRF2 is phosphorylated in response to agonists including insulin and growth factors, it binds to 14-3-3 and is released into the cytosol. On membranes, ZNRF1 and ZNRF2 interact with the Na(+)/K(+)ATPase α1 subunit via their UBZ domains, while their RING domains interact with E2 proteins, predominantly Ubc13 that, together with Uev1a, mediates formation of Lys63-ubiquitin linkages. ZNRF1 and ZNRF2 can ubiquitylate the cytoplasmic loop encompassing the nucleotide-binding and phosphorylation regions of the Na(+)/K(+)ATPase α1 subunit. Ouabain, a Na(+)/K(+)ATPase inhibitor and therapeutic cardiac glycoside, decreases ZNRF1 protein levels, whereas knockdown of ZNRF2 inhibits the ouabain-induced decrease of cell surface and total Na(+)/K(+)ATPase α1 levels. Thus, ZNRF1 and ZNRF2 are new players in regulation of the ubiquitous Na(+)/K(+)ATPase that is tuned to changing demands in many physiological contexts.
Collapse
Affiliation(s)
- Gerta Hoxhaj
- MRC Protein Phosphorylation Unit, James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Boudes M, Scamps F. Calcium-activated chloride current expression in axotomized sensory neurons: what for? Front Mol Neurosci 2012; 5:35. [PMID: 22461766 PMCID: PMC3309971 DOI: 10.3389/fnmol.2012.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/02/2012] [Indexed: 11/13/2022] Open
Abstract
Calcium-activated chloride currents (CaCCs) are activated by an increase in intracellular calcium concentration. Peripheral nerve injury induces the expression of CaCCs in a subset of adult sensory neurons in primary culture including mechano- and proprioceptors, though not nociceptors. Functional screenings of potential candidate genes established that Best1 is a molecular determinant for CaCC expression among axotomized sensory neurons, while Tmem16a is acutely activated by inflammatory mediators in nociceptors. In nociceptors, such CaCCs are preferentially activated under receptor-induced calcium mobilization contributing to cell excitability and pain. In axotomized mechano- and proprioceptors, CaCC activation does not promote electrical activity and prevents firing, a finding consistent with electrical silencing for growth competence of adult sensory neurons. In favor of a role in the process of neurite growth, CaCC expression is temporally correlated to neurons displaying a regenerative mode of growth. This perspective focuses on the molecular identity and role of CaCC in axotomized sensory neurons and the future directions to decipher the cellular mechanisms regulating CaCC during neurite (re)growth.
Collapse
Affiliation(s)
- Mathieu Boudes
- INSERM U-1051, Sensory Diseases, Neuro-plasticity and Therapy, Institut des Neurosciences de Montpellier Montpellier, France
| | | |
Collapse
|
29
|
Caltubin, a novel molluscan tubulin-interacting protein, promotes axonal growth and attenuates axonal degeneration of rodent neurons. J Neurosci 2011; 31:15231-44. [PMID: 22031869 DOI: 10.1523/jneurosci.2516-11.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axotomized central neurons of most invertebrate species demonstrate a strong regenerative capacity, and as such may provide valuable molecular insights and new tools to promote axonal regeneration in injured mammalian neurons. In this study, we identified a novel molluscan protein, caltubin, ubiquitously expressed in central neurons of Lymnaea stagnalis and locally synthesized in regenerating neurites. Reduction of caltubin levels by gene silencing inhibits the outgrowth and regenerative ability of adult Lymnaea neurons and decreases local α- and β-tubulin levels in neurites. Caltubin binds to α- and/or β-tubulin in both Lymnaea and rodent neurons. Expression of caltubin in PC12 cells and mouse cortical neurons promotes NGF-induced axonal outgrowth and attenuates axonal retraction after injury. This is the first study illustrating that a xenoprotein can enhance outgrowth and prevent degeneration of injured mammalian neurons. These results may open up new avenues in molecular repair strategies through the insertion of molecular components of invertebrate regenerative pathways into mammalian neurons.
Collapse
|
30
|
Vu TH, Coccaro EF, Eichler EE, Girirajan S. Genomic architecture of aggression: rare copy number variants in intermittent explosive disorder. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:808-16. [PMID: 21812102 PMCID: PMC3168586 DOI: 10.1002/ajmg.b.31225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/11/2011] [Indexed: 12/29/2022]
Abstract
Copy number variants (CNVs) are known to be associated with complex neuropsychiatric disorders (e.g., schizophrenia and autism) but have not been explored in the isolated features of aggressive behaviors such as intermittent explosive disorder (IED). IED is characterized by recurrent episodes of aggression in which individuals act impulsively and grossly out of proportion from the involved stressors. Previous studies have identified genetic variants in the serotonergic pathway that play a role in susceptibility to this behavior, but additional contributors have not been identified. Therefore, to further delineate possible genetic influences, we investigated CNVs in individuals diagnosed with IED and/or personality disorder (PD). We carried out array comparative genomic hybridization on 113 samples of individuals with isolated features of IED (n = 90) or PD (n = 23). We detected a recurrent 1.35-Mbp deletion on chromosome 1q21.1 in one IED subject and a novel ∼350-kbp deletion on chromosome 16q22.3q23.1 in another IED subject. While five recent reports have suggested the involvement of an ∼1.6-Mbp 15q13.3 deletion in individuals with behavioral problems, particularly aggression, we report an absence of such events in our study of individuals specifically selected for aggression. We did, however, detect a smaller ∼430-kbp 15q13.3 duplication containing CHRNA7 in one individual with PD. While these results suggest a possible role for rare CNVs in identifying genes underlying IED or PD, further studies on a large number of well-characterized individuals are necessary.
Collapse
Affiliation(s)
- Tiffany H Vu
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, USA.
| | - Emil F Coccaro
- Department of Psychiatry and Behavioral Neuroscience, University of ChicagoChicago, Illinois
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of MedicineSeattle, Washington,Howard Hughes Medical Institute, University of Washington School of MedicineSeattle, Washington
| | - Santhosh Girirajan
- Department of Genome Sciences, University of Washington School of MedicineSeattle, Washington,*Correspondence to: Santhosh Girirajan, MBBS, Ph.D., Department of Genome Sciences, University of Washington, Foege S-413A, Box 355065, 3720 15th Ave NE, Seattle, WA 98195. E-mail:
| |
Collapse
|
31
|
Viader A, Chang LW, Fahrner T, Nagarajan R, Milbrandt J. MicroRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J Neurosci 2011; 31:17358-69. [PMID: 22131398 PMCID: PMC3388739 DOI: 10.1523/jneurosci.3931-11.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/05/2011] [Accepted: 10/09/2011] [Indexed: 12/13/2022] Open
Abstract
In the peripheral nervous system, Schwann cells (SCs) surrounding damaged axons undergo an injury response that is driven by an intricate transcriptional program and is critical for nerve regeneration. To examine whether these injury-induced changes in SCs are also regulated posttranscriptionally by miRNAs, we performed miRNA expression profiling of mouse sciatic nerve distal segment after crush injury. We also characterized the SC injury response in mice containing SCs with disrupted miRNA processing due to loss of Dicer. We identified 87 miRNAs that were expressed in mouse adult peripheral nerve, 48 of which were dynamically regulated after nerve injury. Most of these injury-regulated SC miRNAs were computationally predicted to inhibit drivers of SC dedifferentiation/proliferation and thereby re-enforce the transcriptional program driving SC remyelination. SCs deficient in miRNAs manifested a delay in the transition between the distinct differentiation states required to support peripheral nerve regeneration. Among the miRNAs expressed in adult mouse SCs, miR-34a and miR-140 were identified as functional regulators of SC dedifferentiation/proliferation and remyelination, respectively. We found that miR-34a interacted with positive regulators of dedifferentiation and proliferation such as Notch1 and Ccnd1 to control cell cycle dynamics in SCs. miR-140 targeted the transcription factor Egr2, a master regulator of myelination, and modulated myelination in DRG/SC cocultures. Together, these results demonstrate that SC miRNAs are important modulators of the SC regenerative response after nerve damage.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Milbrandt
- Department of Genetics
- Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
32
|
Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 2011; 6:e23423. [PMID: 21853131 PMCID: PMC3154476 DOI: 10.1371/journal.pone.0023423] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/17/2011] [Indexed: 12/02/2022] Open
Abstract
Following injury, dorsal root ganglion (DRG) neurons undergo transcriptional changes so as to adopt phenotypic changes that promote cell survival and axonal regeneration. Here we used a microarray approach to profile changes in a population of small noncoding RNAs known as microRNAs (miRNAs) in the L4 and L5 DRG following sciatic nerve transection. Results showed that 20 miRNA transcripts displayed a significant change in expression levels, with 8 miRNAs transcripts being altered by more than 1.5-fold. Using quantitative reverse transcription PCR, we demonstrated that one of these miRNAs, miR-21, was upregulated by 7-fold in the DRG at 7 days post-axotomy. In dissociated adult rat DRG neurons lentiviral vector-mediated overexpression of miR-21 promoted neurite outgrowth on a reduced laminin substrate. miR-21 directly downregulated expression of Sprouty2 protein, as confirmed by Western blot analysis and 3' untranslated region (UTR) luciferase assays. Our data show that miR-21 is an axotomy-induced miRNA that enhances axon growth, and suggest that miRNAs are important players in regulating growth pathways following peripheral nerve injury.
Collapse
Affiliation(s)
- Iain T. Strickland
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Louise Richards
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Fiona E. Holmes
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - David Wynick
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - James B. Uney
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Liang-Fong Wong
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
33
|
Abstract
Rapid saltatory nerve conduction is facilitated by myelin structure, which is composed of Schwann cells in the peripheral nervous system. Schwann cells drastically change their phenotype following peripheral nerve injury. These phenotypic changes are required for efficient degeneration/regeneration. We previously identified ZNRF1 as an E3 ubiquitin ligase containing a RING finger motif, whose expression is upregulated in the Schwann cells following nerve injury. This suggested that posttranscriptional regulation of protein expression in Schwann cells may be involved in their phenotypic changes during nerve degeneration/regeneration. Here we report the identification of glutamine synthetase (GS), an enzyme that synthesizes glutamine using glutamate and ammonia, as a substrate for E3 activity of ZNRF1 in Schwann cells. GS is known to be highly expressed in differentiated Schwann cells, but its functional significance has remained unclear. We found that during nerve degeneration/regeneration, GS expression is controlled mostly by ZNRF1-dependent proteasomal degradation. We also found that Schwann cells increase oxidative stress upon initiation of nerve degeneration, which promotes carbonylation and subsequent degradation of GS. Surprisingly, we discovered that GS expression regulates Schwann cell differentiation; i.e., increased GS expression promotes myelination via its enzymatic activity. Among the substrates and products of GS, increased glutamate concentration inhibited myelination and yet promoted Schwann cell proliferation by activating metabotropic glutamate receptor signaling. This would suggest that GS may exert its effect on Schwann cell differentiation by regulating glutamate concentration. These results indicate that the ZNRF1-GS system may play an important role in correlating Schwann cell metabolism with its differentiation.
Collapse
|
34
|
Sunico CR, Moreno-López B. Evidence for endothelial nitric oxide as a negative regulator of Schwann cell dedifferentiation after peripheral nerve injury. Neurosci Lett 2010; 471:119-24. [DOI: 10.1016/j.neulet.2010.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/09/2010] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
|
35
|
Yoshida K, Watanabe M, Hatakeyama S. ZNRF1 interacts with tubulin and regulates cell morphogenesis. Biochem Biophys Res Commun 2009; 389:506-11. [PMID: 19737534 DOI: 10.1016/j.bbrc.2009.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/29/2022]
Abstract
The ubiquitin-proteasome system has been implicated in neuronal degeneration and regeneration. We demonstrated that overexpression of ZNRF1, which has been identified as a crucial molecule in nerve regeneration, causes morphological changes such as neurite-like elongation. Molecular dissections showed that both the RING finger domain and zinc finger domain are required for morphological changes. Furthermore, we identified beta-tubulin type 2 (Tubb2) as a ZNRF1-binding protein by yeast two-hybrid screening. In vivo binding assay showed that ZNRF1 interacts with Tubb2 and immunofluorescent staining suggests that ZNRF1 is colocalized with Tubb2. These results suggest that ZNRF1 mediates regulation of neuritogenesis via interaction with tubulin.
Collapse
Affiliation(s)
- Koichi Yoshida
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | | | | |
Collapse
|
36
|
Dubois F, Vandermoere F, Gernez A, Murphy J, Toth R, Chen S, Geraghty KM, Morrice NA, MacKintosh C. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling. Mol Cell Proteomics 2009; 8:2487-99. [PMID: 19648646 PMCID: PMC2773716 DOI: 10.1074/mcp.m800544-mcp200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.
Collapse
Affiliation(s)
- Fanny Dubois
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jessen KR, Mirsky R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 2008; 56:1552-1565. [PMID: 18803323 DOI: 10.1002/glia.20761] [Citation(s) in RCA: 389] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dedifferentiation of myelinating Schwann cells is a key feature of nerve injury and demyelinating neuropathies. We review recent evidence that this dedifferentiation depends on activation of specific intracellular signaling molecules that drive the dedifferentiation program. In particular, we discuss the idea that Schwann cells contain negative transcriptional regulators of myelination that functionally complement positive regulators such as Krox-20, and that myelination is therefore determined by a balance between two opposing transcriptional programs. Negative transcriptional regulators should be expressed prior to myelination, downregulated as myelination starts but reactivated as Schwann cells dedifferentiate following injury. The clearest evidence for a factor that works in this way relates to c-Jun, while other factors may include Notch, Sox-2, Pax-3, Id2, Krox-24, and Egr-3. The role of cell-cell signals such as neuregulin-1 and cytoplasmic signaling pathways such as the extracellular-related kinase (ERK)1/2 pathway in promoting dedifferentiation of myelinating cells is also discussed. We also review evidence that neurotrophin 3 (NT3), purinergic signaling, and nitric oxide synthase are involved in suppressing myelination. The realization that myelination is subject to negative as well as positive controls contributes significantly to the understanding of Schwann cell plasticity. Negative regulators are likely to have a major role during injury, because they promote the transformation of damaged nerves to an environment that fosters neuronal survival and axonal regrowth. In neuropathies, however, activation of these pathways is likely to be harmful because they may be key contributors to demyelination, a situation which would open new routes for clinical intervention.
Collapse
Affiliation(s)
- Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
38
|
Mirsky R, Woodhoo A, Parkinson DB, Arthur-Farraj P, Bhaskaran A, Jessen KR. Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst 2008; 13:122-35. [PMID: 18601657 DOI: 10.1111/j.1529-8027.2008.00168.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immature Schwann cells found in perinatal rodent nerves are generated from Schwann cell precursors (SCPs) that originate from the neural crest. Immature Schwann cells generate the myelinating and non-myelinating Schwann cells of adult nerves. When axons degenerate following injury, Schwann cells demyelinate, proliferate and dedifferentiate to assume a molecular phenotype similar to that of immature cells, a process essential for successful nerve regeneration. Increasing evidence indicates that Schwann cell dedifferentiation involves activation of specific receptors, intracellular signalling pathways and transcription factors in a manner analogous to myelination. We have investigated the roles of Notch and the transcription factor c-Jun in development and after nerve transection. In vivo, Notch signalling regulates the transition from SCP to Schwann cell, times Schwann cell generation, controls Schwann cell proliferation and acts as a brake on myelination. Notch is elevated in injured nerves where it accelerates the rate of dedifferentiation. Likewise, the transcription factor c-Jun is required for Schwann cell proliferation and death and is down-regulated by Krox-20 on myelination. Forced expression of c-Jun in Schwann cells prevents myelination, and in injured nerves, c-Jun is required for appropriate dedifferentiation, the re-emergence of the immature Schwann cell state and nerve regeneration. Thus, both Notch and c-Jun are negative regulators of myelination. The growing realisation that myelination is subject to negative as well as positive controls and progress in molecular identification of negative regulators is likely to impact on our understanding of demyelinating disease and mechanisms that control nerve repair.
Collapse
Affiliation(s)
- Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Fricker B, Muller A, René F. Evaluation Tools and Animal Models of Peripheral Neuropathies. NEURODEGENER DIS 2008; 5:72-108. [DOI: 10.1159/000112835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/12/2007] [Indexed: 11/19/2022] Open
|
40
|
Pieraut S, Laurent-Matha V, Sar C, Hubert T, Méchaly I, Hilaire C, Mersel M, Delpire E, Valmier J, Scamps F. NKCC1 phosphorylation stimulates neurite growth of injured adult sensory neurons. J Neurosci 2007; 27:6751-9. [PMID: 17581962 PMCID: PMC6672700 DOI: 10.1523/jneurosci.1337-07.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerve section promotes regenerative, elongated neuritic growth of adult sensory neurons. Although the role of chloride homeostasis, through the regulation of ionotropic GABA receptors, in the growth status of immature neurons in the CNS begins to emerge, nothing is known of its role in the regenerative growth of injured adult neurons. To analyze the intracellular Cl- variation after a sciatic nerve section in vivo, gramicidin perforated-patch recordings were used to study muscimol-induced currents in mice dorsal root ganglion neurons isolated from control and axotomized neurons. We show that the reversal potential of muscimol-induced current, E(GABA-A), was shifted toward depolarized potentials in axotomized neurons. This was attributable to Cl- influx because removal of extracellular Cl- prevented this shift. Application of bumetanide, an inhibitor of NKCC1 cotransporter and E(GABA-A) recordings in sensory neurons from NKCC1-/- mice, identified NKCC1 as being responsible for the increase in intracellular Cl- in axotomized neurons. In addition, we demonstrate with a phospho-NKCC1 antibody that nerve injury induces an increase in the phosphorylated form of NKCC1 in dorsal root ganglia that could account for intracellular Cl- accumulation. Time-lapse recordings of the neuritic growth of axotomized neurons show a faster growth velocity compared with control. Bumetanide, the intrathecal injection of NKCC1 small interfering RNA, and the use of NKCC1-/- mice demonstrated that NKCC1 is involved in determining the velocity of elongated growth of axotomized neurons. Our results clearly show that NKCC1-induced increase in intracellular chloride concentration is a major event accompanying peripheral nerve regeneration.
Collapse
Affiliation(s)
- Simon Pieraut
- Inserm, Unité 583, F-34000 Montpellier, France
- Université Montpellier II, F-34000 Montpellier, France
| | - Valérie Laurent-Matha
- Inserm, Unité 583, F-34000 Montpellier, France
- Université Montpellier II, F-34000 Montpellier, France
| | | | | | - Ilana Méchaly
- Inserm, Unité 583, F-34000 Montpellier, France
- Université Montpellier II, F-34000 Montpellier, France
| | | | | | - Eric Delpire
- Vanderbilt University, Nashville, Tennessee 37235
| | - Jean Valmier
- Inserm, Unité 583, F-34000 Montpellier, France
- Université Montpellier II, F-34000 Montpellier, France
| | | |
Collapse
|
41
|
Kuo LT, Groves MJ, Scaravilli F, Sugden D, An SF. Neurotrophin-3 administration alters neurotrophin, neurotrophin receptor and nestin mRNA expression in rat dorsal root ganglia following axotomy. Neuroscience 2007; 147:491-507. [PMID: 17532148 DOI: 10.1016/j.neuroscience.2007.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 02/02/2023]
Abstract
In the months following transection of adult rat peripheral nerve some sensory neurons undergo apoptosis. Two weeks after sciatic nerve transection some neurons in the L4 and L5 dorsal root ganglia begin to show immunoreactivity for nestin, a filament protein expressed by neuronal precursors and immature neurons, which is stimulated by neurotrophin-3 (NT-3) administration. The aim of this study was to examine whether NT-3 administration could be compensating for decreased production of neurotrophins or their receptors after axotomy, and to determine the effect on nestin synthesis. The levels of mRNA in the ipsilateral and contralateral L4 and L5 dorsal root ganglia were analyzed using real-time polymerase chain reaction, 1 day, 1, 2 and 4 weeks after unilateral sciatic nerve transection and NT-3 or vehicle administration via s.c. micro-osmotic pumps. In situ hybridization was used to identify which cells and neurons expressed mRNAs of interest, and the expression of full-length trkC and p75NTR protein was investigated using immunohistochemistry. Systemic NT-3 treatment increased the expression of brain-derived neurotrophic factor, nestin, trkA, trkB and trkC mRNA in ipsilateral ganglia compared with vehicle-treated animals. Some satellite cells surrounding neurons expressed trkA and trkC mRNA and trkC immunoreactivity. NT-3 administration did not affect neurotrophin mRNA levels in the contralateral ganglia, but decreased the expression of trkA mRNA and increased the expression of trkB mRNA and p75NTR mRNA and protein. These data suggest that systemically administered NT-3 may counteract the decrease, or even increase, neurotrophin responsiveness in both ipsi- and contralateral ganglia after nerve injury.
Collapse
MESH Headings
- Animals
- Axotomy
- Brain-Derived Neurotrophic Factor/biosynthesis
- DNA Primers
- Functional Laterality/physiology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Intermediate Filament Proteins/biosynthesis
- Male
- Nerve Growth Factors/biosynthesis
- Nerve Tissue Proteins/biosynthesis
- Nestin
- Neurotrophin 3/administration & dosage
- Neurotrophin 3/pharmacology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptor, Nerve Growth Factor/biosynthesis
- Receptor, trkA/biosynthesis
- Receptor, trkB/biosynthesis
- Receptor, trkC/biosynthesis
- Receptors, Nerve Growth Factor/biosynthesis
- Sciatic Nerve/injuries
Collapse
Affiliation(s)
- L-T Kuo
- Department of Molecular Neuroscience, Division of Neuropathology, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | | | | | |
Collapse
|
42
|
Komori N, Takemori N, Kim HK, Singh A, Hwang SH, Foreman RD, Chung K, Chung JM, Matsumoto H. Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury. Physiol Genomics 2007; 29:215-30. [PMID: 17213366 DOI: 10.1152/physiolgenomics.00255.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Peripheral nerve injury is often followed by the development of severe neuropathic pain. Nerve degeneration accompanied by inflammatory mediators is thought to play a role in generation of neuropathic pain. Neuronal cell death follows axonal degeneration, devastating a vast number of molecules in injured neurons and the neighboring cells. Because we have little understanding of the cellular and molecular mechanisms underlying neuronal cell death triggered by nerve injury, we conducted a proteomics study of rat 4th and 5th lumbar (L4 and L5) dorsal root ganglion (DRG) after L5 spinal nerve ligation. DRG proteins were displayed on two-dimensional gels and analyzed through quantitative densitometry, statistical validation of the quantitative data, and peptide mass fingerprinting for protein identification. Among approximately 1,300 protein spots detected on each gel, we discovered 67 proteins that were tightly regulated by nerve ligation. We find that the injury to primary sensory neurons turned on multiple cellular mechanisms critical for the structural and functional integrity of neurons and for the defense against oxidative damage. Our data indicate that the regulation of metabolic enzymes was carefully orchestrated to meet the altered energy requirement of the DRG cells. Our data also demonstrate that ligation of the L5 spinal nerve led to the upregulation in the L4 DRG of the proteins that are highly expressed in embryonic sensory neurons. To understand the molecular mechanisms underlying neuropathic pain, we need to comprehend such dynamic aspect of protein modulations that follow nerve injury.
Collapse
Affiliation(s)
- Naoka Komori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liang G, Cline GW, Macica CM. IGF-1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination. Glia 2007; 55:632-41. [PMID: 17299765 DOI: 10.1002/glia.20496] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schwann cell (SC) differentiation to the myelinating phenotype is characterized by the elaboration of a lipid-rich membrane and the expression of myelin-specific proteins. Insulin-like growth factor-1 (IGF-1) has been identified as a growth factor that stimulates the early events of myelination in SCs that signals via the PI3K/Akt pathway. Given the role of IGF-1 in promoting myelination, we performed studies to determine if the fatty acid biosynthetic pathway was a target of IGF-1 signaling in the formation of myelin membrane in dorsal root ganglion neuron/Schwann cell (DRG/SC) cocultures. We report that the fatty acid profile of lipid extracts of cocultures treated with IGF-1 match that reported for native myelin membrane by electrospray mass spectroscopy analysis. We also demonstrate de novo fatty acid biosynthesis in response to IGF-1 treatment in DRG/SC cocultures metabolically labeled with (13)C-acetate as a carbon source for fatty acid synthesis. Consistent with this finding, Western blot analysis of lysates from both cocultures and purified SCs reveal that IGF-1 stimulates two key fatty acid synthesizing enzymes. Additionally, we show that stimulation of fatty acid synthesizing enzymes is mediated by the PI3K/Akt signaling pathway. We also show that the fatty acid synthesizing enzymes and associated signaling pathways are elevated during the period of myelin membrane formation in sciatic nerve. Collectively, these findings demonstrate that IGF-1 plays an important regulatory function during myelin membrane formation.
Collapse
Affiliation(s)
- Guoying Liang
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | |
Collapse
|
44
|
Ten Asbroek ALMA, Van Ruissen F, Ruijter JM, Baas F. Comparison of Schwann cell and sciatic nerve transcriptomes indicates that mouse is a valid model for the human peripheral nervous system. J Neurosci Res 2006; 84:542-52. [PMID: 16786575 DOI: 10.1002/jnr.20966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High-throughput gene expression analyses of murine models of the peripheral nervous system (PNS), and its cellular components, have yielded enormous amounts of expression data of the PNS in various conditions. These data provided clues for future research directions to further decipher this complex organ in relation to acquired and inherited PNS diseases. Various studies addressing the validity of mouse models for human conditions in other tissues and cell types have indicated that in many cases the mouse model only poorly represents the human situation. To determine how well the mouse can serve as model to study the biological processes occurring in the PNS, we compared the gene expression profiles that we generated for mouse and human sciatic nerve and cultured Schwann cells derived thereof. A two-way analysis based on the differentially expressed genes between the sciatic nerve and the cultured Schwann cell, and which takes into account the differential expression between mouse and man, indicates that the human PNS is well represented by that of the mouse in terms of the "biological processes" ontology.
Collapse
|
45
|
Sasaki Y, Araki T, Milbrandt J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci 2006; 26:8484-91. [PMID: 16914673 PMCID: PMC6674352 DOI: 10.1523/jneurosci.2320-06.2006] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.
Collapse
|
46
|
Plans V, Scheper J, Soler M, Loukili N, Okano Y, Thomson TM. The RING finger protein RNF8 recruits UBC13 for lysine 63-based self polyubiquitylation. J Cell Biochem 2006; 97:572-82. [PMID: 16215985 DOI: 10.1002/jcb.20587] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The heterodimeric ubiquitin conjugating enzyme (E2) UBC13-UEV mediates polyubiquitylation through lysine 63 of ubiquitin (K63), rather than lysine 48 (K48). This modification does not target proteins for proteasome-dependent degradation. Searching for potential regulators of this variant polyubiquitylation we have identified four proteins, namely RNF8, KIA00675, KF1, and ZNRF2, that interact with UBC13 through their RING finger domains. These domains can recruit, in addition to UBC13, other E2s that mediate canonical (K48) polyubiquitylation. None of these RING finger proteins were known previously to recruit UBC13. For one of these proteins, RNF8, we show its activity as a ubiquitin ligase that elongates chains through either K48 or K63 of ubiquitin, and its nuclear co-localization with UBC13. Thus, our screening reveals new potential regulators of non-canonical polyubiquitylation.
Collapse
Affiliation(s)
- Vanessa Plans
- Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Verpoorten N, Verhoeven K, Weckx S, Jacobs A, Serneels S, Del Favero J, Ceuterick C, Van Bockstaele DR, Berneman ZN, Van den Bosch L, Robberecht W, Nobbio L, Schenone A, Dessaud E, deLapeyrière O, Huylebroeck D, Zwijsen A, De Jonghe P, Timmerman V. Synaptopodin and 4 novel genes identified in primary sensory neurons. Mol Cell Neurosci 2005; 30:316-25. [PMID: 16139508 DOI: 10.1016/j.mcn.2005.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 06/14/2005] [Accepted: 07/08/2005] [Indexed: 11/20/2022] Open
Abstract
We performed differential gene expression profiling in the peripheral nervous system by comparing the transcriptome of sensory neurons with the transcriptome of lower motor neurons. Using suppression subtractive cDNA hybridization, we identified 5 anonymous transcripts with a predominant expression in sensory neurons. We determined the gene structures and predicted the functional protein domains. The 4930579P15Rik gene encodes for a novel inhibitor of protein phosphatase-1 and 9030217H17Rik was found to be the mouse gene synaptopodin. We performed in situ hybridization for all genes in mouse embryos, and found expression predominantly in the primary class of sensory neurons. Expression of 4930579P15Rik and synaptopodin was restricted to craniospinal sensory ganglia. Neither synaptopodin, nor any known family member of 4930579P15Rik, has ever been described in sensory neurons. The identification of protein domains and expression patterns allows further functional analysis of these novel genes in relation to the development and biology of sensory neurons.
Collapse
Affiliation(s)
- Nathalie Verpoorten
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yao J, Ren X, Ireland JJ, Coussens PM, Smith TPL, Smith GW. Generation of a bovine oocyte cDNA library and microarray: resources for identification of genes important for follicular development and early embryogenesis. Physiol Genomics 2005; 19:84-92. [PMID: 15375196 DOI: 10.1152/physiolgenomics.00123.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The oocyte is a key regulator of ovarian folliculogenesis and early embryonic development. However, the composition of the oocyte transcriptome and identities and functions of key oocyte-specific genes involved in the above processes are relatively unknown. Using a PCR-based cDNA amplification method (SMART technology), we constructed a bovine oocyte cDNA library. Analysis of 230 expressed sequence tags (ESTs) from this library identified 102 unique sequences. Although some correspond to housekeeping genes (e.g., ribosomal protein L15) and some represent genes previously known to be expressed in oocytes and other tissues, most encode for genes whose expression in mammalian oocytes has not been reported previously (e.g., cocaine- and amphetamine-regulated transcript) or genes of unknown function. Sixteen did not show significant sequence similarity to any entries in the GenBank database and were classified as novel. Using over 2,000 unsequenced, randomly selected cDNA clones from the library, we constructed an oocyte microarray and performed experiments to identify genes preferentially expressed in fetal ovary (an enriched source of oocytes) relative to somatic tissues. Eleven clones were identified by microarray analysis with consistently higher expression in fetal ovaries (collected from animals at days 210-260 of gestation) compared with spleen and liver. DNA sequence analysis of these clones revealed that two correspond to JY-1, a novel bovine oocyte-specific gene. The remaining nine clones represent five identified genes and one additional completely novel gene. Increased abundance of mRNA in fetal ovary for five of the six genes identified was confirmed by real-time PCR. Results demonstrate the potential utility of these unique resources for identification of oocyte-expressed genes potentially important for reproductive function.
Collapse
Affiliation(s)
- Jianbo Yao
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, West Virginia 26506-6108, USA.
| | | | | | | | | | | |
Collapse
|
49
|
ten Asbroek ALMA, Verhamme C, van Groenigen M, Wolterman R, de Kok-Nazaruk MM, Baas F. Expression profiling of sciatic nerve in a Charcot-Marie-Tooth disease type 1a mouse model. J Neurosci Res 2005; 79:825-35. [PMID: 15672449 DOI: 10.1002/jnr.20406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Expression profiling was performed on sciatic nerve of normal mice and of transgenic mice overexpressing the peripheral myelin protein 22 kDa (PMP22). These mice represent a model for the hereditary peripheral neuropathy Charcot-Marie Tooth type 1A. Comparison of the profiles reveals that the proteasomal degradation pathway and various signaling mechanisms are up-regulated in the diseased nerve. The down-regulated processes represent cell shape and adhesion as well as cellular activity and metabolism. In addition, we found that the most significantly up-regulated differences could not be mapped on known transcripts and thus might represent not identified transcripts. Our data will be helpful to direct future research aimed at deciphering the molecular pathogenesis of the most prevalent hereditary peripheral neuropathy.
Collapse
|
50
|
Ahmed MR, Basha SH, Gopinath D, Muthusamy R, Jayakumar R. Initial upregulation of growth factors and inflammatory mediators during nerve regeneration in the presence of cell adhesive peptide-incorporated collagen tubes. J Peripher Nerv Syst 2005; 10:17-30. [PMID: 15703015 DOI: 10.1111/j.1085-9489.2005.10105.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurotrophic factors play an important modulatory role in axonal sprouting during nerve regeneration involving the proliferation of hematogenous and Schwann cells in damaged tissue. We have exposed lesioned sciatic nerves to a collagen prosthesis with covalently bonded small cell adhesive peptides Arg-Gly-Asp-Ser (RGDS), Lys-Arg-Asp-Ser (KRDS), and Gly-His-Lys (GHK) to study local production of growth factors and cytokines in the regenerating tissues. Western/enzyme-linked immunosorbent assay (ELISA) studies were performed after 10 days of regeneration, when the tubular prosthesis is filled with fibrous matrix infiltrated by hematogenous cells and proliferating Schwann cells with growth factors produced locally. Regeneration was also analyzed by morphometrical methods after 30 days. The quantification of growth factors and proteins by ELISA revealed that there was an enhanced expression of the neurotrophic factors nerve growth factor (NGF) and neurotrophins (NT-3 and NT-4) in the regenerating tissues. This was further established by Western blot to qualitatively analyze the presence of the antigens in the regenerating tissues. Schwann cells were localized in the regenerating tissues using antibodies against S-100 protein. Other growth factors including growth-associated protein 43 (GAP-43), apolipoprotein E (Apo E), and pro-inflammatory cytokine like interleukin-1alpha (IL-1alpha) expression in the peptide groups were evaluated by ELISA and confirmed by Western blotting. Cell adhesive integrins in the proliferating cells were localized using integrin-alpha V. The combined results suggest that the early phase of regeneration of peripheral nerves in the presence of peptide-incorporated collagen tubes results in the enhanced production of trophic factors by the recruited hematogenous cells and Schwann cells, which in turn help in the secretion of certain vital trophic and tropic factors essential for early regeneration. Furthermore, hematogenous cells recruited within the first 10 days of regeneration help in the production of inflammatory mediators like interleukins that in turn stimulate Schwann cells to produce NGF for axonal growth.
Collapse
Affiliation(s)
- Mohamed Rafiuddin Ahmed
- Bio-organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | | | | | | | | |
Collapse
|